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Dynamic Soil Reactions (Impedance Functions) Including The
Effect of Dynamic Response of Surface Stratum (Part 2)
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(Continued from No. 9)
3. SOIL REACTION IN TORSION

The next axisymmetric case that is treated under the
assumptions adopted is indicated in Fig. 4. It is assumed that
all soil particles vibrate in the tangential direction of the
cylinder and the motion is independent of 4.

Since both the vertical and radial componets of the

motion vanish, = =0, and v is independent of ¢, the
equation of motion becomes

(G+G ->[ar{l B(rv) D] ”atz

In a manner similar to the vemcal case previously discussed,

(16)

by expressing y as

v=RG)-Y sin(hn-z), n=1,3,5 -  (7)

Eq. (16) becomes an ordinary differential equation in terms
of R

r* d’R, r dR _ 2
Ra TR ar (Bnr) =1 (18)
where
_x [A+i2D)n*—(w/w,)*
bn=38 (+2D) (19)
The general solution to Eq. (18) is given by
RzAn'Kl(ﬂnr)+Bn'Il(ﬁnr) (20)

As the function [, grows with r, B,=0. Thus, the displace-
ment and the circumferential shear stress take the following
forms:

v =3 An K (Bar) sin(hn 2) (21

ra=(0+¢'55) (5:-)

= —G(1+12D)§1An[ﬁ nKo (ﬂnr)

*Dept of Building and Civil Engineering, Institute of In-
dustrial Science, University of Tokyo.
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Bed Rock
Fig. 4 Notation and Torsional Displacement of Cylinder

+%K1 (ﬁ,.r)]-sin(h,.z) 22

The moment around the cylinder axis is 2r6lr=a-a. Inte-
grating this moment around the circumference of the
cylinder yields the local torsional soil reaction as in the case
of vertical vibration: T(2)= —j:xr,ol yeg-a-a-dl

—2:Ga* (1+i2D)%, A fako (Ba) +

+L g, (#00)] - sinCy - 2) (23)

Let the dynamic displacement of the cylinder be express-

ed in a form similar to the previous case:
= _ 86, &
:%.90=7r—2° 3 an (24

By equating v,=qcalculated by Eq. (21) and the quantity a.8
in which @is dettrmined from Eq. (24), the constant A is
obtained. Thus, the local torsional soil reaction can be
expressed as follows:

2n N
T(z)=@(1+z‘zo)2 Nn " Qn (25)
where
— . .Ku(éna)
7m=2.0+8na K, (fna)

As in the vertical case, the local dynamic stiffness can be
expressed in the form: :

Ko(2)=—L2) T(z)
-6,

=2rGa®* (1+42D)Ks(z) (26)

H
in which
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K5(2)=$7]n'an/z:l:a” (27)

Figure 5 shows the vertical distribution of K3(2) normaliz-
ed by the static value at z=H. The variation shown in Fig. 5
is very similar to that of ﬂle vertical case, although the
increase and the decrease near the free surface and the
bottom is not so big as in the case of vertical reaction. Thus,
the dynamic stiffness can be defined as follows:

By _ L
Ko 5 =p T(z)dz
which yields the expression of K as follows:
Ko=84G2" (14 20)2 T 1) (28)

The above expression for the dynamlc stiffness to a unit

with frequency is relatively smooth and more or less
resembles the plane strain solution over the whole frequency
range. Particularly, as the thickness of the surface soil
stratum becomes larger, ie. a/H ‘becomes smaller, the solu-
tion by the present method tends to become more similar

result to the plane strain solution.

4, SOIL REACTION IN HORIZONTAL VIBRATION

In horizontal vibration, the vertical displacement w=0
(Fig. 7) and the equations of motion of the surface soil

stratum can be written as
ﬂ_ 'f.)[Lawz _M]: d'u
(42603 (G+Ga ;96 6z J Par

: 2
T

Dynamic Stiffness for Torsion
(Eq. (27))

. : . 8z or ot
harmonic torsional motion of a unit length of the cylinder (30)
can be rewritten as in which

Ko =Ga?[so: (w/wg, tan 8, vs/vpa/H) _1aGu) 1 00
tises (w/wg, tan 8, v./vy, a/H) (29 oo 8
where sg; and Sez are both real. The variations of the w,y = —g—z
dimensionless dynamic stiffness 1 and s¢: normalized by
their corresponding static' values are shown in Fig. 6. The
approximate solution by Novak et al. for plane strain case are z f
also shown in Fig. 6. V-H l U
. i 7 " ’VN ! J
Although the discrepancies between the two solutions in il H = i
—] - L
range below and above the fundamental hrizontal frequency " { J
wg are similar as observed in the vertical case, the variation -0 z |
Bed Rock
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Stiffness with Frequency and the a/H Ratio (Eq. (28)
or (29). Full Line for the Proposed Solution and
Dushed Line for the Approximate Solution by Novak
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we = 5

9z
oo L 3G9 1 ou
r or r a0
To solve the above equations, let the potential functions,
®1, 62, be defined as follows:

L0811 08,

6r r 00 @D
_1 9¢. _0¢,

r 96 ar

in which ¢, and ¢ are related to the longitudinal and shear
wave, respectively. With these potential functions, Eq. (30)
is decoupled as

@267, =02 (60 Z) Lo,

ot/ oz
5 (32)
Crige = [ oo (016 %) 3 2]""
in which .
9* 1 9 1 9¢
2 (3 _ — —
g a7 T y ar T 06*
Under the harmonic motion, one may put
¢1=Ri(r)-cos6-Y sin(hy-z)
; (33)

$2=R>(r)-sin 03 sin(hy-2)

The above expressions for ¢: and ¢esatisfy the boundary
conditions that the shear stresses vanish at the free surface
z=H and that the displacement is zero at the bed rock z=0.
As in the case of torsion, substitution of Eq. (33) into Eq.
(32) leads to two pairs of decoupled ordinary differential
equations that yield the general solutions as follows:

é1 ¥§ [AnK G n7)+Culi(rar)]-cos 0-sin(hnz)

b2 =§ [BuKi (Bn7)+Dnly(Bur)]sin@-sin(hnz)
(34)

where

rn=ﬁv—p “En, En=/(1+i2DIn*— (w/wg)* (35)

The expression of 4, is given by Eq. (19).

Since the stresses and the displacements should decay
with the horizontal distance r, the constants C, and D,
must be zero. With the potential functions defined by Eq.
(31), the displacements « and v can be obtained as

=a¢x 1 93¢,
ar r 06

=§:: I:—“An{TKx(rn'r)-#-n Ko (r,.'r)}

B,,% K (ﬂn-r):] -cos 0 *sin(hn2)

38: _36s
a0 ar

L

r

S 1

S Anki ) + Ba{ o KiCar)

v =

I

+8uKos (;9,,'7)}} -8in 8-sin(hn-z) J
The stresses are
19 1 v .9 )
m——l[r —w+— 2 ]+2(G+G )ar
=5 AnptiadKy Grar)
. 2 .
+2G(1+i 2D>A"{7K1<m)f’71<0 (rar)}
. 2
—26(1+i2D)B.{-5 K:(8 a7
+%Kq(ﬂnr)}:l'cosﬂ'sin(h,z)
, 0 1 Ju
””“<G+G a:)(ar -+ aa)
=3 [—Bnpfiwﬁlﬁ (Bar)
+2601+i2D)An{ K0 rar) + L2 Ko a2}

~26(1+i2)8.{ E ki (8.

+%K0(ﬂnr)}:{ -sin 0 -sin(hnz) J

37
By using the stresses o, and 7,6 in Eq. (37), the local
horizontal soil reaction to the motion of the cylinder is given
by
2r .
Fu(2)= —J‘ (6] y=q 'cOSO—7 18] r=a-sin 8)-a-df
0
=—% prats wilAnKi(raa)

+BuKi(8na)] sin(hq-2) (38)
To determine the constants A, and By, the dynamic displace-
ment of the cylinder may be assumed as

U,=z¥-cosb =8qu,
T _ n (39)

N
Ug=2z"7-sin 0=8sz

-sin @

where Ur and U, are the horizontal displacement of the
cylinder in 7 and @ direction, respectively, and ¥ is the
rocking angle amplitude. Equating Eq. (36) and Eq. (39) at
r=a yields the constants As and Bn.Then, the expression
for the local horizontal soil reaction becomes

TR T R R TR TR T R TR
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Fig. 8 Vertical Distribution of Local

Dynamic Stiffness for Horizontal
Vibration (Eq. 42))

Fu@= ZG;‘,"Z 720, eha (40)

[4K|(Tnd)K|(ﬂ n0)+ﬁ naKy (Tna)Ko(ﬂ n@)
+TndK1 (/9 nﬂ)Ko(Tna)]

(Ki\Gna)+raaKs(rna) LK, (Baa)

_+/?an0 (ﬂna)]_Kl (fnﬂ)Kl (/9 nﬂ)

where

2,=

The local dynamic stiffness can be now written as

Fu(z) _-Gn’a® .
Kula)= 220 = S K@) b
) Lz :
in which

The vertical distribution of K,(2) normalized by the static
value ‘at 2=F is shown in Fig. 8. The characteristics observed
in Fig.: 8:resemble those obtained for the previous cases.
Thus, the dynamic stiffness to a unit length of the cylinder is
defined by

£ g B R
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Fig.9 Variations of Horizontal Dimensionless Dynamic

Stiffness with Frequency and the a/H Ratio (Eq. (43)
or (44)). Full Line for the Proposed Solution and
Dushed Line for the Approximate Solution by Novak

The expression for the dynamic stiffness to a unit horizontal
displacement of a unit length of the cylinder can be written
as

Kuz (43)

iy edl-n™
Separating- the real and imaginary parts of Eq, (43) leads to
the followmg expression:

«=G [su(w /wg, tan 3 us/vp.a/H) . .

+isuz(w /g, tan 8, v, /v, a/H) 1 (44)
where Su and s4; are both real. Figure 9 shows the varia-
tions with frequency of S«1 and \Suz normalized by the
icorresponding static values for several values of the a/H.The
approximate solutions fbr the plane strain case are also
shown in Fig. 9. The primary effect of the depth of surface
soil stratum is seen in the abrupt changes of stiffness and
damping near the fundamental horizontal frequency @g: The
absence of the radiation damping below . is also noted. .

(Manuscript received, May 23, 1979)

(To Be Continued on No. 11)
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