UDC 64.028.7:614.841:69.035.4:625.712.35

人間行動シミュレーションによる地下街の安全性評価に関する研究

Simulation Method of Human Behavior at the Underground Shopping Center

横 山 秀 史*・目 黒 公 郎**・片 山 恒 雄** Hidefumi YOKOYAMA, Kimiro MEGURO and Tsuneo KATAYAMA

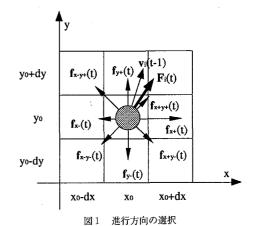
1. はじめに

地下駅, 地下街など, 不特定多数の利用者が常時存在 する大規模な地下施設の安全性については, 消防法, 建 築基準法などの法令による規制や行政指導などが行われ ている¹⁾.

これらの基準にもとづいて建設された地下街などが, 災害時においても避難安全性の高いものであるかどうか, 避難計算時に想定したとおりの避難行動が可能かどうか を検証する必要があり,このための方法論の確立が望ま れている。地下施設からの避難行動に関しては,数件の 災害事例^{1),2)}を除いてほとんどないこともあり,過去の データから安全性を検討することは困難である。また, 実際の地下街を用いた被験者実験による避難行動解明は, 実験自体の安全性の問題から困難である。このため,コ ンピュータシミュレーションによる検討が有用であると 考えられる。

従来の代表的避難行動解析手法である流体モデル³⁾や電荷モデル,磁場モデル⁴⁾などは,多人数の避難を取り扱える利点があり,避難計算などに用いられてきた.しかし,これらのモデルでは,ある特定の力学法則を仮定して行動決定,経路選択を行うため,災害の進行にともなう周囲の状況の変化などを取り入れにくい,個々の人間の行動を追跡することが困難であるなどの欠点がある。また,個々の人の行動を詳細に再現することを目的とした,推論ベースモデル⁵⁾では,モデルが複雑になりすぎ,大規模な避難行動シミュレーションは困難である.

本報告では、避難行動検討の対象空間を、避難に関連 する各要因の影響を表すポテンシャルの時間・空間分布 としてモデル化し、避難行動シミュレーションを行う手 法を提案する. さらに、簡単な事例を用いた大規模地下 空間からの避難行動シミュレーション例を示す.


2. 避難行動シミュレーションモデルの構築

(1) モデルの基本概念

提案モデルでは、避難対象となる一人一人に対して、 避難に関する要因の影響を表すポテンシャル分布 Ω を 計算し、求められたポテンシャル分布にもとづいて避難 行動シミュレーションを行う.

以下では,説明を簡略化するため,対象空間を2次元の平面場としてモデル化した場合について示す.

避難行動シミュレーションは、大きさ (d_x, d_y) のメッシュ単位で行う.避難者 i に対する、時刻 t におけるポテンシャル分布 Ω_i (x, y, t) が定まったときの進行方向ベクトル $F_i(t)$ は、図 1 に示すように

$$\begin{split} \mathbf{F}_{i}(t) &= \left[\mathbf{f}_{\mathbf{x}+}\left(t\right) + \mathbf{f}_{\mathbf{x}+\mathbf{y}+}\left(t\right) + \mathbf{f}_{\mathbf{y}+}\left(t\right) + \mathbf{f}_{\mathbf{x}-\mathbf{y}+}\left(t\right) + \mathbf{f}_{\mathbf{x}-\mathbf{y}+}\left(t\right) + \mathbf{f}_{\mathbf{y}-}\left(t\right) + \mathbf{f}_{\mathbf{y}-}\left(t\right) + \mathbf{f}_{\mathbf{x}+\mathbf{y}-}\left(t\right)\right] + \alpha_{i}\left(t\right)\mathbf{v}_{i}\left(t\right) \end{split} \tag{1}$$
 と仮定した、ここで、

$$\mathbf{f}_{x+}(t) = [\Omega_{i}(\mathbf{x}_{0} + \mathbf{d}_{x}, y_{0}, t) - \Omega_{i}(\mathbf{x}_{0}, y_{0}, t)]/\mathbf{d}_{x}$$

^{*}東京大学生産技術研究所 第5部

^{**}東京大学生産技術研究所 付属国際災害軽減工学研究セン

 $\mathbf{f_{x+y+}}\left(t \right) = \frac{{{\Omega _i}\left({{x_0} + {d_{xx}},\,{y_0} + {d_{y}},\,t} \right) - \Omega _i}\left({{x_0},\,{y_0},\,t} \right)}{{{\sqrt {{d_x}^2 + {d_y}^2}}}}$

 $\mathbf{f}_{y+}(t) = [\Omega_{i}(\mathbf{x}_{0}, y_{0}+d_{y}, t) - \Omega_{i}(\mathbf{x}_{0}, y_{0}, t)]/d_{y}$

$$\mathbf{f_{x-y+}}\left(t\right) = \frac{\Omega_{i}\left(x_{0} \!-\! d_{x}\!,\; y_{0} \!+\! d_{y}\!,\; t\right) - \!\Omega_{i}\left(x_{0}\!,\; y_{0}\!,\; t\right)}{\sqrt{d_{x}^{\;2} \!+\! d_{y}^{\;2}}}$$

$$\mathbf{f}_{x-}(t) = [\Omega_i(\mathbf{x}_0 - \mathbf{d}_x, \mathbf{y}_0, t) - \Omega_i(\mathbf{x}_0, \mathbf{y}_0, t)]/\mathbf{d}_x$$

$$\mathbf{f}_{\mathrm{x-y-}}\left(t\right) = \frac{\Omega_{\mathrm{i}}\left(x_{0} - d_{\mathrm{x}}, \, y_{0} - d_{\mathrm{y}}, \, t\right) - \Omega_{\mathrm{i}}\left(x_{0}, \, y_{0}, \, t\right)}{\sqrt{d_{\mathrm{v}}^{2} + {d_{\mathrm{v}}}^{2}}}$$

$$\mathbf{f}_{v-}(t) = [\Omega_i(\mathbf{x}_0, \mathbf{y}_0 - \mathbf{d}_v, t) - \Omega_i(\mathbf{x}_0, \mathbf{y}_0, t)]/\mathbf{d}_v$$

$$\mathbf{f}_{x+y-}(t) = \frac{\Omega_{i}(x_{0}+d_{x}, y_{0}-d_{y}, t) - \Omega_{i}(x_{0}, y_{0}, t)}{\sqrt{d_{v}^{2}+d_{v}^{2}}}$$

また、v_i(t) は直前の進行方向を表す単位ベクトルで、 $\mathbf{v}_{i}(t) = \mathbf{F}_{i}(t-1)/|\mathbf{F}_{i}(t-1)|$

として求められる.

式(1)の第1項は周囲の状況を表す項、第2項は進行方 向の保存性を表す項である. α(t) は個人特性を表す係 数で、行動決定に際し、周囲の状況を重視する傾向にあ るか、あまり考慮せず前進しようとする傾向にあるかを 表す. 個々の避難者に対する $\alpha_i(t)$ は、性格検査に関する 研究6)などにもとづいて、避難者全体の個人特性分布を 仮定し、この分布形を満足するように定める.

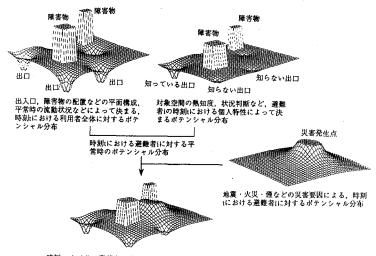
次に、ポテンシャル分布 Ωi(x,y,t) の求め方について 述べる. 避難者 i から見た時刻 t における対象空間のポ テンシャル分布 $\Omega_{i}(x,v,t)$ は、図 2 に示すとおり流動状

谏 報 況や対象空間の平面構成を表すポテンシャル分布, 避難 者の個人特性の違いを表すポテンシャル分布. 地震や火 災、煙などの災害による影響を表すポテンシャル分布な どの重ね合わせとして定義する、避難者iに対する、対 象空間におけるポテンシャル分布 Ωi(x,v,t) は次式によ り求める.

$$\Omega_{i}(x, y, t) = \sum_{j=1}^{m} \Omega_{ij}(x, y, t) + \sum_{k=1}^{n} \delta_{ik}(t) \Omega_{ik}(x, y, t)$$
 (2)

$$\delta_{ik}(t) = \begin{cases} 0 : 時刻 t で考えない災害 \\ 1 : 時刻 t で考える災害 \end{cases}$$

ここで Ω_{ii}(x,y,t) は, 対象空間の平面構成や避難者の 個人特性など、平常時の行動決定に関する各要因の影響 を表すポテンシャル分布, m は要因数である. また, Ω_{ik}(x,y,t) は、地震、火災などの各災害要因の影響を表 すポテンシャル分布, n は要因数である.


式(2)の第1項で表される平常時のポテンシャル分布は、 次式のとおり、対象空間の平面構成・平常時の利用者流 動状況など、全避難者に共通する要因と、個人特性に関 わる要因の和として求める.

$$\Omega_{ij}(x, y, t) = \sum_{n} \Omega_{ijp}(x, y, t) + \sum_{n} \Omega_{ijq}(x, y, t)$$
(3)

ここで、 $\Omega_{iip}(x,y,t)$ は全避難者に共通の要因によるポ テンシャル分布, $\Omega_{iia}(x,y,t)$ は各避難者に固有の要因に よるポテンシャル分布である.

全避難者に共通するポテンシャル分布は、時刻 t にお ける個々の避難者に対する場の平均としての意味を持ち, 流動状況調査と解析などにもとづいて定める.

また、個人特性に関するポテンシャル分布は、各避難 者の対象空間に対する知識、状況判断などの差異を表し、

時刻における,避難者に対する災害時のポテンシャル分布 Ω(x,y,t) ポテンシャル分布計算のフロー

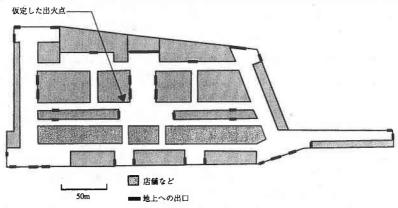


図3 地下街モデルの平面図

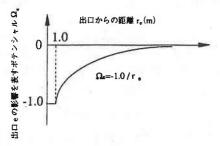


図4 例題において仮定した出口のポテンシャルモデル

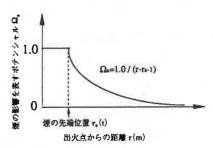


図6 例題において仮定した煙のポテンシャルモデル

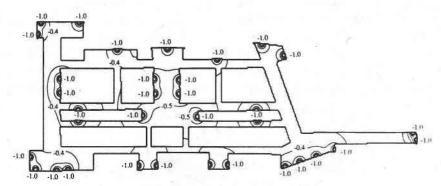


図5 地下街モデルにおけるポテンシャル分布

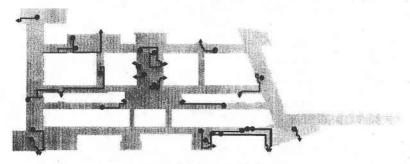


図7 シミュレーション例

速

報

ファジィ推論などを用いて定める. 災害事例研究により. 災害時には来た方向へ戻ろうとする傾向があるなど、平 常時の行動と関係の深い避難行動が調査されており⁷⁾、 これらの結果をモデルにとりいれる.

式(2)の第2項で表される、災害時のポテンシャル分布 は、地震・火災などの災害による影響を表すポテンシャ ル分布の和として求める. 各災害による地下構造物の避 難安全性への影響要因のうち、地震に起因するものとし ては, 停電による照明の減光, 棚や商品などの転倒・落 下、地震火災などが考えられ、これらの要因について危 険度解析などを行い、モデル化する.

また、地下空間における火災性状・煙拡散については、 若松による研究8),渡部らによる研究9)など,現在も研 究が進められており、これらの研究成果にもとづいて火 災に関連する要因の影響をモデル化し、避難行動シミュ レーションモデルを構築する.

(2) 避難行動シミュレーション例

図3に示すような形状の大規模地下街モデルを対象に、 避難行動シミュレーションモデルの検討例を示す. 災害 要因としては煙の拡散のみを考え、シミュレーションの 開始と同時に火災が発生し、出火点から煙が拡散してい く状況を想定した.

モデル化にあたっては、まず対象空間の災害発生前の ポテンシャル分布を決定する. ここでは、出口の方向に 向う人に対する場のみを考えた、すなわち、目標点であ る各出口から図4に示すように距離に反比例してポテン シャル値が変化する簡易なモデルを用い、全避難者に対 して同一の流動場を仮定した. 図5に全体のポテンシャ ル分布を示す.

次に、煙の拡散による避難行動への影響をモデル化す る. 地下空間における煙の流動は、通風・換気条件や人 の動きによる拡散などの影響を受ける. ここでは、若松 による研究8)などにもとづいて煙の先端位置 rs(t) の移 動速度を毎秒0.5m と仮定し、煙の発生点から一様に拡 散していく簡易なモデルを用いた、煙の避難行動への影 響としては、図6に示すモデルを仮定した.

以上のモデルにもとづくシミュレーション例を図7に 示す.

3. 今後の課題

本報告においては、対象地下空間の避難ポテンシャル 分布にもとづく, 大規模地下空間からの避難行動シミュ レーションモデルの構築法について、基本的な考え方を 提案し、簡単な場のモデルを用いたコンピュータシミュ レーション例を示した.

今後は、平常時の流動状況を再現するポテンシャル分 布の設定法を検討するとともに、地震、火災、煙などの 災害が避難行動に及ぼす影響についても詳細な検討が必 要である.

具体的な例題にもとづく検討を行うため、大規模な地 下駅である営団地下鉄大手町駅について、駅構内の平面 構成や障害物の配置などについての現地調査を行った. 現在、同駅における、平常時の利用者の流動状況につい ての解析を行っており、今後報告したいと考えている. なお,本研究は文部省科学研究費補助金(平成3年度: 一般研究 B, 研究代表者 山崎文雄, 平成 4 年度:一般 研究 B, 研究代表者 片山恒雄) による研究の一環とし て行ったものである. (1992年12月28日受理)

参考文献

- 1) 高木任之, 平成版 用途別 消防・建築法規のドッキン グ講座,全国加除法令出版,1991.
- 2) 矢島安雄, ビル火災の避難と救助, 全国加除法令出版, 1973.
- 例えば, 吉田治典, 建物全体を考慮した避難時間のシ ミュレーション, 日本建築学会大会学術講演梗概集, 1973. など.
- 4) 例えば、岡崎甚幸、松下聡、避難計算のための群集歩行 シミュレーションモデルの研究とそれによる避難安全性 の評価, 日本建築学会計画系論文報告集, No. 436, pp. 49-58, 1992, など
- 5) 例えば、位寄和久、避難行動モデルに関する研究―火災 状況の認識と心理状態を考慮したモデルの提案--, 日本 建築学会論文報告集, No. 325, pp. 125-132, 1983. など
- 例えば,辻岡美延,新性格検査法―YG 性格検査実施・ 応用・研究手引, 日本・心理テスト研究所, 1982.
- 室崎益輝, ビル火災, 大月書店, 1982.

- 若松孝旺,地下街における煙制御に関する研究,災害の 研究23, pp. 90-108, 損害保険料率算定会, 1992.
- 渡部勇市ほか、地下空間模型を用いた火災性状に関する 実験的研究その1~その3,日本火災学会平成4年度研 究発表会概要集, pp. 34-43, 1992.