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Abstra
tAs the time advan
es, priva
y is more and more 
on
erned by Internet users. En-
ryption prote
ted our information, but not all problems 
ould be solved by it. Thenwe have the anonymity system. Anonymity system was �rst introdu
ed by DavidChaum and it served as the building blo
k for anonymity, as a supplement of en
ryp-tion. Among all kinds of anonymity systems, Tor is the most famous one and widelyused among people and organizations. It is an implementation of the se
ond genera-tion Onion Routing and supports the anonymous transport of TCP streams over thepubli
 network. Then, it provides the foundation for a range of appli
ations to 
om-muni
ate over publi
 network without 
ompromising their priva
y. The 
hara
teristi
of low laten
y makes it very suitable for general purpose tasks like web browsing.With numerous resear
hes about how to design anonymity system, there are alsolots of studies about the atta
ks towards anonymity systems. Generally, these atta
ksrequire powerful assumptions to be implied. To the system designers, these assump-tions will redu
e their motivation to 
onsider the new defense me
hanisms againstimpra
ti
al atta
ks.In this paper, �rst we systemati
ally dis
uss the ba
kground knowledge ofanonymity system through the timeline. Then we talk about motivation of atta
k re-sear
hes and introdu
e several atta
ks by distinguishing them with their threat models.We try to give readers a rough pi
ture of atta
k resear
h in this �eld.Then, we present a novel way to implement a �ngerprinting atta
k against OnionRouting anonymity systems su
h as Tor. Our atta
k is a realisti
 threat in the sensethat it 
an be mounted by nothing but 
ontroller of entran
e routers; the requiredresour
e is very small. However, the 
onventional �ngerprinting atta
k based on in-
oming traÆ
 does not work straightforwardly against Tor due to its multiplex andquantized nature of traÆ
. By 
ontrast, our novel atta
k 
an degrade this Tor'sanonymity by a metri
 based on both in
oming and outgoing pa
kets. In addition,our method keeps the �ngerprinting atta
k's advantage of being realisti
 in terms ofthe required small resour
e.Based on the 
entral idea, we also extend our idea in two ways - both the threatmodel and atta
k method itself. By these additional resear
hes, we have showed thepotential of our idea and hope we 
ould en
ourage future resear
h on this aspe
t.About the evaluation, we try to enhan
e the reader's understand about the e�e
-i



Abstra
ttiveness of our method by dis
ussing them in a 
omprehensive manner: experimentallyand theoreti
ally. Experiments about extensions are also given in the following se
-tions. In order to enhan
e further studies and show the signi�
an
e of our idea, wealso dis
uss general defense ideas and defense me
hanism of dummy pa
kets, what were
ommend to imply in the future low-laten
y anonymity systems.
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Chapter 1 Introdu
tion
1.1 Anonymity System1.1.1 The Motivation of Anonymity SystemThe Internet brings us 
onvenien
e, but also hurts our anonymity. With some tools,it is no diÆ
ult for any atta
ker to eavesdrop a
tivities of other users. Individualsand organizations sometimes need anonymity on the Internet. People want to surfwebpages, make online shopping, and send email without exposing their identities anda
tivity patterns to others. En
ryption solved some parts of this problem, but noteverything. It 
an hide the 
ommuni
ation 
ontents su
h as data payloads, but it 
ando nothing with the pa
ket headers, whi
h leaks the identity of 
ommuni
ation parties.Anonymity system tries to provide the foundation for users to share information overpubli
 networks without 
ompromising their priva
y.Here is a simple example: the websites nowadays keep pro�ling users to providemore suitable servi
es. Large-s
ale B2C sites like Amazon supplies more suitable
andidate items for ea
h user based on their sur�ng history and transa
tion re
ords.If we bought some game software, then other games with the same platform or similargenre will be re
ommended to us on the top page. It makes seller provide betterservi
es and gives the buyer 
onvenien
e, but it also really hurts our priva
y. Ourtransa
tion re
ords 
ould also be misused by the seller.Anonymity system 
ould keep websites from pro�ling individual users. It 
ouldalso be used for so
ially sensitive 
ommuni
ation: forums or 
hat rooms for survivorsof serious 
ases, even people with spe
i�
 illnesses. Journalists may use this kind ofsystem to 
ommuni
ate with whistleblowers and dissidents safely. Corporations useanonymity system as a safe way to 
ondu
t 
ompetitive analysis.Moreover, big organizations su
h as embassies use anonymity systems to ex
hangeinformation with their home 
ountry. Law enfor
ement 
ould use it for 
olle
t-ing eviden
e without alerting suspe
ts. Non-governmental organizations usually useanonymity systems to 
onne
t to their friends or family while they are abroad, often inthe 
ompli
ated situations, without notifying everybody nearby what they are workingwith.
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Chapter 1 Introdu
tion1.1.2 Mixnet and the Dining Cryptographers ProblemMixnet Up to the 80 �s, 20th Century, shortly after the introdu
tion of publi
key en
ryption, David L. Chaum presented the paper - Untra
eable Ele
troni
 Mail,Return Addresses, and Digital Pseudonyms [4℄. It was motivated by the obje
t ofseeking the solution to a 
ryptographi
 problem, \the traÆ
 analysis problem" (theproblem of keeping 
on�dential who 
onverses with whom, and when they 
onverse).This system based on two assumptions: (1) No one 
an determine anything aboutthe 
ommuni
ation parti
ipants between a set of sealed (en
rypted) items and the
orresponding set of unsealed items, or 
reate forgeries without the appropriate randomstring or private key. That is, in short, indistinguishability and unforgeability. (2)Anyone may learn the origin, destination, and representation of existed messages inthe underlying tele
ommuni
ation system and anyone may inje
t, remove, or modifymessages.These two assumptions also widely a

epeted as the default items in the followingresear
hes. With these assumptions, Chaum raised designs with publi
 key en
ryptionto build up a mail system -Mixnet. The users will in
lude not only the 
ommuni
ationpartners but also a series of 
omputers 
alled mixes that will pro
ess all items of mailbefore it is delivered. Consider the 
ase whi
h there is one mix only, it uses publi
 keyof a node and the 
ommuni
ation party. When Ali
e wants to send a message to Bobthrough node i, it 
ould be simply des
ribed by the following formula:Ei(EB(M); B) =) EB(M); BThe =) denotes the transformation of the input by the mix into the output shownon the right-hand side. The mix de
rypts the input with its private key in order tooutput the 
ontaining. One might imagine a me
hanism that forwards the en
ryptedmessage EB(M) of the output to the re
eivers who then able to de
rypt them withtheir own private keys.The purpose of a mix is to hide the 
orresponden
es between the items in itsinput and those in its output. And by using a 
as
ade, or series of mixes, they 
ouldo�er the advantage that any single 
onstituent mix is able to provide the se
re
y of the
orresponden
e between the in
ow and the out
ow of the entire 
as
ade. In
riminationof a parti
ular mix of a 
as
ade that do not 
orre
tly pro
ess an item is a

omplishedas with a single mix, but only requires a re
eiver from the �rst mix of the 
as
ade,for a mix 
an use the signed output of its prede
essor to show the absen
e of an itemfrom its own input. An item is prepared for a 
as
ade of n mixes the same as for asingle mix. It is then su

essively sealed for all su

eeding mixes:2



Chapter 1 Introdu
tionEn(En�1(: : : ; E1(EB(M); B) : : :)) =)The �rst mix yields a lexi
ographi
ally ordered bat
h of items, with the form:En�1(En�2(: : : ; E1(EB(M); B) : : :)) =)The items in the �nal output bat
h of a 
as
ade are of the form EB(M); B, thesame as those of a single mix.The usage of return addresses 
ould also be rea
hed by a similar method: Ali
e
ould form an untra
eable return address Ei(A); EA, where A is its own address andEA is the publi
 key of Ali
e. Then Ali
e 
an send return address to Bob as part of amessage sent by the te
hniques already des
ribed above. (In general, two parti
ipants
an ex
hange return addresses through a 
hain of other parti
ipants, where at leastone member of ea
h adja
ent pair knows the identity of the other member of thepair.) The following indi
ates how Bob uses this untra
eable return address to form aresponse to Ali
e, through a new kind of mix:Ei(A); EA(M) =) A;EA(M)This pro
ess 
ould also involve 
as
ade mixes, very similar like we have proposedin the former part.Mixnet is the very beginning anonymity system, and you 
ould see that it hasalready solved many problems in anonymity 
ommuni
ation. It 
ould be easily devel-oped into both high-laten
y and low-laten
y system, but it still la
ks some pra
ti
alsolutions. Based on it, many modern anonymity systems are raised in the 21th Cen-tury.The Dining Cryptographers Problem In 1988, another important paper inanonymity 
ommuni
ation is also presented by David Chaum, about the famous dining
ryptographers problem [3℄. It illustrated us a story like this: Three 
ryptographersare sitting down at the table and made the arrangements for the bill to be paid anony-mously. The bill is either paid by one of the 
ryptographer, or it might have been thethird party (It was pretended to be U.S. National Se
urity Agen
y.). Tree 
ryptog-raphers respe
t ea
h other's right to make an anonymous payment, but they wonderif NSA is paying. So they 
ould solve this problem by 
arrying out the followingproto
ol:Ea
h 
ryptographer 
ips an unbiased 
oin between him and the 
ryptographer onhis right, so only two of them 
an see the result. Ea
h 
ryptographer then states3



Chapter 1 Introdu
tion

Figure 1.1: Dining 
ryptographers problemaloud whether the two 
oins he 
an see - the one he 
ipped and the one 
ipped by hisleft-hand neighbor - are on the same or di�erent sides. If one of the 
ryptographerspays for the bill, he just makes an opposite of what he sees. Then, an odd number ofdi�eren
es indi
ate that a 
ryptographer is paying and an even number indi
ates theNSA is paying.If the proto
ol is 
arried out faithfully, it is un
onditionally se
ure. Considerthe dilemma of a 
ryptographer who is not the payer and wishes to �nd out whi
h
ryptographer is. (There is no anonymity problem about NSA.) There are two 
ases.(1) The two 
oins he sees are the same, and one of the other 
ryptographers said"di�erent," and the other one said "same." If the hidden out
ome was the same asthe two out
omes he sees, the 
ryptographer who 
laimed "di�erent" is the payer; ifthe out
ome was di�erent, the one who said "same" paid for the dinner. For we haveassumed the hidden 
oin is fair, both possibilities are equally likely. (2) The 
oins hesees are di�erent; if both other 
ryptographers said "di�erent," then the payer is the
loset to the 
oin that is the same as the hidden 
oin; if both said "same," then thepayer is 
losest to the 
oin that di�ers from the hidden 
oin. Thus, in ea
h sub 
ase,a nonpaying 
ryptographer learns nothing about whi
h of the other two is paying.The 
ryptographers be
ome intrigued with the ability to make messages publi
4



Chapter 1 Introdu
tionuntra
eably. Easily, if they repeated this basi
 proto
ol over and over then arbitrarylength of message 
ould be distributed anonymously. Mixnet and the dining 
ryptogra-phers problem formed two general types of modern anonymity system - the low-laten
ysystems and high-laten
y systems.1.1.3 Basi
 FeaturesIn 1986, P�tzmann and Waidner raised basi
 
on
epts for anonymous networks. In[20℄, they dis
ussed features, performan
e and fault toleran
e of the anonymity systemalthough there were few system at that time. They proposed that three 
hara
teris-ti
s are important in anonymity system: Re
ipient anonymity, sender anonymity andunlinkability of sender and re
ipient.As they are named, sender anonymity means atta
ker 
annot �nd out the initiatorof a message. And re
eiving message itself 
an be made 
ompletely anonymous if itis delivered by broad
asting. And if the message has an intended re
ipient, it hasthe attribute by nobody else 
ould see the addressee, so 
alled re
ipient anonymity.Unlinkability is that the relation between sender and re
ipient of a message hides fromeverybody but the system and the sender.Although three features are mentioned by P�tzmann and Waidner, it is obviouslynot all the system 
ould a
hieve these features simultaneously in all 
onditions. Forexample, with atta
ker in the same network, it is impossible to a
hieve the senderanonymity without keep broad
asting all the times. But no matter what anonymitysystem it is, the unlinkability is the least requirement to prote
t user's priva
y.1.1.4 Modern Anonymity SystemsChaum raised mixnet and the dining 
ryptographers problem be
ame are two impor-tant anonymity systems in the history. But it omitted many pra
ti
al questions as thenode �nding, path 
reating, et
. Modern anonymity system resear
hes fo
used moreon the pra
ti
al problems and also devoted on how to make the system safer. We willintrodu
e some famous systems here:Crowds Reiter and Rubin presented 
rowds in [22℄, 1998. As it was named, \blend-ing into a 
rowd" re
e
ted its 
entral idea. The system is 
onsisted by lots of geo-graphi
al diverse users. Web servers are unable to learn the true sour
e of a requestfor the probability of a message's initiator is equally to any member of the 
rowd. Andthey introdu
ed degree of anonymity to des
ribe and prove anonymity properties.5
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tion

Figure 1.2: Paths in a 
rowd (Left are jondos and right are web servers)Basi
ally, the system is 
onsisted by a dynami
 group of users and 
alled 
rowd.The users send web requests to various web servers. They de�ned the users as \sender"and the \re
eiver" refers to the servers. They 
onsidered the anonymity propertiesagainst three distin
t types of atta
kers: Lo
al eavesdropper, 
ollaborating 
rowdmembers, end server.A user who using 
rowds �rst started his proxy whi
h named as jondo and thenby 
onta
ting with the blending server, he 
ould join the 
rowd. By using jondo, allrequests 
oming from the browser are sent to the jondo. The jondo initiates the estab-lishment of a random path of jondos. It pi
ks up a jondo from the 
rowd, even 
ouldbe itself, and forwards the request to it. When a jondo re
eives a request, it determinewhether forward the message to another jondo or not with the probability p. If theresult is to forward, then the above pro
ess would be exe
uted again and another 
oinwith p is 
ipped. Otherwise the jondo submits the request to the web server. Subse-quent requests to the same server are followed the same path to keep the 
onne
tionalive, server 
ould replies traverse the same path in reverse. Communi
ation betweenany two jondos is en
rypted using a key known only to the two of them. Figure 1.2gives the illustration of paths in a 
rowd.The degrees of anonymity has also given in this paper. Degrees range from absolute6



Chapter 1 Introdu
tionpriva
y, where the atta
ker 
annot per
eive the presen
e of 
ommuni
ation, throughbeyond suspi
ion, probable inno
en
e, possible inno
en
e, exposed, to provably exposed,where the atta
ker 
an prove the sender, re
eiver, or their relationship to others.We do not intend to dis
uss these degrees in detail here, but it supplied a wayto des
ribe di�erent level of anonymity in reasonable way. Also, in this paper, theauthors demonstrated us the how to des
ribe the se
urity level of 
rowds. With theirsettings, the system is se
ure towards given atta
kers in the meaning of anonymity.But in more general way, the system even without end-to-end en
ryption 
ould makeany jondo 
hange or edit the initiator's message easily. Of 
ourse that 
annot be 
alled\safe".Tor Onion routing is a distributed overlay network designed to make TCP-basedappli
ations anonymized for general purpose Internet a
tivities like web browsing,SSH 
onne
tion, and instant messaging, et
. (There are other general purpose overlaynetwork on di�erent layer for IP proto
ol like Tarzan in [9℄) As an implementation ofthe se
ond generation onion routing, Tor is freely available and runnable on most ofthe operation systems. With the support from United States government and donationfrom kinds of organizations, Tor grows qui
kly and has be
ome the most widely usedanonymity system in the world. In 2004, the volume of traÆ
 in the whole systemis only 16GB per week. Surprisingly, now the number is more than 5TB per week.More than 2000 nodes are running around the world in any minute, also the numberof users is more than one million now. The se
urity of anonymity system not onlydepends on the design, but also 
orrelates with the number of users. Imaging a verysafe anonymity system but with only 1 user, then it is nothing diÆ
ult for atta
ker tode
ide whether the user is 
ommuni
ation or not. More users mean the system safer.By this meaning, Tor may be the safest low-laten
y anonymity system in the world.Also, there are some arguments about the safety of Tor in pra
ti
al usage. Due to[10℄, many passwords, even from embassies are leaked through Tor. But the reason ispeople do not understand anonymity system enough and misused it. And, this 
asealso provides us how popular the Tor really is.The 
ontribution of Tor by introdu
ing many solutions su
h as: perfe
t forwardse
re
y, dire
tory servers, 
ongestion 
ontrol, integrity, 
on�gurable poli
ies and so on,a robust and usable anonymity system is provided to users with reasonable tradeo�between anonymity, usability, and eÆ
ien
y. For the Se
tion 2 and 3, we will talkabout the path 
reation and 
ell 
onstru
tion in detail as the ba
kground knowledge.
7



Chapter 1 Introdu
tionComponents of the Tor Network The essen
e of Tor anonymous 
ommuni
ationsystem is an overlay TCP network. As shown in Figure 1.3, there are four di�erententities:1. User. The user (also 
alled 
lient) uses onion proxy (OP) on lo
al to provide theappli
ation anonymity transa
tions on the Tor network.2. Server. The destination whi
h user visited. It a
ts as a server side appli
ationto a

ept TCP requests from user.3. Onion Routers (OR). Onion routers are the 
ore 
omponents to provideanonymity 
ommuni
ations in the Tor network. They relay the pa
kets betweenuser and server. Transport Layer Se
urity (TLS) 
onne
tions are also employedin the Tor network to provide link en
ryption between two onion routers. TheTor pa
ket size is also restri
ted into a spe
i�
 number, whi
h is 512 bytes.4. Dire
tory Servers. They are the nodes information holder in the Tor network.Onion proxy need to query the dire
tory servers before it 
onne
t to the Tor net-work. There are dire
tory authorities and dire
tory 
a
hes. Dire
tory authoritieshave the authoritative information about the onion routers to make e�orts todefend from mali
ious nodes. Dire
tory 
a
hes download information of onionrouters from authorities and users download these information from dire
tory
a
hes.The Design of Tor Cells Onion routers 
ommuni
ate with ea
h other with TLS
onne
tions and ephemeral key to a
hieve perfe
t forward se
urity. The data modifyingand OR impersonating are also prevented.The data are transmitted through Tor network in �xed-size 
ells. The default 
ellsize is 512 bytes with a header and a payload. The header in
ludes a 
ir
uit identi�er(
ir
ID) so the 
ir
uit related to this 
ell is spe
i�ed with it, and a 
ommand to tellthe Tor network what to do with the payload. Then the 
ells are either 
ontrol 
ellsor relay 
ells. Control 
ells are interpreted by the node that re
eives them and relay
ells 
arry the end-to-end data. The detailed des
ription 
ould be found in [7℄.Establishing and Transmitting of TCP Conne
tions To make a 
onne
tionthrough Tor network, user 
hooses several onion routers from the nodes list down-loaded from the dire
tory server. On
e the path is de
ided, OP 
onstru
ts the pathin
rementally. It negotiates a symmetri
 key with ea
h OR on the route, one hop ata time. 8
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tion

Figure 1.3: Basi
 Components in Tor NetworkFirst, the OP (user) sends a 
reate 
ell to the OR1. The 
reate 
ell's payloadin
ludes the �rst half of the DiÆe-Hellman handshake (gx), en
rypted with the publi
key of the OR1. OR1 responds with a 
reated 
ell with gy and a hash of the negotiatedkey K = gxy.1 Obviously, after this hop has been established, OP 
ould send OR1relay 
ells en
rypted with negotiated key.The next step is to extend this path further. OP sends a relay extend 
ell to OR1,and tell OR1 whi
h node the path should be extended to, and an en
rypted handshakegx2 for OR2. OR1 
opies the en
rypted handshake as the payload into a 
reate 
ellthen sends it to OR2, as if it was the path initiator. After OR2 returns with the
reated 
ell, OR1 wraps the payload into a relay extended 
ell and passes it ba
k toOP. So we have the two-hop path now, and OP shared the key K2 = gx2y2 with OR2.So, it is obviously to see that if we want to extend this path further, just do as the�rst extending pro
ess. If we send the last node the obje
t, then we 
ould extend thepath by one hop further. And by now, the default path length for Tor network is 3.On
e the path has been established, user 
ould send relay 
ells through it. Whenan OR re
eives a relay 
ell, it will be de
rypted. Then either it will be delivered to1Noti
ed this pro
ess is slightly di�erent from the ordinary DiÆe-Hellman proto
ol. Sin
e we onlyneed to verify the identi�
ation of nodes without 
aring who the user is, it is safe to be used here.9
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Figure 1.4: The Cir
uit Building and Beginning of Server Visitinganother OR, or be submitted to the �nal destination. Sin
e the de
ryption of payloadwill only be meaningful at the last node, to distinguish these two situations is not hardfor an OR. This leaky pipe 
ir
uit topology allows OP's pa
kets to exit at di�erentORs or 
reate 
ir
uits with di�erent lengths. Figure 1.4 illustrates the 
ir
uit buildingpro
ess and a simple demo of beginning server visiting.There are still lots of other anonymity systems like PipeNet, Babel, MorphMix, et
[11, 5, 23℄. We 
annot 
over all kinds of anonymity systems here. But thanks to theresear
hers in this �eld, their e�orts make the Internet life safer and safer to peoplewho really put high importan
e on their priva
y.1.2 Our ContributionsOur �rst 
ontribution is raised up the �ngerprinting atta
k towards Tor anonymitysystem. Sin
e Tor employed several me
hanisms to defend it, the ordinary �ngerprint-ing atta
k do not work well on it. Although names are same, our atta
k uses a di�erentmethod to make the atta
k. Also we have showed the possibility and e�e
tiveness ofthe atta
k towards Tor anonymity system.10



Chapter 1 Introdu
tionThe se
ond 
ontribution is improvement of the atta
k with modi�ed threat model,the atta
k also enhan
ed by adding the time fa
tor into formula. With the manuallytune up, the atta
k 
ould be
ome even more powerful in some situations.The e�e
tiveness of our method is dis
ussed in a 
omprehensive manner: exper-imentally and theoreti
ally as the third 
ontribution. With the properly evaluation,we 
ould show the threat of this kind of atta
k.Finally, we 
ontributed in dis
ussing about the e�e
tive defensive me
hanism to-wards the atta
k and make the suggestion that the new-designed anonymity systemshould treat �ngerprint atta
k as a pra
ti
al threat and employ defensive me
hanismagainst it.1.3 OrganizationIn the following se
tions, we will summarize related works in Se
tion 2, the atta
kmethods in Se
tion 3, from the ordinary �ngerprinting atta
k to our original plan andevolution. In Se
tion 4, we will dis
uss the experiments and evaluations. Countermea-sures will be dis
ussed in Se
tion 5, and �nally we will give the 
on
lusion in Se
tion6.

11



Chapter 2 Related WorksThere are several ways to 
lassify the atta
ks. One of the most widely used is 
lassifyatta
ks as a
tive or passive or something else. But in my opinion, 
lassify atta
ksby their threat models will be more meaningful for the atta
kers won't be restri
tedby whether they should make the atta
k a
tively or passively, but restri
ted by theresour
es they pro
ess. Also we 
ould distinguish atta
k �s ability by looking into thedi�erent threat models.2.1 End-to-end Atta
kerEnd-to-end 
on�rmation atta
k is the main-stream kind of atta
ks in the anonymityresear
h. It gives us a model: There is an adversary between two anonymity systemusers, initiator and responder. He 
ould observe all the in
ow and out
ow of thedesignated users. And he wants to make sure whether initiator and responder are
ommuni
ating. More generally speaking, he wants to de
ide whether initiator andresponder are in the same path of anonymity system. Figure 2.1 illustrates the simpleform of the timing atta
k.The paper in this model, like [1, 14℄, on
e raised an arm-ra
e in resear
hing ofanonymity system. It really hurts the anonymity of users in an anonymity system.But the nowadays systems, espe
ially low-laten
y anonymity systems, are expli
itlyimplied that this kind of atta
ker is not 
onsidered in their designation. First, it is sostrong assumption for an adversary to a
hieve. To identify one path, the atta
ker needto take the 
ontrol of two points, whi
h maybe so far away between ea
h other. Andwhen we want to identify a user's a
tivities, the point we need to o

upy in
reasingrapidly a
ross di�erent autonomous systems.The essen
e of a timing atta
k is to �nd a 
orrelation between the timings ofpa
kets seen by M I1 and those seen by an end pointMJh . The stronger this 
orrelation,the more likely I = J and MJh is a
tually M Ih . Atta
ker su

ess also depends on therelative 
orrelations between the timings at whi
h distin
t initiators I and J emitpa
kets. That is, if MJ1 and MJ1 happen to see exa
tly the same timings of pa
kets,then it is not be possible to determine whether the pa
ket stream seen at MJh is amat
h for M I1 or MJ1 . Hopper et al. dis
ussed how information leaks from timingsystemati
ally in [13℄. 12
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Figure 2.1: A path P I with an initiator I 
ommuni
ating with a responder. M I1 andM Ih , the �rst and last mixes on the path originating at I, are 
ontrolled by atta
kers.In the end-to-end atta
ker model, there is an interesting paper by Pries et al.[21℄Re
all the purpose of 
on�rmation atta
k is to 
on�rm that Ali
e is 
ommuni
atingwith Bob. (Also 
alled initiator and responder above) The atta
k starts from themali
ious entry router. The entry router �rst attempts to identify a target 
ell fromthe TCP stream data on a 
ir
uit and dupli
ate that 
ell. When the 
ell is dupli
ated,the 
ell's sour
e IP and the time of dupli
ation will be logged. This dupli
ate 
elltraverses the 
ir
uit and 
onsequently arrives at the exit router. The atta
ker at themali
ious exit router should dete
t an error 
aused by this dupli
ate 
ell and re
ordthe time, the original 
ell's destination IP address and port. In this way, it is 
on�rmedthat the target 
ell is using the entry router and exit router. Sin
e the entry routerknows the sender of the 
ell is Ali
e and the exit router knows its re
eiver is Bob, the
ommuni
ation relationship between the sender and re
eiver is 
on�rmed.Figure 2.2 illustrates the basi
 prin
iple of replay atta
k. You 
ould see it 
ompareto Figure 1.4. It is an interesting atta
k, for some timing atta
ks also use te
hniqueslike pa
ket dropping to gain some advantage in re
ognizing the 
ir
uit, this kind ofatta
k 
auses an unusual event and 
ould make the 
on�rmation immediately.There is a new end-to-end atta
k in [15℄, they want to 
on�rm anonymous 
om-muni
ation relationship among users a

urately and qui
kly, also make it diÆ
ult todete
t. So they sele
t the target, embed the signal, re
ord the target, and re
ognizesignals. Through these pro
esses, atta
ker 
ould prove whether these 
ommuni
ationpartners are in the same path or not. Also, we 
ould see other works like [17℄.
13
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Figure 2.2: Replay Atta
k on Tor2.2 Entry Point Atta
kerThis model has a di�erent from the previous one, that is - the adversary only o

upiedthe entry point. In Figure 2.1, that is, the adversary only stands in M I1 .In the �rst glan
e, it di�ers a little from the previous one, but a
tually it is agreat di�eren
e. In this threat model, many me
hanisms against atta
ker be
omemore useful like defensive dropping, in
luding variable laten
ies, et
. The most typi
alatta
k in this model is �ngerprinting atta
k.[12℄Generally, when user visits a typi
al webpage, it is 
onsisted by many di�erent �les.First, the HTML �le is downloaded from the site, then pi
tures in
luded in the page,ba
kground musi
, 
v movie, et
. would also be downloaded after that. If we surf thewebpage at www.yahoo.
o.jp, about 23 �les would be retrieved from the server. Ea
hof them has a spe
i�
 �le size in the most 
ases. Table 2.1 illustrates an example.In a typi
al browser, su
h as Mi
rosoft Internet Explorer, ea
h �le would be down-loaded via a separate TCP 
onne
tion. So that, we 
ould easily dete
t every TCP
ows sin
e they use di�erent ports to transfer the �les. Then, atta
ker 
an determinethe size of ea
h �le being returned to the 
lient. All the atta
ker need to do is just
ount the total size of the pa
kets on ea
h port.14
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Table 2.1: The �les of top page on www.yahoo.
o.jp, 05/29/2009File Name Sizeindex.htm 132KB84 84 0582.gif 3KB84 84 0587.gif 2KB84 84 0953.gif 3KB84 84 0986.gif 3KB0529a.jpg 5KB20090528-00000033-jijp-so
i-view-000-small.jpg 6KBb.gif 1KBb(1).gif 1KBb(2).gif 1KBb(3).gif 1KBb(4).gif 1KBb(5).gif 1KBb(6).gif 1KBb(7).gif 1KBb(8).gif 1KB
lr-090413.
ss 7KBfp base bd ga 4.1.1.js 92KBlogo.gif 3KBrain 
lods st.gif 1KBuranai 090525.gif 2KBxwetzr auwmsmeujit0b-a.jpg 20KByfa visual4.js 6KB

15



Chapter 2 Related WorksThis kind of atta
k is not only 
an be applied to the plain 
ows, but also the simpleanonymity system just like SafeWeb. With 
ommon en
ryption methods, we do nottry to obfus
ate the transmitted data for both performan
e and requirement reasons.If someone monitors the Safeweb user, the number and approximated �le size 
ould bedetermined. For example, the eavesdropper found that the user 
reated 3 
onne
tionswith the same target, ea
h of the 
onne
tions re
eived respe
tively 1324 bytes, 582bytes, 32787 bytes. Ea
h of these transfer sizes 
orresponds with a 
ertain �le dire
tly.The set of �le sizes 
onsists the �ngerprint of a webpage.So the atta
ker 
ould �rst try to build the �ngerprint of the webpages, then monitorthe user. When the user is sur�ng a webpage, 
onne
tions and related data 
ould bedete
ted by the atta
ker. Then the atta
ker just 
ompare the 
onne
t data with a setof �ngerprints, 
hoose the 
losest one, then \guess" that the page is what user sur�ngnow. The atta
k is low-
ost and easy to apply, whi
h really hurt the user's anonymity.2.3 Mali
ious NodesIn this model, it assumes the adversary o

upies several nodes in the system and thentry to �nd what they 
ould dis
lose. Figure 2.3 illustrates this model simply.Almost every anonymous system would make some dis
ussion about this threatmodel. Some will fo
us more on it, like [18℄. It 
ould be easy turned into the end-to-end atta
ker model or entry point model. If an adversary 
ontrols m > 1 of N nodes,he 
an 
orrelate at most (mN )2 of the traÆ
. And, with Sybil atta
k[8℄, the proportion
ould be even larger.Another approa
h in this threat model is prede
essor atta
k. When using ananonymity system, user will 
ontinuously make many 
onne
tions through di�erentpaths. Then in the anonymous system whi
h has lots of mali
ious nodes, the possibilityof 
onne
t to a mali
ious node is greatly in
reased. So, di�erent mali
ious nodes mayobserve same prede
essor, although they don't know whether it is a user or just anode in system. They 
ould guess it as a user by statisti
al inferring. This atta
k isespe
ially useful in P2P anonymous 
ommuni
ation system or all the 
onditions thatthe atta
ker 
annot distinguish user and node.2.4 Outside PointsMost threat models would o

upy some points in the system to gain some informationto implement the atta
k. There are also some spe
ial 
ases that the adversary stands16
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Figure 2.3: Mali
ious Nodes in Anonymous Systemoutside the system and try to atta
k it. It is more generi
 model, and, of 
ourse, morehard to su

ess.Chakravarty et al. presented a novel me
hanism to exposes the identity of anony-mous system nodes.[2℄ They employ a approximately measure method LinkWidth todete
t indu
ed traÆ
 
u
tuations in anonymity system nodes.LinkWidth is a tool that allows atta
ker to estimate available and 
apa
ity band-width on a path, without additional support or a
tive 
ollaboration from a remotehost or any devi
e in the network. To measure end-to-end TCP 
apa
ity, the senderemulates the TCP Westwood sender by sending 
win pa
kets. 
win-2 TCP RST pa
k-ets (
alled load pa
kets), are sandwi
hed between two TCP SYN Pa
kets. These TCPSYN pa
kets, sent to 
losed ports, evoke TCP RST+ACK reply pa
kets. Corre
t re-
eption of the train of 
win + 1 pa
ket is determined by two TCP RST+ACK pa
ketsfrom the re
eiver (due to the head and tail measurement pa
kets). Ea
h 
orre
t re-
eption of the TCP RST+ACK pair 
auses 
win to be in
reased either exponentially(Slow Start phase) or linearly (Congestion Avoidan
e phase). Sin
e the atta
ker doesnot rely on an established TCP 
onne
tion, the only way to signal a pa
ket loss is by
oarse timeout. After sending the train, the sender initializes a timer to wait for thetwo expe
ted ACKs. The expiration of the timeout 
auses the readjustment of the17
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win and ssthresh parameters inside a timeout event handler method.The atta
ker 
ould use TCP RST pa
kets to avoid generating unne
essary replies,either in the form of TCP RST or ICMP Destination Host/Net Unrea
hable pa
kets,whi
h 
ould potentially interfere with our forward probe traÆ
. The time dispersionbetween two 
onse
utive TCP RST+ACK replies due to the head and tail measure-ment pa
kets are stored as tn and tn�1. Thus the 
apa
ity/bandwidth is measuredas: bk = 
win � Ltn � tn�1Here, bk is the measured �instantaneous � bandwidth (measured throughput),
win � L is the total data sent (in bits) for the entire train, tn and tn�1 are the timesof re
eption of the two TCP RST+ACK reply pa
kets. The su

essful re
eption to aprevious train determines how many pa
kets the atta
kers send in the 
urrent train.This method is a dire
t extension of the pa
ket train method.Figure 2.4 illustrates how an adversary probes the nodes involved in a 
ir
uit.They probe nodes that may possibly be part of anonymity 
ommuni
ation paths. Anadversary with suÆ
ient bandwidth resour
es 
an simultaneously probe all (or a largefra
tion of) nodes. If some nodes have the similarity bandwidth 
u
tuation, then theatta
ker 
ould guess they are in the same path.This atta
k requires little by de�nition, but in pra
ti
al, it works well only whenthe atta
ker uses a well-provisioned probing node is at a network \vantage" point withrespe
t to the vi
tim nodes. Stated simply, this would mean that the bottlene
k inthe path 
onne
ting the adversary to the vi
tim relay should be the latter. This issomewhat like a \pseudo" global passive adversary and limit the usage of this method.Other than that, for all the atta
ker observed is the 
u
tuation in bandwidth, so onlythe a
tions that is a�e
t bandwidth greatly 
an be dete
ted. E.g. The paper itselfevaluated by whether atta
ker 
ould aware a 100MB �le transfer.2.5 Bla
k Box ModelCompare to other atta
ks, it de�nitely has the strongest assumption. But systems theywant to break is also quite strong - high-laten
y anonymity systems. The most famousatta
k under this model is long-term interse
tion atta
k. In this atta
k, a passiveatta
ker observes a really large volume of network traÆ
 and �nd out some re
eiverare more likely to re
eive messages after some spe
i�ed parti
ipants have transmittedmessages. Some atta
ks are presented like [6, 16℄. By using 
oarse-grained timing, the18
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Figure 2.4: Adversary probing available bandwidth of nodesatta
ker treats the entire anonymities network as a bla
k box, and 
orrelating traÆ
that enters and exits the system to determine 
ommuni
ation patterns.We introdu
e one of the long-term interse
tion atta
ks here, the statisti
al dis
lo-sure atta
k. The atta
k only reveals likely re
ipients with statisti
al method. In thisatta
k, they model Ali
e's behavior as an unknown ve
tor ~v whose elements relate tothe probability of Ali
e sending a message to ea
h of the N designated 
orresponders.The elements of ~v 
orresponded to the m re
ipients will be 1=m; the other N � melements of ~v will be 0. Other users' \ba
kground" traÆ
 are des
ribed as a knownve
tor ~u and ea
h of the elements is 1=N .The atta
ker derives an observation ~oi from output of ea
h round. Elements arere
e
ted the probability of Ali
e's having sent a message to ea
h parti
ular re
eiver inthat round. In other words, in a round i where Ali
e has sent a message, ea
h elementof ~oi is 1=b if a spe
i�
 re
ipient who 
ould re
eive this message, and 0 if it does not.Then by taking arithmeti
 mean O of a large set of observations, we 
ould get (by thelaw of large numbers): O = 1t tXi=i ~oi � ~v + (b� 1)~ub19



Chapter 2 Related WorksTable 2.2: Comparison between Threat ModelsThreat model AssumptionOutside point Very weakEntry point WeakMali
ious nodes Somewhat strongEnd-to-end StrongBla
k box Very strongSo the atta
ker 
ould estimates Ali
e's behavior as:~v � bPti=1 ~oit � (b� i)~uWith 
al
ulation, author has also derived the requirement for the atta
k that isthe atta
k will only su

eed when m < Nb�1 , and 
al
ulates the expe
ted number ofrounds for the atta
k to be su

eed (with 95% 
on�den
e for se
urity parameter l = 2and 99% 
on�den
e for l = 3):t > �m � l�rN � 1N (b� 1) +rN � 1N2 (b� 1) + m� 1m ��2In short, the 
entral idea of this atta
k is: If the a
tivity of Ali
e di�erent fromother users and this di�eren
e exists for a long time, then by applying the statisti
almethod to many observations, atta
ker 
ould gain some knowledge about the a
tivitypattern of Ali
e.Although the me
hanism of this atta
k is easy to understand and the result isnot good enough to implement, from the des
ription above, we 
ould know that thismodel is a more theoreti
al way for the impra
ti
al bandwidth requirement and whole
overage of the anonymity system.2.6 ComparisonsWe have introdu
ed a lot of threat models above, and we give Table 2.2 and 2.3 tomake the 
omparisons between threat models easy to understand.The �rst 
olumn of both two tables is sorted by the diÆ
ulty for atta
ker to meetthe requirements. We 
ould see from the Table 2.2 that entry point has a quiteweak assumption so that atta
ker 
ould implement atta
ks with the threat model ofentry point easily. Outside point model it is the weakest assumption among these20



Chapter 2 Related WorksTable 2.3: Comparison between Atta
ksAtta
k name Threat model and 
omments StrengthFingerpringting atta
k Entry point Somewhat e�e
tiveTiming atta
k End-to-end E�e
tiveReplay atta
k End-to-end, a
tive Very e�e
tiveBandwidth probing atta
k Outside point, high bandwidth E�e
tiveStatisti
al dis
losure atta
k Bla
k box Weak (vs High-laten
y)models. But we have to aware that without additional support fa
tors; the outsidepoint atta
ker 
ould merely do nothing sin
e that is the most widely existed potentialthreats. And we 
ould also see even with the same threat model, the strength of timingatta
k and replay atta
k is di�erent due to the atta
k itself is passive or not. Althoughstatisti
al dis
losure atta
k is weak, but it is the only atta
k whi
h 
ould analysis theuser's a
tivity pattern in a well-designed high-laten
y system. If an atta
ker 
oulda
hieve the bla
k box model and use it against low-laten
y system, he 
ould do atleast as well as end-to-end model.In pra
ti
al, threat model whi
h stronger than entry point is hard to a
hieve.What's more, high bandwidth is also diÆ
ult requirement. So we want to develop anatta
k whi
h is more realisti
 to 
all for the attention on the priva
y prote
tion. Alsoby developing atta
ks, it 
ould help us to understand the 
on
eption of anonymitymore 
learly. Then make the resear
hers help the anonymity system be
ome morese
ure in the future.

21



Chapter 3 Fingerprinting Atta
k on TorIn this se
tion, we will �rst review the 
hara
teristi
 of Tor and why original �nger-printing atta
k does not work on it. Then raise our proposal of the �ngerprintingatta
k on Tor, extend the atta
k from threat model and atta
k method.3.1 The Chara
teristi
s of TorTor is a low-laten
y, well developed anonymity system. It uses multi-hop en
rypted
onne
tions to prote
t sender and/or re
eiver anonymity. Tor extends the formeronion routing s
heme by adding some features like integrity prote
tion, 
ongestion
ontrol, and lo
ation-hidden servi
e. Tor 
an be used for both sender and re
eiveranonymity. Sender anonymity 
ould help a user to use servi
es without dis
losing theiridentities. In Tor's design, it employs two signi�
ant 
hara
teristi
s, whi
h preventsthe �ngerprinting atta
k to some extent.First, Tor employs quantized data 
ells; ea
h data 
ell is �xed at 512 bytes. So itis obviously diÆ
ult for an atta
ker to dete
t the a

urate size of �les transferred byseparated 
onne
tion stream.Se
ond, Tor uses multiplexing to 
ombine all the TCP streams into one 
onne
tion.This is not for the safe aspe
t at �rst. The original Onion Routing 
reates a pathfor ea
h TCP stream. But for the expensive 
ommuni
ation 
ost, Tor de
ides touse multiplexing to redu
e the expensive path-establish 
ost. And it also providessome resistan
e to the 
lient against �ngerprinting atta
ks, for the atta
ker 
annotdistinguish the 
onne
tions between ea
h other easily.3.2 Threat ModelAlthough many atta
ks toward low-laten
y anonymity systems are su

essful in theirassumed environment, Tor and other anonymity systems are 
onsidered to be se
ure inpra
ti
al use. Many atta
ks involve a strong adversary, who 
ould perform end-to-end
on�rmation or even global eavesdrop. And in pra
ti
al world, it is obviously diÆ
ultto a
hieve this kind of requirement. Even for big organizations to observe all the nodesdistributed in the whole world is almost impossible. The advantage of �ngerprintingatta
ks is the low resour
e requirement. The adversary only needs to o

upy the entry22



Chapter 3 Fingerprinting Atta
k on Torpoint of the user. Compare to the end-to-end 
on�rmation atta
ks, they just use theresour
es whi
h mu
h easier to satisfy make it more possible to implement.Our �ngerprinting atta
k on Tor uses the same threat model with the �ngerprintingatta
k by Hintz, the atta
ker is assumed to o

upy the entry router of the user andobserve all the data 
ows from the user. He wants to guess what webpage the useris sur�ng now. The design obje
tive of Tor is attempting to defend against externalobservers who 
annot observe both sides of a user's 
onne
tions. So we think ourthreat model is appropriate against low-laten
y anonymity system.Let us des
ribe the model more formally, assume there is a user and two respon-ders: Ali
e and Bob. An adversary 
an wat
h all the 
onne
tions related to the user.First, the adversary 
ould use the anonymity system to visit Ali
e and Bob for manytimes. Then the user visits either Ali
e or Bob using the anonymity system under theadversary's observation. Then the adversary would guess whi
h responder the user
onne
ted to. We have some a priori probability, whi
h models our suspi
ion aboutwho is 
ommuni
ating with whom. More pre
isely, the a priori probability that theuser is 
ommuni
ating with Ali
e is p and the a priori probability that user is 
om-muni
ating with Bob is 1 � p. If we have no priori information, p = 1=2. See Figure3.1(a).Then, the model 
ould also easily be extended to n responders, assume now thereare n responders, from Responder 1 to Responder n. First, the adversary 
ould usethe anonymity system to visit any responder for many times. Then the user visits oneresponder using the anonymity system under the adversary's observation. Then theadversary would guess whi
h responder the user 
onne
ted to. We have some a prioriprobability, whi
h models our suspi
ion about who is 
ommuni
ating with whom.More pre
isely, the a priori probability that user is 
ommuni
ating with Responder iis p and the a priori probability that the user is 
ommuni
ating with other respondersare 1� p. If we have no priori information, p = 1=n. See Figure 3.1(b).3.3 Fingerprinting Atta
k with IntervalsAtta
k Method So we 
ome to make our �ngerprinting atta
k towards Tor. Thebiggest problem is that the only 
onne
tion makes it hard for the adversary to distin-guish ea
h �le size and the 
hara
teristi
 of the webpages be
omes hard to de�ne.Generally, if we observe the traÆ
 
ow from/to the user, we will see a sequen
eof pa
kets. If we use the out
ow from user to separate the 
ow, we will see someinteresting things. Some intervals may be very short, like 1 or 2 pa
kets betweentwo out
ow pa
kets. That means this interval transferred some small �les or does23
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k on Tor

(a) Model with 2 responders (b) Model with n respondersFigure 3.1: Model in Fingerprinting Atta
ksome proto
ol transa
tions, et
. And some intervals may be relatively long, like 5 or6 pa
kets. This means a bigger �le is being transferred. And after the TCP slidingwindow is ful�lled, the user send the a
knowledge pa
ket and 
ontinue the transferpro
ess. If the network 
ondition remains stable, this traÆ
 pattern will not 
hangemu
h. So, for the webpages with di�erent �les and di�erent loading pro
ess, we 
andistinguish them to some extent.With a spe
i�
 pa
ket sequen
e, we 
ould use the method des
ribed above to makea 
ontinuous intervals with the di�erent number of pa
kets. We 
all all the in
owpa
kets in a sequen
e, without any out
ow pa
ket pla
ed in them, an interval. Wethen de�ne a ve
tor ~V = (v1; v2; : : : ; vn), where vi means \the number of intervals withi pa
kets". n~V means \the total number of intervals in ~V ". We build a �ngerprintve
tor ~F in advan
e. Let weight w de�ned as n~V =n~F or n~F=n~V whi
h is smaller (equalwhen n~V = n~F ) than 1. So we use this formula to 
al
ulate the similarity s
ore -SInterval: SInterval = ~V � ~Fk~V kk~Fk � wInterval (3.1)If we have several �ngerprints, we 
ould 
al
ulate observed ~V with ea
h ~Fi to getseveral similarity s
ore Si (Here we omit the label of Interval, sin
e it 
ould obviouslybe used with other methods), then we 
ould sort all the Si and make the assumptionthe user is sur�ng the webpage with the ~F 
orrelated to the largest Si.In the ordinary �ngerprinting atta
k, be
ause a webpage is usually 
onsists fromabout 20 to 30 �les, and ea
h �le has its own unique �le size. It means that the number24



Chapter 3 Fingerprinting Atta
k on Torof distinguishable webpages is very large. But in our work, the information we usedis really limited due to the multiplexing. So if the number of �ngerprint we use is toolarge, we may not have a very high dete
tion rate. When the webpages the user maya

ess are too many, after sorting the similarity S, we do not make the assumptiononly with the biggest S, but also using a threshold value � instead. All �ngerprintswith 
al
ulated s
ore larger than � 
ould be the possible page the user has seen. Andwe 
ould make this as a set. If we 
ould make sure the user is sur�ng the same pageagain and again (but we do not know whi
h page he is wat
hing), then we get othersets. Combine these sets and �nally we 
ould get the most possible answer.The Choi
e of Fingerprints So far we have dis
ussed our threat model, the s
ore
al
ulation formula and the method to re
ognize the page. But how 
an we 
hoose a�ngerprint?Generally, any ve
tor ~V 
ould be a �ngerprint but the unique noises are alsoin
luded in the �ngerprint. An adversary may do the sampling work in advan
e andmake a lot of ve
tors from one page. He wants to use them to a
hieve a higher dete
tionrate from the data, so whi
h one should he 
hoose?The �ngerprint 
hoosing method is also dis
ussed in ordinary �ngerprinting atta
kpaper: the author 
laims that we should 
hoose the smallest sizes sampled for ea
h�le. It is an intuitive idea that if we observed the same thing with the smallest size,then it must be with minimum noises. But in our opinion, for the adversary hasalmost same network 
ondition as the user. The �ngerprint should not only re
e
t the
hara
teristi
 of webpage, but also the network 
ondition of user.We 
ould assume the atta
ker a

ess a webpage n times and re
orded ve
tors as~V1; ~V2; : : : ; ~Vn. We 
al
ulate the s
ores with ea
h other by formula 3.1. Then we 
ouldget the s
ores Sij 
al
ulated from ~Vi and ~Vj (i = 1; 2; : : : ; n � 1; j > i). So we 
ould
hoose ~Vi with the maximum S 0i as the �ngerprint ve
tor ~F , whi
h represents:S 0i = j 6=iYj Sij (3.2)3.4 Collusion Threat ModelAlthough Tor has employed several te
hniques to defend itself from atta
kers, it isstill hard to 
ompletely prevent the information leaking. We have presented an �nger-printing atta
k towards Tor above, whi
h is based on a pra
ti
al threat model. Herewe will present another threat model, whi
h is stronger than the ordinary one, based25



Chapter 3 Fingerprinting Atta
k on Toron the leaky pipe feature of the Tor anonymity system.Suppose atta
ker 
ontrols the entry point of the user (That is the minimum re-quirement of the �ngerprinting atta
k) and m mali
ious onion routers out of N nodes.It is easy to see that with the probability of m=N , this situation be
omes an end-to-end atta
k. (Noti
e that the atta
ker o

upies the entry point with the probabilityof 1, so the probability of end-to-end atta
k here is di�erent from the ordinary one inthe basi
 model - n2M2 ) But if we do not o

upy the exit node but the middle one, withsome tri
ks we 
ould still improve the su

ess rate of our atta
k.The purpose of �ngerprinting atta
k is to 
on�rm the webpage whi
h user is vis-iting. We suppose that we have the both entry point of user and the middle onionrouter. The �rst thing we need to do is to 
on�rm that these two positions belong toone 
ir
uit. Sin
e here we 
ould use the a
tive atta
k, like insert time gaps betweenpa
kets to make some signi�
ant events in the entry point for the middle point to ob-serve that. Also we 
ould use some more simple ways, like pa
ket 
ounting atta
k aswell. Similar pro
ess is implemented as in [19℄. In essen
e, this pro
ess is an end-to-endatta
k, so high su

ess probability of this step 
ould be expe
ted.The next step is to 
reate an one-hop 
ir
uit. After we have made sure that weo

upy the middle onion router, we 
ould build an one-hop 
ir
uit from it. Sin
e weknow the exit router of this 
ir
uit, (Remember that ea
h router knows the previousnode and the next node by default so that they 
ould pass the message, but withoutextra information, they will never know the exa
t position they are standing at.) themali
ious middle onion router 
ould send a 
reate 
ell with a new 
ir
uit ID to the exitonion router, and when the OR3 re
eives this 
ell, it just builds up a 
ir
uit with OR2as usual and returns a 
reated 
ell. After that we 
ould see that an one-hop 
ir
uithas been built up, and from the view of mali
ious middle router, the one-hop 
ir
uitand the ordinary 
ir
uit from OR2's view have the same length, same following node,that means roughly same RTT, laten
y, et
. Figure 3.2 shows the threat model andFigure 3.3 represents the atta
k pro
ess.Third, after the one-hop 
ir
uit is built, we 
ould do the �ngerprinting atta
k. Inthis time, we do not need to make the �ngerprints in advan
e. Sin
e we 
ould neverknow whi
h path the user will 
hoose, the �ngerprints whi
h made beforehand will
ontribute nothing to the su

ess rate. So in this situation we will use the observeduser's traÆ
 pattern as the �ngerprint. Then we will use our one-hop 
ir
uit to visitthe webpages user 
ould possibly visited and 
ompare to the user's traÆ
 pattern.Then as the normal �ngerprinting atta
k, we will 
hoose the one with the highestsimilarity s
ore and make the assumption.26
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Figure 3.2: The Cir
uit Building and Beginning of Server Visiting

Figure 3.3: The One-Hop Cir
uit Building27



Chapter 3 Fingerprinting Atta
k on Tor3.5 Fingerprinting Atta
k with Time WindowsWith the de�nition and appli
ation of interval into traÆ
 pattern, we 
ould gain someadvantage towards anonymity system users, but the result is still not so satis�ed tous. The interval ve
tor method omitted the information of relative positions betweenintervals, so we 
ould get a robust result, whi
h will not 
hange greatly by someabnormal events (e.g. re-transmission, lag, et
.) that may o

ur quite often in pra
ti
alnetwork environment. Also, we will not get very good resolution for using so limitedinformation.So we want to introdu
e some other fa
tors to get better resolution and su

essrate for our atta
k plan. Time is a good 
andidate for us, it is widely used in all kindsof passive atta
ks. The problem is: how 
ould we introdu
e the time into our atta
k?First, we tried to make the assumption that all the pa
kets remained the samepositions; the time between pa
kets are kept relatively 
onstant (remain same or withsame proportion). Then we may want to use a long ve
tor to des
ribe the timebetween ea
h pa
ket and 
al
ulate the similarity by use 
orrelation or other method.Unfortunately, the result is not as good as we expe
ted.Then we want to use a slightly more rough way to measure that: we tried tomake the assumption that the time between intervals (as we 
laimed above) are keptrelatively 
onstant. This is be
ause that the several pa
kets in an interval are trans-ferred in a very short period but the waiting-for-response time is mainly related to thenetwork environment.Although the result is better than the �rst one, it is still not a good method. Inthese two ways, we treated the whole traÆ
 pattern as if it was a \spring". Whenthe network lag is high, the \spring" is stret
hed and vi
e versa. But the thing is:pra
ti
al network is not so stable as we thought, the relative position of intervals alsonot remained same all the time. We want to �nd a better way to solve that.Finally, we have found that by dividing into several windows, 
al
ulate the 
orre-lation between pa
kets number in ea
h window is a good way to make the resolutionbetter. We also made some assumptions that are:� Ea
h page is 
onsist by several �les with di�erent sizes. (Same as ordinary�ngerprinting atta
k)� In network transfer, (espe
ially with good network environment), time is largely
onsumed by the waiting-for-response time than the time whi
h is using forpa
ket transport.With these two assumptions, even the similar webpages (in the number of �les, �le28



Chapter 3 Fingerprinting Atta
k on Torsizes) with di�erent sequen
es by using this method 
ould be distinguished.In this method, the basi
 
on
ept is divide a given traÆ
 pattern by relative time(e.g. 25%, 50%, et
.) That is be
ause the time itself varies greatly due to the di�erentpath. Under the given assumption, we 
ould treat the pa
ket transfer time as \veryshort" and see the waiting-for-response time as the main part of a traÆ
 pattern's timeline. Then if the path is slow, the total time is long and vi
e versa, but the pa
ketsin ea
h time window will not 
hange greatly in normal 
ases. Then by 
al
ulate the
orrelation between two time window series, we 
ould make the guess.Let us dis
uss it in more detail way: First, de
ide how many windows shouldbe divided - the total window number n. So the length of ea
h part would be the(total time=n). Then we will get a time window divided ve
tor as (v1; v2; :::; vi; :::; vn).vi refers to the number of pa
kets in the i-th time window. Here we 
ould treat thein
ow and out
ow pa
kets seperately, but I believe that the in
ow 
ould des
ribe thefeature of obje
t better. After that, we 
ould 
al
ulate the similarity s
ore with twotime window ve
tors by getting the 
orrelation 
oeÆ
ient of them. That is:ST ime Window = wT ime Window � Cov( ~V 0; ~F 0)StdDev ~V 0 � StdDev ~F 0= wT ime Window � Corr( ~V 0; ~F 0) (3.3)Two ve
tors represent as ~V 0 and ~F 0, also as (v01; v02; :::; v0n) and (f 01; f 02; :::; f 0n).Cov( ~V 0; ~F 0) stands for the 
ovarian
e of two ve
tors, whi
h is E[( ~V 0 � E[ ~V 0℄)( ~F 0 �E[ ~F 0℄)℄. StdDev stands for standard deviation, 
al
ulated by qE[( ~V 0 � E[ ~V 0℄)2℄.And Corr( ~V 0; ~F 0) means 
orrelation 
oeÆ
ient, the same as 
ovarian
e divided by themultiplier of two standard deviations.We used wT ime Window here again and that is slightly di�erent with wInterval usedabove. It also ranges from 0 to 1, 
al
ulated by divide the smaller number of in
owpa
kets of the two ve
tor with the bigger number of in
ow pa
kets. Weight is usefulto �lter out obviously irrelevant samples, and almost without any side-e�e
t. The
orrelation gives us the information of the trends between variations of pa
kets butnot the absolute number of pa
kets. Then weight 
ould help us to introdu
e absolutenumber of pa
kets into 
al
ulation. A
tually, either weight 
al
ulated by numberof intervals or by number of pa
kets does not di�er greatly. So they are somewhatinter
hangeable.The time window divided atta
k results better than the interval method; we shallsee that in the following se
tion. But the interval method is mu
h more robust thantime window divided method. An abnormal long lag will make this sample 
ompletely29



Chapter 3 Fingerprinting Atta
k on Torworthless in time divided method, but one or two retransmission does not hurt seriouslyin interval method.3.6 Combine Two MethodsWe have presented two methods before, and both of the two methods have their ownsuitable 
ases. It is hard for atta
ker to analysis ea
h 
ase and determine whi
h methodto use, so the 
ombination of two methods are re
ommended to introdu
e as manyfa
tors as possible.From intuition, there are equations like this:SCombined = SInterval � ST ime Window = wInterval (3.4)SCombined0 = SInterval + ST ime Window (3.5)Besides these two basi
 formulas, we 
ould also adjust ea
h item's weight. Towardsdi�erent samples, there may be di�erent e�e
tive formulas, but we want to dis
uss ina more general 
ase.Compare Formula 3.4 and Formula 3.5, I will tend to use the �rst one for tworeasons. First, the Formula 3.4 will give us a result between �1 and 1, whi
h is moreformal way and 
ould still introdu
e other fa
tors in future without 
hange the rangeof result. Se
ond, in my opinion, I think extreme 
ase should be 
onsidered seriously.Compare to the similarity s
ore of 1 and 0, the s
ore of 0.5 and 0.5 maybe the better
hoi
e. (Although seem both of them are not the right 
hoi
e.)From experiment, the 
ombination gave us better results; we will see them in thefollowing se
tion too.3.7 Pity HitSometimes, atta
ker does not need to fully depend on the system to de
ide whi
hpage user is browsing now. What he want is by using atta
k system, a few sus
eptible
andidates 
ould be reviewed manually (Maybe also with some assistant). Then thesystem relieves atta
ker's work load, and still keep a probably high su

ess rate pro�tfrom human's experien
e and knowledge. So in this 
ase, the system do not 
hoosethe highest similarity s
ore from all the 
andidates, instead, top n 
andidates wouldbe 
hosen for atta
ker to de
ide. If the 
orre
t answer falls in the top n 
andidates inan atta
k, we now 
all it a \pity hit". That means the atta
k still 
ould be su

eeddue to the help from atta
ker. 30



Chapter 3 Fingerprinting Atta
k on Tor

(a) Sample traÆ
 from Mixi (b) With Yahoo, SInterval = 0:916

(
) With Nifty, SInterval = 0:898 (d) With Mixi, SInterval = 0:897Figure 3.4: Pity hit example 1, sort by SIntervalHere we give some observations to illustrate the importan
e of introdu
ing pityhit. In Figure 3.4, we 
ould see that sort by SInterval, the 
orre
t answer only listed3rd pla
e. And by the de�nition, we 
ould 
all it a \pity hit". But if we see the resultfrom the pi
ture, the di�eren
e in SInterval is small. From graph shape, we 
ould easilyde
ide that �ngerprinting from Mixi is 
losest to our sample traÆ
. And that is whata real atta
k system works, by 
ollaborating of human and algorithm.But things are not always so good to us. We shall see another example: Figure3.5 illustrates another example whi
h sorted by ST imeWindow. In this example, it isreally hard to say whi
h �ts better just by the graph shape. And �ngerprint fromMSN seems more similar to the sample traÆ
 than the other two. But a
tually, oureyes 
ould not read all the messages from the traÆ
 shape. If we use SInterval to sortthem, the ST imeWindow with Goo itself is as high as 0.985, and the result with MSN31
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k on Tor

(a) Sample traÆ
 from Goo (b) With MSN, STimeWindow = 0:916

(
) With Twitter, STimeWindow = 0:825 (d) With Goo, STimeWindow = 0:814Figure 3.5: Pity hit example 2, sort by ST imeWindowand Twitter is only 0.783, 0.640, respe
tively.So from these two examples, we know that pity hit 
ould help the atta
ker raisethe su

ess rate sometimes. But that does not means we 
ould judge all the patternsby our eyes both for high workload and there is still information whi
h 
ould notre
ognized easily by human. With 
ombination of two methods and human's assist,our atta
k 
ould do really e�e
tive towards existed anonymity systems.We will also see the result with and without pity hit in the evaluation se
tion.3.8 Other Appli
able SituationsAlthough this atta
k is mainly designed towards Tor, it 
ould also be applied in othersituations. 32



Chapter 3 Fingerprinting Atta
k on TorFirst, it is not hard to see every anonymity systems with multiplexing or quantized
ells 
ould be atta
ked by our proposal. And even without multiplexing or quantizing,our proposal also works. You 
an treat all the 
onne
tions as if they were one. But itwould be ine�e
tive for we dis
ard some useful information by this pro
ess.Se
ond, this kind of atta
k 
an not only be applied atta
king information regardingwebpage sur�ng, but also other forms of network a
tivities. For example, in instant
hatting, there should be di�eren
es between one who talks qui
kly but every senten
eis short and another merely talks but using long paragraphs. This kind of di�eren
es
ould be re
e
ted in their traÆ
 
ows, although the signi�
an
e may not be highenough to be dete
ted.What's more, our s
heme does not only apply to the entry point of the path,but also the exit point. Imaging that if you are a 
urious server administrator whois running a system whi
h a

epts both anonymous and non-anonymous visits fromanonymity systems, you 
ould re
ord the patterns when users visiting your sites innon-anonymous mode. And someday, for some purpose, a user visits your sites anony-mously. Then you 
ould use this s
heme to guess whi
h user it is. Just by 
omparingthe histori
al patterns and the 
ows you observed.We just simply des
ribed some other possible situations for the appli
ation of ourproposal. Theoreti
ally, for any kinds of a
tivities with stable traÆ
 patterns, ourproposal 
ould be a potential threat.

33



Chapter 4 Experiments and Evaluation
4.1 Environment and Data Colle
ting MethodWe use Windump to 
apture the Tor pa
kets (Version 0.2.0.34) on a PC with IntelCore2 Duo 1.86G, 4G RAM, Vista Business. We shall run the windump to observethe port 9001 on the host ma
hine. Then we use Firefox whi
h installed TorButtonto surf the webpage. After a webpage is fully loaded, we stop 
apturing the pa
kets.We use Wireshark to open the PCAP �le, �lter the obvious noise manually. Morepre
isely, in a short period, all the 
onne
tions raised from Tor are going through thesame path. So most of the pa
kets will obviously have the same destination address(A
tually, this address refers to the �rst node in the path). And some pa
kets withother destination addresses refer to other 
ontrol pa
kets used in Tor, like establishingnew paths. After this pro
ess, a data is re
orded. We also wrote some programs toanalysis the 
aptured data to make the 
al
ulation.4.2 Evaluation of the Interval Atta
kData Analysis First, we shall use Alexa Ranking - Top Sites in Japan1 to see howour method works in a pra
ti
al environment. In Figure 4.1, we use n to represent thetop n sites' mainpages we used to implement the experiment. We 
hoose the top 20sites to implement the experiments.In the experiment, we 
hoose top n = 5; 10; 15; 20 sites, and built �ngerprint of thesite. Then we surfed webpages and re
orded the user a
tivity ve
tor, 
ompared withthe �ngerprint, and guessed whi
h website user is sur�ng. The su

ess rate representsin the Figure 4.1.From Figure 4.1, we 
ould see that: the su

ess rate is relatively high when n issmall. With n in
reases, the su

ess rate de
reases signi�
antly. There are several rea-sons for this: First, the information we used is limited, the �ngerprint of the webpageis not so unique. So obviously the su

ess rate de
reases when n in
reases. Se
ond,some pages are not suited for �ngerprinting, like youtube2, amazon3. The items on1http://www.alexa.
om/topsites/
ountries/JP2http://www.youtube.
om/3http://www.amazon.
o.jp/ 34
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Figure 4.1: Su

ess Rate in Di�erent nthese sites would 
hange from time to time, whi
h hurts the 
onsisten
y of �ngerprint-ing. Other sites like Yahoo4 will have ads 
hange frequently, too. But 
ompared withother parts of the page, the ratio of ads is not so large and we 
ould just treat them asnoise. Third, the pages we have 
hosen are all homepages, with the similar design, itin
reases the diÆ
ulty of distinguishing. Fourth, the noise in pra
ti
al network a�e
tsthe result a lot, and that's why we need to implement our method instead of justmaking the simulation. Last, there are some sites hard to see the di�eren
e but stillbe 
ounted as di�erent ones, like Google5 and Google Japan6. This problem also existsin the distinguishing between the original page and phishing page. We will dis
uss thesu

ess rate in more formal way in the following se
tion.Theoreti
al Dis
ussion In this part, we will dis
uss the e�e
tiveness of this atta
kin theory. We will dis
uss two topi
s: The fa
tors that related to su

ess rate andmake an estimate of how many webpages (or webpage groups) 
ould be distinguishedwithout too high error rate. Although we use All topi
s we dis
uss here 
ould alsobe applied to other methods, so we will use S, w without pointing out it is used with4http://www.yahoo.
o.jp/5http://www.google.
om/6http://www.google.
o.jp/ 35



Chapter 4 Experiments and Evaluationinterval or others.First, Let us dis
uss with the su

ess rate. We will use the method in [14℄ to showthe atta
k su

ess probability formally: We use V � F , to indi
ate that the atta
ker'stest says that ve
tor ~V and �ngerprint ~F are from the same site. And we use V = Fto indi
ate that the event that ve
tor ~V and �ngerprint ~F are from the same site.We have the false positive rate, Prfp = Pr(V � F jV 6= F ), and false negative rate,Prfn = Pr(V � F jV = F ), are both known. We 
an therefore obtain:Pr(V � F ) = Pr(V � F jV = F )Pr(V = F ) + Pr(V � F jV 6= F )Pr(V 6= F )= (1� Prfn)Pr(V = F ) + Prfp(1� Pr(V = F ))= (1� Prfn � Prfp)Pr(V = F ) + PrfpWhi
h leads us to obtain:Pr(V = F jV � F ) = Pr(V = F ^ V � F )Pr(V � F )= Pr(V � F jV = F )Pr(V = F )Pr(V � F )= (1� Prfn)Pr(V = F )(1� Prfn � Prfp)Pr(V = F ) + Prfp (4.1)Suppose Pr(V = F ) = 1=n, e.g., we are observe n sites and the adversary has noadditional information about whi
h site the user is likely sur�ng. Then, the su

essprobability depends on Prfp and Prfn.In the simplest 
ase, we �rst assume the false positive rate and false negative rateare 
onstant. Then, with Prfn = Prfp = 0:1 and n = 10, whi
h means the user
ould surf 10 webpages and we've made all the �ngerprints of them, we 
ould getPr(V = F jV � F ) = (0:9 � 0:1)=(0:8 � 0:1 + 0:1) = 50%. And if we improve Prfn andPrfp to 0.01, then with 10 webpages, the su

ess probability is about 91.7%. As nrises to 100 webpages, this probability also falls to only 50%. With n = 1000, it is lessthan 10%.But as we see in the evaluation above, the Prfn and Prfp rises with n. So, we willdes
ribe the false positive rate and the false negative rate as a fun
tion of n. We alsouse the assumption Pr(V = F ) = 1=n dis
ussed above. Then the Equation 4.1 wouldbe:
36
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PrSu

ess = (1� Ffn(n))=n((1� Ffn(n)� Ffp(n))=n) + Ffp(n)= 1� Ffn(n)1� Ffn(n)� Ffp(n) + Ffp(n) � n (4.2)A
tually, it is almost impossible to make a reasonable fun
tion to re
e
t the rela-tionship between n and the error rate, for it is a�e
ted greatly by the sites we have
hosen. But we 
ould assume Prfn and Prfp have a linear relationship with the in-
rease of n, then from the Equation 4.2, we 
ould see the numerator falls with n,and the denominator in
reases even faster, whi
h will leads the su

ess probabilityde
reasing even faster.The equations we listed above tell us if we want to in
rease the su

ess rate, thereare several points: First, to improve the a

ura
y, that is, de
rease the false positiveand false negative rate. Se
ond, make the webpages we need to guess as few as possible,what means make the n lower. What's more, we assume the adversary knows nothingin advan
e. So the Pr(V = F ) equals 1=n. But if in some situation, Pr(V = F ) isgreater than 1=n, whi
h means the adversary gets some additional information fromother ways, the su

ess rate itself will also be raised.Then, we shall 
ome to how many webpages we 
ould distinguish without higherror rate, if not 
hoose the webpages randomly but we 
ould 
hoose by ourselves.Noti
e that the similarity S 
onsists of two 
omponents, the relative interval ratioand the ve
tor's dot produ
t. First, we take a look at the relative interval ratio. Wehave implemented an experiment to get that the mainpage of Yahoo Japan have anaverage interval of 159.2105, with the standard deviation of 14.8495. Figure 4.2 showsthe distribution of intervals of Yahoo Japan.From our observation, the intervals of webpages often fall in the range from 50 to600. We 
an 
hoose the page freely here, webpages with more than 1000 intervals arenot so rare in pra
ti
al. But here we just want to make an theoreti
al estimate; wewill 
hoose the range of interval up to 600.As our experiment about Yahoo Japan, the standard deviation is approximately10% of the intervals, that means, with about � 20% gap between two sites, there isabout 95% 
han
e the ve
tor 
ould be re
ognized 
orre
tly. Roughly speaking, thereare log1:4(600=50)+ 1 � 8:38 slots for us to 
hoose webpages with high dete
tion rate.Then we 
ome to the dot produ
t of ve
tors. In our implementation, the ve
toris limited to 5-dimension. Be
ause intervals with more than 5 pa
kets are so rare,intervals with more than 5 pa
kets would be treated as one with just 5 pa
kets.Theoreti
ally speaking, if we use 20% gap as we do in the dis
ussion about interval,37
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Figure 4.2: Distribution of Yahoo's Intervalsthen there are a lot of available slots for us to 
hoose, 
onsidering we have 5-dimensionto do the permutation. But a
tually, in typi
al situation, the intervals with 1 or 2pa
kets dominated in the total dimensions, for there are a lot of transa
tions to bedone(Also, in some extreme 
ondition, su
h as �le transferring, we 
ould expe
t toobserve a lot of long intervals). By our observation, in the situation with similarintervals, there are about 3 or 4 signi�
antly di�erent results. Combine this withthe result about interval, we have approximately 20 to 40 available slots for 
hoosingwebpages to be re
ognized.We have mentioned in the publi
ation before that it is hard to improve this result,unless we 
ould �nd some way to signi�
antly redu
e the noise. And, in the followingse
tions, we shall see the improved results with time window method. So it is expe
tedto be improved further by following resear
h.4.3 Evaluation of Collusion Threat Model on TorIt is a little diÆ
ult to measure the e�e
tiveness dire
tly, but we 
ould also evaluate thismodel with indire
t methods. Sin
e the �ngerprinting atta
k is a kind of passive atta
kand we use this atta
k under the assumption of Dolev-Yao model, the en
ryption is
onsidered perfe
tly. So the information we 
ould used is really limited. For example,38
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Figure 4.3: The Pa
kets Number Distribution of Yahoo Top Pagetime, number of pa
kets, size, et
. If we 
ould show the better distribution of themunder this model, then it should be a
hieved better result by any possible �ngerprintingatta
ks.Let us make the �ngerprinting 
al
ulation formula abstra
t to S = Fun
tion(~V ; ~F ).It des
ribes the pro
ess that user uses the �ngerprint to determine whether a traÆ
pattern is a

ording to a spe
i�ed webpage or others.Sin
e in the Tor anonymity system, there are both end-to-end en
ryption and peer-to-peer en
ryption existed. All the information observers 
ould get are the numberof pa
kets, the time of pa
ket, et
. If we 
ould show that the distributions of thesefeatures vary less in this model, it 
ould re
e
t that �ngerprinting atta
k will worksmore e�e
tively here.First we will see the distribution about the total number of pa
kets. With aspe
i�ed path, the pa
ket dropping probability is relatively stable so the result will be
loser to a spe
i�ed number. On the 
ontrary, with randomly sele
ted path, the pa
ketdropping probability varies greatly, it will 
ause the number of pa
kets hard to expe
t.Figure 4.3 shows us the result intuitively and Table 4.1 shows us the 
omparison aboutstandard deviation of pa
ket numbers.Then we 
ome to see the distribution about the loading time of the webpage. Likethe number of pa
kets, when the 
ir
uit is de
ided, both the laten
y time and the39



Chapter 4 Experiments and EvaluationTable 4.1: Comparison about Standard Deviation of Pa
ket Numbers between RandomCir
uits and Spe
i�ed Cir
uitEnvironment Standard Deviation (on average)Random Cir
uits 35.39179Spe
i�ed Cir
uits 8.84590
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Figure 4.4: The Loading Time Distribution of Yahoo Top Pagedropping probability are also de
ided. When we put the results of di�erent 
ir
uitstogether, huge di�eren
es 
aused by both geographi
al and network environment willimpa
t greatly on the distribution of times. Figure 4.4 shows us the result intuitivelyand Table 4.2 shows us the 
omparison about standard deviation of transfer times. No-ti
e that we have manually �ltered some replay pa
kets stu
k somewhere by a

ident,whi
h will greatly enhan
e the variety in the total transfer time.Last, we will use the method we have presented above to show the improvement inthe real atta
k s
heme. We will 
hoose the interval method to make the experiment.If we have several �ngerprints, we 
ould 
al
ulate observed ~V with ea
h ~Fi to getseveral similarity Si, then we 
ould sort all the Si and make the assumption the useris sur�ng the webpage with the ~F 
orrelated to the largest Si.It is obviously that with more stable network environment, the S will be higher40



Chapter 4 Experiments and EvaluationTable 4.2: Comparison about Standard Deviation of Transfer Time between RandomCir
uits and Spe
i�ed Cir
uitEnvironment Standard Deviation (on average)Random Cir
uits 22.13481Spe
i�ed Cir
uits 2.03525Table 4.3: Comparison about SInterval between Random Cir
uits and Spe
i�ed Cir
uitEnvironment Average S
ore Standard DeviationRandom Cir
uits 0.85090 0.10501Spe
i�ed Cir
uits 0.97977 0.02113
ompare to one 
al
ulated in the randomly 
hosen 
ir
uits. We have 
hosen the pre-vious experiment data whi
h 
olle
ted from one 
ir
uit and the data without anydistinguish about the 
olle
ting 
ir
uits. Table 4.3 shows the result and we 
an seethat when the data are 
olle
ted from one 
ir
uit, the similarity s
ore is signi�
anthigher than in the randomly 
hosen 
ir
uits. This result re
e
ts the advantage of
ollusion threat model.4.4 Evaluation of Time Window Atta
k and Com-binationIn this se
tion, we shall see the experiment result when we using time window atta
k,and also the 
ombination of these two atta
k methods. As what we have done in 4.2,we use Alexa Ranking and 
hoose top 20 sites to implement the experiments.In the experiment, we 
hoose top n = 5; 10; 15; 20 sites, and build �ngerprint ofthe site. Then we surfed webpages and re
orded the user a
tivity ve
tor, 
omparedwith the �ngerprint, and guessed whi
h website user is sur�ng by time window and
ombination methods. The su

ess rate represents in the Figure 4.5.From the Figure 4.5, we 
ould see that if we 
hoose the webpage whose �ngerprintshave the highest similarity s
ore, time window shows better results than the intervalmethod. And 
ombination of two methods performed best in this situation. Thereare some points we shall noti
e here: First, time window do not always outperformthe interval method, we 
ould see that from the graph. A
tually, both of them havetheir own suitable 
ases as we have dis
ussed earlier. Se
ond, the su

ess rate does not41
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Figure 4.5: Su

ess rate with Interval, Time Window and Combined methodsalways drop as the number of webpages in
reases. Consider in the 5 webpages 
ase,there are two pages are very 
lose to ea
h other. And when the number of webpagesin
reases to 10, maybe the new pages are all easy to be distinguished. Then the su

essrate would be in
reased in the total.4.5 Evaluation of Pity HitWe have seen in Se
tion 3.7, pity hit is useful when we want to implement an atta
ksystem with both 
onvenien
e and high su

ess rate. In this se
tion, let us see theresults when employing the pity hit into the experiment above.We 
ould see that by loosing the restri
tion - treat the situation that if the similaritys
ore of 
orre
t answer falls in the highest 3 
andidates, we see that is a su

essfulatta
k, the su

ess rate of all 3 methods are in
reased. But this time, time windowbe
omes the weakest atta
k, then the 
ombination. The interval method is mosteÆ
ient method this time.The reason of 
ausing this problem is the result of interval method is far morerobust than the time window method. Typi
ally, there are two types of irregularevents in the network transfer whi
h may a�e
t the analysis of traÆ
 patterns. Oneis retransmission 
aused by pa
ket losses, integrity 
he
king error and other reasons.42
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ess rate with pity hitThen the TCP proto
ol would automati
ally require retransmission to ensure theintegrity of the system. The 
onsequen
e of that do not a�e
t interval ve
tor greatly,a retransmission will typi
ally in
rease v1 simply. And generally, v1 is more than 50,or even bigger. So the similarity s
ore will not be a�e
ted greatly unless the networkenvironment is extremely bad.Another event is time lag, that is also 
ommon irregular event in the network.Normally, a round-trip time of a pa
ket is between several millise
onds to severalhundred millise
onds. Sometimes, due to the fault in the network, pa
kets wouldarrive after several se
onds or even lost in the network. That will not a�e
t intervalmethod, but 
ould 
omplete destroy the s
ore 
al
ulated by time window method.Image that we have a traÆ
 pattern whi
h last 20 se
onds, with 4 splits, ea
h timelength will be 5 se
onds. And if there is a lag inserted in it whi
h lasts for 10 se
onds,ea
h time length will be 7.5 se
onds and 
hange the pa
ket numbers in ea
h timewindow greatly. Espe
ially for we have to 
al
ulate 
orrelation 
oeÆ
ient of two timewindow ve
tors.A

ording to these two reasons, we 
ould know the reason why interval method out-performs time window method when we employing pity hit. But that not means timewindow method is valueless. A
tually, time window method provides far better reso-lution in re
ognizing di�erent webpages. Consider general 
ases, we still re
ommend43



Chapter 4 Experiments and Evaluationthe usage of 
ombined methods. It 
ould provide a trade-o� between two methodsand sometimes have a greater su

ess rate.
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Chapter 5 CountermeasuresIn this se
tion, we will �rst dis
uss some general 
ountermeasures to our atta
k andsome 
ountermeasures whi
h are believed to be e�e
tive toward �ngerprinting atta
k.Then, we will dis
uss the dummy pa
ket method in detail.5.1 General Dis
ussion about CountermeasuresChange the Fixed Cell Size It is believed a longer Tor 
ell size will make itharder to atta
k, e.g. In
rease the Tor's 
ell size from 512 bytes to 1024 bytes. Butunfortunately, in our atta
k s
heme, it will have little impa
t. Tor's �xed 
ell sizegives the system some advantage in traÆ
 analysis theoreti
ally. But the proto
ol ituses is still built on TCP. So no matter what the 
ell size is, it 
ould still be wrappedby TCP pa
ket and be divided into 1500 bytes a pa
ket in Ethernet. If there exists as
heme to analysis Tor's 
ell from TCP pa
kets, this defense method 
ould have someresults, but not in our proposal.Make Odd Requests Odd requests refer to some sur�ng a
tions whi
h is unusual.For example, a user always sur�ng several pages meanwhile, restri
ting the s
ripts orpi
tures downloading, et
. If there is a page with ve
tor ~V1 and another with ve
tor ~V2,then when we view these two pages at same time, the adversary 
ould get a ~V3 equals~V1 + ~V2, and ~V3 has no di�eren
e with the ve
tor ~V 03 whi
h has the same elementsas ~V3, although it may be observed from one single page. Other odd requests like therestri
tion on downloading some spe
i�
 �les. Like the 
ombination of two pages, it isalso diÆ
ult for an adversary to mat
h the 
hara
teristi
 from the �ngerprint ve
tor.Although this kind of defensive method seems to be so e�e
tive against �ngerprintingatta
k, it depends on the user's a
tion. But we 
annot make the system's se
uritydepends how users use this system. It is dangerous to assume the users have theknowledge in se
urity and will work in a se
ure way. Moreover, it is not hard todevelop some kind of explorer plug-in to a
hieve this obje
tive. Like TorButton, ifwe a
tivate this plug-in, it will randomly disable some kinds of �les in the 
urrentwebpage, maybe forbid running s
ript or download pi
tures. It will help us in theanonymity, but we do not think users would really a

ept some plug-ins like this.45



Chapter 5 CountermeasuresRun Own Entry Node Entry nodes are also 
alled "guard nodes". And peoplebelieved that they 
ould guard your traÆ
 from mali
ious nodes. First, it is not souseful to run a node by oneself when the adversary o

upies the entry router, espe
iallythe time when they are allo
ated in the same Ethernet. Se
ond, to run an own entrynode and a
hieve the requirement of anonymity is very 
ostly. That means, to make anadversary unable to distinguish the 
ows from a user. The own node may a

ept many
onne
tions from other users, whi
h may hurt the usability of 
ompany's network anduna

eptable. But running a node with only permitted user also makes this nodemeaningless. How to make the balan
e 
ould be a question to network administrators.Dummy Pa
kets Defensive Dropping is a defensive method against timing atta
ksintrodu
ed by Levine et al. [14℄. It employs the me
hanism of dummy pa
kets. The
ommuni
ation initiator 
onstru
ts some of the dummy pa
kets. These dummy pa
ketsare transferred on the path as normal pa
kets. But to ea
h pa
ket, there is a probabilityPdrop to be dropped in ea
h node rather than passing it on to the next node. If thenumber of dummy pa
kets is randomly pla
ed with a suÆ
iently large frequen
y, the
orrelation between every visiting will be greatly redu
ed. As we see in this theoreti
aldis
ussion part, the in
reasing in the false positive rate and false negative rate willgreatly re
e
ted in the situation where we need to re
ognize obje
t from a lot ofwebpages.In a more general form, we 
ould 
all the defensive dropping as a kind of dummypa
kets. A
tually, the proposed way in the defensive dropping is not eÆ
ient enoughagainst our atta
k. Sin
e the �ngerprinting is made of traÆ
 pattern between userand webpage, and the feature of webpage is 
riti
al for atta
ker to make the guess infuture. The webpage itself is hard to generate the dummy pa
kets (for it 
ould notdistinguish whether the 
ommuni
ation partner is using anonymity system or not), sothe defensive dropping is almost useless here.What's more, if there is a mali
ious node in the path, the node 
ould easily dropall the dummy pa
kets and redu
e the e�e
t of that defense me
hanism. There arelots of adjustable parameters in this defense me
hanism; we will dis
uss them in thefollowing se
tion.Although it is an e�e
tive way to defend against not only end-to-end atta
ks butalso �ngerprinting atta
k, we must noti
e that it is a really expensive defense me
ha-nism, espe
ially in low-laten
y anonymity system. If the number of the dummy pa
ketsis relatively small, then these dummy pa
kets are no more than normal ba
kgroundtraÆ
s. But with many dummy pa
kets, it is una

eptable for 
onsuming so manyresour
es. What's more, use more dummy pa
kets in sensitive 
onne
tion is also not46



Chapter 5 Countermeasuresa good idea for it gives the adversary a 
lear sign to noti
e the sensitive data transfer.So how to determine the suÆ
ient number of pa
kets will leave to be an open questionfor further resear
h.5.2 Dummy Pa
kets in Tor Anonymity SystemThe obje
t of introdu
ing dummy pa
kets into anonymity system is to \distort" thenormal traÆ
 pattern and make it indistinguishable. As we said before, there are alot of parameters 
ould dis
uss. In this se
tion, we shall dis
uss them one by one.The Type of Dummy Pa
kets Roughly, we 
ould distinguish the dummy pa
ketsinto peer-to-peer dummy pa
kets and end-to-end dummy pa
kets. End-to-end dummypa
kets are generated by initiator of a message. End-to-end pa
kets 
ould be eitheren
rypted or plain to the nodes in the path. Pa
kets generated in defensive drop-ping method 
ould be 
alled end-to-end dummy pa
kets without en
ryption, for everypa
ket have a probability Pdrop to be dropped in ea
h node. So every nodes should beable to aware the pa
ket itself is dummy or not. Or it 
ould be en
rypted as the data,after several de
ryption, it 
ould be disposed at the exit. And it 
ould also generatedby any node when send ba
k the message by en
rypting dummy pa
kets as the datapa
ket then it 
ould only be distinguished by the initiator.Peer-to-peer dummy pa
kets are generated by the nodes in the system. Theyare en
rypted by the symmetri
 key between nodes so they are only invisible to theoutsiders. All re
eived dummy pa
kets are disposed immediately, and new dummypa
kets are generated in the following 
ir
le. (Of 
ourse, keep the dummy pa
kets insome probability and send to the next node is a

eptable. But with di�erent algorithm,we 
ould a
hieve the same goal.)Both peer-to-peer and end-to-end dummy pa
kets have their own advantage anddisadvantage. To peer-to-peer dummy pa
kets, nodes in the path do not need extra
omputation but dire
tly dispose them and then generate the new dummy pa
kets.But if there is atta
ker in the node, he 
ould just dispose the dummy pa
kets from theprevious node and omit the dummy pa
kets when 
ommuni
ation with the next node.Things 
ould be even worse that the mali
ious node 
ould make some tri
ky dummypa
kets, we see that as a potential threat.To the end-to-end dummy pa
kets, it should be generated by every nodes andwrapped as the data for no node really knows the position of itself. And generateddummy pa
kets are en
rypted again and again when they are sent ba
k to the initiator.The message would be
ome longer and longer for dummy pa
kets are added by ea
h47



Chapter 5 Countermeasuresnode. Although the default path length in Tor is only 3, a
tually we 
ould in
reasethat to 5, 10, 20 or even longer. Finally, the system will be
ome unusable.The Generation Rule Dummy pa
kets 
ould be generated both by time and bypa
ket. They are distinguished by the rule of how to de
ide inserting a dummy pa
ket.By time means at any time point, there is some possibility to generate a dummy pa
ketand transfer it. And by pa
ket means after any pa
ket, there is some probability togenerate a dummy pa
ket and transfer it.Although we have just demonstrated these two ways, we also want to mention thatgenerate dummy pa
ket after every pa
kets with some probability is not safe. First,�nd some safe way to generate pa
kets itself after a given event itself is not so se
ure.When the atta
ker knows the rule, seems they 
ould be easily eliminated sin
e theyare not so \natural" traÆ
. We 
ould not make sure that generate them by time 
ouldbe the perfe
tly safe. But at least randomize in time is a better way to make someintentional �reworks after a shot.Someone may argue that if the system is not in use, the dummy pa
kets generatedby time 
ould be a waste. But �rst, well developed dummy pa
kets 
ould makeatta
kers even hard to distinguish whether system is now in use or not. And if he
ould not even know if the system is in use, he 
ould do nothing in the further atta
k.What is more, save bandwidth is not so meaningful when system is not in use. On
ontrary, when the system is busy, generate dummy pa
ket after every normal pa
ketswith some probability will give system more burden than the other method. So wethink do not 
onsider the normal traÆ
 but just generate dummy pa
kets with someprobability p all over the time.What we want to point out is: p 
ould be either 
onstant value or some formulas,but there is no eviden
e to tell us that when the atta
ker knows the rule, some methodis safer than other ones. So maybe the simplest way is the best. What we want is to�nd some pra
ti
al and reasonable defense me
hanism whi
h 
ould eÆ
iently de
reasethe su

ess rate of atta
kers, not to make the system perfe
t se
ure.Experiment and Parameters It is hard to 
onsider all the fa
tors in the dummypa
ket employing here, so we want to do some experiments and just illustrate theeÆ
ien
y of this idea. We will use data 
aptured from Tor to make the experiments.In the experiment, we will randomly sele
t one traÆ
 pattern. If there is no dummypa
ket in it, either interval or time window method 
ould have the answer of 1. Thenwe want to add some dummy pa
kets into this traÆ
 and 
al
ulate again with SIntervaland ST ime Window. Of 
ourse, the lower S, we have the better prote
tion.48



Chapter 5 CountermeasuresIn the experiments, we have dis
overed two parameters dire
tly lead to the eÆ-
ien
y of the defense me
hanism. The �rst one is number of dummy pa
kets generatedevery se
ond, or we 
ould 
all it density. It is very trivial that as this number in
reases,the prote
tion e�e
t will also in
rease. But with the traÆ
 emerging into the dummypa
kets, the marginal utility will also be
ome weaker and weaker. And no doubt higherdensity will in
rease the 
ost of the anonymity system, and then the usability will alsobe hurt.Another fa
tor is the 
overage ratio, here we de�ne it as for the whole traÆ
pattern, how many parts in it 
ould be inserted with dummy pa
kets. In
rease it willlead to higher 
ost and vi
e versa. But what makes this fa
tor really interesting isthat the higher 
overage ratio will not always lead to the better prote
tion.In our atta
k framework, we have dis
ussed mainly two 
al
ulation methods ofsimilarity s
ore, one is interval and another is time window. These two di�erentatta
k methods have di�erent sensitivity towards di�erent 
overage ratios. To theinterval method, if the 
overage ratio is low, that means many dummy pa
kets arefo
used in a short period of time. The result is the length of a few intervals will bein
reased. But sin
e we have limited the maximum element in an interval ve
tor, thea�e
ted number of intervals is small, that will not 
hange the result dramati
ally. Forexample, the 
hange with 
overage ratio whi
h is 0.1 may only 
ause v1 de
reased by2 and v5 in
reased by 2. And most of the intervals still remains the same. On the
ontrary, if the 
overage ratio is high, then more intervals' length are 
hanged so theinterval ve
tor will be transformed greatly, so the SInterval.Let us see how the 
overage ratio works in the time window method. When the
overage ratio is high, that means, almost in every time window, there would beapproximately the same (at least the estimation would be same) number of dummypa
kets. And due to the 
al
ulation of 
orrelation, if a series of numbers 
hanged inthe almost same amount of value, it then has really small e�e
t on the 
orrelation
oeÆ
ient. But when the 
overage ratio is low, the thing 
omes 
ompletely di�erent.We will see that in this 
ase, dummy pa
kets 
ow into one time window and if thenumber of pa
kets in that time window is fewest in the beginning, it may be
ome themost one in the end. The 
orrelation 
oeÆ
ient would 
hange dramati
ally, it evenmay turn into minus. And just as a result of average, low 
overage ratio is still quitegood in the time window method.We will treat the 
ost as the multipli
ation of these two fa
tors. That is:Average Cost = Number of Dummy Pa
kets per Se
ond � Coverage Ratio (5.1)49
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Figure 5.1: Average SInterval without wInterval when employing the dummy pa
ketsFor example, if we have a density of 15 dummy pa
kets per se
ond and a 
overageratio of 0.6. That means the average 
ost would be 9 dummy pa
kets per se
ond. Andassume all the dummy pa
kets are 1.5 KB, and then the additional 
ost for one Tor
onne
tion is around 13.5 KB/s.From the 5.1, we 
ould see that keep the average 
ost 
onstant, there is a tradeo�between density of dummy pa
kets and 
overage ratio. Interval method works wellunder the low density and high 
overage ratio, but time window method works ni
ewhen the density is high and 
overage ratio is low.What we have omitted is weight. For weightInterval, low 
overage ratio will in
reasethe weight a little and vi
e versa. For weightT ime Window, sin
e it is 
al
ulated by thenumber of total pa
kets, 
overage ratio has no e�e
t on it. The density will alwaysin
rease 
hange the weight. But for both the situation, weight would 
hange signif-i
antly and the multipli
ation 
ould e�e
tively low the similarity s
ore. We supposethat the when atta
ker knows the existen
e of dummy pa
ket, he will just omit theweight and make the 
al
ulation.Here we use a traÆ
 pattern 
aptured by Tor of the Yahoo's main page, and usingtwo di�erent similarity 
al
ulation methods without weight. The two parameters areadjusted to show us the e�e
t of dummy pa
kets under this 
ir
umstan
e. All theslots are 
al
ulated with 30 times of sampling and take the average value.From these tables, we 
ould see as the results are just run in tenden
y whi
h isexa
tly what we have dis
ussed above. The 
olor in Table 5.1 and 5.3 show us the safelevels of 
ombination with 
olor tone. We 
ould also refers to the Equation 5.1 andsee these 
ombinations: density 50, 
overage 0.1; density 25, 
overage 0.2; density 10,50
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Figure 5.2: Standard deviation of SInterval without wInterval when employing thedummy pa
kets

Figure 5.3: Average ST ime Window without wT ime Window when employing the dummypa
kets
51
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Figure 5.4: Standard deviation of ST ime Window without wT ime Window when employingthe dummy pa
ketsTable 5.1: Average and standard deviation of top mat
hing similarity s
ore with dif-ferent methods SInterval ST imeWindow SCombineAverage 0.931155 0.859238 0.829721StdDev 0.046082 0.139079 0.143015
overage 0.5; density 5, 
overage 1. The result in interval method and time windowmethod give us 
ompletely di�erent tenden
y. The results from interval method are0.987, 0.967, 0.923 and 0.889. Meanwhile, the results from time window method are0.626, 0.678, 0.841 and 0.984. The two tables about the standard deviations tell usthe result is basi
ally stable, espe
ially with the interval method.Sin
e two di�erent methods give us di�erent re
ommend 
ombinations, we have to�nd some other standard to set up a threshold. Also we 
ould observe that just bysimply in
reasing the number of dummy pa
kets per se
ond, the result be
omes betterand better. But that also make the system eventually unusable. To solve all of these,we have to �nd some good trade-o�.We have also made the statisti
 analysis about the atta
k evaluation in order toget the average similarity s
ore of the highest mat
hing 
ase. So we get the Table 5.1:From the table above, we 
ould see that for SInterval, make the s
ore less than 0.85is safe enough. But for ST imeWindow, due to the great variety, we re
ommend 0.7 as thesafe threshold. More dummy pa
kets 
ould sometimes in
rease the similarity s
ore,sin
e the whole traÆ
 is now emerged with dummy pa
kets and in this sense they are52



Chapter 5 Countermeasuressimilar, too. We still want to point out that these results do not 
onsider the weight,whi
h 
ould worsen results.With the table and dis
ussion above, we think 
overage around 50%, approximately20 dummy pa
kets per se
ond 
ould be re
ommended. And by the Equation 5.1, we
ould estimate the 
ost is approximately 15KB/s on average for a Tor 
onne
tion.
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Chapter 6 Con
lusionIn this paper, we have presented a novel �ngerprint atta
k against the most famousanonymity system - Tor. Our s
heme works by analyzing users' traÆ
 
ows in theanonymity system. We use out
ow pa
kets to divide a 
ow into several intervals,turn the traÆ
 
ow into ve
tor, and give a formula to 
al
ulate the similarity of twove
tors in this s
heme. We also give several extensions towards our atta
k plan. It
an be easily implemented by network administrators, governments, or ISPs. Theexperimental results showed our s
heme to be very e�e
tive. The user's anonymityis really degraded by this simple and pra
ti
al atta
k. Then, we have given both theextensions in the threat model and in the atta
k method itself. As we have dis
ussed,this e�e
tiveness still has a potential of being improved even more, but we have showedthe di�erent potentials of this atta
k.Meanwhile, we have given a theoreti
al reasonable estimation of the e�e
tiveness,showed the simple model of �ngerprinting atta
ks on anonymity systems. Also, thefollowing experiments have showed the improvement of extensions. We have dis
ussedthem in both theoreti
al and pra
ti
al ways to help readers have the 
on
eption ofe�e
tiveness of our plan.Finally, we dis
ussed several 
ountermeasures, espe
ially fo
us on the dummy pa
k-ets. Also, we have done some experiments on the dummy pa
kets me
hanism. Theresult showed the need for the use of dummy traÆ
 in the low-laten
y anonymity sys-tems. Sin
e there is no low-laten
y system employed dummy pa
kets now, it is 
riti
alto keep in mind that anonymity system is not as safe as people think. We strongly re
-ommend that when design new anonymity system, employment of the dummy pa
ketsshould be 
onsidered as an important defensive me
hanism.
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