EtamX

Fingerprinting Attacks on the Tor
Anonymity System and Defense
Mechanisms

TorER Y AT ALISHT HEWIE & HHFE

HEHE WUHERR EHRR
RRAXFRZR FHREIZRAEN EFRHFER
48-086445 e bz (Yi SHI)

Wk 22 48 H 18 HH

Abstract

As the time advances, privacy is more and more concerned by Internet users. En-
cryption protected our information, but not all problems could be solved by it. Then
we have the anonymity system. Anonymity system was first introduced by David
Chaum and it served as the building block for anonymity, as a supplement of encryp-
tion. Among all kinds of anonymity systems, Tor is the most famous one and widely
used among people and organizations. It is an implementation of the second genera-
tion Onion Routing and supports the anonymous transport of TCP streams over the
public network. Then, it provides the foundation for a range of applications to com-
municate over public network without compromising their privacy. The characteristic
of low latency makes it very suitable for general purpose tasks like web browsing.

With numerous researches about how to design anonymity system, there are also
lots of studies about the attacks towards anonymity systems. Generally, these attacks
require powerful assumptions to be implied. To the system designers, these assump-
tions will reduce their motivation to consider the new defense mechanisms against
impractical attacks.

In this paper, first we systematically discuss the background knowledge of
anonymity system through the timeline. Then we talk about motivation of attack re-
searches and introduce several attacks by distinguishing them with their threat models.
We try to give readers a rough picture of attack research in this field.

Then, we present a novel way to implement a fingerprinting attack against Onion
Routing anonymity systems such as Tor. Our attack is a realistic threat in the sense
that it can be mounted by nothing but controller of entrance routers; the required
resource is very small. However, the conventional fingerprinting attack based on in-
coming traffic does not work straightforwardly against Tor due to its multiplex and
quantized nature of traffic. By contrast, our novel attack can degrade this Tor’s
anonymity by a metric based on both incoming and outgoing packets. In addition,
our method keeps the fingerprinting attack’s advantage of being realistic in terms of
the required small resource.

Based on the central idea, we also extend our idea in two ways - both the threat
model and attack method itself. By these additional researches, we have showed the
potential of our idea and hope we could encourage future research on this aspect.

About the evaluation, we try to enhance the reader’s understand about the effec-

Abstract

tiveness of our method by discussing them in a comprehensive manner: experimentally
and theoretically. Experiments about extensions are also given in the following sec-
tions. In order to enhance further studies and show the significance of our idea, we
also discuss general defense ideas and defense mechanism of dummy packets, what we

recommend to imply in the future low-latency anonymity systems.

i

Contents

Abstract

1 Introduction

11 Anonymlty System ...
1.1.1 The Motivation of Anonymity System =+« eseeeeeesasas
1.1.2 Mixnet and the Dining Cryptographers Problem «=«-«xorormememeeeeees
11,3 Basic Featiimes - rrrrrrrrrrmmnsrmmmmtetttmnettiiiii e e e
1.1.4 Modern Anonymity Systems =+« s s s
1.2 OUE COMETTDULIOILS *+#w v« rr e rreerrrreememnmn et
1.3 OF@AIIZAGION * 7+ 7 e et e et
2 Related Works
91 Edetooerid Aftacker == esrrrrrrrrnsmnn e
2.2 Entry Point Aftacker: st
2.3 MALiCiOUS NOAES “#«####r e rererrrrrmmnnsnnn e s ettt
D4 OULSIe POIIIES wwwrwwrrrrrrrreeerrreemeens et
95 Black Box Model -« mmrrrrrmrmmmmmmmnae ettt
2.6 CIOMPATISOIIS **+**##+##+ 5+ # 55 # s et sttt
3 Fingerprinting Attack on Tor
3.1 The Characteristics of TOp: -« ««««««r== mssrrrrrrrmmmmmmm .
3.0 Threat Model -« meerrrmmmmmmmmn
3.3 Fingerprinting Attack with Tntervals -+ e
3.4 Collusion Threat Model - rrrrrrrrrrrrmrrmmmmmmmrertrri e
3.5 Fingerprinting Attack with Time Windows: e
3.6 Combine TWo Methods -+ rrrrrrrrrrrrrrmmmerrreerrrrren e
3.7 Pty i e vr er e eo s e s s
3.8 Other Applicable STEUAtiONs *++ s s sttt
4 Experiments and Evaluation
41 Environment and Data Collecting Method =+t
42 Evaluation Of the Interval Attack ...
4.3 Evaluation of Collusion Threat Model on Tor »--rrrrrrrrrmrrrrrerreeeees

il

10
11

12
12
14
16
16
18
20

22
22
22
23
25
28
30
30
32

CONTENTS

4.4 Evaluation of Time Window Attack and Combination =====:--=ormmmmremreees 41
45 Evalu&tlon Of Plty Hlt ... 42
5 Countermeasures 45
5.1 General Discussion about Countermeasures ====«rrrorrrrrmrrrrrmrrssmeeeees 45
52 Dummy PaCketS in TOI. Anonymlty SyStem 47
6 Conclusion 54
Acknowledgements 55
Bibliography 56
Publications 59

iv

Chapter 1 Introduction

1.1 Anonymity System

1.1.1 The Motivation of Anonymity System

The Internet brings us convenience, but also hurts our anonymity. With some tools,
it is no difficult for any attacker to eavesdrop activities of other users. Individuals
and organizations sometimes need anonymity on the Internet. People want to surf
webpages, make online shopping, and send email without exposing their identities and
activity patterns to others. Encryption solved some parts of this problem, but not
everything. It can hide the communication contents such as data payloads, but it can
do nothing with the packet headers, which leaks the identity of communication parties.
Anonymity system tries to provide the foundation for users to share information over
public networks without compromising their privacy.

Here is a simple example: the websites nowadays keep profiling users to provide
more suitable services. Large-scale B2C sites like Amazon supplies more suitable
candidate items for each user based on their surfing history and transaction records.
If we bought some game software, then other games with the same platform or similar
genre will be recommended to us on the top page. It makes seller provide better
services and gives the buyer convenience, but it also really hurts our privacy. Our
transaction records could also be misused by the seller.

Anonymity system could keep websites from profiling individual users. It could
also be used for socially sensitive communication: forums or chat rooms for survivors
of serious cases, even people with specific illnesses. Journalists may use this kind of
system to communicate with whistleblowers and dissidents safely. Corporations use
anonymity system as a safe way to conduct competitive analysis.

Moreover, big organizations such as embassies use anonymity systems to exchange
information with their home country. Law enforcement could use it for collect-
ing evidence without alerting suspects. Non-governmental organizations usually use
anonymity systems to connect to their friends or family while they are abroad, often in
the complicated situations, without notifying everybody nearby what they are working
with.

Chapter 1 Introduction

1.1.2 Mixnet and the Dining Cryptographers Problem

Mixnet Up to the 80 s, 20th Century, shortly after the introduction of public
key encryption, David L. Chaum presented the paper - Untraceable Electronic Mail,
Return Addresses, and Digital Pseudonyms [4]. It was motivated by the object of
seeking the solution to a cryptographic problem, “the traffic analysis problem” (the
problem of keeping confidential who converses with whom, and when they converse).

This system based on two assumptions: (1) No one can determine anything about
the communication participants between a set of sealed (encrypted) items and the
corresponding set of unsealed items, or create forgeries without the appropriate random
string or private key. That is, in short, indistinguishability and unforgeability. (2)
Anyone may learn the origin, destination, and representation of existed messages in
the underlying telecommunication system and anyone may inject, remove, or modify
messages.

These two assumptions also widely accepeted as the default items in the following
researches. With these assumptions, Chaum raised designs with public key encryption
to build up a mail system - Miznet. The users will include not only the communication
partners but also a series of computers called mizes that will process all items of mail
before it is delivered. Consider the case which there is one mix only, it uses public key
of a node and the communication party. When Alice wants to send a message to Bob

through node i, it could be simply described by the following formula:

Ei(Ep(M), B) = Ez(M), B

The = denotes the transformation of the input by the mix into the output shown
on the right-hand side. The mix decrypts the input with its private key in order to
output the containing. One might imagine a mechanism that forwards the encrypted
message Ep(M) of the output to the receivers who then able to decrypt them with
their own private keys.

The purpose of a mix is to hide the correspondences between the items in its
input and those in its output. And by using a cascade, or series of mixes, they could
offer the advantage that any single constituent mix is able to provide the secrecy of the
correspondence between the inflow and the outflow of the entire cascade. Incrimination
of a particular mix of a cascade that do not correctly process an item is accomplished
as with a single mix, but only requires a receiver from the first mix of the cascade,
for a mix can use the signed output of its predecessor to show the absence of an item
from its own input. An item is prepared for a cascade of n mixes the same as for a

single mix. It is then successively sealed for all succeeding mixes:

Chapter 1 Introduction

E.(E, (..., B (Eg(M), B)...) =

The first mix yields a lexicographically ordered batch of items, with the form:

E, 1(E, o(...,E\(Eg(M), B)...)) =

The items in the final output batch of a cascade are of the form Eg(M), B, the
same as those of a single mix.

The usage of return addresses could also be reached by a similar method: Alice
could form an untraceable return address E;(A), E4, where A is its own address and
E 4 is the public key of Alice. Then Alice can send return address to Bob as part of a
message sent by the techniques already described above. (In general, two participants
can exchange return addresses through a chain of other participants, where at least
one member of each adjacent pair knows the identity of the other member of the
pair.) The following indicates how Bob uses this untraceable return address to form a

response to Alice, through a new kind of mix:

Ei(A), EaA(M) = A, E4(M)

This process could also involve cascade mixes, very similar like we have proposed
in the former part.

Mixnet is the very beginning anonymity system, and you could see that it has
already solved many problems in anonymity communication. It could be easily devel-
oped into both high-latency and low-latency system, but it still lacks some practical
solutions. Based on it, many modern anonymity systems are raised in the 21th Cen-

tury.

The Dining Cryptographers Problem In 1988, another important paper in
anonymity communication is also presented by David Chaum, about the famous dining
cryptographers problem [3]. It illustrated us a story like this: Three cryptographers
are sitting down at the table and made the arrangements for the bill to be paid anony-
mously. The bill is either paid by one of the cryptographer, or it might have been the
third party (It was pretended to be U.S. National Security Agency.). Tree cryptog-
raphers respect each other’s right to make an anonymous payment, but they wonder
if NSA is paying. So they could solve this problem by carrying out the following
protocol:

Each cryptographer flips an unbiased coin between him and the cryptographer on

his right, so only two of them can see the result. Each cryptographer then states

Chapter 1 Introduction

Figure 1.1: Dining cryptographers problem

aloud whether the two coins he can see - the one he flipped and the one flipped by his
left-hand neighbor - are on the same or different sides. If one of the cryptographers
pays for the bill, he just makes an opposite of what he sees. Then, an odd number of
differences indicate that a cryptographer is paying and an even number indicates the
NSA is paying.

If the protocol is carried out faithfully, it is unconditionally secure. Consider
the dilemma of a cryptographer who is not the payer and wishes to find out which
cryptographer is. (There is no anonymity problem about NSA.) There are two cases.
(1) The two coins he sees are the same, and one of the other cryptographers said
"different,” and the other one said "same.” If the hidden outcome was the same as
the two outcomes he sees, the cryptographer who claimed ”different” is the payer; if
the outcome was different, the one who said ”same” paid for the dinner. For we have
assumed the hidden coin is fair, both possibilities are equally likely. (2) The coins he
sees are different; if both other cryptographers said ”different,” then the payer is the
closet to the coin that is the same as the hidden coin; if both said ”same,” then the
payer is closest to the coin that differs from the hidden coin. Thus, in each sub case,
a nonpaying cryptographer learns nothing about which of the other two is paying.

The cryptographers become intrigued with the ability to make messages public

Chapter 1 Introduction

untraceably. Easily, if they repeated this basic protocol over and over then arbitrary
length of message could be distributed anonymously. Mixnet and the dining cryptogra-
phers problem formed two general types of modern anonymity system - the low-latency

systems and high-latency systems.

1.1.3 Basic Features

In 1986, Pfitzmann and Waidner raised basic concepts for anonymous networks. In
[20], they discussed features, performance and fault tolerance of the anonymity system
although there were few system at that time. They proposed that three characteris-
tics are important in anonymity system: Recipient anonymity, sender anonymity and
unlinkability of sender and recipient.

As they are named, sender anonymity means attacker cannot find out the initiator
of a message. And receiving message itself can be made completely anonymous if it
is delivered by broadcasting. And if the message has an intended recipient, it has
the attribute by nobody else could see the addressee, so called recipient anonymity.
Unlinkability is that the relation between sender and recipient of a message hides from
everybody but the system and the sender.

Although three features are mentioned by Pfitzmann and Waidner, it is obviously
not all the system could achieve these features simultaneously in all conditions. For
example, with attacker in the same network, it is impossible to achieve the sender
anonymity without keep broadcasting all the times. But no matter what anonymity

system it is, the unlinkability is the least requirement to protect user’s privacy.

1.1.4 Modern Anonymity Systems

Chaum raised mixnet and the dining cryptographers problem became are two impor-
tant anonymity systems in the history. But it omitted many practical questions as the
node finding, path creating, etc. Modern anonymity system researches focused more
on the practical problems and also devoted on how to make the system safer. We will

introduce some famous systems here:

Crowds Reiter and Rubin presented crowds in [22], 1998. As it was named, “blend-
ing into a crowd” reflected its central idea. The system is consisted by lots of geo-
graphical diverse users. Web servers are unable to learn the true source of a request
for the probability of a message’s initiator is equally to any member of the crowd. And

they introduced degree of anonymity to describe and prove anonymity properties.

Chapter 1 Introduction

Figure 1.2: Paths in a crowd (Left are jondos and right are web servers)

Basically, the system is consisted by a dynamic group of users and called crowd.
The users send web requests to various web servers. They defined the users as “sender”
and the “receiver” refers to the servers. They considered the anonymity properties
against three distinct types of attackers: Local eavesdropper, collaborating crowd
members, end server.

A user who using crowds first started his proxy which named as jondo and then
by contacting with the blending server, he could join the crowd. By using jondo, all
requests coming from the browser are sent to the jondo. The jondo initiates the estab-
lishment of a random path of jondos. It picks up a jondo from the crowd, even could
be itself, and forwards the request to it. When a jondo receives a request, it determine
whether forward the message to another jondo or not with the probability p. If the
result is to forward, then the above process would be executed again and another coin
with p is flipped. Otherwise the jondo submits the request to the web server. Subse-
quent requests to the same server are followed the same path to keep the connection
alive, server could replies traverse the same path in reverse. Communication between
any two jondos is encrypted using a key known only to the two of them. Figure 1.2
gives the illustration of paths in a crowd.

The degrees of anonymity has also given in this paper. Degrees range from absolute

Chapter 1 Introduction

privacy, where the attacker cannot perceive the presence of communication, through
beyond suspicion, probable innocence, possible innocence, exposed, to provably exposed,
where the attacker can prove the sender, receiver, or their relationship to others.

We do not intend to discuss these degrees in detail here, but it supplied a way
to describe different level of anonymity in reasonable way. Also, in this paper, the
authors demonstrated us the how to describe the security level of crowds. With their
settings, the system is secure towards given attackers in the meaning of anonymity.
But in more general way, the system even without end-to-end encryption could make
any jondo change or edit the initiator’s message easily. Of course that cannot be called

“safe”.

Tor Onion routing is a distributed overlay network designed to make TCP-based
applications anonymized for general purpose Internet activities like web browsing,
SSH connection, and instant messaging, etc. (There are other general purpose overlay
network on different layer for IP protocol like Tarzan in [9]) As an implementation of
the second generation onion routing, Tor is freely available and runnable on most of
the operation systems. With the support from United States government and donation
from kinds of organizations, Tor grows quickly and has become the most widely used
anonymity system in the world. In 2004, the volume of traffic in the whole system
is only 16GB per week. Surprisingly, now the number is more than 5TB per week.
More than 2000 nodes are running around the world in any minute, also the number
of users is more than one million now. The security of anonymity system not only
depends on the design, but also correlates with the number of users. Imaging a very
safe anonymity system but with only 1 user, then it is nothing difficult for attacker to
decide whether the user is communication or not. More users mean the system safer.
By this meaning, Tor may be the safest low-latency anonymity system in the world.

Also, there are some arguments about the safety of Tor in practical usage. Due to
[10], many passwords, even from embassies are leaked through Tor. But the reason is
people do not understand anonymity system enough and misused it. And, this case
also provides us how popular the Tor really is.

The contribution of Tor by introducing many solutions such as: perfect forward
secrecy, directory servers, congestion control, integrity, configurable policies and so on,
a robust and usable anonymity system is provided to users with reasonable tradeoff
between anonymity, usability, and efficiency. For the Section 2 and 3, we will talk

about the path creation and cell construction in detail as the background knowledge.

Chapter 1 Introduction

Components of the Tor Network The essence of Tor anonymous communication
system is an overlay TCP network. As shown in Figure 1.3, there are four different

entities:

1. User. The user (also called client) uses onion prozy (OP) on local to provide the

application anonymity transactions on the Tor network.

2. Server. The destination which user visited. It acts as a server side application

to accept TCP requests from user.

3. Onion Routers (OR). Onion routers are the core components to provide
anonymity communications in the Tor network. They relay the packets between
user and server. Transport Layer Security (TLS) connections are also employed
in the Tor network to provide link encryption between two onion routers. The

Tor packet size is also restricted into a specific number, which is 512 bytes.

4. Directory Servers. They are the nodes information holder in the Tor network.
Onion proxy need to query the directory servers before it connect to the Tor net-
work. There are directory authorities and directory caches. Directory authorities
have the authoritative information about the onion routers to make efforts to
defend from malicious nodes. Directory caches download information of onion
routers from authorities and users download these information from directory

caches.

The Design of Tor Cells Onion routers communicate with each other with TLS
connections and ephemeral key to achieve perfect forward security. The data modifying
and OR impersonating are also prevented.

The data are transmitted through Tor network in fixed-size cells. The default cell
size is 512 bytes with a header and a payload. The header includes a circuit identifier
(circID) so the circuit related to this cell is specified with it, and a command to tell
the Tor network what to do with the payload. Then the cells are either control cells
or relay cells. Control cells are interpreted by the node that receives them and relay

cells carry the end-to-end data. The detailed description could be found in [7].

Establishing and Transmitting of TCP Connections To make a connection
through Tor network, user chooses several onion routers from the nodes list down-
loaded from the directory server. Once the path is decided, OP constructs the path
incrementally. It negotiates a symmetric key with each OR on the route, one hop at

a time.

Chapter 1 Introduction

Entry (OR1) Exit OR3)

iddle (O

Server

User (OP)

Figure 1.3: Basic Components in Tor Network

First, the OP (user) sends a create cell to the OR1. The create cell’s payload
includes the first half of the Diffie-Hellman handshake (¢”), encrypted with the public
key of the OR1. ORI responds with a created cell with ¢g¥ and a hash of the negotiated
key K = ¢g*.! Obviously, after this hop has been established, OP could send OR1
relay cells encrypted with negotiated key.

The next step is to extend this path further. OP sends a relay extend cell to ORI,
and tell OR1 which node the path should be extended to, and an encrypted handshake
g®? for OR2. ORI copies the encrypted handshake as the payload into a create cell
then sends it to OR2, as if it was the path initiator. After OR2 returns with the
created cell, OR1 wraps the payload into a relay extended cell and passes it back to
OP. So we have the two-hop path now, and OP shared the key Ky = ¢®2¥2 with OR2.

So, it is obviously to see that if we want to extend this path further, just do as the
first extending process. If we send the last node the object, then we could extend the
path by one hop further. And by now, the default path length for Tor network is 3.

Once the path has been established, user could send relay cells through it. When
an OR receives a relay cell, it will be decrypted. Then either it will be delivered to

! Noticed this process is slightly different from the ordinary Diffie-Hellman protocol. Since we only

need to verify the identification of nodes without caring who the user is, it is safe to be used here.

9

oP
Createcl, E{g"x1)

Created c1, ghy1, H{K1)

Relay c1{Extend, OR2, E(g"x2)}

Relay c1{{Extend, OR3, E(g"x3}}

Relay c1{{Extended, OR3, H(K3)}}

Relay c1{{{Begin <server>:80}}}

OR1

Relay c1{Extended, g"y2, H(K2}}| _

Relay c1{{{Connected}}} | -

Create c2, E(g"x2)

Created c2, g"y2, H(K2)

Relay c2{Extend, OR3, E{g"x2)}

Relay c2{Extended, OR3, H{K3}}| _

Relay c2{{Begin <server>:80}}

OR2

Relay c2{{Connected}}| _

Chapter 1 Introduction

E(x) — RSA encryption
{X}— AES encryption
cN —circuit ID

Create c3, E{(g"x3)

Created c3, g"y3, H(K3)

Relay c3{Begin <server>:80}

Relay c3{Connected}

OR3

Handshake

Figure 1.4: The Circuit Building and Beginning of Server Visiting

another OR, or be submitted to the final destination. Since the decryption of payload
will only be meaningful at the last node, to distinguish these two situations is not hard
for an OR. This leaky pipe circuit topology allows OP’s packets to exit at different
ORs or create circuits with different lengths. Figure 1.4 illustrates the circuit building

process and a simple demo of beginning server visiting.

There are still lots of other anonymity systems like PipeNet, Babel, MorphMix, etc
[11, 5, 23]. We cannot cover all kinds of anonymity systems here. But thanks to the
researchers in this field, their efforts make the Internet life safer and safer to people

who really put high importance on their privacy.

1.2 Owur Contributions

Our first contribution is raised up the fingerprinting attack towards Tor anonymity
system. Since Tor employed several mechanisms to defend it, the ordinary fingerprint-
ing attack do not work well on it. Although names are same, our attack uses a different
method to make the attack. Also we have showed the possibility and effectiveness of

the attack towards Tor anonymity system.

10

Chapter 1 Introduction

The second contribution is improvement of the attack with modified threat model,
the attack also enhanced by adding the time factor into formula. With the manually
tune up, the attack could become even more powerful in some situations.

The effectiveness of our method is discussed in a comprehensive manner: exper-
imentally and theoretically as the third contribution. With the properly evaluation,
we could show the threat of this kind of attack.

Finally, we contributed in discussing about the effective defensive mechanism to-
wards the attack and make the suggestion that the new-designed anonymity system
should treat fingerprint attack as a practical threat and employ defensive mechanism

against it.

1.3 Organization

In the following sections, we will summarize related works in Section 2, the attack
methods in Section 3, from the ordinary fingerprinting attack to our original plan and
evolution. In Section 4, we will discuss the experiments and evaluations. Countermea-
sures will be discussed in Section 5, and finally we will give the conclusion in Section
6.

11

Chapter 2 Related Works

There are several ways to classify the attacks. One of the most widely used is classify
attacks as active or passive or something else. But in my opinion, classify attacks
by their threat models will be more meaningful for the attackers won’t be restricted
by whether they should make the attack actively or passively, but restricted by the
resources they process. Also we could distinguish attack * s ability by looking into the

different threat models.

2.1 End-to-end Attacker

End-to-end confirmation attack is the main-stream kind of attacks in the anonymity
research. It gives us a model: There is an adversary between two anonymity system
users, initiator and responder. He could observe all the inflow and outflow of the
designated users. And he wants to make sure whether initiator and responder are
communicating. More generally speaking, he wants to decide whether initiator and
responder are in the same path of anonymity system. Figure 2.1 illustrates the simple
form of the timing attack.

The paper in this model, like [1, 14], once raised an arm-race in researching of
anonymity system. It really hurts the anonymity of users in an anonymity system.
But the nowadays systems, especially low-latency anonymity systems, are explicitly
implied that this kind of attacker is not considered in their designation. First, it is so
strong assumption for an adversary to achieve. To identify one path, the attacker need
to take the control of two points, which maybe so far away between each other. And
when we want to identify a user’s activities, the point we need to occupy increasing
rapidly across different autonomous systems.

The essence of a timing attack is to find a correlation between the timings of
packets seen by M{ and those seen by an end point M. The stronger this correlation,
the more likely I = J and M} is actually M]. Attacker success also depends on the
relative correlations between the timings at which distinct initiators I and J emit
packets. That is, if M; and M; happen to see exactly the same timings of packets,
then it is not be possible to determine whether the packet stream seen at M, is a
match for M! or M. Hopper et al. discussed how information leaks from timing

systematically in [13].

12

Chapter 2 Related Works

Initiator Proxies Responder
= v | ‘ Z
% — — @1& —> oses —> — e
/ M, M,

Figure 2.1: A path P! with an initiator / communicating with a responder. M{ and

M}, the first and last mixes on the path originating at I, are controlled by attackers.

In the end-to-end attacker model, there is an interesting paper by Pries et al.[21]
Recall the purpose of confirmation attack is to confirm that Alice is communicating
with Bob. (Also called initiator and responder above) The attack starts from the
malicious entry router. The entry router first attempts to identify a target cell from
the TCP stream data on a circuit and duplicate that cell. When the cell is duplicated,
the cell’s source IP and the time of duplication will be logged. This duplicate cell
traverses the circuit and consequently arrives at the exit router. The attacker at the
malicious exit router should detect an error caused by this duplicate cell and record
the time, the original cell’s destination IP address and port. In this way, it is confirmed
that the target cell is using the entry router and exit router. Since the entry router
knows the sender of the cell is Alice and the exit router knows its receiver is Bob, the
communication relationship between the sender and receiver is confirmed.

Figure 2.2 illustrates the basic principle of replay attack. You could see it compare
to Figure 1.4. It is an interesting attack, for some timing attacks also use techniques
like packet dropping to gain some advantage in recognizing the circuit, this kind of
attack causes an unusual event and could make the confirmation immediately.

There is a new end-to-end attack in [15], they want to confirm anonymous com-
munication relationship among users accurately and quickly, also make it difficult to
detect. So they select the target, embed the signal, record the target, and recognize
signals. Through these processes, attacker could prove whether these communication

partners are in the same path or not. Also, we could see other works like [17].

13

Chapter 2 Related Works

oP OR1 OR2 OR3
Create cl, E{g"x1)
Created c1, gMy1, H(K1) E(x) — RSA encryption
{X}— AES encryption
Relay c1{Extend, OR2, E(gsz)), Create c2, E{ghx2) ¢N = circuit ID
Relay c1{Extended, g"y2, H(K2)}| _ Created c2, g"y2, H(K2)

Relay c1{{Extend, OR3, E(g"X3)}}| pojay c2{Extend, OR3, E(gx2)}

Create c3, E{g"x3)

—>

Relay c2{Extended, OR3, H{K3}} _ Created c3, g"y3, H(K3)

Relay c1{{Extended, OR3, H(K3)}}
—r e

Relay c1{{{Begin <server>:80}}}

‘Relay c2{{Begin <server> :80)}.>, Relay c3{Begin <server>:80}

' /Handshake}
Relay c3{Connected} ' @
- Relay c1{{{Connected}}} | . Relay c2{{Connected}}
— Relay c2{{Begin <server>:80}} Relay c3{Begin <server>:80}
*I’eardown‘

t t t t

Figure 2.2: Replay Attack on Tor

2.2 Entry Point Attacker

This model has a different from the previous one, that is - the adversary only occupied
the entry point. In Figure 2.1, that is, the adversary only stands in M.

In the first glance, it differs a little from the previous one, but actually it is a
great difference. In this threat model, many mechanisms against attacker become
more useful like defensive dropping, including variable latencies, etc. The most typical
attack in this model is fingerprinting attack.[12]

Generally, when user visits a typical webpage, it is consisted by many different files.
First, the HTML file is downloaded from the site, then pictures included in the page,
background music, flv movie, etc. would also be downloaded after that. If we surf the
webpage at www.yahoo.co.jp, about 23 files would be retrieved from the server. Each
of them has a specific file size in the most cases. Table 2.1 illustrates an example.

In a typical browser, such as Microsoft Internet Explorer, each file would be down-
loaded via a separate TCP connection. So that, we could easily detect every TCP
flows since they use different ports to transfer the files. Then, attacker can determine
the size of each file being returned to the client. All the attacker need to do is just

count the total size of the packets on each port.

14

Chapter 2 Related Works

Table 2.1: The files of top page on www.yahoo.co.jp, 05/29/2009

File Name Size
index.htm 132KB
84.84_0582.gif 3KB
8484 _0587.gif 2KB
84.84_0953.gif 3KB
84_84_0986.gif 3KB
0529a.jpg 5KB
20090528-00000033-jijp-soci-view-000-small.jpg 6KB
b.gif 1KB
b(1).gif 1KB
b(2).gif 1KB
b(3).gif 1KB
b(4).gif 1KB
b(5).gif 1KB
b(6).gif 1KB
b(7).gif 1KB
b(8).gif 1KB
clr-090413.css TKB
fp_base_bd_ga_4.1.1.js 92KB
logo.gif 3KB
rain_clods_st.gif 1KB
uranai_090525.gif 2KB
xwetzr_auwmsmeujitOb-a.jpg 20KB
yfa_visual4.js 6KB

15

Chapter 2 Related Works

This kind of attack is not only can be applied to the plain flows, but also the simple
anonymity system just like SafeWeb. With common encryption methods, we do not
try to obfuscate the transmitted data for both performance and requirement reasons.
If someone monitors the Safeweb user, the number and approximated file size could be
determined. For example, the eavesdropper found that the user created 3 connections
with the same target, each of the connections received respectively 1324 bytes, 582
bytes, 32787 bytes. Each of these transfer sizes corresponds with a certain file directly.
The set of file sizes consists the fingerprint of a webpage.

So the attacker could first try to build the fingerprint of the webpages, then monitor
the user. When the user is surfing a webpage, connections and related data could be
detected by the attacker. Then the attacker just compare the connect data with a set
of fingerprints, choose the closest one, then “guess” that the page is what user surfing

now. The attack is low-cost and easy to apply, which really hurt the user’s anonymity.

2.3 Malicious Nodes

In this model, it assumes the adversary occupies several nodes in the system and then
try to find what they could disclose. Figure 2.3 illustrates this model simply.

Almost every anonymous system would make some discussion about this threat
model. Some will focus more on it, like [18]. It could be easy turned into the end-to-
end attacker model or entry point model. If an adversary controls m > 1 of N nodes,
he can correlate at most (¢)? of the traffic. And, with Sybil attack[8], the proportion
could be even larger.

Another approach in this threat model is predecessor attack. When using an
anonymity system, user will continuously make many connections through different
paths. Then in the anonymous system which has lots of malicious nodes, the possibility
of connect to a malicious node is greatly increased. So, different malicious nodes may
observe same predecessor, although they don’t know whether it is a user or just a
node in system. They could guess it as a user by statistical inferring. This attack is
especially useful in P2P anonymous communication system or all the conditions that

the attacker cannot distinguish user and node.

2.4 Outside Points

Most threat models would occupy some points in the system to gain some information

to implement the attack. There are also some special cases that the adversary stands

16

Chapter 2 Related Works

Figure 2.3: Malicious Nodes in Anonymous System

outside the system and try to attack it. It is more generic model, and, of course, more
hard to success.

Chakravarty et al. presented a novel mechanism to exposes the identity of anony-
mous system nodes.[2] They employ a approximately measure method LinkWidth to
detect induced traffic fluctuations in anonymity system nodes.

LinkWidth is a tool that allows attacker to estimate available and capacity band-
width on a path, without additional support or active collaboration from a remote
host or any device in the network. To measure end-to-end TCP capacity, the sender
emulates the TCP Westwood sender by sending cwin packets. cwin-2 TCP RS'T pack-
ets (called load packets), are sandwiched between two TCP SYN Packets. These TCP
SYN packets, sent to closed ports, evoke TCP RST+ACK reply packets. Correct re-
ception of the train of cwin + 1 packet is determined by two TCP RST+ACK packets
from the receiver (due to the head and tail measurement packets). Each correct re-
ception of the TCP RST+ACK pair causes cwin to be increased either exponentially
(Slow Start phase) or linearly (Congestion Avoidance phase). Since the attacker does
not rely on an established TCP connection, the only way to signal a packet loss is by
coarse timeout. After sending the train, the sender initializes a timer to wait for the

two expected ACKs. The expiration of the timeout causes the readjustment of the

17

Chapter 2 Related Works

cwin and ssthresh parameters inside a timeout event handler method.

The attacker could use TCP RST packets to avoid generating unnecessary replies,
either in the form of TCP RST or ICMP Destination Host/Net Unreachable packets,
which could potentially interfere with our forward probe traffic. The time dispersion
between two consecutive TCP RST+ACK replies due to the head and tail measure-
ment packets are stored as ¢, and ¢, ;. Thus the capacity/bandwidth is measured

as:

_cwinx L
F Tty — o

Here, by is the measured “instantaneous” bandwidth (measured throughput),
cwin * L is the total data sent (in bits) for the entire train, ¢, and ¢,_; are the times
of reception of the two TCP RST+ACK reply packets. The successful reception to a
previous train determines how many packets the attackers send in the current train.
This method is a direct extension of the packet train method.

Figure 2.4 illustrates how an adversary probes the nodes involved in a circuit.
They probe nodes that may possibly be part of anonymity communication paths. An
adversary with sufficient bandwidth resources can simultaneously probe all (or a large
fraction of) nodes. If some nodes have the similarity bandwidth fluctuation, then the
attacker could guess they are in the same path.

This attack requires little by definition, but in practical, it works well only when
the attacker uses a well-provisioned probing node is at a network “vantage” point with
respect to the victim nodes. Stated simply, this would mean that the bottleneck in
the path connecting the adversary to the victim relay should be the latter. This is
somewhat like a “pseudo” global passive adversary and limit the usage of this method.
Other than that, for all the attacker observed is the fluctuation in bandwidth, so only
the actions that is affect bandwidth greatly can be detected. E.g. The paper itself
evaluated by whether attacker could aware a 100MB file transfer.

2.5 Black Box Model

Compare to other attacks, it definitely has the strongest assumption. But systems they
want to break is also quite strong - high-latency anonymity systems. The most famous
attack under this model is long-term intersection attack. In this attack, a passive
attacker observes a really large volume of network traffic and find out some receiver
are more likely to receive messages after some specified participants have transmitted

messages. Some attacks are presented like [6, 16]. By using coarse-grained timing, the

18

Chapter 2 Related Works

Entry (OR1) Exit (OR3)

Server

@

Adversary

; S

Figure 2.4: Adversary probing available bandwidth of nodes

attacker treats the entire anonymities network as a black box, and correlating traffic
that enters and exits the system to determine communication patterns.

We introduce one of the long-term intersection attacks here, the statistical disclo-
sure attack. The attack only reveals likely recipients with statistical method. In this
attack, they model Alice’s behavior as an unknown vector ¢ whose elements relate to
the probability of Alice sending a message to each of the N designated corresponders.
The elements of ¢ corresponded to the m recipients will be 1/m; the other N —m
elements of ¥ will be 0. Other users’ “background” traffic are described as a known
vector « and each of the elements is 1/N.

The attacker derives an observation o; from output of each round. Elements are
reflected the probability of Alice’s having sent a message to each particular receiver in
that round. In other words, in a round ¢ where Alice has sent a message, each element
of 0; is 1/b if a specific recipient who could receive this message, and 0 if it does not.
Then by taking arithmetic mean O of a large set of observations, we could get (by the

law of large numbers):

0 —

Okli—‘

Zt: 7 b—1)ﬁ

19

Chapter 2 Related Works

Table 2.2: Comparison between Threat Models

Threat model Assumption
Outside point Very weak
Entry point Weak
Malicious nodes Somewhat strong
End-to-end Strong
Black box Very strong

So the attacker could estimates Alice’s behavior as:

With calculation, author has also derived the requirement for the attack that is

N
b—1°

rounds for the attack to be succeed (with 95% confidence for security parameter [= 2
and 99% confidence for [= 3):

t> [m.l<\/%(b—1)+ NNgl(b_l)erT‘l)r

In short, the central idea of this attack is: If the activity of Alice different from

the attack will only succeed when m < and calculates the expected number of

other users and this difference exists for a long time, then by applying the statistical
method to many observations, attacker could gain some knowledge about the activity
pattern of Alice.

Although the mechanism of this attack is easy to understand and the result is
not good enough to implement, from the description above, we could know that this
model is a more theoretical way for the impractical bandwidth requirement and whole

coverage of the anonymity system.

2.6 Comparisons

We have introduced a lot of threat models above, and we give Table 2.2 and 2.3 to
make the comparisons between threat models easy to understand.

The first column of both two tables is sorted by the difficulty for attacker to meet
the requirements. We could see from the Table 2.2 that entry point has a quite
weak assumption so that attacker could implement attacks with the threat model of

entry point easily. Outside point model it is the weakest assumption among these

20

Chapter 2 Related Works

Table 2.3: Comparison between Attacks

Attack name Threat model and comments Strength
Fingerpringting attack Entry point Somewhat effective
Timing attack End-to-end Effective

Replay attack End-to-end, active Very effective
Bandwidth probing attack Outside point, high bandwidth Effective
Statistical disclosure attack Black box Weak (vs High-latency)

models. But we have to aware that without additional support factors; the outside
point attacker could merely do nothing since that is the most widely existed potential
threats. And we could also see even with the same threat model, the strength of timing
attack and replay attack is different due to the attack itself is passive or not. Although
statistical disclosure attack is weak, but it is the only attack which could analysis the
user’s activity pattern in a well-designed high-latency system. If an attacker could
achieve the black box model and use it against low-latency system, he could do at
least as well as end-to-end model.

In practical, threat model which stronger than entry point is hard to achieve.
What’s more, high bandwidth is also difficult requirement. So we want to develop an
attack which is more realistic to call for the attention on the privacy protection. Also
by developing attacks, it could help us to understand the conception of anonymity
more clearly. Then make the researchers help the anonymity system become more

secure in the future.

21

Chapter 3 Fingerprinting Attack on Tor

In this section, we will first review the characteristic of Tor and why original finger-
printing attack does not work on it. Then raise our proposal of the fingerprinting

attack on Tor, extend the attack from threat model and attack method.

3.1 The Characteristics of Tor

Tor is a low-latency, well developed anonymity system. It uses multi-hop encrypted
connections to protect sender and/or receiver anonymity. Tor extends the former
onion routing scheme by adding some features like integrity protection, congestion
control, and location-hidden service. Tor can be used for both sender and receiver
anonymity. Sender anonymity could help a user to use services without disclosing their
identities. In Tor’s design, it employs two significant characteristics, which prevents
the fingerprinting attack to some extent.

First, Tor employs quantized data cells; each data cell is fixed at 512 bytes. So it
is obviously difficult for an attacker to detect the accurate size of files transferred by
separated connection stream.

Second, Tor uses multiplexing to combine all the TCP streams into one connection.
This is not for the safe aspect at first. The original Onion Routing creates a path
for each TCP stream. But for the expensive communication cost, Tor decides to
use multiplexing to reduce the expensive path-establish cost. And it also provides
some resistance to the client against fingerprinting attacks, for the attacker cannot

distinguish the connections between each other easily.

3.2 Threat Model

Although many attacks toward low-latency anonymity systems are successful in their
assumed environment, Tor and other anonymity systems are considered to be secure in
practical use. Many attacks involve a strong adversary, who could perform end-to-end
confirmation or even global eavesdrop. And in practical world, it is obviously difficult
to achieve this kind of requirement. Even for big organizations to observe all the nodes
distributed in the whole world is almost impossible. The advantage of fingerprinting

attacks is the low resource requirement. The adversary only needs to occupy the entry

22

Chapter 3 Fingerprinting Attack on Tor

point of the user. Compare to the end-to-end confirmation attacks, they just use the
resources which much easier to satisfy make it more possible to implement.

Our fingerprinting attack on Tor uses the same threat model with the fingerprinting
attack by Hintz, the attacker is assumed to occupy the entry router of the user and
observe all the data flows from the user. He wants to guess what webpage the user
is surfing now. The design objective of Tor is attempting to defend against external
observers who cannot observe both sides of a user’s connections. So we think our
threat model is appropriate against low-latency anonymity system.

Let us describe the model more formally, assume there is a user and two respon-
ders: Alice and Bob. An adversary can watch all the connections related to the user.
First, the adversary could use the anonymity system to visit Alice and Bob for many
times. Then the user visits either Alice or Bob using the anonymity system under the
adversary’s observation. Then the adversary would guess which responder the user
connected to. We have some a priori probability, which models our suspicion about
who is communicating with whom. More precisely, the a priori probability that the
user is communicating with Alice is p and the a priori probability that user is com-
municating with Bob is 1 — p. If we have no priori information, p = 1/2. See Figure
3.1(a).

Then, the model could also easily be extended to n responders, assume now there
are n responders, from Responder 1 to Responder n. First, the adversary could use
the anonymity system to visit any responder for many times. Then the user visits one
responder using the anonymity system under the adversary’s observation. Then the
adversary would guess which responder the user connected to. We have some a priori
probability, which models our suspicion about who is communicating with whom.
More precisely, the a priori probability that user is communicating with Responder
is p and the a priori probability that the user is communicating with other responders

are 1 — p. If we have no priori information, p = 1/n. See Figure 3.1(b).

3.3 Fingerprinting Attack with Intervals

Attack Method So we come to make our fingerprinting attack towards Tor. The
biggest problem is that the only connection makes it hard for the adversary to distin-
guish each file size and the characteristic of the webpages becomes hard to define.
Generally, if we observe the traffic flow from/to the user, we will see a sequence
of packets. If we use the outflow from user to separate the flow, we will see some
interesting things. Some intervals may be very short, like 1 or 2 packets between

two outflow packets. That means this interval transferred some small files or does

23

Chapter 3 Fingerprinting Attack on Tor

Responder 1
O
[

Anonymity Anonymity °
System — System 4

Respondern

(a) Model with 2 responders (b) Model with n responders

Figure 3.1: Model in Fingerprinting Attack

some protocol transactions, etc. And some intervals may be relatively long, like 5 or
6 packets. This means a bigger file is being transferred. And after the TCP sliding
window is fulfilled, the user send the acknowledge packet and continue the transfer
process. If the network condition remains stable, this traffic pattern will not change
much. So, for the webpages with different files and different loading process, we can
distinguish them to some extent.

With a specific packet sequence, we could use the method described above to make
a continuous intervals with the different number of packets. We call all the inflow
packets in a sequence, without any outflow packet placed in them, an interval. We
then define a vector V = (v1,v2,...,0,), where v; means “the number of intervals with
i packets”. nj means “the total number of intervals in V”. We build a fingerprint
vector F'in advance. Let weight w defined as ng/ng or ng/ng which is smaller (equal
when ny = nz) than 1. So we use this formula to calculate the similarity score -

SInterual :

— —

V-F

— = " Wrnterval (31)
Iaifiral

Interval —

If we have several fingerprints, we could calculate observed V with each F} to get
several similarity score S; (Here we omit the label of Interval, since it could obviously
be used with other methods), then we could sort all the S; and make the assumption
the user is surfing the webpage with the F correlated to the largest S;.

In the ordinary fingerprinting attack, because a webpage is usually consists from

about 20 to 30 files, and each file has its own unique file size. It means that the number

24

Chapter 3 Fingerprinting Attack on Tor

of distinguishable webpages is very large. But in our work, the information we used
is really limited due to the multiplexing. So if the number of fingerprint we use is too
large, we may not have a very high detection rate. When the webpages the user may
access are too many, after sorting the similarity S, we do not make the assumption
only with the biggest S, but also using a threshold value 6 instead. All fingerprints
with calculated score larger than 6 could be the possible page the user has seen. And
we could make this as a set. If we could make sure the user is surfing the same page
again and again (but we do not know which page he is watching), then we get other

sets. Combine these sets and finally we could get the most possible answer.

The Choice of Fingerprints So far we have discussed our threat model, the score
calculation formula and the method to recognize the page. But how can we choose a
fingerprint?

Generally, any vector V could be a fingerprint but the unique noises are also
included in the fingerprint. An adversary may do the sampling work in advance and
make a lot of vectors from one page. He wants to use them to achieve a higher detection
rate from the data, so which one should he choose?

The fingerprint choosing method is also discussed in ordinary fingerprinting attack
paper: the author claims that we should choose the smallest sizes sampled for each
file. It is an intuitive idea that if we observed the same thing with the smallest size,
then it must be with minimum noises. But in our opinion, for the adversary has
almost same network condition as the user. The fingerprint should not only reflect the
characteristic of webpage, but also the network condition of user.

We could assume the attacker access a webpage n times and recorded vectors as
Vl, VQ, ce \7“ We calculate the scores with each other by formula 3.1. Then we could
get the scores S;; calculated from V; and ‘7] (t=1,2,...,n—1,j >1i). So we could

choose V; with the maximum S! as the fingerprint vector F , which represents:

J#i
Si=115 (3.2)

3.4 Collusion Threat Model

Although Tor has employed several techniques to defend itself from attackers, it is
still hard to completely prevent the information leaking. We have presented an finger-
printing attack towards Tor above, which is based on a practical threat model. Here

we will present another threat model, which is stronger than the ordinary one, based

25

Chapter 3 Fingerprinting Attack on Tor

on the leaky pipe feature of the Tor anonymity system.

Suppose attacker controls the entry point of the user (That is the minimum re-
quirement of the fingerprinting attack) and m malicious onion routers out of N nodes.
It is easy to see that with the probability of m/N, this situation becomes an end-to-
end attack. (Notice that the attacker occupies the entry point with the probability
of 1, so the probability of end-to-end attack here is different from the ordinary one in
the basic model - 1\72_22) But if we do not occupy the exit node but the middle one, with
some tricks we could still improve the success rate of our attack.

The purpose of fingerprinting attack is to confirm the webpage which user is vis-
iting. We suppose that we have the both entry point of user and the middle onion
router. The first thing we need to do is to confirm that these two positions belong to
one circuit. Since here we could use the active attack, like insert time gaps between
packets to make some significant events in the entry point for the middle point to ob-
serve that. Also we could use some more simple ways, like packet counting attack as
well. Similar process is implemented as in [19]. In essence, this process is an end-to-end
attack, so high success probability of this step could be expected.

The next step is to create an one-hop circuit. After we have made sure that we
occupy the middle onion router, we could build an one-hop circuit from it. Since we
know the exit router of this circuit, (Remember that each router knows the previous
node and the next node by default so that they could pass the message, but without
extra information, they will never know the exact position they are standing at.) the
malicious middle onion router could send a create cell with a new circuit ID to the exit
onion router, and when the OR3 receives this cell, it just builds up a circuit with OR2
as usual and returns a created cell. After that we could see that an one-hop circuit
has been built up, and from the view of malicious middle router, the one-hop circuit
and the ordinary circuit from OR2’s view have the same length, same following node,
that means roughly same RTT, latency, etc. Figure 3.2 shows the threat model and
Figure 3.3 represents the attack process.

Third, after the one-hop circuit is built, we could do the fingerprinting attack. In
this time, we do not need to make the fingerprints in advance. Since we could never
know which path the user will choose, the fingerprints which made beforehand will
contribute nothing to the success rate. So in this situation we will use the observed
user’s traffic pattern as the fingerprint. Then we will use our one-hop circuit to visit
the webpages user could possibly visited and compare to the user’s traffic pattern.
Then as the normal fingerprinting attack, we will choose the one with the highest

similarity score and make the assumption.

26

User (OP)

Figure 3.2: The Circuit Building and Beginning of Server Visiting

opP

Create cl, E{g"x1)

Created c1, g"y1, H{K1)

Relay c1{Extend, OR2, E(g"x2)}

Relay c1{{Extend, OR3, E(g"x3)}

Relay c1{{Extended, OR3, H(K3)}}

OR1

Relay c1{Extended, g"y2, H{K2}} _

Entry (OR1)

Middle (Q
2 QR

(o)

Create 2, E(g"x2)

Created c2, g"y2, H(K2)

Relay c2{Extend, OR3, E(g"x2)}

Relay c2{Extended, OR3, H(K3}}

Chapter 3 Fingerprinting Attack on Tor

Exit (OR3)

R2

E(x) — RSA encryption
{X}— AES encryption
cN —circuit ID

Create c3, E{(g"x3)

Created ¢3, g"y3, H(K3)

Create c4, E{g"x4)

Created c4, g"y4, H(K4)

Figure 3.3: The One-Hop Circuit Building

27

OR3

Chapter 3 Fingerprinting Attack on Tor

3.5 Fingerprinting Attack with Time Windows

With the definition and application of interval into traffic pattern, we could gain some
advantage towards anonymity system users, but the result is still not so satisfied to
us. The interval vector method omitted the information of relative positions between
intervals, so we could get a robust result, which will not change greatly by some
abnormal events (e.g. re-transmission, lag, etc.) that may occur quite often in practical
network environment. Also, we will not get very good resolution for using so limited
information.

So we want to introduce some other factors to get better resolution and success
rate for our attack plan. Time is a good candidate for us, it is widely used in all kinds
of passive attacks. The problem is: how could we introduce the time into our attack?

First, we tried to make the assumption that all the packets remained the same
positions; the time between packets are kept relatively constant (remain same or with
same proportion). Then we may want to use a long vector to describe the time
between each packet and calculate the similarity by use correlation or other method.
Unfortunately, the result is not as good as we expected.

Then we want to use a slightly more rough way to measure that: we tried to
make the assumption that the time between intervals (as we claimed above) are kept
relatively constant. This is because that the several packets in an interval are trans-
ferred in a very short period but the waiting-for-response time is mainly related to the
network environment.

Although the result is better than the first one, it is still not a good method. In
these two ways, we treated the whole traffic pattern as if it was a “spring”. When
the network lag is high, the “spring” is stretched and vice versa. But the thing is:
practical network is not so stable as we thought, the relative position of intervals also
not remained same all the time. We want to find a better way to solve that.

Finally, we have found that by dividing into several windows, calculate the corre-
lation between packets number in each window is a good way to make the resolution

better. We also made some assumptions that are:

e Each page is consist by several files with different sizes. (Same as ordinary

fingerprinting attack)

e In network transfer, (especially with good network environment), time is largely
consumed by the waiting-for-response time than the time which is using for

packet transport.

With these two assumptions, even the similar webpages (in the number of files, file

28

Chapter 3 Fingerprinting Attack on Tor

sizes) with different sequences by using this method could be distinguished.

In this method, the basic concept is divide a given traffic pattern by relative time
(e.g. 25%, 50%, etc.) That is because the time itself varies greatly due to the different
path. Under the given assumption, we could treat the packet transfer time as “very
short” and see the waiting-for-response time as the main part of a traffic pattern’s time
line. Then if the path is slow, the total time is long and vice versa, but the packets
in each time window will not change greatly in normal cases. Then by calculate the
correlation between two time window series, we could make the guess.

Let us discuss it in more detail way: First, decide how many windows should
be divided - the total window number n. So the length of each part would be the
(total time/n). Then we will get a time window divided vector as (v, Vg, ..., Vi, ...y Up)-
v; refers to the number of packets in the i-th time window. Here we could treat the
inflow and outflow packets seperately, but I believe that the inflow could describe the
feature of object better. After that, we could calculate the similarity score with two

time window vectors by getting the correlation coefficient of them. That is:

. Cov(V', F")
Time Window Time Window Sthevg, * Sth@Uﬁ/

= WTime Window * COTT(‘?I; F;I) (33)

Two vectors represent as V' and ﬁ’, also as (vi,v),...,v) and (f], f}, ..., f1).
2

o Up
—

Cov(V', F') stands for the covariance of two vectors, which is E[(V/ — E[V'])(F" —

—

E[F)]. StdDev stands for standard deviation, calculated by \/E[(V" — E[V'))?].

And Corr(‘?’ F ') means correlation coefficient, the same as covariance divided by the

multiplier of two standard deviations.

We used wrime window here again and that is slightly different with w,serva used
above. It also ranges from 0 to 1, calculated by divide the smaller number of inflow
packets of the two vector with the bigger number of inflow packets. Weight is useful
to filter out obviously irrelevant samples, and almost without any side-effect. The
correlation gives us the information of the trends between variations of packets but
not the absolute number of packets. Then weight could help us to introduce absolute
number of packets into calculation. Actually, either weight calculated by number
of intervals or by number of packets does not differ greatly. So they are somewhat
interchangeable.

The time window divided attack results better than the interval method; we shall
see that in the following section. But the interval method is much more robust than

time window divided method. An abnormal long lag will make this sample completely

29

Chapter 3 Fingerprinting Attack on Tor

worthless in time divided method, but one or two retransmission does not hurt seriously

in interval method.

3.6 Combine Two Methods

We have presented two methods before, and both of the two methods have their own
suitable cases. It is hard for attacker to analysis each case and determine which method
to use, so the combination of two methods are recommended to introduce as many
factors as possible.

From intuition, there are equations like this:

SCombined — Slnterval * STime Window / Winterval (34)

SCombined’ — Slnterval + STime Window (35)

Besides these two basic formulas, we could also adjust each item’s weight. Towards
different samples, there may be different effective formulas, but we want to discuss in
a more general case.

Compare Formula 3.4 and Formula 3.5, I will tend to use the first one for two
reasons. First, the Formula 3.4 will give us a result between —1 and 1, which is more
formal way and could still introduce other factors in future without change the range
of result. Second, in my opinion, I think extreme case should be considered seriously.
Compare to the similarity score of 1 and 0, the score of 0.5 and 0.5 maybe the better
choice. (Although seem both of them are not the right choice.)

From experiment, the combination gave us better results; we will see them in the

following section too.

3.7 Pity Hit

Sometimes, attacker does not need to fully depend on the system to decide which
page user is browsing now. What he want is by using attack system, a few susceptible
candidates could be reviewed manually (Maybe also with some assistant). Then the
system relieves attacker’s work load, and still keep a probably high success rate profit
from human’s experience and knowledge. So in this case, the system do not choose
the highest similarity score from all the candidates, instead, top n candidates would
be chosen for attacker to decide. If the correct answer falls in the top n candidates in
an attack, we now call it a “pity hit”. That means the attack still could be succeed

due to the help from attacker.

30

Chapter 3 Fingerprinting Attack on Tor

2000 2000
Sample traffic of Mixi Fingerprint of Yahoo
1500 1500
1000 1000
@ 500 @ 500
< <
» O ettt 1 I T e BT » 0 [] i ' l ‘lr\ I ey
) o
: ‘ : [‘ H ‘
£ -s00 2 500
-1000 -1000
-1500 -1500
-2000 -2000
0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35 40
Time (s) Time (s)
(a) Sample traffic from Mixi (b) With Yahoo, Syntervar = 0.916
2000 - - 2000 - —
Fingerprint of Nifty ——— Fingerprint of Mixi
1500 1500
1000 1000
@ 500 @ 500
< <
» 0 Fh 0 i rt S RERTARI AN Thl b » O Fofrff ‘ i 1
) o
: ’ ‘ ’ : ‘
£ -500 & 500
-1000 -1000
-1500 -1500
-2000 -2000
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16
Time (s) Time (s)
(¢) With Nifty, Srnervar = 0.898 (d) With Mixi, Syntervar = 0.897

Figure 3.4: Pity hit example 1, sort by Stnierval

Here we give some observations to illustrate the importance of introducing pity
hit. In Figure 3.4, we could see that sort by Sr,iervar, the correct answer only listed
3rd place. And by the definition, we could call it a “pity hit”. But if we see the result
from the picture, the difference in Sy,zervq; 18 small. From graph shape, we could easily
decide that fingerprinting from Mixi is closest to our sample traffic. And that is what
a real attack system works, by collaborating of human and algorithm.

But things are not always so good to us. We shall see another example: Figure
3.5 illustrates another example which sorted by Srinewindow- In this example, it is
really hard to say which fits better just by the graph shape. And fingerprint from
MSN seems more similar to the sample traffic than the other two. But actually, our
eyes could not read all the messages from the traffic shape. If we use St ervar to sort
them, the Stimewindow With Goo itself is as high as 0.985, and the result with MSN

31

Chapter 3 Fingerprinting Attack on Tor

2000 2000
Sample traffic of Goo Fingerprint of MSN
1500 1500
1000 1000
AR (1 A $ 0 L R
‘(% 0 v T i {1 in ‘Y“ il Uil U ‘l“ { 1 ﬁ 0 [r{r u il ¥ I " n’ it I“
0 A
£ 500 S 00
-1000 -1000
-1500 -1500
-2000 -2000
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35
Time (s) Time (s)
(a) Sample traffic from Goo (b) With MSN, Svimew indow = 0.916
2000 2000
Fingerprint of Twitfer Fi print|of Goo
1500 1500
1000 1000
g 50 g 50 H l ‘| \ l l
£ 500 S 00
-1000 -1000
-1500 -1500
-2000 -2000
0 2 4 6 8 10 12 14 0 10 20 30 40 50 60
Time (s) Time (s)
(c) With Twitter, STimew indow = 0.825 (d) With Goo, STimewindow = 0.814

Figure 3.5: Pity hit example 2, sort by Srimewindow

and Twitter is only 0.783, 0.640, respectively.

So from these two examples, we know that pity hit could help the attacker raise
the success rate sometimes. But that does not means we could judge all the patterns
by our eyes both for high workload and there is still information which could not
recognized easily by human. With combination of two methods and human’s assist,
our attack could do really effective towards existed anonymity systems.

We will also see the result with and without pity hit in the evaluation section.

3.8 Other Applicable Situations

Although this attack is mainly designed towards Tor, it could also be applied in other
situations.

32

Chapter 3 Fingerprinting Attack on Tor

First, it is not hard to see every anonymity systems with multiplexing or quantized
cells could be attacked by our proposal. And even without multiplexing or quantizing,
our proposal also works. You can treat all the connections as if they were one. But it
would be ineffective for we discard some useful information by this process.

Second, this kind of attack can not only be applied attacking information regarding
webpage surfing, but also other forms of network activities. For example, in instant
chatting, there should be differences between one who talks quickly but every sentence
is short and another merely talks but using long paragraphs. This kind of differences
could be reflected in their traffic flows, although the significance may not be high
enough to be detected.

What’s more, our scheme does not only apply to the entry point of the path,
but also the exit point. Imaging that if you are a curious server administrator who
is running a system which accepts both anonymous and non-anonymous visits from
anonymity systems, you could record the patterns when users visiting your sites in
non-anonymous mode. And someday, for some purpose, a user visits your sites anony-
mously. Then you could use this scheme to guess which user it is. Just by comparing
the historical patterns and the flows you observed.

We just simply described some other possible situations for the application of our
proposal. Theoretically, for any kinds of activities with stable traffic patterns, our

proposal could be a potential threat.

33

Chapter 4 Experiments and Evaluation

4.1 Environment and Data Collecting Method

We use Windump to capture the Tor packets (Version 0.2.0.34) on a PC with Intel
Core2 Duo 1.86G, 4G RAM, Vista Business. We shall run the windump to observe
the port 9001 on the host machine. Then we use Firefox which installed TorButton
to surf the webpage. After a webpage is fully loaded, we stop capturing the packets.
We use Wireshark to open the PCAP file, filter the obvious noise manually. More
precisely, in a short period, all the connections raised from Tor are going through the
same path. So most of the packets will obviously have the same destination address
(Actually, this address refers to the first node in the path). And some packets with
other destination addresses refer to other control packets used in Tor, like establishing
new paths. After this process, a data is recorded. We also wrote some programs to

analysis the captured data to make the calculation.

4.2 Evaluation of the Interval Attack

Data Analysis First, we shall use Alexa Ranking - Top Sites in Japan' to see how
our method works in a practical environment. In Figure 4.1, we use n to represent the
top n sites’ mainpages we used to implement the experiment. We choose the top 20
sites to implement the experiments.

In the experiment, we choose top n = 5, 10, 15, 20 sites, and built fingerprint of the
site. Then we surfed webpages and recorded the user activity vector, compared with
the fingerprint, and guessed which website user is surfing. The success rate represents
in the Figure 4.1.

From Figure 4.1, we could see that: the success rate is relatively high when n is
small. With n increases, the success rate decreases significantly. There are several rea-
sons for this: First, the information we used is limited, the fingerprint of the webpage
is not so unique. So obviously the success rate decreases when n increases. Second,

some pages are not suited for fingerprinting, like youtube?, amazon®. The items on

Yhttp://www.alexa.com/topsites/countries/JP
2http://www.youtube.com/
3http://www.amazon.co.jp/

34

Chapter 4 Experiments and Evaluation

I I I I I I IntervalI R
Theoretical -

Q 0.6 i
IS
o
1]
%]
[}
Q
Q
@

04 E

0.2]

O 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

Number of Webpages

Figure 4.1: Success Rate in Different n

these sites would change from time to time, which hurts the consistency of fingerprint-
ing. Other sites like Yahoo! will have ads change frequently, too. But compared with
other parts of the page, the ratio of ads is not so large and we could just treat them as
noise. Third, the pages we have chosen are all homepages, with the similar design, it
increases the difficulty of distinguishing. Fourth, the noise in practical network affects
the result a lot, and that’s why we need to implement our method instead of just
making the simulation. Last, there are some sites hard to see the difference but still
be counted as different ones, like Google® and Google Japan®. This problem also exists
in the distinguishing between the original page and phishing page. We will discuss the

success rate in more formal way in the following section.

Theoretical Discussion In this part, we will discuss the effectiveness of this attack
in theory. We will discuss two topics: The factors that related to success rate and
make an estimate of how many webpages (or webpage groups) could be distinguished
without too high error rate. Although we use All topics we discuss here could also

be applied to other methods, so we will use S, w without pointing out it is used with

“http://www.yahoo.co.jp/
http://www.google.com/
Chttp://www.google.co.jp/

35

Chapter 4 Experiments and Evaluation

interval or others.

First, Let us discuss with the success rate. We will use the method in [14] to show
the attack success probability formally: We use V' ~ F', to indicate that the attacker’s
test says that vector V and fingerprint F are from the same site. And we use V = F
to indicate that the event that vector V and fingerprint F' are from the same site.
We have the false positive rate, Pry, = Pr(V ~ F|V # F), and false negative rate,
Prg, = Pr(V o« F|V = F), are both known. We can therefore obtain:

Pr(V~F) = Pr(V~F|V=F)Pr(V=F)+Pr(V~F|V+F)Pr(V+F)
= (1=Prp)Pr(V=F)+Prg(l—Pr(V="F))
= (1= Pry,— Pryp)Pr(V =F)+ Pry,

Which leads us to obtain:

Pr(V=FAV ~F)
Pr(V ~ F)
Pr(V~F|V =F)Pr(V=F)
Pr(V ~F)
(1= Prg,)Pr(V =F)

— 4.1
(1= Prg, — Prg,)Pr(V=F)+ Pry, (1)

Pr(V=F|V~F) =

Suppose Pr(V = F) = 1/n, e.g., we are observe n sites and the adversary has no
additional information about which site the user is likely surfing. Then, the success
probability depends on Pry, and Pry,.

In the simplest case, we first assume the false positive rate and false negative rate
are constant. Then, with Prs, = Pry, = 0.1 and n = 10, which means the user
could surf 10 webpages and we’'ve made all the fingerprints of them, we could get
Pr(V=F|V~F)=(09-01)/(0.8-0.1+0.1) = 50%. And if we improve Pry, and
Pryg, to 0.01, then with 10 webpages, the success probability is about 91.7%. As n
rises to 100 webpages, this probability also falls to only 50%. With n = 1000, it is less
than 10%.

But as we see in the evaluation above, the Pry, and Pry, rises with n. So, we will
describe the false positive rate and the false negative rate as a function of n. We also
use the assumption Pr(V = F) = 1/n discussed above. Then the Equation 4.1 would
be:

36

Chapter 4 Experiments and Evaluation

PTS (1 - an(n))/n
uccess (1 = Frn(n) = Fyp(n))/n) + Frp(n)
1-— an(n)

- (4.2)

Actually, it is almost impossible to make a reasonable function to reflect the rela-
tionship between n and the error rate, for it is affected greatly by the sites we have
chosen. But we could assume Pry, and Pry, have a linear relationship with the in-
crease of n, then from the Equation 4.2, we could see the numerator falls with n,
and the denominator increases even faster, which will leads the success probability
decreasing even faster.

The equations we listed above tell us if we want to increase the success rate, there
are several points: First, to improve the accuracy, that is, decrease the false positive
and false negative rate. Second, make the webpages we need to guess as few as possible,
what means make the n lower. What’s more, we assume the adversary knows nothing
in advance. So the Pr(V = F) equals 1/n. But if in some situation, Pr(V = F) is
greater than 1/n, which means the adversary gets some additional information from
other ways, the success rate itself will also be raised.

Then, we shall come to how many webpages we could distinguish without high
error rate, if not choose the webpages randomly but we could choose by ourselves.

Notice that the similarity S consists of two components, the relative interval ratio
and the vector’s dot product. First, we take a look at the relative interval ratio. We
have implemented an experiment to get that the mainpage of Yahoo Japan have an
average interval of 159.2105, with the standard deviation of 14.8495. Figure 4.2 shows
the distribution of intervals of Yahoo Japan.

From our observation, the intervals of webpages often fall in the range from 50 to
600. We can choose the page freely here, webpages with more than 1000 intervals are
not so rare in practical. But here we just want to make an theoretical estimate; we
will choose the range of interval up to 600.

As our experiment about Yahoo Japan, the standard deviation is approximately
10% of the intervals, that means, with about 4 20% gap between two sites, there is
about 95% chance the vector could be recognized correctly. Roughly speaking, there
are log; 4(600/50) + 1 & 8.38 slots for us to choose webpages with high detection rate.

Then we come to the dot product of vectors. In our implementation, the vector
is limited to 5-dimension. Because intervals with more than 5 packets are so rare,
intervals with more than 5 packets would be treated as one with just 5 packets.

Theoretically speaking, if we use 20% gap as we do in the discussion about interval,

37

Chapter 4 Experiments and Evaluation

0.03 T T T T
Distribution of Yahoo's Intervals

0.025 | [-
\

0.02 - / | 8

0.015 |- ’ | .

o |

0.005 / \ 1

Probability

0 100 200 300 400 500 600
Number of Intervals

Figure 4.2: Distribution of Yahoo’s Intervals

then there are a lot of available slots for us to choose, considering we have 5-dimension
to do the permutation. But actually, in typical situation, the intervals with 1 or 2
packets dominated in the total dimensions, for there are a lot of transactions to be
done(Also, in some extreme condition, such as file transferring, we could expect to
observe a lot of long intervals). By our observation, in the situation with similar
intervals, there are about 3 or 4 significantly different results. Combine this with
the result about interval, we have approximately 20 to 40 available slots for choosing
webpages to be recognized.

We have mentioned in the publication before that it is hard to improve this result,
unless we could find some way to significantly reduce the noise. And, in the following
sections, we shall see the improved results with time window method. So it is expected

to be improved further by following research.

4.3 Evaluation of Collusion Threat Model on Tor

It is a little difficult to measure the effectiveness directly, but we could also evaluate this
model with indirect methods. Since the fingerprinting attack is a kind of passive attack
and we use this attack under the assumption of Dolev-Yao model, the encryption is

considered perfectly. So the information we could used is really limited. For example,

38

Chapter 4 Experiments and Evaluation

0.06
I I I Numbelr of Yahoo’slPackets, S[:;ecified CirCll.Iit
Number of Yahoo's Packets, Random Circuits
0.05 |- N E
/\
[
a
0.04 /\ \ -
> [
= | |
3 | |
8 003 “ | E
o
& L
’
o
0.02 / ‘ b
[
0.01 - P \ o —
7
7 \
/ \
/ \ ~
0 ey L I I e
300 350 400 450 500 550 600 650 700

Number of Packets

Figure 4.3: The Packets Number Distribution of Yahoo Top Page

time, number of packets, size, etc. If we could show the better distribution of them
under this model, then it should be achieved better result by any possible fingerprinting
attacks.

Let us make the fingerprinting calculation formula abstract to S = Function(V, F).
It describes the process that user uses the fingerprint to determine whether a traffic
pattern is according to a specified webpage or others.

Since in the Tor anonymity system, there are both end-to-end encryption and peer-
to-peer encryption existed. All the information observers could get are the number
of packets, the time of packet, etc. If we could show that the distributions of these
features vary less in this model, it could reflect that fingerprinting attack will works
more effectively here.

First we will see the distribution about the total number of packets.
specified path, the packet dropping probability is relatively stable so the result will be
closer to a specified number. On the contrary, with randomly selected path, the packet
dropping probability varies greatly, it will cause the number of packets hard to expect.
Figure 4.3 shows us the result intuitively and Table 4.1 shows us the comparison about

With a

standard deviation of packet numbers.
Then we come to see the distribution about the loading time of the webpage. Like

the number of packets, when the circuit is decided, both the latency time and the

39

Chapter 4 Experiments and Evaluation

Table 4.1: Comparison about Standard Deviation of Packet Numbers between Random

Circuits and Specified Circuit

Environment Standard Deviation (on average)

Random Circuits 35.39179
Specified Circuits 8.84590
0'25 T T T . . T s T . .
Loading Time of Yahoo, Specified Circuit
Loading Time of Yahoo, Random Circuits
0.2 —
[
0.15 | \ 4
2 a
|
S L
g s
01t I .
I
I
|
0.05 [\ -
o
c} \
/
| \ [
/ - \ *\\‘\7\
0 — . L L L T |
40 60 80 100 120

Loading Time (Second)

Figure 4.4: The Loading Time Distribution of Yahoo Top Page

dropping probability are also decided. When we put the results of different circuits
together, huge differences caused by both geographical and network environment will
impact greatly on the distribution of times. Figure 4.4 shows us the result intuitively
and Table 4.2 shows us the comparison about standard deviation of transfer times. No-
tice that we have manually filtered some replay packets stuck somewhere by accident,

which will greatly enhance the variety in the total transfer time.
Last, we will use the method we have presented above to show the improvement in

the real attack scheme. We will choose the interval method to make the experiment.
If we have several fingerprints, we could calculate observed V with each F} to get
several similarity S;, then we could sort all the S; and make the assumption the user

is surfing the webpage with the F' correlated to the largest S;.
It is obviously that with more stable network environment, the S will be higher

40

Chapter 4 Experiments and Evaluation

Table 4.2: Comparison about Standard Deviation of Transfer Time between Random

Circuits and Specified Circuit

Environment Standard Deviation (on average)
Random Circuits 22.13481
Specified Circuits 2.03525

Table 4.3: Comparison about Sj,iervar Petween Random Circuits and Specified Circuit

Environment Average Score Standard Deviation
Random Circuits 0.85090 0.10501
Specified Circuits 0.97977 0.02113

compare to one calculated in the randomly chosen circuits. We have chosen the pre-
vious experiment data which collected from one circuit and the data without any
distinguish about the collecting circuits. Table 4.3 shows the result and we can see
that when the data are collected from one circuit, the similarity score is significant
higher than in the randomly chosen circuits. This result reflects the advantage of

collusion threat model.

4.4 FEvaluation of Time Window Attack and Com-

bination

In this section, we shall see the experiment result when we using time window attack,
and also the combination of these two attack methods. As what we have done in 4.2,
we use Alexa Ranking and choose top 20 sites to implement the experiments.

In the experiment, we choose top n = 5,10, 15,20 sites, and build fingerprint of
the site. Then we surfed webpages and recorded the user activity vector, compared
with the fingerprint, and guessed which website user is surfing by time window and
combination methods. The success rate represents in the Figure 4.5.

From the Figure 4.5, we could see that if we choose the webpage whose fingerprints
have the highest similarity score, time window shows better results than the interval
method. And combination of two methods performed best in this situation. There
are some points we shall notice here: First, time window do not always outperform
the interval method, we could see that from the graph. Actually, both of them have

their own suitable cases as we have discussed earlier. Second, the success rate does not

41

Chapter 4 Experiments and Evaluation

1 T T T T T T T T E
‘ Interval —+—
I Time Window ——<—
Combined —*—
Theoretical
0.8 |
o 06| |
<
o \
» \
@ \
[} \
Q \
8 \
A \
04 \ -
0.2 L 4
O 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20
Number of Webpages

Figure 4.5: Success rate with Interval, Time Window and Combined methods

always drop as the number of webpages increases. Consider in the 5 webpages case,
there are two pages are very close to each other. And when the number of webpages
increases to 10, maybe the new pages are all easy to be distinguished. Then the success
rate would be increased in the total.

4.5 Evaluation of Pity Hit

We have seen in Section 3.7, pity hit is useful when we want to implement an attack
system with both convenience and high success rate. In this section, let us see the
results when employing the pity hit into the experiment above.

We could see that by loosing the restriction - treat the situation that if the similarity
score of correct answer falls in the highest 3 candidates, we see that is a successful
attack, the success rate of all 3 methods are increased. But this time, time window
becomes the weakest attack, then the combination. The interval method is most
efficient method this time.

The reason of causing this problem is the result of interval method is far more
robust than the time window method. Typically, there are two types of irregular
events in the network transfer which may affect the analysis of traffic patterns. One

is retransmission caused by packet losses, integrity checking error and other reasons.

42

Chapter 4 Experiments and Evaluation

1 I I I I I I Intervalll —t—
Time Window ——<—
Combined —*—
0.95 |
%
VoS
09
[
IS
o
1
o 085 E
Q
o
>
%)
0.8 E
0.75 - B
07 1 1 1 1 1 1 1 1

4 6 8 10 12 14 16 18 20
Number of Webpages

Figure 4.6: Success rate with pity hit

Then the TCP protocol would automatically require retransmission to ensure the
integrity of the system. The consequence of that do not affect interval vector greatly,
a retransmission will typically increase v; simply. And generally, v; is more than 50,
or even bigger. So the similarity score will not be affected greatly unless the network
environment is extremely bad.

Another event is time lag, that is also common irregular event in the network.
Normally, a round-trip time of a packet is between several milliseconds to several
hundred milliseconds. Sometimes, due to the fault in the network, packets would
arrive after several seconds or even lost in the network. That will not affect interval
method, but could complete destroy the score calculated by time window method.
Image that we have a traffic pattern which last 20 seconds, with 4 splits, each time
length will be 5 seconds. And if there is a lag inserted in it which lasts for 10 seconds,
each time length will be 7.5 seconds and change the packet numbers in each time
window greatly. Especially for we have to calculate correlation coefficient of two time
window vectors.

According to these two reasons, we could know the reason why interval method out-
performs time window method when we employing pity hit. But that not means time
window method is valueless. Actually, time window method provides far better reso-

lution in recognizing different webpages. Consider general cases, we still recommend

43

Chapter 4 Experiments and Evaluation

the usage of combined methods. It could provide a trade-off between two methods

and sometimes have a greater success rate.

44

Chapter 5 Countermeasures

In this section, we will first discuss some general countermeasures to our attack and
some countermeasures which are believed to be effective toward fingerprinting attack.

Then, we will discuss the dummy packet method in detail.

5.1 General Discussion about Countermeasures

Change the Fixed Cell Size [t is believed a longer Tor cell size will make it
harder to attack, e.g. Increase the Tor’s cell size from 512 bytes to 1024 bytes. But
unfortunately, in our attack scheme, it will have little impact. Tor’s fixed cell size
gives the system some advantage in traffic analysis theoretically. But the protocol it
uses is still built on TCP. So no matter what the cell size is, it could still be wrapped
by TCP packet and be divided into 1500 bytes a packet in Ethernet. If there exists a
scheme to analysis Tor’s cell from TCP packets, this defense method could have some

results, but not in our proposal.

Make Odd Requests Odd requests refer to some surfing actions which is unusual.
For example, a user always surfing several pages meanwhile, restricting the scripts or
pictures downloading, etc. If there is a page with vector V, and another with vector ‘72,
then when we view these two pages at same time, the adversary could get a Vs equals
‘71 + ‘7;, and X_/}, has no difference with the vector \7’3 which has the same elements
as 173, although it may be observed from one single page. Other odd requests like the
restriction on downloading some specific files. Like the combination of two pages, it is
also difficult for an adversary to match the characteristic from the fingerprint vector.
Although this kind of defensive method seems to be so effective against fingerprinting
attack, it depends on the user’s action. But we cannot make the system’s security
depends how users use this system. It is dangerous to assume the users have the
knowledge in security and will work in a secure way. Moreover, it is not hard to
develop some kind of explorer plug-in to achieve this objective. Like TorButton, if
we activate this plug-in, it will randomly disable some kinds of files in the current
webpage, maybe forbid running script or download pictures. It will help us in the

anonymity, but we do not think users would really accept some plug-ins like this.

45

Chapter 5 Countermeasures

Run Own Entry Node Entry nodes are also called ”guard nodes”. And people
believed that they could guard your traffic from malicious nodes. First, it is not so
useful to run a node by oneself when the adversary occupies the entry router, especially
the time when they are allocated in the same Ethernet. Second, to run an own entry
node and achieve the requirement of anonymity is very costly. That means, to make an
adversary unable to distinguish the flows from a user. The own node may accept many
connections from other users, which may hurt the usability of company’s network and
unacceptable. But running a node with only permitted user also makes this node

meaningless. How to make the balance could be a question to network administrators.

Dummy Packets Defensive Dropping is a defensive method against timing attacks
introduced by Levine et al. [14]. [t employs the mechanism of dummy packets. The
communication initiator constructs some of the dummy packets. These dummy packets
are transferred on the path as normal packets. But to each packet, there is a probability
Pyop to be dropped in each node rather than passing it on to the next node. If the
number of dummy packets is randomly placed with a sufficiently large frequency, the
correlation between every visiting will be greatly reduced. As we see in this theoretical
discussion part, the increasing in the false positive rate and false negative rate will
greatly reflected in the situation where we need to recognize object from a lot of
webpages.

In a more general form, we could call the defensive dropping as a kind of dummy
packets. Actually, the proposed way in the defensive dropping is not efficient enough
against our attack. Since the fingerprinting is made of traffic pattern between user
and webpage, and the feature of webpage is critical for attacker to make the guess in
future. The webpage itself is hard to generate the dummy packets (for it could not
distinguish whether the communication partner is using anonymity system or not), so
the defensive dropping is almost useless here.

What’s more, if there is a malicious node in the path, the node could easily drop
all the dummy packets and reduce the effect of that defense mechanism. There are
lots of adjustable parameters in this defense mechanism; we will discuss them in the
following section.

Although it is an effective way to defend against not only end-to-end attacks but
also fingerprinting attack, we must notice that it is a really expensive defense mecha-
nism, especially in low-latency anonymity system. If the number of the dummy packets
is relatively small, then these dummy packets are no more than normal background
traffics. But with many dummy packets, it is unacceptable for consuming so many

resources. What’s more, use more dummy packets in sensitive connection is also not

46

Chapter 5 Countermeasures

a good idea for it gives the adversary a clear sign to notice the sensitive data transfer.
So how to determine the sufficient number of packets will leave to be an open question

for further research.

5.2 Dummy Packets in Tor Anonymity System

The object of introducing dummy packets into anonymity system is to “distort” the
normal traffic pattern and make it indistinguishable. As we said before, there are a

lot of parameters could discuss. In this section, we shall discuss them one by one.

The Type of Dummy Packets Roughly, we could distinguish the dummy packets
into peer-to-peer dummy packets and end-to-end dummy packets. End-to-end dummy
packets are generated by initiator of a message. End-to-end packets could be either
encrypted or plain to the nodes in the path. Packets generated in defensive drop-
ping method could be called end-to-end dummy packets without encryption, for every
packet have a probability Py, to be dropped in each node. So every nodes should be
able to aware the packet itself is dummy or not. Or it could be encrypted as the data,
after several decryption, it could be disposed at the exit. And it could also generated
by any node when send back the message by encrypting dummy packets as the data
packet then it could only be distinguished by the initiator.

Peer-to-peer dummy packets are generated by the nodes in the system. They
are encrypted by the symmetric key between nodes so they are only invisible to the
outsiders. All received dummy packets are disposed immediately, and new dummy
packets are generated in the following circle. (Of course, keep the dummy packets in
some probability and send to the next node is acceptable. But with different algorithm,
we could achieve the same goal.)

Both peer-to-peer and end-to-end dummy packets have their own advantage and
disadvantage. To peer-to-peer dummy packets, nodes in the path do not need extra
computation but directly dispose them and then generate the new dummy packets.
But if there is attacker in the node, he could just dispose the dummy packets from the
previous node and omit the dummy packets when communication with the next node.
Things could be even worse that the malicious node could make some tricky dummy
packets, we see that as a potential threat.

To the end-to-end dummy packets, it should be generated by every nodes and
wrapped as the data for no node really knows the position of itself. And generated
dummy packets are encrypted again and again when they are sent back to the initiator.

The message would become longer and longer for dummy packets are added by each

47

Chapter 5 Countermeasures

node. Although the default path length in Tor is only 3, actually we could increase

that to 5, 10, 20 or even longer. Finally, the system will become unusable.

The Generation Rule Dummy packets could be generated both by time and by
packet. They are distinguished by the rule of how to decide inserting a dummy packet.
By time means at any time point, there is some possibility to generate a dummy packet
and transfer it. And by packet means after any packet, there is some probability to
generate a dummy packet and transfer it.

Although we have just demonstrated these two ways, we also want to mention that
generate dummy packet after every packets with some probability is not safe. First,
find some safe way to generate packets itself after a given event itself is not so secure.
When the attacker knows the rule, seems they could be easily eliminated since they

“natural” traffic. We could not make sure that generate them by time could

are not so
be the perfectly safe. But at least randomize in time is a better way to make some
intentional fireworks after a shot.

Someone may argue that if the system is not in use, the dummy packets generated
by time could be a waste. But first, well developed dummy packets could make
attackers even hard to distinguish whether system is now in use or not. And if he
could not even know if the system is in use, he could do nothing in the further attack.
What is more, save bandwidth is not so meaningful when system is not in use. On
contrary, when the system is busy, generate dummy packet after every normal packets
with some probability will give system more burden than the other method. So we
think do not consider the normal traffic but just generate dummy packets with some
probability p all over the time.

What we want to point out is: p could be either constant value or some formulas,
but there is no evidence to tell us that when the attacker knows the rule, some method
is safer than other ones. So maybe the simplest way is the best. What we want is to
find some practical and reasonable defense mechanism which could efficiently decrease

the success rate of attackers, not to make the system perfect secure.

Experiment and Parameters It is hard to consider all the factors in the dummy
packet employing here, so we want to do some experiments and just illustrate the
efficiency of this idea. We will use data captured from Tor to make the experiments.
In the experiment, we will randomly select one traffic pattern. If there is no dummy
packet in it, either interval or time window method could have the answer of 1. Then
we want to add some dummy packets into this traffic and calculate again with Syierval

and S7ime window- Of course, the lower S, we have the better protection.

48

Chapter 5 Countermeasures

In the experiments, we have discovered two parameters directly lead to the effi-
ciency of the defense mechanism. The first one is number of dummy packets generated
every second, or we could call it density. It is very trivial that as this number increases,
the protection effect will also increase. But with the traffic emerging into the dummy
packets, the marginal utility will also become weaker and weaker. And no doubt higher
density will increase the cost of the anonymity system, and then the usability will also
be hurt.

Another factor is the coverage ratio, here we define it as for the whole traffic
pattern, how many parts in it could be inserted with dummy packets. Increase it will
lead to higher cost and vice versa. But what makes this factor really interesting is
that the higher coverage ratio will not always lead to the better protection.

In our attack framework, we have discussed mainly two calculation methods of
similarity score, one is interval and another is time window. These two different
attack methods have different sensitivity towards different coverage ratios. To the
interval method, if the coverage ratio is low, that means many dummy packets are
focused in a short period of time. The result is the length of a few intervals will be
increased. But since we have limited the maximum element in an interval vector, the
affected number of intervals is small, that will not change the result dramatically. For
example, the change with coverage ratio which is 0.1 may only cause v; decreased by
2 and v increased by 2. And most of the intervals still remains the same. On the
contrary, if the coverage ratio is high, then more intervals’ length are changed so the
interval vector will be transformed greatly, so the Sr,iervar-

Let us see how the coverage ratio works in the time window method. When the
coverage ratio is high, that means, almost in every time window, there would be
approximately the same (at least the estimation would be same) number of dummy
packets. And due to the calculation of correlation, if a series of numbers changed in
the almost same amount of value, it then has really small effect on the correlation
coefficient. But when the coverage ratio is low, the thing comes completely different.
We will see that in this case, dummy packets flow into one time window and if the
number of packets in that time window is fewest in the beginning, it may become the
most one in the end. The correlation coefficient would change dramatically, it even
may turn into minus. And just as a result of average, low coverage ratio is still quite
good in the time window method.

We will treat the cost as the multiplication of these two factors. That is:

Average Cost = Number of Dummy Packets per Second x Coverage Ratio (5.1)

49

Chapter 5 Countermeasures

Coverage Ratio

01 02 03 04 05 06 07 08 09 1
5 | 0.998 0.994 0.987 0979 0.969 0.954 0.939 0.923 0.907 0.889
10 | 0.996 0.987 0.971 0.949 0.923 0.890 0.854 0.817 0.781 0.74
Number 15 | 0.994 0.979 0.953 0.917 0.874 0.823 0.770 0.718 0.671 k
of 20 | 0.992 0972 0.937 0.890 0.834 0.769 0.647 0597
Dummy 25 | 0.991 0.967 0.923 0.867 0.802 0.728
Packets 30 | 0.990 0.964 0.914 0.851 0.779 0.699
per 35 | 0.989 0.961 0.905 0.837 0.760 0.676
Second 40 | 0.989 0.958 0.899 0.826 0.743 0.658 |
45 | 0.988 0.956 0.893 0.815 0.730 0.641

50 | 0.987 0.954 0.886 0.807 0.718 0.

Average

Figure 5.1: Average Sruiervar Without wpyierver Wwhen employing the dummy packets

For example, if we have a density of 15 dummy packets per second and a coverage
ratio of 0.6. That means the average cost would be 9 dummy packets per second. And
assume all the dummy packets are 1.5 KB, and then the additional cost for one Tor
connection is around 13.5 KB/s.

From the 5.1, we could see that keep the average cost constant, there is a tradeoff
between density of dummy packets and coverage ratio. Interval method works well
under the low density and high coverage ratio, but time window method works nice
when the density is high and coverage ratio is low.

What we have omitted is weight. For weight ,iervar, low coverage ratio will increase
the weight a little and vice versa. For weightime window, Since it is calculated by the
number of total packets, coverage ratio has no effect on it. The density will always
increase change the weight. But for both the situation, weight would change signif-
icantly and the multiplication could effectively low the similarity score. We suppose
that the when attacker knows the existence of dummy packet, he will just omit the
weight and make the calculation.

Here we use a traffic pattern captured by Tor of the Yahoo’s main page, and using
two different similarity calculation methods without weight. The two parameters are
adjusted to show us the effect of dummy packets under this circumstance. All the
slots are calculated with 30 times of sampling and take the average value.

From these tables, we could see as the results are just run in tendency which is
exactly what we have discussed above. The color in Table 5.1 and 5.3 show us the safe
levels of combination with color tone. We could also refers to the Equation 5.1 and

see these combinations: density 50, coverage 0.1; density 25, coverage 0.2; density 10,

50

Chapter 5 Countermeasures

Coverage Ratio
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5 0.0016 0.0029 0.0051 0.0069 0.0096 0.0124 0.0145 0.0169 0.0194 0.0214
10 0.0017 0.0043 0.008 0.0105 0.0144 0.0178 0.0201 0.0239 0.0274 0.0273
15 0.0019 0.0051 0.0097 0.0136 0.0191 0.0243 0.0249 0.0268 0.0284 0.0262

StdDev

Number of o 10023 00057 00116 00166 00205 00235 00244 00257 00277 00268
Dummy 55 | 00023 00063 00124 00171 00211 00254 00223 00239 0.0244 00241
Packets o5 100025 00064 00117 0017 00209 0024 00228 0023 00243 00239

per 35 | 00026 00067 00125 00163 00189 00229 00205 00217 00233 00231
Second

40 |0.0028 0.0064 0.0123 0.0167 0.0203 0.0214 0.0217 0.021 0.021 0.0212
45 0.003 0.0063 0.0124 0.0172 0.0215 0.0211 0.0214 0.0211 0.0214 0.0213
50 0.003 0.006 0.0117 0.0177 0.0202 0.0197 0.0206 0.0196 0.0201 0.0196

Figure 5.2: Standard deviation of Sp,ierpar Without wrpservar Wwhen employing the

dummy packets

R Coverage Ratio
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5 0.937 0.932 0.929 0.917 0.916 0917 0.924 0.928 0.960 0.984
10 | 0.908 0.851 0.841 0.824 0.841 0.857 0.879 0.904 0.921 0.970
Number 15 | 0.850 0.779 0.758 0.734
of 20 727 0 (
Dummy 25
Packets 30
per 35
Second 40
45
50

Figure 5.3: Average Strime window Without wpime window When employing the dummy

packets

51

Chapter 5 Countermeasures

Coverage Ratio
StdDev
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
5 |00013 00196 0024 00277 00304 00281 00342 00532 00656 00317
10 |00039 00315 00335 00323 00355 0034 0039 00515 00745 0.0613
15 |00075 00329 00314 00295 00408 00423 00465 00508 00623 0.054
Number of o0 | 00107 00325 00328 00359 00425 00431 00453 00531 00834 0.0859
Dummy 55 | 00136 00388 00395 00431 00482 00477 005 00569 0.0714 01096
Packets 20 | 0016 00339 00408 00424 00461 00449 00492 00608 0.0742 01129
Seieorn 4 35 |00181 00313 00407 00412 00411 00439 00475 0.0606 0.0804 0.1344
40 | 00191 00287 00335 00395 00453 0046 00499 0065 00868 0.1465
45 | 00211 00275 00347 004 0047 00441 00497 00645 00896 0.1634
50 |00249 00363 00402 00411 00435 00459 00517 0068 00921 0.1455

Figure 5.4: Standard deviation of Stime window Without Wrime window When employing

the dummy packets

Table 5.1: Average and standard deviation of top matching similarity score with dif-

ferent methods

Slnterval STimeWindow SCombine
Average 0.931155 0.859238 0.829721
StdDev 0.046082 0.139079 0.143015

coverage (.5; density 5, coverage 1. The result in interval method and time window
method give us completely different tendency. The results from interval method are
0.987, 0.967, 0.923 and 0.889. Meanwhile, the results from time window method are
0.626, 0.678, 0.841 and 0.984. The two tables about the standard deviations tell us
the result is basically stable, especially with the interval method.

Since two different methods give us different recommend combinations, we have to
find some other standard to set up a threshold. Also we could observe that just by
simply increasing the number of dummy packets per second, the result becomes better
and better. But that also make the system eventually unusable. To solve all of these,
we have to find some good trade-off.

We have also made the statistic analysis about the attack evaluation in order to
get the average similarity score of the highest matching case. So we get the Table 5.1:

From the table above, we could see that for S}, ervar, make the score less than 0.85
is safe enough. But for Syimewindow, due to the great variety, we recommend 0.7 as the
safe threshold. More dummy packets could sometimes increase the similarity score,

since the whole traffic is now emerged with dummy packets and in this sense they are

52

Chapter 5 Countermeasures

similar, too. We still want to point out that these results do not consider the weight,
which could worsen results.

With the table and discussion above, we think coverage around 50%, approximately
20 dummy packets per second could be recommended. And by the Equation 5.1, we

could estimate the cost is approximately 15KB/s on average for a Tor connection.

23

Chapter 6 Conclusion

In this paper, we have presented a novel fingerprint attack against the most famous
anonymity system - Tor. Our scheme works by analyzing users’ traffic flows in the
anonymity system. We use outflow packets to divide a flow into several intervals,
turn the traffic flow into vector, and give a formula to calculate the similarity of two
vectors in this scheme. We also give several extensions towards our attack plan. It
can be easily implemented by network administrators, governments, or [SPs. The
experimental results showed our scheme to be very effective. The user’s anonymity
is really degraded by this simple and practical attack. Then, we have given both the
extensions in the threat model and in the attack method itself. As we have discussed,
this effectiveness still has a potential of being improved even more, but we have showed
the different potentials of this attack.

Meanwhile, we have given a theoretical reasonable estimation of the effectiveness,
showed the simple model of fingerprinting attacks on anonymity systems. Also, the
following experiments have showed the improvement of extensions. We have discussed
them in both theoretical and practical ways to help readers have the conception of
effectiveness of our plan.

Finally, we discussed several countermeasures, especially focus on the dummy pack-
ets. Also, we have done some experiments on the dummy packets mechanism. The
result showed the need for the use of dummy traffic in the low-latency anonymity sys-
tems. Since there is no low-latency system employed dummy packets now, it is critical
to keep in mind that anonymity system is not as safe as people think. We strongly rec-
ommend that when design new anonymity system, employment of the dummy packets

should be considered as an important defensive mechanism.

54

Acknowledgements

AMFRIZHT-D, BENGFICTREZTHE £ LI KR FPAERINIIICRT AR
WEHAZ D B E L 9, M4, IEORNR, EDHTREZ T ORI D
T WIS RTT D RBOCFIR AR EEMEN IR L ZANLHEZATIHE, 2R
ELBOEFIEEOM S 2 52 TIHW-Z LT, B LAEZERICEAERICGBT T2
EMTEE L,

AHIFDOEI X —T7 1 7 TOREKRFZ, xR RIELZIES o720 | W5t
NAIZB L Cilam L W 27207z NHK S EATFSERT O/ NI — N &S Ay BRTIE I
Bt O M BE R S A, EEENR SRR O BIBY S A, HEuBE I 7ErE O
BWERIA, i3T5 ETEL2FEBOMICBHEEIC R S TR —T 4 7
DBINE OERRIIEGEHE L 7,

Z LT, B2 OMEEES ISR X O ICHEN O R AL TLEE>TWNDHEH
REREOMIFZ A, FiES A, MR SACHHD TR EHB L 7,

Fo. REFOHIMNIRE CTH H2MHEKM S A, FlFEE CTh L0 S A, 1ATH
WA L N—TH DM S A, Jacob Schuldt & A, MHEZS A, EHE S A, ERK
Sh, HHERHI A, TEREER . Bongkot Jenjarrussakul &, miIIBEE ., BKHE
(26, AENBFZEENTORER, RHTFEM I —7 0 71280\ T, ERICHER
ZLIZO, @URBEEWEEEE L, D TEHELET,

ZDIWED, BFAEEICHEEIC2 0 £ L&, RIFFEEICB W TERHEEZR Y £
L2 TOHICBILEH L ETEd, HROBT TRIBITEE TO 2 FHOEE T
FELLV D ERD E LT,

%)

Bibliography

[1] Adam Back, Ulf Moller, and Anton Stiglic. Traffic analysis attacks and trade-
offs in anonymity providing systems. In Ira S. Moskowitz, editor, Proceedings
of Information Hiding Workshop, pages 245-257. Springer-Verlag, LNCS 2137,
April 2001.

[2] Sambuddho Chakravarty, Angelos Stavrou, and Angelos D. Keromytis. Identi-
fying proxy nodes in a tor anonymization circuit. In Proceedings of the 2008
IEEE International Conference on Signal Image Technology and Internet Based
Systems, pages 633-639, Washington, DC, USA, 2008. IEEE Computer Society.

[3] David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65-75, 1988.

[4] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84-90, 1981.

[5] Wei Dai. Pipenet 1.0. Post to Cypherpunks mailing list, January 1998.

[6] George Danezis. Statistical disclosure attacks: Traffic confirmation in open envi-
ronments. In Security and Privacy in the Age of Uncertainty, International Con-
ference on Information Security (SEC2003), May 26-28, 2003, Athens, Greece,
pages 421-426. Kluwer, 2003.

[7] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 15th USENIX Security Symposium,
August 2004.

[8] John R. Douceur. The sybil attack. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 251-260, London, UK, 2002. Springer-
Verlag.

9] Michael J. Freedman and Robert Morris. Tarzan: a peer-to-peer anonymizing
network layer. In Proceedings of the 9th ACM conference on Computer and Com-
munications Security, pages 193-206, New York, NY, USA, 2002. ACM.

[10] Goodin. Tor at heart of embassy passwords leak, Sepemter, 10 2007.

o6

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Bibliography

Ceki Giilcii and Gene Tsudik. Mixing E-mail with Babel. In Proceedings of
the Network and Distributed Security Symposium - NDSS ’96, pages 2-16. IEEE,
February 1996.

Andrew Hintz. Fingerprinting websites using traffic analysis. Privacy Enhancing
Technologies, Second International Workshop, PET 2002, San Francisco, CA,
USA, April 14-15, 2002, Revised Papers 2003, 2482/2003:229-233, 2003.

Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much
anonymity does network latency leak? In Proceedings of the 14th ACM con-
ference on Computer and communications security, pages 82-91, New York, NY,
USA, 2007. ACM.

Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright.
Timing attacks in low-latency mix-based systems. In Ari Juels, editor, Proceedings
of Financial Cryptography, pages 251-265. Springer-Verlag, LNCS 3110, February
2004.

Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. A
new cell counter based attack against tor. In CCS ’09: Proceedings of the 16th
ACM conference on Computer and communications security, pages 578-589, New
York, NY, USA, 2009. ACM.

Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and
resisting statistical disclosure. In Proceedings of Privacy Enhancing Technologies
workshop, volume 3424 of LNCS, pages 17-34, May 2004.

Prateek Mittal and Nikita Borisov. Information leaks in structured peer-to-peer
anonymous communication systems. In Paul Syverson, Somesh Jha, and Xiaolan
Zhang, editors, Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, pages 267-278, Alexandria, Virginia, USA, October 2008.
ACM Press.

Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy. IEEE CS,
May 2005.

Lasse Overlier and Paul Syverson. Locating hidden servers. Security and Privacy,
IEEE Symposium on, 0:100-114, 2006.

o7

[20]

[21]

[22]

[23]

Bibliography

Andreas Pfitzmann and Michael Waidner. Networks without user observability
— design options. In Proceedings of EUROCRYPT 1985. Springer-Verlag, LNCS
219, 1985.

R. Pries, Wei Yu, Xinwen Fu, and Wei Zhao. A new replay attack against anony-
mous communication networks. Proceedings of the IEEFE International Conference
on Communications, 2008. ICC "08., pages 1578-1582, May 2008.

Michael Reiter and Aviel Rubin. Crowds: Anonymity for web transactions. ACM

Transactions on Information and System Security, 1(1), June 1998.

Marc Rennhard and Bernhard Plattner. Introducing MorphMix: Peer-to-Peer
based Anonymous Internet Usage with Collusion Detection. In Proceedings of the
Workshop on Privacy in the Electronic Society, Washington, DC, USA, November
2002.

28

Publications

B EERRHERX

<1> Yi Shi, and Kanta Matsuura. Fingerprinting Attack on the Tor Anonymity
System. In Eleventh International Conference on Information and Communi-
cations Security (ICICS2009), volume 5927 of LNCS, pages 425-438. Springer,
Beijing, China, December 2009.

ERFER

<2> fi Wz, WA K. BABREY AT A Tor \ICkT 24, In avEa—4%
X2 T URD DL 2009 (CSS2009), IPS], pages 877-882. &L, HA,
October 2009.

<3> Yi Shi, and Kanta Matsuura. A Collusion Threat Model for Fingerprinting

Attack on the Tor. In 2010 FES EEREF 1) T4 VRO L (SCIS '10).
IEICE, @, HA, Jan. 2010.

<4> fii Wz, B K. BAIEE VAT A Tor (Sk 2 BRI LRSI B & %15R. In
aAVEa—AtEFXa) T4 URD DL 2010 (CSS2010), TPS]. L, AA,
October 2010. ¥ ETiE.

29

