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1. Introduction

As are well-known, around an interface crack tip,
different from around a crack tip in a homogeneous
material, oscillations of stress component appear and the
deformation becomes a mixed-mode one even under a
load which causes mode I deformation for a crack in a
homogeneous material»™¥. These make the problem
difficult to deal with and the fracture parameter of an
interface crack has yet to be established even for an
elastic crack™™®,

The CED (Crack Energy Density), which is defined as
the strain energy area density in the plane where fracture
is considered, was proposed as a crack parameter which
enables us to be free from the restrictions on the
constitutive equation”-'?, and it was shown recently that
the behavior of a mixed-mode ctack in a homogeneous
material can be explained by it in a unified way from
completely elastic fracture to fracture with large scale
yielding'"'?. Therefore, the CED may also be appli-
cable to an interface crack if the stress oscillation problem
is cleared.

In this report, the concrete definition of the CED for an
interface crack is given first and it is shown that the CED
can be divided into mode I and mode II contributions that
can be expressed by domain integrals without any
restrictions on the constitutive equation. Subsequengly,
the relations to the conventional crack parameters of
CED are discussed, and the results above are confirmed
through the elastic finite element analyses of a bimaterial
specimen with a center-crack in the interface.
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2. CED for an Interface Crack

2.1 Definition

Consider a semi-circular notch with a sufficiently small
root radius p shown in Fig. 1 as an interface crack. The
material constants in the Interface Layer are considered
to change continuously from those of Material 2 to those
of Material 1 with X,. In this situation, no sigularity and
discontinuity appear around the notch tip, and the CED
defined as strain energy area density® is concretely given
by

E) =/ , WX, )
Here, W is the strain energy density given by
W= [‘ode (0 p=1,2) ®)
0

and I is the path along the notch tip in Fig. 1. 0;;and g; in
Eq. (2) are stress and strain tensors respectively, and ()
=9 ( )lorn

Material 2

Fig. 1 Notch Model of an Interface Crack
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The CED for a crack when p = 0 is defined as the limit
when p goes to 0 by

£ =1lim £(p) ©)

2.2 Mode | and Mode !l Contributions of CED
Let the quantities at p and p’ points symmetric about

X, axis in Fig. 1 denote as the functions of 6 and —6

(—a<6<r) and define the following quantities.

0i1(8) = {on (6) + o (=6)}/2

02 (0) = {00 (8) + 03 (—6)}/2

0i2(6) = {012 (6) — 012 (=0)}/2

e () = {en (6) + &1 (-0)}/2

eh (6) = {e0n(0) +en(-0)}/2 “)
eh(0) = {e2 (6) — 12 (—6)}/2

ul (0) = {w (6) + uy (—6)}/2

ui (0) = {u2 (8) — wp (—6)}/2

Ti (0) = s (0) - ng

off (6) = {on (6) — o1 (—6)}/2
03 (6) = {00 (6) — 02 (—0)}/2
ois (8) = {012 (6) + 01, (—0)}/2
&l (6) = {en (6) — en (—6)}/2
e (0) ={ex(0) —en(-0)}/2 &)
&3 (0) = {e2 (6) + &2 (—6)}/2
ul' (0) = {wy (0) — wy (—6)}/2
u' (6) = {u (6) + wp (-6)}/2
T8 (6) =0'%s (0) - ng

1t can be easily known that the quantities with superscript
1 and 11 are symmetric and antisymmetric components,
respectively, about X axis. Therefore, the quantities by
Egs. (4) and (5) can be related to Mode I and Mode 11
deformations respectively. Here, u, is displacement, and
T, and ng are traction force and normal unit vector,
respectively, at the point p or p’ when an arbitrary path
that passes through p or p’ is considered. It is noted that,
although the quantities by Eqgs. (4) and (5) satisfy the
equilibrium equation and the relation between strain and
displacement, they do not satisfy the constitutive equa-
tion, different from the case of homogeneous material'?,
even in liner elastic case.

When the symmetric and atisymmetric quantities by
Egs. (4) and (5) are applied to Eq. (2), the strain energy is
expressed as

W (©) = [ (b (6) + ol (O} ey (6) + £l (O} dr
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® R
= j: g (6) &g () dr + f: oy (6) &% (0) dr
+ j: s (6) &g (6) dr + [;o{,ﬁ (6) &%, (6) dr

(6)
and, considering the relations as
01043 (6) g’latﬁ (6) = Olwﬁ (_9) élcvﬁ (—0)
01343 (6) éliﬁ (9)= 01543 (=9 “‘-‘%ﬁ (-0 1)

Olaﬁ (0) élozﬁ (9) = —O0q8 (_0) ‘;"Iafﬁ (_0)
b (0) Eap (6)= —0hp (—6) €05 (—6)

hold, it is derived that the CED can be divided into Mode
I contribution £' (o) and Mode IT contibution ™ (p) as

£ = f L Wdx,
= [, WX, + [y, Whdxs
=£'(p) +£" (p) (8)
where

! .
g (o) = [ WXy, W' = [ dup o do
©)
H o
€' (0) = [ WidXo, W' = [ 0oy eop dr

2.3 CED by Domain Integrals

Let I'and A be an arbitrary path surrounding the notch
tip path I, and the area surrounded by the closed path I’
+ I, — I'y + I;in Fig. 1 respectively. As all the quantities
in the area A are continuous with X; and X,, both the
equilibrium equation and the relation between strain and
displacement are satisfied and Cauchy’s formula can be
applied. Therefore, it is easily shown in the same way as
for isotropic and homogeneous materials'” that the

domain integrals given by

£ = [ WdXy = Tty dl)

_fA f; (0&[},1 (;5043 — Eap 1 0&[3) drdA (10)
&Y = fl" (WMdx, — TMuM, dI)
_fA f: (0%5.1 %45 — g1 Ttp) dTdA (11)

become path-independent without any restrictions on

constitutive equation and the relations as

(12)
(13)

E(p) =&
eM (p) = gMJ

hold. Here, M = I, 1II.
When 0,5 = OW/ ¢, holds, the area integral in Eq.
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17/
(10) vanishes in the same way as in Ref. (11) and Eq. (10)
coincides with the so-called J-integral.

&= [ (WdX; = Tt dl) =7 (14)
However, the area integral in Eq. (11) does not vanish
even in linear elastic case.

3. Relations to Other Crack Parameters

3.1 Relation to J-integral
When o,; = 0W/3¢,5 holds, the path-independent
integral J exists. Therefore, the relation as

£9 = lim £(p)
p-0
=1 _ — 7(c)
= lim fF(WdX2 Tptty 1d) = JC (15)

is obtained, taking Eq. (14) into consideration.
3.2 Relation to Stress Intensity Factor
In linear elastic case, the relation

1

= 16 cosh? () [R] (Ki* + K?) (16)

£@

is derived through Eq. (15) and the relation between
J-integral and stress intensity factor. Here,

dmlE iR o

By M2/ N2
K+1 Bt+1
R]=—2"— 2 18
[ ] Ha Ha ( )
K= { 3—dv; : plane strain 19)
@-vp/(1+v) : plane stress

#; and v; are shearing modulus and Poisson’s ratio
respectively, and subscript j (= 1, 2) corresponds to
Material 1 or 2 in Fig. 1. Moreover, K; and K, are stress
intensity factors for an interface crack corresponding to
K; and Ky for a homogeneous material.
3.3 Relation to Energy Release Rate

Through the relation between energy release rate Gand
stress intensity factors K; and K,'?, the following relation
holds.

¢9=g (20)

4 . Finite Element Analyses of an Interface Crack in
an Infinite Plate

Bearing an interface crack in an infinite plate in mind,
the elastic finite element analyses of the part encircled by
broken line in Fig. 2 were carried out by applying the
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Fig. 2 Interface Crack in an Infinite Plate under Uniform
Tension

Integration
Path

Fig. 3 Mesh Pattern

forced displacements to the boundary evaluated from the
singular solution®, that is,

2 Vrin r
—élTK,,fm(e,wan,

7

(ws) ; @ (21

When the condition that p < r, <« a is satisfied, it is
thought that the analyses here correspond to the analyses
of an interface crack in an infinite plate in Fig. 2. Figure 3
shows the mesh pattern used. r, / p is fixed at 230.0 and
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Fig. 4 p-dipendencies of CED and its Mode I and Mode II
Contributions

the plane strain analyses were carried out varing the value
of p. Crack lengh a is supposed to be 20.0mm. As to the
material constants of Material 1 and Material 2, five kinds
of uy / u, are taken (u; /4, = 1.0, 5.0, 10.0, 20.0, 50.0)
and v; = v, = 0.3. In the interface layer, let the material
constants be constant for simplicity and let us take them
at the geometrical mean values, that is, y; = Vi1 tp and
vs = Vv, = 0.3

The CED and its Mode I and Mode II cotributions
were evaluated by £-integral (Eq. (10)) and £%-integral
(Eq. (11)) and J-integral was also evaluated. £;-integral
agrees well with J-integral, so, the relation of Eq. (14) is
confirmed. The path-independencies of domain integrals
were also confirmed numerically (an example of integra-
tion path I employed is shown in Fig. 3).

The p-dependencies of CED and its Mode I and Mode
I contributions are shown in Fig. 4. Here, £© is
evaluated from Eq. (16). From this figure, it is known that
£, that is, £ (p) is not sensitive to p and the relation as

1

T6 cosh? (@) M + K2)

£(p)=E@ = @)

holds when p is sufficiently small. This fact means that,
when p is taken sufficiently small, £ (p) can be a crack
parameter which represents some situation around a
crack tip. On the other hand, €5 and £, that is, £' (o) and
€ (p) depend on the value of p. This is thought to
correspond to the fact that each mode contribution of
energy release rate becomes indeterminate®. It is consi-
dered that £1© and £ are also indeterminate and £' (p)
and £ (p) can not be crack parameters at least in linear
elastic case without fixing p at some value for conveni-

ence’ sake.
5. Conglusion

The fundamental relations were derived about the
CED for an interface crack and, through the elastic finite
elemennt analyses of an example, its some fundamental
matters were studied to explore the possibility of CED as
an interface fracture parameter.

(Manuscript received, June 23, 1993)
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