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Dynamic Soil Reactions (Impedance Functions) Including The
Effect of Dynamic Response of Surface Stratum (Part 1)
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1. INTRODUCTION

Most of the foundations for machines, bridges, or
nuclear reactor containment structures are usually embedded
in soil. There are also many structures such as pipes and sub-
merged tunnels which are entirely buried underground. These
foundations and structures vary great deal in their propor-
tions. A foundation proposed for a long-span suspension
bridge has a height of 80 m, a cross-sectional area of 2800
m?, and an embedded depth of about 25m below the
ground surface. On the contrary, typical machine
foundation often have a height of 4 m and a plane area 20
m?, embedded at a depth of less than 1 m. These founda-
tions are frequently subjected to dynamic exitation due to
operating machine, wind or earthquakes. The dynamic
behavior of embedded foundations to such loads can be
predicted if the dynamic loadings and the dynamic reactions
of the soil acting to the foundations are known.

The use of the coefficient of subgrade reaction is one of
the conventional ways to describe the soil reactions.
Although this coefficient may be quite useful, it does not
represent the frequency dependency of the soil reactions
which arises from soil mass and energy dissipation through
elastic wave. Novak et al. [1] defined the soil reactions to
harmonic motion of an embedded cylinder in terms of linear
viscoelasticity limited to the case that can be viewed as plane
strain by extending the approach previously used by
Baranov. Such a situation arises, e.g., when a rigid cylinder
extending to infinity in an infinite medium undergoes
uniform displacements in the direction of its exis or
perpendicular to it. In the case of an infinite or a half-space
medium, the dynamic (Complex) soil reaction is almost

independent of frequency in the range of practically interest
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because the infinite or half-space medium does not have an
eigenvalue and dose not exhibit the resonance phenomenon.
By applying their complex soil reactions to rigid embedded
small footings or elastic piles, Novak et al. [2,3,4,5] showed
that the approach could give very reasonable results for the
case investigated. However, it may not always be resonable to
assume the plane strain condition for large foundations such
as nuclear reactor containment structures or long-span bridge
foundation structures. It seem also desirable to consider the
response of the surface soil stratum for large foundations
deeply embedded into the surface soil stratum.

This paper presents a relatively simple analytical
approach which defines the dynamic soil reactions (similar to
the so-called Winkler type model) by taking account of the
dynamic response of surface stratum. The effect of the
reponse of soil stratum is also assessed by comparing the
results of the present solutions with those obtained for plane
strain case. It should be noted that the following assumptions
are adopted in the whole of the following analysis. 1. The
soil stratum overlying a rigid bed rock is of a homogeneous
and isotropic linearly elastic medium with frequency
independent material damping of hysteretic type. 2. The
foundation is perfectly rigid and of cylindrical crosssectional
shape. 3. No separation is allowed between foundation and
soil. 4. The vibration is harmonic.

2. SOIL REACTION IN VERTICAL VIBRATION
When the cylinder undergoes an axisymmetrical motion
in the direction of its axis (Fig. 1), u=y=~0and the equations

of motion of the surface soil stratum expressed in cylindrical
coordinates reduce to (APPENDIX I)
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Fig. 1 Notation and Vertical Displacement of Cylinder

in which 1 and G are lame’s constants, G’ is the viscosity
modulus associated with G, and p is a mass density of the
surface soil stratum. The viscosity is introduced only in the
shear modulus G.

By expressing w for harmonic motion with frequency
as

w=R() Z(2) e (2)
Eq. (1) can be split into the following two ordinary

differential equations:

1 dR a2l R= 3
dr r dr k=0 (3)
d’z  (nzY ., 4)
"d7+<2H) z=0 (

where constant d» is given by the following equation

{vp/v)* +i2Dn* —(w/wy)’ (

w
~r

an= 2H a+i2D)
in which
M+ZG /G m}x
2D=tan 8 = G

The damping property of the surface soil is represented by 21y
or tand, Experiments have shown that the energy loss in soil

is a function of the strain induced in the soil, and unlike

viscous damping, it is to large extent independent of
frequency. The value of tan &is usually less than 0.05 at small

strain, and it may be as high as 0.3—0.5 for the larger strains

associated with high intensity seismic motion[6,7] .

The general solutions of Eqs. (3) and (4) are

R(f) :AnKo(dnr)+BnIo (d,.r)

Z(2)= C"S'"(ZH >+D" COS(ZH )

where K,(z) and [,{x)are the modiffied Bessel functions of
order m of the first and second kind with argument x,
respectively, and An, Bn C, and D, are integration
constants to be determined by boundary conditions.

(6)

The boundary conditions of the surface soil stratum

overlying a rigid bed rock as is shown in Fig. 1 are
(a) Zero normal and shear stresses on the free surface.
(b) Zero displacements at the bed rock.
(c) Zero stresses and zero displacements at infinite
horizontal distance.
Boundary condition (c) leads to B»=0. Conditions (a) and
(b) give D,=0and n=1,3,5, -

w in Eq. (2) can be written as

. Then, the displacement

w=iA.,Ko(d,.r)-sin(hnz) 7)

where As is a constant determined from the boundary
condition between cylinder and soil, constant » is evaluated
by Eq. (5), and hy=nz/2H)withn=135,....

it

For simplicity,
the term ¢*“* was omitted in Eq. (7).

The shear stress .. is given by

(4 5) 5

:—G(l-l-z'ZD)ZA.,'dn Ki(@nr) sin(hn2)
(8)

The local vertical soil reaction, F,(2), can be obtained by
integrating the above stress over the circumference of the
cylinder. Thus,

2r

Fw(z): ‘]- frzl r=ca *dl
0

=22Ga(1+i2D)Y, An-ctn K1 (a7 ) sin(haz)
n
(9>
Since the displacement in the surface stratum is express-
ed in terms of Sine seriés and the perfect bond is assumed
between the cylinder and the soil, the dynamic displacement

of the cylinder may be assumed in the following form:

8W, &
W)=t Wo= =3 L an (10)

in which
n-1
*( ) : 1 = vee
an="" 7 -sin(hnz), n=1,3,5,-N.

where W, is the dynamic vertical displacement amplitude at
the free surface z=H. Constant A» can be determined by
equating Eq. (7) to Eq. (10) at the circumference of the
cylinder 7=a. Thus, the local vertical soil reaction defined in

Eq. (9) is expressed in the form:

A7 N
Fw(z)=-16—im(l+i2D)Z5n‘an (11
where ‘
o, . .Kl(dna)
8 =dn'd Y (aa)

The local dynamic stiffness of the surface soil stratum to
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a unit vertical displacement may be defined as follows by
using Eqs. (10) and (11):
Fu(z) (Local Scil Reaction)

K'”(z)=i‘—— ~ (Local Vertical Displace. of
H "° Cylinder)
=2Gr(1+12D) - Ku(2) (12)
where
N N
K:v(z):zsn'an/zan (13)
n n

Figure 2 shows the vertical distribution of Kz(&) normal-
ized by the static value atz=H for the case, a/H=0.25,05/05
=0.33 and zero internal damping. From Fig. 2, it can be seen
that the vertical distribution of K.(z) is almost constant
except for the small parts near the free surface and the
bottom of the surface soil. The reason for the sharp increase
and decrease of local soil stiffness near the free surface and
the bottom may be due to the ignorance of horizontal dis-
placement of the surface soil and the assumption on dynamic
motion of cylinder that the vertical motion is zero at the
bottom z=0.

From these results, it may be resonable to define the
dynamic stiffness of the surface soil related to a unit of
length of the cylinder by the following equation by averaging
Eq. (12) over the depth:

o B OR 665

% & #
from which the following expression is obtained
n-1
N 1y 2z
k=¥Ca+izpys, S (14)

This expression for dynamic stiffness (Impedance Function)
to a unit harmonic vertical motion of a unit length of the
cylinder can be rewritten as

Ky =Glsur (w/wy, tand, vs/vy, a/H)

+ iz (w/wg, tan 8, vs /vy, a/H)] (15)
where both Sw and Sw2 are the dimensionless dynamic
stiffness with real number. Equation (14) or (15) indicates
that the dynamic soil reaction is a function of the excitation
frequency, the shear modulus, the material damping, the
Poisson’s ratio and the a/H ratio. It should be noted that the
soil reaction for plane strain case (APPENDIX 1) dose not
include the parameter, g/H, which characterizes the effect of
the ratio between the radius of the cylinder and the surface
soil depth on the dynamic response of the foundations.

The quantities Swr and Sw2 were normalized by their
corresponding static values. Their variations with frequency
and the a/H ratio are shown in Fig. 3 for the case of internal
damping, tan§=0.01. The real part of Ku, Su1,represents the
stiffness and the imaginary part of Ky,sw2,stands for damping
including both the material and the radiational damping. For

comparison, the dynamic stiffness for plane strain case (the
approximate solution by Novak et al. [3], APPENDIX II) is

also shown in Fig. 3.
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Fig. 2 Vertical Distriburtion of Local
Dynamic Stiffness for
Vertical Vibration (Eq. 13)

Fig. 3 Variations of Vertical Dimensionless Dynamic Stiffness with Frequency
and the a/H Ratio (Eq. (14) or (15)). Full line for the Proposed Solution
and Dushed line for the Approximate Solution by Novak
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There is a notable discrepancy between the plane strain
solution and the proposed solution especially in the range

below the fundamental vertical frequency of the surface

and Rocking Vibration of Embedded Footings”.
Canadian Geotechnical Journal, Vol. 9, 1972, pp. 477—
497

stratum, @ ,=7v,/(2H) , which is assumed to be 3.0 @ in 3) Novak, M., and Beredugo, Y. O., “Vertical Vibration of
the case shown in Fig. 3 becausewp=r0,/(2H) = (v,/v5 oy Embedded Footings”. Proc. of ASCE Vol. 98, No.
=(1/0.33)w;=3. 0wy, w,y is the fundamental horizontal 5M12, 1971, pp. 1291-1310
frequency of the surface stratum defined by 7y, /(2H). In 4) Novak, M., “Dynamic Stiffness and Damping of Piles”.
the range above the fundamental vertical frequency Su: Canadijan Geotechnical Journal, Vol. 11, 1974, pp. 574~
is of the same order as the value by the plane strain solution 598
and Swz is smaller than the value by plane strain solution. 5) Novak, M., and Aboul-Ella, F., “Impedance Functions of
The differences both in the region below and above the Piles in Layered Media”. Proc. of ASCE, Vol. 104, No.
fundamental vertical frequency wp are due to the dynamic EM6, 1978, pp. 643661
response of the surface soil stratum. Below wj, the stiffness 6) Hardin, B. O., and Drenvich, V. P., “Shear Modulus and
Sw1 strongly depends on the frequency, and the damping Damping in Soil, Measurement and Parameter Effects”.
Swz is very low. The damping in this range is mostly caused Proc. of ASCE, Vol. 98, No. SM6, 1972, pp. 603—624
by material damping and the radiation damping is absent. 7) Veletsos, A. S., and Verbic, B., “Vibration of Viscoelas-
Above wp, Swz rapidly increases linearly with frequency tic Foundations”. Earthquake Eng. and Struc.
while  Swi is almost constant because a horizontally Dynamics, Vol. 2, 1973, pp. 82—-102
progressive wave only appears above this frequency. 8) Kolsky, H., “Stress Waves in Solids”. Dover Publications,
Inc., 1963, pp. 106—112
Reference 9) Isoda, K., and Ohno, U., editor “Handbook for
Numerical Calculation by FORTRAN” (in Japanese).
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