
A Framework for Constructing Visualization, Animation, and

Direct Manipulation Interfaces

視 覚化 、アニ メー シ ョン 、直接 操作 イン ター フ ェー ス作 成

のため の枠組

by

Shin Takahashi

高橋 伸

A Dissertation

Submitted to

The Graduate School of the University of Tokyo

in Partial Fulfillment of the Requirements

for The Degree of Doctor of Science

in Information Science

November 2002

Abstract

This thesis describes a framework for developing kinds of non-WIMP-based user interface software,
designated as a bi-directional translation model1. Here, 'non-WIMP-based' interface means that it
cannot built only by combining WIMP widgets, such as buttons and menus. In particular, the targets
of this thesis are two types of GUI software. One is direct manipulation interfaces for figures and
diagrams that visually represent various abstract objects and relations in an application data, such
as direct manipulation interfaces for network and hierarchical data structures. They enable the user
to draw and modify diagrams to input abstract data into an application. Another is animations
of changing abstract objects and relations in an application data, such as animations of sorting
algorithms. They show their transitions visually, and are useful for understanding the behavior of
an application or an algorithm.

The bi-directional translation model models the general process of visualization, picture recog-
nition, and animation generation. It is originated in Kamada's general framework for visualizing
abstract objects and relations. We have extended it by integrating recognition of figures/diagrams
and animation of changing abstract objects and relations, which is one of the contributions in this
thesis. The key idea of the framework is that these functions are translations between different data
representations. The model introduced four data representations: AR (Application Data Represen-
tation), ASR (Abstract Structure Representation), VSR (Visual Structure Representation), and PR
(Pictorial Representation). In the model, visualization is a translation from AR to PR via ASR and
VSR. Recognition of figures is an inverse translation from PR to AR via VSR and ASR. The essen-
tial translation is that between ASR and VSR, because there is no a priori mapping between these
representations. ASR is the representation in our model that represents the structure of application
data, and it does not have explicit visual appearance information. On the other hand, the purpose
of VSR is to represent the high-level structures of pictures. The mapping between ASR and VSR
is the essential conversion between abstract data for an application and pictorial data for presenta-
tion. Nevertheless, the structure of ASR and that of VSR are usually similar. As users understand
the meaning of abstract application data via pictures, visualized pictures should represent abstract
application data, and thus they should have a similar structure. The programmer specifies these
translations by visual mapping rule sets, which are declarative rules that define mappings between
ASR data and VSR data. As both structures are similar, mapping rules are usually simple.

Animations are also handled in the framework extended naturally to the time dimension. In the
framework, animations are regarded as operations on PR that are translated from operations on AR
via operations on ASR and VSR. The translation among operations is executed maintaining con-
sistency with the mapping relations among the AR, ASR, VSR, and PR data. We have chosen an
interpolation-based method for implementation of the extended framework for animations. That is,
animations are generated by interpolating a sequence of pictures translated from the running appli-
cation's internal data. Rather than specifying animations (motions or transformations) directly, the

1
 WIMP stands for Windows, Icons, Menus and Pointing device.

3

4

programmer specifies transitional operations, i. e., the methods used for interpolating two pictures
before and after the invocation of an operation, with transition mapping rules. Therefore, anima-
tions are determined by two types of mapping rules: visual mapping rules and transition mapping

rules.
In addition, we describe the systems implemented based on the framework. TRIP2 is a system

that achieved the bi-directional translation between AR and PR. We applied TRIP2 to produce
several examples such as the Othello application. It is implemented on NextStep using Objective-C

and Prolog. To build direct manipulation interfaces using TRIP2, the programmer writes visual

and inverse visual mapping rules in Prolog. TRIP2a is a tool for constructing abstract animations
that depict the behavior of program executions. It is implemented by extending TRIP2 so that we
can use two functions together: bi-directional translation between abstract data and pictures, and

translations from abstract data into animations. The programmer can use the same visual mapping
rules of TRIP2 for TRIP2a. TRIP2a/3D is the successor of the TRIP2a system that specializes

in generating animations and can also handle three-dimensional representations and event-driven
animations, which is useful for animating parallel program executions. In order to be able to view

animations on various platforms, the animation viewers are separated from the translation module
in TRIP2a/3D. The programmer writes visual mapping rules for each animation in KLIC which are

compiled with translation modules to generate translators that output animation data from the log
data of the application's execution. Generated animation data can be viewed with viewers on various

platforms such as X-Window, MS-Windows, and Java. We describe various algorithm animations
and visualizations of program executions generated with these systems.

Supporting the debugging of visual mapping rules with our systems is difficult. As a step toward

solving this problem, we describe techniques for visualizing constraint systems in visual mapping

rule sets. One way is to show constraint systems as three-dimensional graphs. By looking at con-
straint graphs, the user can see the structure of constraint systems more directly than in their textual
form. Another way is to animate constrained graphical objects to show their degrees of freedom

in constraint systems by using cartoon techniques. These techniques are useful for understanding
and debugging constraint systems in visual mapping rules. Using these techniques, we developed a
browser for constraints in VSR of TRIP systems. It is implemented using Java and integrated with
the animation viewer of TRIP2a/3D.

Acknowledgments

I would like to thank Professor Akinori Yonezawa for his valuable advice, Dr. Tomihisa Kamada
for his useful suggestions, Professor Satoshi Matsuoka for recommendations regarding this research

and for a number of helpful comments, and Professor Etsuya Shibayama and his group for encour-

agement. I am also grateful to the members of the UI group, the TRIP group, especially Ken
Miyashita, Ken Nakayama, and Dr. Hiroshi Hosobe for discussions, and to the members of the

Yonezawa's group for their encouragement. I also greatly thank my thesis committee, Prof. To-
moyuki Nishita, Prof. Jiro Tanaka, Prof Jun'ichi Tsujii, Prof Masami Hagiya, and Assistant Prof.
Takeo Igarashi. Finally, I extend my sincere gratitude to my parents, my brother, and my best friends

for their great and constant encouragement.

5

Contents

1 INTRODUCTION　 15

1.1 Background　 15

1.2 Goals and Approach　 17

1.2.1 TRIP　 17

1.3 Objectives　 18

1.4 Overview of the Thesis　 21

2 Related Work　 23

2.1 Introduction　 23

2.2 Visualization　 23

2.2.1 Information Visualization　 23

2.2.2 Visual Programming Languages　 24

2.2.3 Performance Visualization　 25

2.2.4 Algorithm Animation　 25

2.2.5 Graph Drawing Systems　 26

2.3 Constraints　 27

2.3.1Constraint Solvers for GUI software　 27

2.3.2 Other Systems Using Constraints　 29

2.3.3 GUI Toolkits Using Constraints　 30

2.4 Recognizing Figures　 30

2.4.1 Spatial Parser Generators　 30

2.4.2 Systems that Parse Figures　 31

2.5 GUI Construction Tools　 31

2.5.1 Programming by Example and Programming by Demonstration Approaches　 31

2.5.2 Interface Builders　 32

3 The Bi-Directional Translation Model　 33

3.1 Overview of the Bi-Directional Translation Model　 33

3.2 Data Representations　 34

3.3 Various Functions in the Model　 36

3.4 Extended Model for Animation　 41

4 TRIP2　 45

4.1 Introduction　 45

4.2 The TRIP2 System　 45

4.2.1 System Overview　 45

4.2.2 The TRIP Module　 47

7

8 CONTENTS

4.2.3 The Interaction Module　 50

4.2.4 Implementation of the Inverse Translation　 52

4.3 Examples　 56

4.3.1 A Simple Graph Editor　 56

4.3.2 A Simple E-R Diagram Editor　 56

4.3.3 A Small Othello Game　 56

4.4 Related Work　 58

4.5 Conclusions and Future Work　 60

4.6 Classes in TRIP2　 62

5 TRIP2a-Constructing Algorithm Animations　 63

5.1 Introduction　 63

5.2 How to Construct an Animation-Insertion Sort Example　 64

5.3 Implementation of TRIP2a　 66

5.3.1 Implementation of Animations　 67

5.3.2 Specifying Transitional Operations　 68

5.3.3 Application Interface　 69

5.4 Examples　 70

5.4.1 Animations of Data Structures　 70

5.4.2 Sorting Algorithms　 74

5.4.3 The Tower of Hanoi　 78

5.4.4 Bin-Packing Problem　 78

5.4.5 Finding a Minimum Spanning Tree　 82

5.5 Incorporating Event-Driven Animations　 82

5.5.1 The Basic Model　 82

5.5.2 The Problem　 85

5.5.3 Approach　 87

5.5.4 Implementation　 88

5.5.5 An Example　 91

5.5.6 Summary　 91

5.6 Conclusions　 91

6 Visualizing and Browsing Constraints in Visualization Rules　 99

6.1 Introduction　 99

6.2 Browsing Three-Dimensional Constraint Graphs　 100

6.2.1 Basic Representation　 100

6.2.2 Changing Layout to Explore Constraint Graphs　 104

6.2.3 Implementation of 3D Constraint Graph Visualizer　 106

6.3 Animating Freedoms in a Constraint System　 109

6.3.1 Overview　 109

6.3.2 Implementation of the Freedom Viewer　 111

6.4 Related Work　 112

6.5 Concluding Remarks　 113

7 Conclusions　 115

CONTENTS 9

A Generating Visual Mapping Rules by Examples　 123

A.1 TRIP3　 123

A.1.1 Overview　 123

A.1.2 Rule Generation for Recursive Data Structures　 127

A.2 IMAGE　 128

A.2.1 Overview　 128

A.2.2 Interactive Rule Generation Example　 129

A.2.3 Miscellaneous Issues　 132

A.3 Summary　 133

B TRIP2a/3D　 135

B.1 How to Make an Animation　 135

B.2 How to Write a Visual Mapping Rule to Make an Animation　 136

B.2.1 Visual Mapping Rules　 136

B.2.2 The Naming of Objects　 137

B.3 ASR Data Representation　 138

B.3.1 Model　 139

B.3.2 Syntax　 139

B.3.3 An Example　 140

B.4 VSR Specification　 141

B.4.1 Graphical Objects　 141

B.4.2 Graphical Relations　 142

B.4.3 Transitional Operations　 144

B.4.4 An Example　 144

B.5 Examples　 144

B.5.1 N-Queen Problem　 144

B.5.2 The Tower of Hanoi　 145

B.5.3 N-Body Simulation　 145

B.5.4 Memory Management　 150

C Examples of Mapping Rules for TRIP2　 155

C.1 Small Graph Editor　 155

C.2 Othello Game Application　 155

C.3 Entity-Relationship Diagram Editor　 160

C.4 Family Tree　 161

D Examples of Mapping Rules for TRIP2a　 163

D.1 Data Structure Animation　 163

D.1.1 Graph Structure　 163

D.1.2 List Structure　 163

D.2 Sorting Algorithm Animations　 164

D.2.1 Bublesort　 164

D.2.2 Quicksort　 164

D.2.3 Mergesort　 166

D.2.4 Heapsort　 168

D.3 The Tower of Hanoi　 168

D.4 Bin Packing Animation　 169

D.5 Finding a Minimum Spanning Tree　 170

List of Figures

1.1 The visualization model of TRIP (from [67])　 19

3.1 The idea of direct manipulation interfaces　 33

3.2 A translation example in the bi-directional translation model　 37

3.3 An example of visual mapping rules　 38

3.4 Architecture of ER Diagram Editor Application　 40

3.5 The extended bi-directional translation model that represents the general architec-

ture of applications that generates animations of program execution　 42

3.6 Circular movement of a bar in a sorting animation　 43

4.1 The architecture of the TRIP2 system　 46

4.2 A kinship diagram　 48

4.3 Visual mapping rules example　 49

4.4 Generated VSR data　 50

4.5 The execution of mapping rule　 51

4.6 The generated picture　 51

4.7 Adding a new graphical object to a relation　 53

4.8 Creating a new graphical relation　 53

4.9 Inverse visual mapping rules example　 54

4.10 The execution of inverse mapping rules that translate a set of of VSR data (box,

label, and contain) into ASR data (item)　 55

4.11 A simple graph editor　 56

4.12 A simple E-R diagram editor　 57

4.13 TRIP2 othello　 59

4.14 The Delta TRIP system　 61

5.1 Annotated insertion sort program　 65

5.2 Log file of the insertion sort program　 65

5.3 A visual mapping rule for insertion sort animation　 66

5.4 A transition mapping rule for insertion sort animation　 66

5.5 Animation of an insertion sort algorithm　 66

5.6 Making an animation　 67

5.7 A cons-cell animation　 68

5.8 Slow-In-Slow-Out and Squash-and-Stretch　 69

5.9 Animation of a graph structure　 71

5.10 Allocation of a new cell　 72

5.11 Moving the substructure of a list　 73

5.12 Bubble sort animation　 75

11

12 LIST OF FIGURES

5.13 Quicksort animation　 76

5.14 Merge sort animation　 77

5.15 Heap sort animation　 79

5.16 The tower of Hanoi　 80

5.17 Bin-packing algorithm　 81

5.18 Minimum spanning tree algorithm (1)　 83

5.19 Minimum spanning tree algorithm (2)　 84

5.20 Sending a message　 85

5.21 The original & new models　 87

5.22 Architecture of TRIP2a/3D　 89

5.23 Screenshot of Java-TRIP2a/3D　 90

5.24 Screenshot of an animation that shows a search tree for the N-Queen problem　 92

5.25 The target parallel N-queen-solving program (1)　 93

5.26 The target parallel N-queen-solving program (2)　 94

5.27 An example of log data　 95

5.28 The ASR data for N-queen animation　 95

5.29 The visual mapping rule set for the N-queen animation　 96

6.1 The constraint graph corresponding to the VSR data in Figure 6.2　 101

6.2 VSR data for a tree　 102

6.3 The resulting picture corresponding to Figure 6.2　 102

6.4 A connect constraint (purple box)　 103

6.5 Nodes constrained by the clicked constraint are highlighted　 103

6.6 A constraint graph with regular structure　 104

6.7 A constraint graph of a tree in Figure 6.5 (without line constraints)　 105

6.8 A constraint graph-a relative constraint is set aside　 105

6.9 A constraint graph-a relative and two average. constraints are set aside　 105

6.10 A constraint graph-a relative and two parallel constraints are set aside　 106

6.11 A constraint graph of N-body animation　 107

6.12 A constraint graph-Edges are bound up　 107

6.13 Target picture-Two quad-trees　 108

6.14 An example of translating ASR into PR via VSR　 108

6.15 Pulling a node in a tree-Movable in this direction　 109

6.16 Pulling a node in a tree-Immovable in this direction　 110

6.17 Pulling a node in a tree-All nodes are well-constrained　 110

7.1 The architecture of the next system　 120

7.2 Visualization framework with XML-VL[54]　 121

A.1 Programming by visual example-a process of generating visual mapping rules　 124

A.2 TRIP3-picture editor　 125

A.3 TRIP3-confirrnation panel　 126

A.4 An instance of mapping relation extracted from an example (above) and the gener-

alized mapping relation (below)　 126

A.5 A template for generating mapping rules　 127

A.6 TRIP3-an example of tree drawing　 127

A.7 TRIP3-ASR example　 128

A.8 TRIP3-recursive mapping rule　 128

LIST OF FIGURES 13

A.9 Interaction between a programmer and IMAGE　 129

A.10 Screenshot of the IMAGE system　 131

A.11 IMAGE-screenshots of drawing editor in rule generation for "organization"　 132

A.12 IMAGE-organization diagram screenshot　 132

A.13 IMAGE-set diagram screenshot　 133

B.1 A mapping rule example　 136

B.2 3D tower of Hanoi　 137

B.3 Two ways of naming objects　 138

B.4 ASR data file　 139

B.5 VSR data example　 145

B.6 7 queen problem　 146

B.7 7 queen problem-distortion technique　 147

B.8 A visual mapping rule set for the seven queen problem solving animation　 148

B.9 The 3D tower of Hanoi animation　 149

B.10 Input ASR data list for N-body animation　 150

B.11 An example of visual mapping rules for 3D visualization: quad-tree (excerpt)　 151

B.12 An example of 3D visualization: quad-tree　 152

B.13 An example of 3D visualization: cache　 153

Chapter 1

INTRODUCTION

1.1 Background

There is a common saying that "a picture is worth a thousand words." Human beings have dis-

played various types of information visually since the Paleolithic age. Cave paintings at Lascaux
and Altamira indicate that humans have always drawn pictures, which serve as messages for com-
munication. During the medieval period, pictures were used to represent divine concepts, and were
not merely copies of real scenes. People often draw a rough sketch to represent their thinking, and
these sketches represent visual communications to themselves.

The importance of visual display is increasing in the computer age. Powerful computers and
high-speed networks are producing vast amounts of diverse information that is difficult and time-
consuming to retrieve and understand. Visualization is one technique that can be used to alleviate
this problem. With well-drawn graphs, such as scatter plots and line charts, users can more easily
understand statistical information. The results of large scientific computations cannot be fully un-
derstood without accompanying sophisticated visualization. UML1 diagrams are widely employed
to visualize complex structure of large software. Visualization is, therefore, an indispensable tech-
nique for modern computer systems.

Pictures are helpful not only for presenting information to the user, but are also useful for the
user to provide input to computers. Graphical user interfaces (GUIs) enable users to input informa-
tion visually. Computers show visual representations of various data to the user, who edits the visual
representations to change the corresponding data. Users actually feel as if visual representations are
the data, and think that they are handling the data directly. This is an instance of technique called
direct manipulation (DM)[109]. Shneiderman pointed out four principles of DM interfaces in [109]:

・ Continuous representation of the object of interest.

・ Physical actions or labeled button presses instead of complex syntax.

・ Rapid, incremental, reversible operations whose impact on the object of interest is immedi-

ately visible.

・ Layered or spiral approach to learning that permits usage with minimal knowledge.

The concept of direct manipulation is widely incorporated into current GUI software. In particular,

it is essential for the applications that handle visual information such as figures, diagrams, and

pictures.

1
 Unified Modeling Language. For details, see http://www.uml.org/

15

16 CHAPTER 1. INTRODUCTION

One of the goals of user interface research is to allow users to communicate with comput-
ers in diverse ways, including DM-style interfaces. Which method is better is determined by its

purpose. The user interface should be chosen so that it is appropriate for the information that it han-
dles. Most traditional communication between users and computers has been performed through

character-based methods. The user inputs commands with a keyboard, and the computer presents
its output in the form of text. This style of user interface is still dominant in most current UNIX sys-

tems. Expert users love such systems, and they are indeed useful for textual tasks, such as writing

documents and developing programs. However, such command-line interfaces are not suitable for
the communication of visual information. GUIs enhance visual interactions between users and com-

puters. Computers show information visually, and users see and react to these visual representations
with a keyboard and a pointing device. However, current GUIs are insufficient in some important

aspects. Although representation of data is visual with a GUI, users cannot freely input visual infor-
mation. Most current GUI systems are WIMP-based; that is, they consist of Window, Icon, Menu,

and Pointing device. In a WIMP-based GUI, basic user inputs are selection and clicking of menus,
icons, and buttons using a pointing device and input from a keyboard. They are limited in the sense

that users do not easily input visual data such as pictures, figures, and diagrams.

There are some visual applications. For example, drawing and painting software enable users

to create figures and pictures with a pointing device. Designers use CAD systems to design archi-
tecture, industrial products, electronic circuits, etc. In visual programming environments (VPEs),

programmers can construct programs visually and interactively. However, these systems have not
yet reached our goal of allowing users to communicate with computers in diverse ways. Drawing
editors cannot understand the pictures that users draw; that is, drawn pictures are treated as images
from which systems cannot extract meaning. CAD systems and VPEs recognize drawn figures,

which are used for input from users. In this sense, these systems are communicating with users via
visual representations of data. However, the syntax of the pictures that they can understand is rigid

and built in; it is difficult to provide software that can recognize and understand figures with user-
defined syntax. More flexible visual communication between computers and humans, and better

communication among humans with the assistance of computers, are desirable goals for computer-
human interaction. In addition, computers would be able to assist drawing work intelligently if they
could understand what the user is drawing.

Various tools have been developed to ease the burden of visualizing information. Scientific

visualization tools such as AVS [30] and Khoros [4] are widely used by physicists for visualiza-
tion of large numeric data, such as the results of fluid mechanics' simulations. Spreadsheet ap-

plications that can produce business graphics easily from a table are another widespread example.
Mathematica [129] and MATLAB [84, 35] are powerful environment that helps scientific calculation

and visualization of the result. However, they basically provide ready-made visualization libraries
for numeric data. Although it may be possible to customize them by changing various parameters,

it is difficult to implement user's own visualization methods. In addition, they are not designed to
handle relational and structural data.

The visualization of dynamic information is referred to as "animation." In particular, algorithm

animation, animations that depict the behavior of algorithms, is one highly active area of user in-

terface research. Sorting Out Sorting [6] is a well-known example that shows animations of various
sorting algorithms. A number of systems to support the development of algorithm animations have

been proposed, such as BALSA [15], Zeus [16], Tango [116], and Pavane [103]. However, these are
tools for making devised animations. It is still a difficult and tedious task to make animations for

personal purposes, such as verifying or debugging the behavior of programs.

1.2. GOALS AND APPROACH 17

1.2 Goals and Approach

To approach this ultimate goal, support software for constructing such user interfaces must be im-

proved. Libraries for graphical user interface (GUI) software allow their more rapid development
with less effort. Although current GUI libraries and tools are useful for the development of WIMP-
based interfaces, they are of no use for making more interactive parts of user interfaces. Most

programmers still write these from scratch using primitive library functions.
The objective of this study is to reduce the cost of developing GUI software. In particular, we

aim at two types of interfaces: One is direct manipulation of pictures, figures, and diagrams that
visually represent the structure of abstract data in an application. Another is animation of changing
abstract data in an application which shows transitions of abstract objects and relations visually.
They are not merely an aggregation of buttons and menus, and they cannot be developed only by
combining WIMP widgets provided by user interface toolkits such as Java Swing set [125] and
GTk+[98]. Many researchers in this area are addressing this problem, and a number of techniques
have been developed for this purpose, including Programming by Example (PBE) and Programming
by Demonstration (PBD). Garnet [91] and its successor, Amulet [14], are well-designed toolkits for
GUI construction. These systems incorporate a number of innovative techniques and ideas. How-
ever, they are insufficient, in that they do not support the development of user interface software that
can facilitate flexible and intelligent visual communication.

Our approach is, first, to create an integrated framework for visualization, recognition, and an-
imation. This framework decomposes the processes of visualization, recognition, and animation
into several sub-processes. We can implement visualization, recognition, and animation programs
by developing modules that achieve each sub-process. The merit of creating a framework is that it
avoids ad hoc construction of user interface software. We develop the integrated framework by ex-
tending Kamada's general framework for visualizing abstract objects and relations[65, 67], which is
the model of the TRIP system. TRIP realized general visualization of abstract objects and relations
based on its framework for general visualization. It regards the visualization process as the transla-
tion from application's data representations into pictorial representations. However, it handles only
visualizations of abstract application data. This thesis extends their framework to accommodate
recognition of drawn figures and animations that depict change of abstract application's data.

Second, we examine whether each functional module in the framework can be shared among
different instances of GUI software. Sharable modules can be built in advance and provided as a
library/tool for building GUI software. The essential part of the GUI software cannot be shared,
but we have made it possible to build with simple specifications. Third, based on this framework,
we have built tools that support the construction of GUI software. We have built several systems
(TRIP2, TRIP2a, TRIP2a/3D), and applied them to the construction of various applications. Using
these tools, users can construct GUI software by providing only declarative specifications. We
have also developed a tool for visualizing the structure of constraints in the specifications, which is
helpful to understanding and debugging the specifications.

1.2.1 TRIP

As described above, our integrated framework is originated in Kamada's general framework for
visualizing abstract objects and relations [65, 67]. We have extended it by integrating recognition
of figures/diagrams and animation of changing abstract objects and relations. This section briefly
describes Kamada's framework, and the prototype system TRIP developed based on the framework.

The objective of their work is to fill the gap between application and graphics systems that
is usually only a set of drawing instructions. There were few graphics tools that are helpful to

18 CHAPTER 1. INTRODUCTION

visualize complicated high-level abstract relations in an application into pictures that represent their

structures. TRIP and its framework intended to explore a general approach to the visualization of
abstract objects and relations, and help visualizing abstract application data.

The framework models the visualization process as the translation from textual languages into

pictures. A set of pictures can be viewed as a visual language, in the sense that picture elements
are arranged under certain layout rules. Thus, visualization is the translation from textual languages
into visual languages. When translating textual data into pictorial data, the programmer should

determine the layout of pictures so that viewers can easily understand the underlying structures. The

programmer needs to map a relational structure in textual data into a layout rules of picture elements.
We call this mapping as visual mapping. In the framework, application data are represented by

abstract objects and relations, which are mapped to graphical objects (such as boxes and circles)
and graphical relations (such as horizontal/vertical listings and line connections). The mapping is
specified not with procedures, but with declarative mapping rules. Thus, the programmer can easily

change the layout of pictures by changing declarative mapping rules.

TRIP (TRanslation Into Pictures) is a prototype system based on the visualization framework. It
is independent of both input textual languages and output visual languages and can handle various
visualization problems. The process of visualization proceeds as follows (Figure 1.1):

● First, an analyzer parses original textual representation data, and generates the relational
structure representation data. Analyzers depend on the textual representation, because it

needs syntax data of original textual representation for parsing them. Parser generators such

as YACC [77] can be used to help developing analyzers.

● Second, relational structure data are mapped to visual structure data. Abstract objects are
mapped to graphical objects, and abstract relations among them are mapped to graphical

relations among corresponding graphical objects. In TRIP, relational structure and visual
structure are represented in Prolog. Abstract relations and objects are represented by Prolog

predicates. Graphical relations and objects are special predicates that are defined in COOL
―a picture layout module in TRIP.

● Finally, actual layout of graphical objects are computed by solving graphical constraints and
a picture is generated. They basically handles diagrams structured by horizontal/vertical list-

ings and explicit line connections. They developed COOL (COnstraint Object Layout system)
to layout picture elements. It solves constraints and outputs pictures. It can handle over-

constrained equation systems by using least squares method. It also has general undirected

graph drawing module, which is useful for visualize network diagrams. The graph layout
module uses the spring-model algorithm [66].

Using TRIP, they generated various diagrams from abstract textual data. For example, they gener-

ated kinship diagrams from English sentences that states kinship relations, list diagrams that show

cons-cells from S-expressions, and E-R diagrams from ER schema. In addition, they have shown

that the programmer can generate various types of tree diagrams from the same tree data only by

changing the mapping rules.

1.3 Objectives

The objectives of this thesis are as follows:

1.3. OBJECTIVES 19

Figure 1.1: The visualization model of TRIP (from [67]).

20 CHAPTER 1. INTRODUCTION

An Integrated Framework

The first objective of this study was the development of a general framework for constructing vi-

sualization, direct manipulation, and animation interfaces. This framework describes the structure
of these user interfaces, and supports the development of toolkits for building direct manipulation

and animation interfaces. According to this framework, these interfaces consist of modules that

translate four types of data representations, i. e., application data representations, two intermediate
data representations, and pictorial representations, into the other types of representation. Thus, the

development of these user interfaces allows implementation of translators among four data repre-
sentations. Essential translators are those between two intermediate representations. These must

be created by the user for each target application, but they can be built by writing only declarative
mapping rules that specify the translations. Other translators are common among different targets,

so they can be built as a library and provided for the user.
The basis of this framework is the model of the TRIP system [67], which handles the visualiza-

tion of abstract data, and is regarded as a translation from abstract data into pictures. Our framework
extends this to handle the recognition of pictures and animations, which are also regarded as trans-

lations between data representations in the framework.

Tools implemented based on the framework

The second objective of this study was the implementation of three tools based on the above frame-

work. One is the TRIP2 system, a tool that can visualize abstract data as a figure, and can also
recognize modifications performed on the visualized figure. This function can be regarded as a

kind of direct manipulation of abstract data, which is achieved by bi-directional translation between
abstract data and figures specified by a set of visual mapping rules and a set of inverse visual map-

ping rules. The other two tools are the TRIP2a and TRIP2a/3D systems for making animations
that represent the execution of the programs. In our framework, animations are also achieved by
translations generated by translating a series of changing abstract data into a corresponding series

of changing pictures. Therefore, animations can also be specified with declarative rules, i.e., a set
of visual mapping rules and a set of transition mapping rules. TRIP2a was developed by extending

TRIP2, and it is integrated with the TRIP2 system. Therefore, both direct manipulation of abstract
data and animation of changing abstract data can be utilized to develop interactive applications that

show algorithm animations. TRIP2a/3D is another algorithm animation system, which is a re- de-
veloped system for animating the execution of programs. This system has been extended to handle

three-dimensional animations and a type of event-driven asynchronous animation.

With these tools, we can create applications that have a kind of direct manipulation user interface
and animations by providing only declarative mapping rules. These tools can reduce the cost of

implementing interactive user interfaces.

Methods for Visualizing Constraints

The third objective of this study was the development of a new method for visualizing constraints

in the visual mapping rules. Although this method was developed mainly for debugging visual

mapping rules that specify the translations among four data representations, it can be applied for
visualization of general constraints. We have developed a visualization system using this method.

This system visualizes constraints in two ways. The first is to visualize them as a three-dimensional

graph structure, with nodes in the graph as constraints and constrained variables. Edges connect a
constraint and the variables by which it is constrained. By showing a constraint system as a graph

structure, the viewer can grasp the overall structure of the constraint system. It is also possible to

1.4. OVERVIEW OF THE THESIS 21

unfocus some constraint nodes in the graph so that its structure becomes simple. It helps the user to
browse the constraint graph. The other uses our new method, which animates the degree of freedom

in the under-constrained system. This method displays the target figure itself, and tries to 'move'
each graphical object in the figure, which may have various constraints. If the object is sufficiently

constrained, the system will not be able to move it, while if it is not constrained and has some

degrees of freedom, the system will be able to move it. Therefore, when there are some degrees of
freedom, the system shows an animation in which objects are moving in some way. Otherwise, the

system shows an animation indicating that the object cannot move. This animation can help users
to readily recognize any lack of constraints.

1.4 Overview of the Thesis

In this thesis, the framework for visualization, recognition, and animation is first presented. Second,

several systems based on the framework are described, and the framework is verified based on

knowledge acquired through construction of the above systems.

Chapter 2 surveys various work in related research areas; i.e., visualization, user interface toolk-

its, algorithm animation, and constraints. Chapter 3 describes the basic and extended frameworks.

The basic framework handles the visualization of abstract data and recognition of visualized fig-

ures, and the extended framework handles animations. Chapter 4 describes TRIP2, an environment

for building direct manipulation interfaces of abstract data. By providing only a set of visual and

inverse visual mapping rules, the user can visualize abstract data, modify the visualized figure, and

reflect the modified figure to abstract data. Chapter 5 presents TRIP2a, a system for animating the

changing internal data during the execution of programs. The user can create animations by spec-

ifying a set of visual mapping rules and transition mapping rules. Various examples of animations

created with TRIP2a are presented in this chapter. Chapter 5 also describes an extension of TRIP2a

that is capable of handling asynchronous motion in animations. This was achieved by slightly mod-

ifying the framework to accommodate start and stop events of motion. In addition, as an appendix,

we describe TRIP2a/3D; i.e., a tool for making three-dimensional algorithm animations. Several

sample animations generated with TRIP2a/3D are also presented. Chapter 6 describes a new visu-

alization method and the tool for visualizing constraints in the VSR generated by visual mapping.

This is useful for debugging visual mapping rules used to generate the VSR from ASR data. Finally,

Chapter 7 summarizes this thesis and its conclusions, and proposes some directions for future work

in this field. The appendix also introduces the TRIP3 system and the IMAGE system; i.e., work

on the interactive generation of visual mapping rules for TRIP systems, described here because it is

closely related to the work discussed in this thesis.

Chapter 2

Related Work

2.1 Introduction

This chapter describes research into support software for building graphical user interfaces, espe-

cially GUIs that cannot be built only by composing WIMP widgets, and is organized into four

sections: visualization, constraints, recognizing pictures, and GUI toolkits.

In the Visualization section, various areas of visualization software are summarized. The main

concerns are first how to effectively present various types of information to the user, and second how

to reduce the cost of implementing such visualization. This section includes sub-sections on, for

example, information visualization, performance visualization, and algorithm animation. Graph-

drawing systems are also described in this section.

Constraints are among the most important techniques in GUI software. The Constraints section

describes user interface software systems using constraints, and constraint solvers for GUI software.

The Recognizing Figures section summarizes spatial parser generators and systems using spatial

parsing, i.e., modules that parse drawn figures according to the specified syntax of two or three-
dimensional figures. Although the range of figures that they can handle is limited, spatial parsers

are useful for implementing applications that accept drawn figures as their input.

The section on GUI Construction Tools summarizes research on software and techniques that

help in the development of various types of graphical user interface software. The main topics are

Programming by Example-based systems and interface builders.

2.2 Visualization

2.2.1 Information Visualization

Information visualization is a research area that studies how various types of information can be

presented effectively to the user. It facilitates the navigation of large information spaces and extrac-
tion of hidden structure and meaning. One of the most important issues in this area is scalability,

that is, how to handle large amounts of information.

One approach to address this issue is to use three-dimensional representation. By using three-
dimensional display, one more dimension can be exploited to devise the representation. For exam-

ple, in the 3D/Rooms of Information Visualizer [19], the user can visit a number of rooms in which
various types of three-dimensional figures are floating. For example, the Cone Tree [102] is a three-
dimensional tree that represents hierarchical information. The user can click the node in the tree

so that the tree is rotated and the clicked node is moved to the front. These rotations are animated

23

24 CHAPTER 2. RELATED WORK

smoothly to prevent the user from losing track of the node. Subtrees can be displayed as translucent

cones to hide unimportant nodes. The Perspective Wall is another figure in 3D/Rooms, which shows

calendar-like information on a curved wall. The center of the wall is placed near the user, so it is

magnified in the display, and the two sides are presented diagonally to the user, so areas closer to

the ends of the wall are displayed as smaller on the screen.

Another approach to this issue is zooming. In zooming interfaces, everything is placed on one

large plane, and the displayed view is a magnified, focused, area of the plane. The user navigates
through the plane by zooming in/out with a moving focus point. The distortion and fisheye view

techniques are similar to zooming. The basic idea of these techniques is that everything should
be displayed on the screen, the focus point should be magnified, and other areas should appear

diminished in size. As the focus point is always surrounded by the diminished area that serves as
its context, the user can easily find and move to the target point in the search space. The most well

known research into the use of the fisheye-view technique is the work of Furnas [43], who visualized
hierarchical data structures using this method. Koike [71] presented a fractal view technique that can

control objects to be displayed in average. Continuous zoom [7] is another zooming algorithm that
handles a rectangular 2-D display space.

Another issue of information visualization is how to support design tasks for visualization. Vi-

sual design of effective information presentations is not easy for most users, and a great deal of
work is required to support these tasks. For example, Mackinlay developed APT [79], which can

automatically design effective graphical presentations such as bar charts and scatter plots of rela-
tional information. In this work, he codified the graphical presentation technique and developed

composition algebra that can form complex presentations from that technique. SAGE [104] systems
are tools that interactively support graphical design. SAGE can be used for designing according to

partial user specifications that serve as design directives. It is also possible to draw and combine
graphical elements interactively, and to browse and retrieve previously created pictures for use as
design examples.

It is also important to enable users to interact with visualized information. Dynamic query
interfaces [2] enable the user to control the range of information displayed with various tools. One

such tool is a range slider that can specify the range of values easily, which is useful for filtering the
information to be displayed. The results of making changes to the tools are instantly fed back to the

display so that the user can easily access the desired information.

2.2.2 Visual Programming Languages

Most visual programming languages have a non-textual visual representation of programs; i.e.,

the programmer can draw programs in visual form. For example, Prograph [29] is a commercial
dataflow-driven visual programming language. Its program is a diagram that consists of icons that

correspond to operations and links that connect icons. CafePie [96] is a visual programming sys-
tem for CafeOBJ [34]. It visualizes the program and its execution with animations. The user can

customize its view interactively.

The merit of visual programming languages is that they can depict the overall structure of pro-

grams naturally. The relations among program modules become easier to understand, in the same

way as CASE tools. However, they are not always suitable for programming small details because

they require such a large space for drawing programs and it is often more tedious to draw programs

with a mouse than it is to write using a keyboard.

2.2. VISUALIZATION 25

2.2.3 Performance Visualization

Performance visualization aims to provide performance data regarding program execution in various

ways. The user examines the visualized information for debugging and performance tuning.

Performance visualization is particularly important when using parallel programs, the behavior

of which is difficult to understand. ParaGraph [78] is a system for performance visualization that
handles parallel programs in a message-passing multi-computer architecture. ParaGraph visualizes

trace data monitored during actual program execution. Program executions can be replayed picto-
rially based on trace data. In addition, various aspects of performance data can be extracted from

trace data and visualized appropriately. Pablo [100] is a similar performance visualization system
for massively parallel architecture, which has been extended to SvPablo [33]. Paradyn [86] is also

a performance visualization system for parallel and distributed systems; it can identify possible

performance bottlenecks in program execution.

2.2.4 Algorithm Animation

Algorithm animations are animations that depict the behavior of algorithms. The main purpose of

algorithm animation is education. A previous study has shown that algorithm animations are useful
for learning algorithms [118].

Sorting out sorting is one of the most impressive algorithm animations, which first explains the
usefulness of algorithm animations. It animates several sorting algorithms simultaneously, which

greatly assists the user to compare the behavior of each algorithm. The process of sorting is animated
as moving points that correspond to the elements being sorted. The y-coordinate corresponds to the

value of the element, and the x-coordinate corresponds to the position of the element. The points
are finally placed in a line. The changes in the distribution of points indicate the characteristics of
the sorting algorithm.

Most subsequent algorithm animation systems are environments to facilitate the creation of al-

gorithm animations. The best-known systems in the early days were BALSA and BALSA-II [15].
These systems have been applied to many algorithms, such as sorting algorithms, bin-packing al-

gorithms, and many types of graph algorithms, and they have been widely used by students and
researchers. The concept of interesting events, which inform the animation system that an "inter-

esting" operation has been executed, was introduced by the BALSA system. Zeus [16, 17] is the

successor of BALSA II, which is implemented on Modula- 3. However, neither BALSA-II nor
Zeus directly supports the creation of the graphics parts of animations in a declarative way.

TANGO [115, 116, 114] is based on a Path-Transition paradigm. In this model, there are four

data types: location, image, path, and transition. An animation consists of transitions comprised of

pairs of images and paths. An image is an object drawn on a screen, and a path describes a series
of locations. TANGO also uses interesting events for calling these animations. The path can be

generated by the user's demonstration using the Dance system [117]. However, we believe that it
is more laborious to specify complex animations involving compound data structures with TANGO

than it is with our system. Polka [61] is the successor of TANGO; it allows the creation of 3D
animations of concurrent programs.

Pavane [28, 103] is a declarative animation system. This system visualizes programs written in
the Swarm language, which is based on the state-transition model. Animation is specified by declar-

ative mapping from State space, which is a set of tuples that represent the data of the program to

be visualized, to Animation space, which contains graphical objects with time-dependent attributes.
The difference between this and our model is that our method of specifying an animation is more

abstract, and is thus more concise. For example, using our system, the programmer can specify

26 CHAPTER 2. RELATED WORK

the motions of objects, including animation effects, by simple transitional operations. In addition,

the layout of a picture can easily be specified using graphical constraints in our system, which also
makes it easy to specify an animation.

Animus [36] uses temporal constraints for creating animations. These are specified in the same
manner as with ThingLab [11] and ThingLabII [80]. In Animus, the appearance and structure of a

picture, as well as how pictures evolve over time, are described by constraints. Dynamic mechani-
cal and electrical circuit simulations, problems in operating systems, and geometric curve-drawing
algorithms have been animated using Animus[36].

Pictorial Janus [63, 64] is a visual representation of Janus, a general-purpose concurrent con-

straint programming language. It is complete, which means that pictures are programs and represent
screenshots of computation, and it completely corresponds to the text version of Janus. In addition,

the execution of programs (pictures) can be animated.
Bentley and Kernighan developed ANIM [9, 10], which aims to allow easy creation of ani-

mations. In this system, an animation is made from a script file, which is output from a target
application program that contains commands for drawing an image, such as box and line.

Some systems incorporate the techniques of cartoon animation [76]. The user interface of
Self [20] utilizes such techniques for the movement of windows, and Artkit [108] provides animation

abstraction, which also supports cartooning techniques.

2.2.5 Graph Drawing Systems

Graph-drawing produces a nice layout of a given graph G= (V. E) (where V is a set of vertices
and E is a set of edges). The problem is formalized as positioning vertices p∈V by determining

the mapping φ:V→R2(or R3). Edges are straight lines among the positioned vertices. However,

when applying them to real applications, vertices may have size and occupy some area, and edges

may bend or curve.

Graph-drawing algorithms can be classified by the types of their target graphs,which have differ-
ent criteria for appropriate layout. For trees, a number of algorithms to minimize the area required to

draw a tree have been proposed. Algorithms for planer graphs draw figures without edge-crossing.
Directed graphs are drawn so that the edges are oriented in one direction. Graph-drawing algorithms
are summarized in the annotated bibliography of Tammasia [8].

General graph drawing is much more difficult than specific graph drawing because no assump-

tions about the structure are possible. In addition, simple criteria are often not enough to allow the
drawing of general graphs. For example, there are cases in which minimizing edge-crossing is not

natural, and it is necessary to maintain the balance of various criteria.

One of the most important approaches for general graph drawing is the force-directed approach
in which nodes in a graph are treated as material points. Pulling and repulsing force are exerted

on nodes. For example, in the spring embedder [37], each edge in a graph is treated as a spring.
This system places nodes at random positions, and simulates their movement. As it is assumed

that there is friction, they eventually reach the state of minimum energy. In Kamada and Kawai's

algorithm [66], every pair of nodes in a graph is connected by a spring the length of which is equal
to the graph- theoretical distance between the two nodes. The layout is obtained by moving each

node one by one to minimize the overall energy of this dynamic system.

With these force-directed approaches, general undirected graphs can be drawn quite well. How-
ever, these force-directed algorithms are very slow and do not scale well. Drawing large-scale

general graphs, such as graphs with over 1000 nodes and edges, is difficult.
The multi-scale approach recently proposed by Hadany and Harel [46] and in subsequent studies

by Harel and Koren [47] promises to target large graphs such as those with over 3000 nodes. Their

2.3. CONSTRAINTS 27

key idea is a coarse-scale representation of the graph that represents its simplified structure. This

representation consists of clusters of nodes and edges between clusters. The algorithm lays out
fine-scale positions of nodes locally in a cluster, and then arranges coarse-scale positions of nodes

globally. They claim that a graph with over 3000 nodes can be arranged in a few seconds using this
system.

In real applications, it is often necessary to reflect the user's preferences. There are sev-

eral graph-drawing tools in which the user can select an appropriate drawing algorithm. These
include GraphEd [50], Gem [1], GraphViz [38], or Graph Editor/Layout Toolkit by Tom Sawyer

Software [112].

Henry and Hudson [49] proposed a graph-drawing tool that can apply different algorithms to

subgraphs in a graph. The subgraph is interactively selected by a specific graph-traversing algo-
rithm. For example, the user can select nodes on the shortest path in a tree, and arrange them in a

row. The other nodes in a tree are then drawn using an ordinary tree layout algorithm. The merit
of this approach is that it is possible to handle very large graphs by selecting and drawing only

subgraphs.

GLIDE [68] is another system in which the user can interactively lay out graphs. The user can

specify various constraints among nodes. For example, the user can specify that selected nodes
should be aligned horizontally or positioned circularly. All constraints in GLIDE are solved by a

force-directed approach, and the process of solving constraints is animated so that the effects of
constraints can be well understood by the user. Constraints are regarded as various 'springs' among

nodes. Therefore, the user can specify conflicting constraints that can be solved approximately by
balancing these constraints.

Masui [83] proposed a graph-drawing system based on a genetic algorithm. The user provides

the system with several pairs of examples, and the system infers the evaluation functions using the

genetic programming technique.
ILOG JViews [106] is set of Java components for building interactive graph-based user inter-

faces. It provides various components for cartography, charting, resource scheduling, and graph-
layout. The method of visualization can be specified using XML style sheets.

2.3 Constraints

2.3.1 Constraint Solvers for GUI software

Constraint-solving problems are studied widely in various areas such as artificial intelligence and

operations research. Various resource allocation problems and task scheduling problems are typical

examples of constraint-solving problems. The merit of using constraints is that programmers have

only to write the problem to be solved declaratively and do not need to specify how the problem

should be solved. The constraint solver solves the specified problems automatically.

Constraint solvers have also been applied for construction of graphical user interface (GUI)

software. For example, they are useful to determine the layout of parts of the GUI on the screen,

and to reflect the application's internal changes/events on the screen. Several constraint solvers have

been developed for GUI software. As they were developed for interactive GUI software, they have

different characteristics from those developed for other areas. The characteristic functions required

if constraint solvers are to achieve interactive systems are:

Preference A typical use of constraints for constructing GUI software is to specify and determine

the layout of graphical parts. For example, the layout of a slider S placed at the right side of

28 CHAPTER 2. RELATED WORK

a window W can be specified with a constraint:

S.leftx=W.rightx

A constraint specifying that the heights of the two windows are the same is:

S.height=W.height

S.leftx is the x coordinate of the window S, and W. rightm is the x coordinate of the window
W. S. height and W. height are the heights of each window. Most constraints to determine

the layout of widgets are required to be satisfied.

There are also esthetic criteria that must be considered when creating a picture. The program-

mer must manage screen space, and use constraints to place objects neatly. For example, any
lines connecting objects should not cross each other. Graphical objects must not be too close,

and the distances between objects should be even.

However, it is not always possible to satisfy such criteria, and it is not always necessary
to satisfy all of these criteria at the same time; i. e., there are preferences for constraints.

Therefore, it is necessary to provide a way to specify and handle such preferences.

In the TRIP system, two levels of constraints can be used: pliable and rigid. Rigid constraints
are solved exactly, before pliable constraints are solved approximately, i. e., rigid constraints

have precedence over pliable constraints.

In the IMAGE system, the DETAIL constraint solver is used. The DETAIL solver incorpo-

rates constraint hierarchies [12]. That is, each constraint has a strength value, and the solver
satisfies as many of the higher valued constraints as possible. DETAIL can solve constraint

hierarchies incrementally, using local propagation, and still handle cyclic constraints [55].

Constraint hierarchies are also useful for specifying the dynamic behavior of interactive sys-
tems. For example, the behavior of a rectangle when the user points to it, i. e., whether it

should be resized or moved, can be specified by constraints on the points: the width and the
height, each with a strength value. To move a rectangle, the value of the constraints that

maintain its width and height should be increased. On the other hand, to resize a rectangle,
the constraints that prevent a diagonal point from moving should be given higher values. The

system only changes the values of constraints according to the operation specified by the user.

Furthermore, constraint hierarchies are useful for handling over/under-constraint systems. In

general, for interactive applications, the values of constrained variables should always be
determined. However, solving over/under-constraint systems is a difficult problem, and it
is generally difficult for programmers to avoid such systems, i. e., to specify constraints on

variables with sufficient precision to determine the values of the constrained variables. By
using constraint hierarchies, the programmer is able to use weaker constraints to prevent

under-constrained systems, thereby assuring that constraints are always solvable.

Performance Where constraints are used to determine the behavior of graphical components on

the screen, as described above, they must be solved quickly, as this influences the smoothness

of the interface, and affects its usability.

There are several ways to cope with this problem, one of which is to solve constraints in-

crementally. Constraints used in interactive systems may become numerous, but they tend

to be clusters of independent constraints. Therefore, once all of the constraints are satis-

fied, constraint solvers only need to maintain those that are affected by changes made to the

2.3. CONSTRAINTS 29

constraints. DeltaBlue [41] is a well-known incremental constraint solver that uses local prop-

agation, and solves non-cyclic linear equations with strength values. We have developed the
DETAIL constraint solver [55], which is also an incremental constraint solver. DETAIL can

have multiple types of sub-solvers, such as a simultaneous equation solver and a least squares

method solver, and can solve multiple types of constraint.

HiRise [51] is another incremental constraint solver, which solves constraints utilizing LU

decomposition so that it is able to solve thousands of constraints in a few milliseconds. HiRise
can also handle inequality constraints.

Complexity Linear equations are not sufficient to describe the behavior of interactive systems.

There are more complex types of constraint, which are useful for describing various behaviors
in interactive systems. For example, a general constraint that two lines should be parallel is

not described by linear constraints. A constraint that maintains the distance between two

points is also not linear1.

Inequality constraints are also useful for GUIs. For example, the constraints that some el-
ements must be put inside a window are represented as conjunctions of several inequality

constraints:

(2.1)

(2.2)

Cassowary and QOCA [13] can handle inequality constraints. They solve constraints as an
optimization problem using the simplex method. In addition, constraints that objects do not

overlap are represented as disjunctions of the above constraints. Such disjunctive constraints
are also described by Kim Marriott et al.[69]

Chorus [53, 52] solves non-linear constraints using the optimization method. To cope with the

local minimum problem, it also uses the genetic algorithm. Chorus is so expressive so that it
can specify force-directed graph layout algorithms. In addition, the solver is fast enough to

drag and modify the layout of a graph interactively.

However, in general, expressive constraints often require inefficient constraint-solving algo-

rithms, such as the Newton-Rhapson method and the relaxation method. This is why most
of the constraint solvers in use in current interactive systems solve only one-way constraints

using local propagation. The DETAIL solver copes with this problem by dividing constraint
systems into those sets of constraints that can be solved by local propagation and those that

cannot be solved. DETAIL then applies inefficient constraint-solving algorithms only to those

parts that actually require them. Such combinations of different constraint solvers are promis-
ing approaches for interactive systems.

2.3.2 Other Systems Using Constraints

Constraints are used not only to support the construction of GUI applications but also as interaction

techniques in GUIs. Most drawing editors have alignment and grid functions that can be thought of
as types of constraints. In some editors, users can use connection constraints in which a line con-

nected to an object follows that object when it is moved. IntelliDraw [27] is a commercial drawing

application that has many constraints functions. Various types of geometric constraints are provided

1
 Of course, it is possible to specify that a line should be parallel to an axis, or to specify that the horizontal/vertical

distance between two points should be constant.

30 CHAPTER 2. RELATED WORK

for the user. However, IntelliDraw has not met with much success; one reason is that it is difficult
to specify constraints directly in this application; there are too many icons representing the types of

constraints from which the user can select. It is also difficult to combine constraints and to predict
the effects of doing so. Furthermore, ordinary drawing may not require complex constraints.

The key issue of using constraints in a GUI is providing an easy and intuitive way to specify

constraints. Inferring is a common technique used to address this issue. The user does not specify
constraints directly but shows the state that satisfies the constraints the user intended. The system

then infers constraints from the presented state. For example, Chimera [72] infers constraints in a

picture from multiple examples of pictures. Characteristics that are invariable among examples are
regarded as constraints.

For example, the constraints of a hinge, two lines that are connected at one end of each line and
can be rotated at that point, can be extracted from several examples of a hinge with different angles.

Pegasus [56] is another pen-based drawing tool that infers constraints in a picture. In Pegasus, the
user can draw only straight lines, but the application can recognize several relationships among lines

such as parallel, perpendicular, same length, and symmetry. Pegasus infers lines to be drawn based
on recognized constraints, and presents them to the user. The user can select one from this list or

can neglect them by drawing another line.

2.3.3 GUI Toolkits Using Constraints

Constraints are incorporated into several GUI toolkits. Garnet [91] and its successor, Amulet [14],
have a simple one-way local propagation-based constraint solver. The programmer can define con-

straints among variables in the program so that when the values of source variables are changed, the
target variables are updated appropriately.

Various toolkits use constraints for the layout of components in GUIs. SubArctic [107] incor-

porated a one-way constraint solver for the layout of components in a GUI. Open Inventor [126],
which is a three-dimensional graphics toolkit, can have nodes called engines in the scene graph,
which also correspond to one-way constraints that connect attributes of other nodes. Recent GUI

toolkits have a mechanism of layout management such as the layout managers in Tcl/Tk and Java
AWT. These can be thought of as special constraint solvers that solve predefined layout constraints

on target widgets.

2.4 Recognizing Figures

2.4.1 Spatial Parser Generators

Spatial parsing is a function that parses pictures drawn by the user according to the grammar spec-

ified by the programmer. The spatial parser generator generates spatial parsers from the grammar

specified by the programmer. Ordinary drawing editors with spatial parsers can be used as interac-
tion modules for visual language systems.

Spatial parsing has been studied by a number of researchers for a long time. For example, Chang

proposed "picture-processing grammar"[22]. Lakin developed the PAM system and the VMACS
editor [75]. VennLISP [73], a visual notation of LISP, is one application of these systems. Var-

ious grammars have been proposed. For example, Wittenburg proposed relational grammar [127]

and bottom-up and Earley-style parsers. Rekers proposed the use of graph grammars for graphi-
cal languages [58], which were later refined to layered graph grammars [101]. Constraint multi-set

grammar (CMG)[82] is another well-known example of grammar for parsing two-dimensional fig-
ures. The production rules of CMG have the form P::=P1, P2,…Pn where C, which means that

2.5. GUI CONSTRUCTION TOOLS 31

P1, P2,…, Pn can be reduced to the non-terminal symbol P whenever the attributes of all sym-

bols satisfy the constraint C. Terminal symbols represent primitive shapes such as lines and boxes.
Eviss [5] and its successor Rainbow [62] is an example of a visual system that uses CMG.

2.4.2 Systems that Parse Figures

There are many systems that can recognize figures drawn by the user, and utilize them as input to the

application. Most visual language systems have built-in parsers that interpret visual programs. An
interface builder is a type of VL system. Programmers can lay out widgets visually on the screen,

which are then compiled into the GUI modules in applications. Various CAD systems also interpret
drawings, and these systems are used for mechanical simulations. Some CASE tools can recognize

UML diagrams and convert them into textual programs. However, they usually do not utilize spatial

parser generators. There are several reasons for this. First, the spatial parser generators available at
present are not very popular. In addition, it is often difficult to understand complex figures in real
applications.

Another type of built-in spatial parser can interpret freehand drawings. For example, the Elec-

tronic Cocktail Napkin project by Mark Gross [81] involved development of a pen-based system
that can recognize hand-drawn sketches and diagrams. The ultimate aim of this project is the de-

velopment of a pen and intelligent paper that can support the sketching of designs on the screen.
Teddy [57] is another example that enables freehand drawing of three-dimensional polygon models.

By only sketching outlines of models, users can create 3D polygon models, which can be used in
the design of objects such as the stuffed toys after which it is named.

2.5 GUI Construction Tools

Writing a graphical user interface (GUI) used to be a complicated process, but a great deal of work
has gone into reducing the cost of making a GUI. Various toolkits, libraries, and environments
are now available for constructing GUI applications. However, most still provide only a basic
set of widgets and primitive graphics libraries. This section summarizes the work that goes into
making GUI applications, focusing on programming by example, programming by demonstration,
and interface builders.

2.5.1 Programming by Example and Programming by Demonstration Approaches

Programming by example (PBE) and programming by demonstration (PBD) are techniques by
which the user provides examples or demonstrations to the system, from which the system con-

structs "programs" for a given task. For example, EAGER [31] watches the user's operations in a
GUI environment, and detects repeated patterns. When a repeated sequence of operations is de-

tected, EAGER asks the user whether it should complete and repeat the sequence. This can be used
as a "keyboard macro" in GUI environments.

These techniques have been applied to the construction of GUI applications. Peridot [90] is an

early PBE-based user interface construction tool in which the user places graphical objects on a
screen and can make them react to input. Peridot infers two types of constraints; i. e., graphical

constraints that hold among graphical objects placed by the user, such as a constraint that the sizes

of rectangles must remain the same, and data constraints that hold among graphical objects and the
arguments of a function that the programmer is to construct. A virtual mouse is used to simulate the

user's mouse input. DEMO, DEMOII [42], and Pavlov [128] are also based on PBD. The DEMO

system has been used to make a rotating gauge that works together with a number panel, DEMO-II

32 CHAPTER 2. RELATED WORK

to make xeyes-like applications by demonstration, and Pavlov to specify the user's control module

in a car racing game.

2.5.2 Interface Builders

Most current software development environments, usually called Integrated Development Environ-
ments (IDEs), such as Microsoft's Visual Basic or Visual Studio, and Borland's JBuilder, have an

interface builder that enables programmers to layout widgets interactively in a window and change

their various properties such as colors and fonts. Some IDEs allow the programmer to specify call-
back functions or event handler methods for widgets. This specified information is compiled and

linked with other programs to build applications.
The NextStep Development Kit [95] is a well-known early IDE with an interface builder. The

user can not only lay out the widgets interactively on the screen, but can also connect a widget to
an object via a line that specifies the flow of events at the widgets. In this environment, the user can

immediately try the interface without compiling the application.
SILK [60] is a user interface prototyping tool in which the programmer roughly draws a sketch

of the user interface with a mouse or a pen. The drawn sketches are recognized by SILK, and the
corresponding widgets are arranged automatically. In addition, the user can operate the rough sketch

of the interface, i. e., the user can move the drawn scrollbar or push the sketched buttons.

Chapter 3

The Bi-Directional Translation Model

This chapter describes two models: the basic model of visualization and parsing pictorial data, and

the extended model for animation. These models form the basis of this thesis, and have been applied
to the systems described in the following chapters. Note that, as described in Chapter 1, our model

is extended from the framework of TRIP [67] which only handles visualization of abstract data. We
integrated parsing pictorial data and animations into the framework.

3.1 Overview of the Bi-Directional Translation Model

The objective of this model is to depict the standard structure of implementations that provide

two functions: visualization of application data and interpretation of figures. They are important
functions when building direct manipulation interfaces, but are not fully supported in most GUI

construction tools. This model aids in building direct manipulation interfaces whose domain is

abstract data structures such as trees and graphs.

Figure 3.1: The idea of direct manipulation interfaces.

Figure 3.1 outlines the idea of direct manipulation interfaces for the data visually represented on

the screen. The diagram on the screen visually represent internal data of the system. The user rec-

ognizes the diagram as internal data, and operates on the diagram. These operations on the diagram

are interpreted as operations on internal data. That is, the system visualizes application data to the

diagram on the screen, and interprets the diagram on the screen to application data. In our model,

33

34 CHAPTER 3. THE BI-DIRECTIONAL TRANSLATION MODEL

visualization is thought of as translation from source data representation into target pictorial data

representation, and interpreting of pictorial data is thought of as the converse, i. e., translation from

pictorial data representation into target data representation. To build direct manipulation interfaces,
these two functions, visualization of internal data and interpretation of operations on the visual rep-

resentation, must be implemented. Thus, two translators are required that can perform translations
between pictures and internal application data.

Usually, programmers must use canned translators or write such translators from scratch, but
such translators resemble each other in their translation process. Our model decomposes the bi-

directional translation process into several sub-translations by incorporating intermediate data rep-
resentations. It enables systematic implementation of bi-directional translations for direct manipu-

lation interfaces. In fact, we have enabled such translations by a set of declarative rules, designated
as a visual (and inverse visual) mapping rule set. To visualize abstract data, programmers have only

to write a visual mapping rule set that maps the ASR of the original abstract data into the VSR of the
target picture. In the same way, to interpret visualized pictures, the programmer has only to write

an inverse visual mapping rule set. This topic is described in more detail in the following sections.

3.2 Data Representations

There are many types of both data representations to be visualized, and of target pictorial data rep-

resentations. As the translation process depends on these source and target data representations, it
is difficult to reuse the translators if translations are performed between these individual representa-
tions. Therefore, two intermediate representations are incorporated into the process of translations;

i. e., abstract structure representation (ASR), and visual structure representation (VSR). ASR con-
sists of a set of ground compound terms. ASR represents the structure of abstract data, and is used

as a proxy for the application data in the model. VSR is a high-level representation of a picture,
and consists of a set of graphical objects and graphical constraints. By using these two interme-

diate representations, programmers can specify the mapping between abstract data and a picture
independently of each specific representation.

With these two intermediate data representations, our models has four data representations as

follows:

Application Data Representation (AR) Any application data can be the source for visualiza-

tion. For example, data may be the result of a simulation, internal data generated during some

computation, or logs of communications between processes. However, their primary purpose is not
necessarily visualization. In fact, they usually include data that are not used for visualization or

may not have a form appropriate for visualization. To visualize such data, necessary information
must be extracted and transformed appropriately for visualization. Similarly, the data obtained by

interpreting pictures must be converted for application data representation before they are passed to
the application.

Abstract Structure Representation (ASR) Abstract structure representation (ASR) is the user-

defined data representation for representing application data in our model. In contrast to application

data representation described above, the purpose of ASR is to represent direct data corresponding
to the target picture. Therefore, ASRs should be designed so that they do not include data that are

unnecessary for visualization, and that they are structurally similar to the corresponding picture.

ASR data are essentially a set of facts. The syntax of facts is the same as that used in Prolog,

3.2. DATA REPRESENTATIONS 35

i. e.,

predicate.

or

Predicate (arg1, arg2,…, argn).

where arg1,…, argn are symbols, numbers, lists, or terms. Variables cannot be used as arguments.

This syntax is primarily intended to represent symbolic structural and relational data, because, al-

though this model is also applicable to other types of data such as numerical data, we mainly handle

abstract structural and relational data such as hierarchical tree structures and network graph struc-

tures.

The user determines what kinds of facts are required to represent application data as ASR. For

example, if the application has network data, a graph structure representation should be used as the
ASR. A simple graph structure can be represented by two types of facts; node/1' and edge/2.

For example, a complete graph with three nodes (a, b and c) can be represented as follows:

node (a).

node (b).

node (c).

edge (a, b).

edge (b, c).

edge (c, a).

For real applications, the definition of the ASR will be more complex. For example, it may have

more types of nodes and edges, and nodes and edges may have more attributes to represent more

data in the application. Therefore, the corresponding picture can be more complex.

Visual Structure Representation (VSR) Visual structure representation (VSR) is a high-level
representation of pictures. It is high-level in the sense that it describes pictures with graphical

objects and graphical relations among graphical objects. The VSR does not contain absolute coor-
dinate values, but represents the structures of pictures directly. That is, graphical objects in VSR

have their size information, but do not have positional information. Graphical relations represent
relative positional relations among graphical objects, but do not specify their absolute positions.

For example, the horizontal relation put the graphical objects horizontal. However, it does not spec-
ify each graphical object's x- and y-coordinate. This is because such graphical relationships are

expected to be closely related to the meaning of the picture that represents an abstract relational
structure, and thus the mappings between ASR and VSR become simple.

Graphical objects, which represent primitive shapes in a picture, are written as follows:

type (id, arg1, arg2,…, argn, options).

The type describes the type of the graphical object, e. g., line, circle, or rectangle. Arguments de-

scribe the attributes of graphical objects, such as width and height. The number of arguments differs
among the different types of graphical objects. Each graphical object has a unique identifier (ID) that

is used to distinguish it from other graphical objects.
Graphical relations are written as follows:

type ([id1, id2,…, idm], arg1, arg2,…, argn, options).

1 The syntax predicute/N represents a predicate with N arguments. For example, node/1 is a predicate named
node with one argument.

36 CHAPTER 3. THE BI-DIRECTIONAL TRANSLATION MODEL

Graphical relations also have a type and several attributes. Their first argument is a list of the IDs

of graphical objects related to them. Other arguments are specific to each type of relation. Note
that graphical relations do not have their own ID. Graphical relations that have the same type and

attributes are treated as one relation.
The following is an example of VSR data, indicating two rectangles that are horizontally aligned:

The first and second lines are graphical objects with the IDs rl and r2. Atoms, ground terms, and
lists can be used as IDs of graphical objects. The third and fourth lines are graphical relations that

indicate that r1 and r2 are arranged horizontally and that the distance between the x-coordinates

of r1 and r2 is 10. As shown in the above example, they have an empty list of options as the
last argument. The lists of options contain attributes such as colors of shapes and the method of

alignment for geometric constraints. An empty list means that they use default values as attributes.
The available set of graphical objects and relations varies depending on the implementation

of the geometric constraint solver in the system. For example, TRIP systems use the COOL

system [67]. It has a linear equation solver and an undirected graph layout module, which are con-
venient for specifying the layout of hierarchical tree structures and network graph structures. The

details of VSR implemented in our systems are described in the following chapters.

Picture Data Representations (PR) Any pictorial data representation that is designed to display
or print, such as various bitmap representations, saved files for drawing editors, PostScript data, or

VRML, can be a target of visualization and a source for spatial parsing. Pictorial data representa-
tions are presented directly to the user, and the user interacts with displayed data. Thus, they should

have concrete information regarding the coordinates of objects in the picture, and should be ready
to be displayed. Conversely, differently from VSR, their structures may not be obvious. It is often

necessary to devise a way to parse such representations and extract their structures.

3.3 Various Functions in the Model

Several functions related to visualization of abstract data and interpretation of pictures can be re-

garded as a combination of translations among the data representations described in the previous
section. Figure 3.2 shows an example translation process in the model. Using this figure, this

section introduces the interpretations of several functions in this model.

Visualizing Application Data Visualization is a process of generating pictorial representations

from source information. This process is modeled as shown by steps (1),(2), and (3) in Figure 3.2,

which is same as the model of TRIP [67]. The first step of visualization is the extraction of ASR
data from application data. The purpose of this translation is first to convert the syntax of data

into the format of ASR, in order to prepare for the next translation process. Second, as described

in the previous section, the application data are usually not prepared for visualization. Data that
are unnecessary for visualization are often included, and data that are necessary may be distributed

over several parts of the application data. This step extracts and aggregates necessary informa-
tion from application data, and converts it into ASR. In Figure 3.2, translation (1) corresponds to

this step. Here, two sentences, "X consists of p, q, and r." and "X, p, q, and r

3.3. VARIOUS FUNCTIONS IN THE MODEL 37

Figure 3.2: A translation example in the bi-directional translation model.

are objects," are translated into five terms. The term "consists_of (x,[p, q, r])" im-

plies that there is a "consists_of" relationship between x and the list p, q, and r. The other
four terms imply that x, p, q, and r are "objects". With this translation step, the structure of
the application data has become more explicit. In other words, the programmer has extracted the

structure to be visualized from the application data.
The second step is the translation from ASR into VSR, which we call visual mapping. In

this translation, the visual characteristics of the target picture are determined according to visual
mapping rules. By changing visual mapping rules, various pictures can be generated from the

same ASR data. However, as the picture that we wish to generate by visualizing abstract data
is a representation of abstract data from which the user can recognize its structure and meaning,

there should be some correspondence between the structure of abstract data and the structure of the
visualized picture. The programmer should specify visual mapping rules with this point in view. In

addition, if they are structurally similar, visual mapping rules are expected to be simple. Abstract

objects and relations in ASR are simply translated into graphical objects and relations in VSR. In
addition, the expressiveness of VSR, that is, how many and strong graphical relations are supported

by the implementation of VSR is related to the simpleness of visual mapping rules. If enough
expressive graphical relations are provided in VSR that are convenient to depict abstract relations,

visual mapping rules will be simple. If not, the programmer must combine complex constraints to
specify the intended graphical relations.

In Figure 3.2, each object is mapped to a graphical object. For example, object (p) is

mapped to

This is a graphical object representing a box labeled with a string whose ID is p. The relation

consists_of (x,[p, q, r]) is mapped to three graphical relations:

38 CHAPTER 3. THE BI-DIRECTIONAL TRANSLATION MODEL

These relations lay out the objects so that (1) the object x is placed above the other objects, p, q,

and r,(2) objects p, q, and r are arranged horizontally, and (3) object x is connected by a line to the
other objects, p, q, and r. These mappings are specified by the visual mapping rules written by the

programmer. Figure 3.3 shows the visual mapping rules used for the mappings in Figure 3.2. Each
rule maps an ASR term on the left-hand side of a rule to VSR terms on the right-hand side. The

syntax of rules varies depending on the implementation. The rules shown in Figure 3.3 are those for

the TRIP2 system described in Chapter 4.

Figure 3.3: An example of visual mapping rules.

In the last step of visualization, PR data-a picture in the form of a target representation is

generated from VSR. VSR data are a set of high-level graphical objects and geometric relations, and
do not have absolute positional information. The layout of the picture are specified by the graphical

relations among graphical objects in VSR. In order to generate PR data, positional information of
the picture must be obtained. Therefore, in this step of translating VSR into PR, first, absolute

coordinates of the elements in a picture are calculated by solving geometric constraints of graphical
relations in VSR data. Second, target picture data are generated by substituting the calculated results

for the coordinate variables of graphical objects. Although this step depends on the representation
of target picture data, the module that solves constraints of graphical relations in VSR can be used

for all translators for this step. In Figure 3.2, this step is shown as translation (3). The result of
translation is the tree shown at the bottom of Figure 3.2.

In summary, visualization of abstract data is a process of translating AR into PR via ASR and

VSR. It is a process of extracting the structure of the data to be visualized from the application

data, mapping abstract objects and relations into graphical objects and relations, and calculating the
layout of elements in the picture according to the corresponding graphical relations in VSR.

Interpretation of a Picture A figure that represents abstract data is a proxy for that data. Thus, it

can be used not only for viewing data, but also for handling abstract data. People draw and modify
a figure when they want to create or change abstract data. Thus, we must provide not only a means

to visualize abstract data, but also a means to reflect the changes to application data. In our model,

this function is regarded as an inverse translation from pictorial data to application data (Figure 3.2,
steps (4),(5), and (6)).

First, pictorial data are translated into VSR data, a process referred to as spatial parsing (Fig-

ure 3.2 (4)). In this translation, geometric objects and relations in the picture are recognized by pars-
ing the picture, and output in the format of VSR. The translator for this step must be constructed

for each pictorial representation. The purpose of this translation is similar to the translation from
AR to ASR. That is, the translation converts various PR syntax into the format of VSR in prepara-

tion for the next translation. In addition, the structure of pictorial data is not usually obvious. In

3.3. VARIOUS FUNCTIONS IN THE MODEL 39

this translation from PR into VSR, the important graphical relations in the picture that related to its
'meaning' is extracted from the picture, and explicitly represented as VSR data. Note that there are

often multiple ways to interpret pictures, and there are so many graphical relations unrelated to the

interpretation of the picture. This translation step extracts only meaningful graphical relations from
a picture in reference to the next translation step.

The second step of the inverse translation is the translation from VSR into ASR, which we

call inverse visual mapping (Figure 3.2 (5)). In this step, the "meaning" of visual information is
determined; i. e., graphical objects and graphical relations in VSR are mapped to abstract objects

and abstract relations in ASR. As this translation is the inverse of the translation from ASR to
VSR, the visual mapping rule set that maps ASR into VSR can be applied inversely for this inverse

translation. However, for translation between abstract data and pictures, there are some differences

between visual mapping and inverse visual mapping. Visual mapping adds geometric information
to abstract data in order to visualize them, because abstract data do not have their own shape or

layout. On the other hand, inverse visual mapping must eliminate layout information, and extract
only the structure of the picture. Therefore, mapping rules are applied differently in each direction

of translation between ASR and VSR. When mapping inversely from VSR to ASR, some geometric
constraints in visual mapping rules are often ignored. The system tolerates some error of geometric

constraints. For example, when visualizing a node in a graph as a box, it is necessary to determine its
size precisely with visual mapping rules. However, when recognizing a box as a node, all boxes of

approximately the same size should be mapped to nodes to deal with pictures drawn not so precisely
by the user. In Figure 3.2, the graphical object

is translated into the object object (x) in ASR. The three graphical relations:

are translated into the abstract relation consists of (x,[p, q, r]) in ASR.

In the last step of inverse translation (Figure 3.2 (6)), ASR data are translated to application data.
The purpose of this step is mainly conversion of the data representation. ASR data are converted to

various types of application data, such as data structures in C/C++ and S-expressions in LISP. The

converted data are passed to the application.
In summary, interpretation of a picture is a process of translating PR into AR via VSR and ASR.

It is a process of translations that extract important graphical relations from pictures, map graphical
relations and objects in VSR into abstract relations and objects in ASR, and compose the application

data from the ASR data.

Direct Manipulation of Abstract Structure Data Using the bi-directional translation between

application data (AR) and picture data (PR) as described above, a kind of direct manipulation in-
terface, especially direct manipulation user interfaces for handling relational structure data, can be

interpreted in our model.
As an example, here we consider the construction of a user interface for the application that

handles entity-relationship (ER) diagrams as input. In this application, an ER diagram is displayed

on the screen. The user draws a diagram, or modifies the diagram displayed by the system. The
application has the schema data, upon which it computes, internally. The schema data are visualized

and displayed to the user, and the user manipulates the visualized diagram. (Figure 3.4).

40 CHAPTER 3. THE BI-DIRECTIONAL TRANSLATION MODEL

Figure 3.4: Architecture of ER Diagram Editor Application.

To construct the user interface part of this application, the following modules have to be imple-

mented:

1. A module that draws a diagram that reflect the state of the internal data of the application.

2. A module that enables the user to draw and modify the diagram on the screen.

3. A module that recognizes the user's input, and sends it to the application.

The function of the first module is visualization, so that, in our model, it can be thought of as per-

forming the translation from application data to pictorial data. On the other hand, the function of the
third module is interpretation of a picture. That is, it corresponds to translation from pictorial data

to application data. Therefore, these modules can be realized by bi-directional translations between
application data and pictorial data, which are specified by visual mapping rules. The function of

the second module is to allow users to draw pictures as the input to the third module. A general
drawing editor module, such as Adobe Illustratoi2 and TGIF3, is sufficient for this purpose, and can

be shared among various applications.

In general, direct manipulation-style (DM-style) user interfaces can be modeled as two parts;
the bi-directional translator between application data and pictures, and an interaction module for

manipulating visualized pictures. TRIP2 is a system that aids in building these parts. With TRIP2,
only a set of visual mapping rules is necessary to build DM-style user interfaces. Chapter 4 describes

the TRIP2 system in more detail.

In summary, in our model, direct manipulation is modeled as a bi-directional translation be-

tween application data and pictorial data. Application data (AR) and picture data (PR) have extra
information. ASR data and VSR data are extracted from them to represent the important structure

of the data required for the bi-directional translation. With these intermediate data representations,
the programmer can specify visual mapping rules that define the mapping between ASR and VSR.

2A powerful vector graphics tool developed by Adobe Systems Incorporated.

(http://www.adobe.com/products/illustrator/main.html)
3An

 interactive 2-D drawing tool under XII on various UNIX platforms.

(http://bourbon.usc.edu:8001/tgif/index.html)

3.4. EXTENDED MODEL FOR ANIMATION 41

The translation between ASR and VSR is the essential translation in the sense that it couples the ab-

stract concept and the visual representation. Note that the other translations-translation between

AR and ASR and translation between PR and VSR-are also important for completing the whole

translation. They should be also supported in the development environment of the bi-directional

translations. The former is related to the application interface of the user interface part developed

by the system. The latter is the problem of geometric constraint solver and spatial parser of the

development system. Their strength and usability have influence on the cost of developing direct

manipulation interfaces.

3.4 Extended Model for Animation

Animating application behavior is important and useful for various areas, such as education, debug-

ging, and performance tuning. In this section, we extend the basic model described in the previous
sections to accommodate the creation of animations in the model.

Basic Idea Application programs compute on their internal state during their execution. That is,

execution of an application is a sequence of operations and states. When an operation is executed,

the application's state is changed, and goes to the next state in that sequence. Animations can also

be viewed as a sequence of pictures. If the target of an animation is a program execution, each

picture in the animation represents the application's internal state, and the picture changes represent
operations in the execution.

We have extended the bi-directional translation model for the creation of animations as shown

in Figure 3.5. The model is composed of a series of data for each representation. In addition, four

types of "operations" are incorporated into each representation in the model. In Figure 3.5, the

vertical sequence <AR (t)→ASR (t)→VSR (t)→PR (t)>(0≦t≦N) corresponds to the

process of translating application data at time t to picture data, as described in the previous section.

The time t is discrete, and starts from 0 when the application is first invoked. It is incremented

when an operation is executed in the application. The time is N when the application is terminated.

On the other hand, the four horizontal sequences in Figure 3.5 represent changing data and

operations on each representation. For example, the horizontal sequence at the top of Figure 3.5,

<…→AR(t)→AR(t+1)→AR(t+2)→…>, is a series of application data and operations.

At time t, an operation is executed and the state is changed from. AR(t) to AR(t+1). Then,

another operation is executed and the state is changed to AR(t+2). This sequence continues until

the application is terminated. The other three horizontal sequences are similar to the sequence of

AR(t). In the sequence of XR(t), an operation on XR changes XR(t) to the next state XR(t+1)

where XR=AR, ASR, VSR, or PR.

Specifying Transitions In the extended model, an animation corresponds to the horizontal se-

quence of PR(t) and operations on PR. In fact, an operation on PR is the short animation A(t), the
steps of which are connected to form a whole animation A; i.e.,A=A(0)+A(1)+…+A(N-1).

The short animation A (t) is generated by interpolating two successive pictures PR (t) and PR (t+

1). Each picture PR (t) can be generated by translating application data AR (t).
In summary, using the extended model, we can create an animation by (a) obtaining the applica-

tion's internal data during its execution, (b) translating the sequence of application data to a sequence
of pictures, and (c) generating a sequence of short animations by interpolating the sequence of vi-

sualized pictures. As the translation from application data to a picture (i. e., (b)) is achieved only by

specifying visual mapping rules, as described in Section 3.3, it is possible to specify an animation

42 CHAPTER 3. THE BI-DIRECTIONAL TRANSLATION MODEL

Figure 3.5: The extended bi-directional translation model that represents the general architecture of

applications that generates animations of program execution.

using only visual mapping rules. However, since there are many possible ways to interpolate two
pictures, it would be better to provide a method for their specification.

In our model, the method of interpolating pictures is regarded as a transition operation to(t),
which is an operation on VSR that changes V SR(i) to V SR(t+1). This is a method of moving,
scaling, and rotating the objects in one picture to those in another picture. In addition, a transition
operation is translated from an application's operation via an abstract operation ao(t) on ASR,
which is defined as an operation that changes ASR(t) into ASR(t+1). The translation from an
abstract operation to a transition operation is specified by mapping rules, designated as transition
mapping rules.

The process of translating application operations to an animation is illustrated in Figure 3.5.
First, the application executes an operation; in our model, it is an operation on AR. Then, an ab-
stract operation defined on ASR is invoked. As it is almost impossible to automatically recognize
meaningful operations for animations from an application program, programmers themselves must
define abstract operations; that is, they must insert code into the program to define abstract opera-
tions. Abstract operations correspond to interesting events in BALSA-II [15] or Zeus[16].

Then, abstract operations are translated to transition operations by transition mapping. As a
transition operation is specified for one graphical object in VSR, some graphical objects in VSR are
associated with transition operations specified by the mapping rules. Other objects are associated
with default transition operations. Finally, the system generates a short animation by inbetweening
the previous and the new picture according to the transition operations.

For example, suppose that the programmer is to make an animation that depicts the insertion
sort algorithm. It shows the process of sorting bars of different lengths in ascending order from left
to right. The insertion sort algorithm sorts bars by inserting a new bar into a row of bars already
sorted. Figure 3.6 is an example animation that a bar is inserted at the appropriate place of the sorted
row of bars. To move a bar in a circular motion, as in Figure 3.6, the following transition mapping
rule is specified:

insert (X):-move (n (X), [clockwise]).
This mapping rule maps the operation insert (X) on ASR to the operation

3.4. EXTENDED MODEL FOR ANIMATION 43

move (X, [clockwise]) on VSR. Here, insert (X) represents an operation in the sorting

program. X is a string or integer that represents the index corresponding to the inserted object in
ASR, and n (X) is the name of the inserted graphical object in VSR4. The transition operation
move (n (X), [clockwise]) specifies the method for moving the graphical object n (X) as

clockwise. Thus, when insert (X) is executed, the graphical object named n (X) moves

clockwise. The system moves the rest of the graphical objects, which are not governed by any
transition operations, using the default transition operations. The default transition operation for

moving a graphical object is move (Obj , [straight]), which moves the graphical object
Obj in a straight line. In Figure 3.6, two small bars are shown moving straight to the left to make

room for the bar being inserted.

Figure 3.6: Circular movement of a bar in a sorting animation.

4 The name of a graphical object is specified in a visual mapping rule.

Chapter 4

TRIP2-A System For Constructing

Direct Manipulation Interfaces

4.1 Introduction

Graphical and interactive user interfaces based on direct manipulation(DM)[109], allowing the users
to point to, grasp, and drag objects on the screen, are now standard. To ease the high creation

cost, we employ User Interface Management Systems (UIMSs) and user interface toolkits such
as NextStep [95], MacApp [3], InterViews [113], GTK+[98], and Java Swing set [125]. However

DM style interfaces are still costly, because UIMSs and toolkits usually only provide 'canned'
abstractions of behaviors for a fixed set of simple graphical interface objects such as buttons and

scrollbars. Such a fixed set of abstractions may be sufficient for simple, dialogue-style interfaces, but
for cases where the semantics of complex application data must be reflected and be manipulatable

on the display, appropriate graphical and input abstractions may not be available. This is primarily
because current models of user interfaces are usually the models of the interaction architecture, and

lack the support for consistent framework that allow visualization and manipulation of high-level
abstract data, i.e., semantics of applications.

In this chapter, we show an implementation of a framework for bi-directional translation be-
tween application's data representations and pictorial representations of the user interface. With

this framework, the feedback of user's manipulation can be generally achieved via inverse transla-
tion from picture data into abstract data. The specification of inverse translation is achieved with

little extra cost, because (almost) identical rules can be used for mappings in both directions.
We have implemented TRIP2, a prototype system based on this model. In TRIP2, direct manip-

ulation interfaces for various types of data can be achieved just by specifying declarative mapping

rules.

4.2 The TRIP2 System

TRIP2 is a prototype system based on our bi-directional translation model, which is implemented
on the NeXT computer. This section describes the implementation of TRIP2.

4.2.1 System Overview

Figure 4.1 shows an overview of the TRIP2 system. TRIP2 evolved from TRIP (TRanslation Into
Pictures)[65, 67], which handled only one-way translation from abstract data into picture data. The

45

46 CHAPTER 4. TRIP2

Figure 4.1: The architecture of the TRIP2 system.

new features of TRIP2 that realize ourbi-directional translation model are as follows:

1. The interaction module which allows the users to manipulate the pictures directly with input
devices such as a mouse. Currently, this module provides the users with an object-oriented

freehand drawing interface similar to MacDrawl . This module is implemented on NextStep2
by using Objective-C; thus, low-level graphical interactions, such as selection of a picture

object with a mouse, are treated as method invocation of Objective-C objects that represent
the picture.

2. The spatial parser which translates picture data into its visual structure representation. In
TRIP2, picture objects are mapped directly to graphical objects in its visual structure repre-

sentation, and this spatial parser extracts graphical relations from the picture data.

3. The inverse visual mapping module that translates visual structure representation into ab-
stract structure representation. This translation is specified by inverse mapping rules given as

a set of Prolog predicates.

In TRIP2, since the visual mapping and the inverse visual mapping are executed in Prolog, we are

using Prolog's asserted predicates for ASR and VSR data. The spatial parser is integrated with the

interaction module in the current implementation. The details of these modules are described in the
following sections.

The users interact with TRIP2 in the following way:

1. Compile the mapping rules, and read them into the rule database.

1 MacDraw is a trademark of Claris. Inc.
2NextStep is the operating system developed by NeXT Computer

.
3SB -Prolog version 3 .1, Copyright(C) 1986 at Stony Brook; 1987 University of Arizona.

4.2. THE TRIP2 SYSTEM 47

2. Read the ASR data from a file into the data window.

3. Execute TRIP to translate the data into a picture.

4. Edit the picture in an object-oriented freehand manner.

5. Execute the .flush command. This command first translates VSR data into ASR data, and
then re-executes TRIP, i. e., translates the new ASR data into a picture. As a consequence,

application semantics-directed beautification is achieved.

6. Return to 4.

Here we show an example in order to give some guidelines for using TRIP2 in Figure 4.2. Each
screen dump of left-right windows shows the data of a Japanese family as ASR and its corresponding

picture as a kinship diagram (Figure 4.2(a)). The left window is the Data Window which displays
ASR data, and the right window is the ObjView Window which displays its pictorial representation.

The user is free to modify either data at any time. (He interacts only with the pictures in the

ObjView Window in this example.) Now, suppose that a new member, Midori, joins the family
by marrying Shinichi. To express this fact, we draw a rectangle (Figure 4.2(b)), write the label
Midori(Figure 4.2(c)), and connect it to the rectangle labeled with Shinichi by a line(Figure 4.2(d)).

(Note that this label Midori was not produced by an explicit command to label the rectangle; rather,
it is a textual picture object that has an equal status to the rectangles and lines just drawn.) Then, we

execute the flush command. These modifications are translated back into ASR data, and the kinship

diagram is redrawn from the new data (Figure 4.2(e)). Now a baby, Tomomi, is born: We draw a
circle between two rectangles, draw a new rectangle, write the name, and connect the circle and the
rectangle (Figure 4.2(f)). Finally, we execute the flush command again. These modifications are fed

back, and the diagram is regenerated (Figure 4.2(g)).

4.2.2 The TRIP Module

The TRIP [65, 67] module is responsible for the translation from abstract data into concrete pictures.
As illustrated in Figure 4.1, the TRIP module consists of three submodules (1) application's data

analyzer, (2) the visual mapper, and (3) the layout system called COOL (COnstraint-based Object
Layout system).

The analyzer translates application's data into ASR data, which is a set of Prolog predicates.
In [67], examples of several types of application's data are presented, such as English sentences

representing kinship relations, S-expressions in Lisp, and C programs. Those analyzers are not an
integral part of TRIP2, but TRIP2 provides an editing window for ASR data as shown in Figure 4.24.

Thus, the users can interactively manipulate both ends of application-independent representations
at the same time.

ASR data are then translated into VSR data by the visual mapper written in Prolog. ASR data

and the mapping rules are read into the database, after which the visual mapper is invoked.
Finally, VSR data are translated into PR data by COOL. In COOL, VSR data are declared as

special predicates that generate (a) drawing data, and (b) constraints on the geometric attributes in
the drawing data. For example, the predicate box generates (a) data for drawing a rectangle, and

(b) constraints on coordinate variables of the rectangle. The predicate hori zontal generates (b)
constraints on y-coordinate variables of picture objects corresponding to the graphical objects listed

4
 In fact, the original TRIP system was interfaced with a simple natural language parser; as a result, the user could

input sentences describing a scenery, and TRIP would automatically visualize it [67]. This parser can easily be interfaced
with TRIP2 as well.

48 CHAPTER4. TRIP2

Figure 4.2: A kinship diagram.

4.2. THE TRIP2 SYSTEM 49

in its argument. These constraints are solved by the constraint solvers that are parts of COOL. The

constraint solvers can handle two types of constraints: 'rigid' constraints, which must be solved
exactly, and 'pliable' constraints, which may be solved approximately by the least square method.

The purpose of pliable constraints is to allow COOL to handle over-constrained systems. In ad-

dition, COOL has special predicates and another constraint solver for visualizing undirected graph
structures as balanced graphs. The constraint solving algorithms of COOL are described in [65, 67].

The solutions computed by the constraint solvers instantiate the coordinate variables in the drawing
data. They are then passed to the interaction module to generate the Objective-C picture objects.

For example, given the ASR data:

and the visual mapping rules (Figure 4.3), the VSR data in Figure 4.4 are generated.

Figure 4.3: Visual mapping rules example.

To execute the visual mapping, TRIP calls the predicates listed in the argument of predicates
objectmap and relationmap. The predicates of the obj ectmap (itemmaping, in Fig-

ure 4.3) maps abstract objects to graphical objects, and the predicates of the relationmap

(ordermapping) maps abstract relations to graphical relations. When the predicate itemmaping
is called by the system (Figure 4.5 (1)), item (NAME) gets one ASR data (item ('AR')) with

unification (Figure 4.5 (2)). Then itemmap (NAME) unifies the head of the other rule (Figure 4.5

(3)), and the three VSR predicates output VSR data, box, label, and contain (Figure 4.5 (4)).
The special predicate f ail forces backtracking, so this process is repeated with the other item
until all it ems are mapped to VSR. Similarly, the predicate ordermapping applies the predicate

ordermap to the abstract relation order (ILIST) , and it maps order (ILIST) to graphical

relation hori zontal listing. Thus the 'item's are layed out horizontally. Next, COOL is

invoked and the PR shown in Figure 4.6 is generated from the VSR.

50 CHAPTER 4. TRIP2

Figure 4.4: Generated VSR data.

4.2.3 The Interaction Module

The users of TRIP2 manipulate pictures directly via the interaction module, which provides the

generic lowest-level editing facility. They can create, move, and delete picture objects such as
rectangles, circles, etc. We stress that the resulting interface is not a structured editor for some

specific data-rather, the users simply draw rectangles or circles as if they were using object-
oriented freehand drawing systems such as MacDraw. This is unlike graphical editors which are

customized for each application, such as Unidraw[124].

A picture in the interaction module is represented as a set of picture objects in Objective-C.
Picture objects are the instances of the subclasses of the Shape class (see 4.6), in which the usual

generic methods, such as drawing, moving, changing the size/place of the object, getting the at-
tributes of the object, and testing whether a given point is within the object, are defined. Several

coordinates describing the picture objects, such as the center (cx, cy), the top left corner (lx, ty),
and the bottom right corner (rx, by), are declared as instance variables of the Shape class. These

coordinates are used to test whether geometric relations among the objects hold. For example, when
two objects are tested to be horizontal in the top_align mode, the ty coordinates of these objects are
compared.

As mentioned before, VSR data is a set of graphical relations among graphical objects expressed

as Prolog predicates. However, since the translation between PR and VSR is executed in the inter-

action module written in Objective-C, the interaction module must also have the data corresponding
to VSR. Therefore, the graphical objects in VSR are mapped idempotently to the picture objects in

the interaction module, i.e., the picture objects serve as the dual role of also being the VSR graph-
ical objects. Graphical relations in VSR are represented as a list of Objective-C graphical relation

objects, which are the instances of the subclasses of the Relation class (see 4.6), which supports
the following methods:

・ A method for calculating the error of a graphical relation. This method is used for testing

whether the graphical relation holds or not.

・ A method for testing whether a graphical object is 'addable' to a graphical relation, i. e.,
testing whether the graphical relation holds when the graphical object is added. This method
is used for translating PR data into VSR data.

4.2. THE TRIP2 SYSTEM 51

Figure 4.5: The execution of mapping rule.

Figure 4.6: The generated picture.

52 CHAPTER 4. TRIP2

4.2.4 Implementation of the Inverse Translation

The inverse translation involves translation from PR into VSR, followed by translation from VSR

into ASR.

Translation from PR into VSR-Spatial Parsing Here, we refer to translation from PR into
VSR as spatial parsing. Although spatial parsing has been previously studied (for example, [45, 75,
74]), its application to GUI poses difficulties due to the requirement of real-time use, because there
are a great number of graphical relations with no a priori information in a picture.

In our model, spatial parsing has a more restricted role; it extracts a set of graphical relations
among graphical objects. Since pictorial objects are recognized as graphical objects in the interac
tion module, the spatial parser in TRIP2 needs only to extract the graphical relations.

To realize real-time responsiveness, we use an incremental spatial parser, which retains most
of the graphical relations and updates only its modified portions. Our incremental spatial parser is
invoked in the following situations:

・When a picture object is deleted: The graphical object (in VSR) corresponding to the deleted

picture object (in PR) is removed. In addition, it is removed from each (existing) graphical
relation containing it. For example, when the rectangle with a label 'PR' in Figure 4.6 is

deleted, 'PR' is removed from the horizontallisting relation, that is,

is modified to

To achieve such modifications efficiently, the interaction module maintains a table that maps

each graphical object to a list of graphical relations containing it.

・When a new picture object (obj) is created: The message addWithTest : obj is sent to each
existing graphical relation object. The invoked method tests whether the obj is 'addable' to

the graphical relation, and if so, adds it to the graphical relation.

For example, consider the situation depicted in Figure 4.7. In Figure 4.7, four boxes are con
strained by the graphical relation x order ([a , b , c , d] , 10) so that they are placed at
even intervals5. When a user draws a new rectangle with a label e on the right of rectangle d,
addWithTest : e message is sent to the graphical relation object, x order ([a, b, c , d] , 10).
That is, the system checks whether e can be added to the graphical relation or not. In this
case, the distance w between d and e is nearly equal to 10; as a result, the new rectangle
object is added to the x_order relation. The spatial parser of our system permits a certain
amount of error, because the user usually cannot put new objects at the exact place that satisfy
existing graphical relations.

・When a picture object is moved: The spatial parser is also invoked when a picture object is

moved; this change is treated as a combination of deletion and addition.

5 It constrains only each box's x-coordinate. Their y-coordinates do not have any meaning in this figure.

4.2. THE TRIP2 SYSTEM 53

Figure 4.7: Adding a new graphical object to a relation.

Figure 4.8: Creating a new graphical relation.

・Adding a new graphical relation: Although the above scheme can handle the modification of

existing graphical relations with an arbitrary number of graphical objects, the shortcoming

is that it cannot handle the creation of new graphical relations. For example, the connect
relation, which represents two graphical objects connected by a line, must be created when

a user draws a line that connects two picture objects that were previously unrelated. We
alleviate this by associating generations of new graphical relations only with drawings of the

picture objects, that is, when a certain kind of an object is drawn, the system checks whether
the object has established new relations or not. For example, as shown in Figure 4.8, when

a line connecting two objects is drawn, a connect relation is created, and when an object

is drawn within the boundary of another object, a contain relation is created. We are now
working to provide alternative means of generating other types of graphical relations.

In TRIP2, all graphical relations are inferred by the spatial parser. One problem of this method

is that users cannot see that the system is inferring correctly or not. It is preferable that inferred

constraints are displayed visually. In addition, there may be cases that explicit specification of

constraints is preferable. These problem has been solved by our next system TRIP3 [88].

54 CHAPTER 4. TRIP2

Translation from VSR into ASR Translation from VSR into ASR (inverse visual mapping) is
executed in Prolog. The interaction module outputs VSR data to a Unix pipe, which are read into

the Prolog database. VSR data are translated into ASR data according to the inverse mapping rules.
Ideally, we should be able to use identical rules for inverse visual mapping as well as for visual

mapping, because declarative rules do not have 'directional' information. However, this is not the

case due to the following reason: If some rule is used naively for mappings in both directions, the

pictorial editing performed by the user must exactly satisfy the layout constraints imposed by the
visual mapping rules. The resulting interface would be extremely rigid and difficult to use- for the
example, in Figure 4.3, the user would be required to draw a rectangle of the exact size as specified

by the mapping rule (width = 200, height = 100) for his input to be recognized.

Instead, we must relax the constraints so that system would be tolerant of the non well-formed
operations of the user. In TRIP2, this is currently achieved by having the user provide a separate

set of corresponding inverse visual mapping rules which would be 'less specific' compared to its
visual mapping counterparts. For example, in Figure 4.9, the term box has several of its variables

unspecified (this is indicated by underscores ('_'), which serves as anonymous variables in Prolog).
As a result, the height and the width of the user-drawn box are ignored, allowing the user to draw

a box of arbitrary size6. Fortunately, the structure of the mapping rules are essentially identical;
thus, an experienced user will be able to derive one from the other with ease. Moreover, automatic

derivation of inverse mapping rules from the other mapping rules can be possible.

Figure 4.9: Inverse visual mapping rules example.

For example, the inverse visual mapping rules that correspond to the visual mapping rules in

Figure 4.3 are shown in Figure 4.9. They are executed as follows.

1. The predicate inv_itemmaping is called (Figure 4.10 (1)).

2. The term inv_itemmap (NAME) is unified with the head of another rule (Figure 4.10 (2)).

6This is one of the reasons why we are able to first do the inverse mapping, and then perform the visualization again
to achieve beautification; the beautified PR is in effect the 'exact' visualization of a given ASR data, whereas the edited

picture just prior to beautification is not.

4.2. THE TRIP2 SYSTEM 55

Figure 4.10: The execution of inverse mapping rules that translate a set of of VSR data (box,
label, and contain) into ASR data (item).

3. The three terms (box, label, and contain) are unified with a set of VSR data in database,
and the variables A, B, and NAME are instantiated (Figure 4.10 (3)).

4. The variable NAME is bound to 'AR' (Figure 4.10 (4)).

5. The predicate asr /1 generates item (' AR') (Figure 4.10 (5)).

Since the predicate fail forces backtracking, all combinations of VSR data (box, label, and

contain) are tested whether they match with the body of the rule, thus all ASR data are generated
by the inverse visual mapping. Similarly, order (ILIST) is derived from the horizontallisting

relation in the VSR database, and output in a certain format. Compared to the visual mapping rules

(Figure 4.3), we can see that each clause corresponds one-to-one, and the terms in the clause body
and their ordering are almost the same. Derivation of other inverse mapping rules is similar.

Often diagram interpretation involves a multiplicity of interpretations. In TRIP2, diagram is

interpreted with inverse mapping rules. Thus the problem of multiple interpretations can be solved

by writing the rules carefully. When the mapping rule allows multiple interpretations, the ASR

data of all interpretations are usually generated, because most inverse mapping rules search with

backtracking like the rules in Figure 4.9.

As mentioned earlier, the predicate inv_itemmap has essentially the same structure as it emmap,

but the width and height of the box are ignored. If one desires to restrict the size of boxes within a

certain range, only the predicates that specify the range of the width and height need to be added as

follows:

56 CHAPTER 4. TRIP2

4.3 Examples

In this section, we show the examples of TRIP2 in action. All the figures in this section show the

screen dumps of two windows of TRIP2. In the following examples, we focus on the feedback of

user's operations on the PR data. Appendix C shows visual and inverse visual mapping rules for the

examples in this section.

4.3.1 A Simple Graph Editor

This example is a simple graph editor on TRIP2. Appeindix C.1 shows the visual mapping rules
for this example: there, nodes are mapped to circles, and edges are represented as straight lines.

The user of this editor simply draws circles, lines, and labels. These pictures are recognized as
a graph, and translated into nodes and edges. The nodes in this example are arranged by the

adj acent relation which is an entry to the graph layout constraint solver in TRIP2. The graph
drawing algorithm used here is described in [65, 66].

Figure 4.11: A simple graph editor.

4.3.2 A Simple E-R Diagram Editor.

Figure 4.12 shows the screen snapshots of the windows of an Entity-Relationship Diagram editor.
The upper-left window shows the E-R database schema in a textual form, and the right window dis-

plays its E-R diagram. The user extends the schema by adding a new entity course (Figure 4.12(b))
with two attributes (number and name) (Figure 4.12(d)), and new relationships (S-C and I-C) (Fig-
ure 4.12(c)). The user then performs the flush command. The modified picture in the right window is

translated back to the E-R schema data in ASR, and these data are translated into the corresponding
beautified E-R diagram (Figure 4.12(e)).

In this example, entities (represented by rectangles), and attributes (represented by ellipses) are
arranged by the graph layout constraint solver as is with the previous graph editor example.

4.3.3 A Small Othello Game

This example provides an interface for a small Othello game application. Figure 4.13 shows the
screen dumps of the windows during the game, which display the board data (ASR) and its pictorial

representation. The Othello application itself is written in Prolog, and uses this ASR data directly as
its representation of the board (therefore, there is no translation process between AR and ASR). It

4.3. EXAMPLES 57

(a) The E-R database schema data in the left window
are translated into the picture in the right window.

(b) The user draws an entity (a rectangle
with a label)

(c) Two relationships (diamonds) are added by the user. (d) Two attributes (ellipses) are added.

(e) The user executes the flush command. The updated
 schema is generated, and the E-R diagram is beautified.

Figure 4.12: A simple E-R diagram editor.

58 CHAPTER 4. TRIP2

has no knowledge of the interface of the game. The board data consists of six rows of six characters

(Figure 4.13(a)). The character 'e' means that the position is empty. The characters 'b' and 'w'
represent black and white stones respectively.

Player-1 first draws a circle with its color attribute black, which represents a black stone (Fig-
ure 4.13(b)), and executes the flush command. The modified picture is translated into the board data.

Then, the application reverses the intermediate stones. The resultant ASR of the board is again vi-

sualized to update the PR (Figure 4.13(c)). Player-2 then draws a white stone (Figure 4.13(d)). This

modification is also fed back to the board data (Figure 4.13(e)).

4.4 Related Work

The work described in this chapter can be largely categorized into two research areas: one is data

visualization, and the other is recognition of pictures and feedback of user's operations on pictures.

Visualization of numerical data has been studied intensively: Scientific visualization is now

one of the most important areas of numerical data visualization---powerful personal tools such as

Mathematica[129] are now in widespread use. Business graph packages are also used extensively

in office and personal work. One interesting work is by Mackinlay [79], in which effective graphical

presentations (such as bar charts, scatter plots) of relational information are automatically combined
and designed. Although TRIP2 is not primarily intended for numerical visualization7, a similar

issue would arise as to which visual mapping rules should be selected and combined to provide an

effective interface for complex application data. We are examining this topic as one of the current

research issues.

There are a number of researches on visualization of non-numerical data as well. For exam-

ple,visualization of programs [70, 93, 123], and visualization of database schema [130] has been
studied. Here, the advantage of TRIP2 (and TRIP) is that it is a general-purpose system that can be
applied to numerous types of visualization simply by defining declarative mapping rules. Declar-

ative approach to program visualization is proposed by Cox and Roman [103, 28] in the system
Pavane. Pavane provides three-dimensional animation of concurrent program written in the Swarm

notation via the specification of declarative rules. The difference from TRIP2 is that (1) it is able
to handle temporal relations for animation, but (2) it does not use constraint satisfaction techniques

for layouts, and (3) it does not support inverse mapping from pictures to programs. In the context

of TRIP, a general framework for visualization of abstract data and relations that can be mapped to

ordering relations among the constituent objects is presented in [92].
There are several researches on establishing general schema for feedback of user's operations on

pictures. In the area of graphical UI, visual and/or demonstrational specification of how the primitive

interface objects should look, feel, and work is possible with systems such as Peridot[90], and
Interface Builder[95]. Visual programming systems also recognize user's operations, but are special-

purpose in the sense that the interfaces are usually tailored for a single (visual) language; they
are surveyed in [21, 110]. Of special interest are GRAFLOG[99] which is an interactive graphics

interface in which drawings receive linguistic interpretations, i.e., a certain kind of visual language,

PAM[74] which is a system for manipulating text-graphic patterns, and Golin's Palette system[44],

which is a tool for constructing visual program editors using the Indigo language, which is a visual

language for controlling a visual program editor. Constraint-based graphical UI systems such as

Juno[94], ThingLab[11], ThingLabII[80], Metamouse[32] allow the users to specify the constraints

among the picture objects, but do not explicitly support the specifications of mappings between

application and picture data. Advanced UIMSs such as Garnet[91] and Unidraw[124] provide the

7It is of course possible and useful to apply TRIP2 to visualization of numerical data.

4.4. RELATED WORK 59

(a) The board-data in the left window are
mapped to the picture in the right window.

(b) The user draws a black circle. (note that certain margins are
allowed for the size and the position of the piece the user draws.)

(c) The modified picture is inversely mapped to the board-data
and then the middle white stone is reversed by the Othello

application written in Prolog. The picture in the right window is

generated from the data in the application.

(d) The user draws a white circle.

(e) The inverse mapping has been executed, and
the intermediate black stone is reversed. This data
are mapped to the picture in the right window.

Figure 4.13: TRIP2 othello.

60 CHAPTER 4. TRIP2

support for visual interfaces which reflect application semantics, but the schema includes more

procedure-oriented and/or library-based specifications.

The approach taken by TRIP2 is quite different; a set of declarative mapping rules are only

necessary to provide direct manipulation interfaces for multitudes of application data. This is pos-

sible because TRIP2 is based on our proposed model of general bi-directional translation between

application and picture data.

The objective of declarative specification is also achieved with CONSTRAINT[131] with a
schema called constraint grammar. The major difference with TRIP2, however, is that the data

in an application object are accessed directly, rather than to provide the layers of abstractions as
is with TRIP2. Therefore, an application and its interface become strongly interdependent with

CONSTRAINT, making interface specification and modification more complex compared to TRIP2.

4.5 Conclusions and Future Work

We have presented an overview of how direct manipulation can be achieved in our proposed bi-

directional translation model, and have described its prototype implementation, TRIP2, and the

examples of its use. In all the examples, by specifying only the declarative rules, the users can di-

rectly modify a picture, and the manipulations are fed back to abstract structure data automatically

by the system. We stress that, since the system-provided user interface is independent of ASR data

in TRIP2, (1) the system is applicable to a variety of types of ASR data, and (2) different visualiza-

tion and its DM interfaces can be specified for a single type of ASR data, by merely providing the

appropriate mapping rules. Thus, we have made substantial progress in achieving dialogue inde-

pendence in the context of DM-style interfaces, a task which was pointed out as being significantly
difficult in [48].

Our experiences with TRIP2 also made us aware of some new research issues. First is to improve

the turnaround time of feedback. In the early implementation, it takes several seconds to update the

display in response to the user's operation. For the example of kinship diagram, the turnaround time

is about 3 seconds, and for the Othello game, the turnaround time is about 5 seconds. Most of the

time is spent for the execution of Prolog and the overhead of interlingual transfer of the data. The

later implementation is improved by the use of the faster Prolog system8. It is compiled with TRIP2

into one application so that the time taken for the communication between Prolog module and the

Objective-C module become much shorter.

Another way of tackling this problem is to achieve Incremental translation. At present, the

translation process is total at each stage (except for spatial parsing), meaning that the entire data in
each representation is translated into the next representation. Since changes are usually limited to

some local part of the application data or the picture, incremental translation at each stage would

substantially decrease the amount of computation required. The last strategy is being tested with

the DeltaTRIP system[105] implemented and running on ParcPlace Smalltalk v2.5 (Figure 4.14),
although it does not support inverse translation from pictures to application data. The differences

with TRIP2 are that (1) the Prolog interpreter is now an integral part of the system, being able

to manipulate Smalltalk objects, and (2) the translation process at each stage is incremental as
discussed above. (The underlying incremental constraint solver is DeltaBlue[41], courtesy of John

Maloney.) Compared to TRIP2, preliminary tests have shown substantial increase in the speed
of visualization when the ASR data to be visualized is modified incrementally (each incremental

translation process takes less than a second). The speed improvement achieved in DeltaTRIP is

8We used SlCStus prolog[111].

4.5. CONCLUSIONS AND FUTURE WORK 61

Figure 4.14: The DeltaTRIP system.

very promising, because the Prolog interpreter used in DeltaTRIP, being written in Smalltalk, is

even an order of magnitudes slower compared to the one employed in TRIP2.

Second issue that we are facing is real-time and semantic feedback problem. Current implemen-

tation does not constraint any users' actions on the editor. However, it is necessary that the system

can restrict some users' actions, or constraint the behavior of the part of a diagram. In addition,

these restrictions may change by application's state. Because our bi-directional translation model

separates user interface part and application part, such changeable restriction may be difficult to

handle. However, constraining the behavior of a diagram by constraints in VSR can be possible.

Furthermore, as the inverse mapping can interpret semantically illegal but syntactically legal ac-

tions,the application is able to detect such actions, and cancel it by not changing the application's

data. There are many cases that might be enough.

Another way of extending TRIP2 is to use a constraint (logic) programming language, such

as PROLOG III[25] and CLP(R)[59]. The numerical constraint solver in TRIP2 is external to the
Prolog in the current implementation. As a result, it is difficult to write mapping rules which the

high-level mapping rules are re-applied when constraints can not be solved in the lower transla-

tion stages. By integrating the constraint solving stages into logic programming with a constraint

programming language, such mapping rules would be possible, allowing specification of more elab-

orate visualization. Such a language would also be beneficial for the inverse translation.

It is also important to integrate TRIP2 with existing UIMS or toolkits. Although TRIP2 has

realized easy creation of direct manipulation interfaces, there are many functions that TRIP2 does

not support. For example, TRIP2 does not intended to support ordinary widgets, such as menus,

scroll-bars, and buttons. Business graphs and scientific visualization are not within the scope of

TRIP2, too. TRIP2 must be integrated as one of the tools for creating user interfaces.

62 CHAPTER 4. TRIP2

4.6 Classes in TRIP2

Classes for graphical relations are derived from the Relation class, and classes for picture objects
are derived from the Shape class. Picture objects (in PR) are also used as graphical objects (in VSR)

in the interaction module.

Chapter 5

TRIP2a - Constructing Algorithm

Animations

5.1 Introduction

Animation is an effective technique for use in a graphical user interface (GUI), and is useful for
indicating various changes, processes, and movement of data or execution of application programs.

Animation is widely used in entertainment, with video games and cartoons making effective use of
computer animation. The results of computations in various scientific fields, such as simulations of

fluid mechanics, are often visualized and animated. Algorithm animation, which illustrates how a
target algorithm works, is a useful tool for teaching algorithms, as well as for creating and debugging

algorithms.

Nevertheless, these advantages are not fully utilized in current GUIs, because of the time and
cost associated with creating animations despite the many tools available. The primary reason for

the time and cost is that the process of creating animations is still procedural, and the programmer
has to be concerned with various details of object movements, etc. As a result, although computer

and graphics performance have improved dramatically, we cannot fully utilize this performance for
visualization and animation in GUIs.

This chapter describes a tool for creating animations in a fully declarative framework to reduce
the cost of creating animations and to facilitate their use. However, we do not attempt to cover all

conceivable kinds of animations here. Our target is abstract animations; that is, we do not intend

to deal with animations that illustrate "real" shapes of some real objects, nor the movements based
on certain physical phenomena. For example, animations that represent the results of simulations of
hydromechanics, animations of the human body, or animations of dinosaurs are outside the scope

of this thesis. To be more precise, we will discuss animations that describe the process of changing

abstract data or relations, such as algorithm animations or program visualizations.

Our target animations have two features in common:

1. The abstract data and the relations to be animated do not have their own intrinsic "shapes."
How to visualize and animate them should be specified in some way so that they can be

understood easily. This is in marked contrast to animations of real objects, which have their

own shapes, and usually images of such objects should resemble their real shapes.

2. The abstract data are stored within the application program, and change during its execution.

To create an animation of an application program, we have to obtain up-to-date information
regarding the status of the application program during its execution.

63

64 CHAPTER 5. TRIP2A - CONSTRUCTING ALGORITHM ANIMATIONS

TRIP2 described in Chapter 4 enables programmers to easily create direct manipulation-style inter-

faces for manipulating abstract data. In this model, visualization of application data and recognition
of pictures are regarded as translations from/to application data to/from pictorial data via abstract

structure representation (ASR) and visual structure representation (VSR). This translation is speci-
fied by a declarative mapping rule between ASR and VSR (Visual Mapping Rule). We have extended

this bi-directional translation model to handle animations. The extended model includes the notion

of time; i.e., it incorporates a series of changing data. Animations are achieved by interpolating
a series of pictures translated from a series of application data. In addition, we define operations

on four data representations in our model. These operations change their data to the next state.
The picture changes, animations, are also regarded as operations on pictures, and how an animation

works can be altered by providing a transition mapping rule that maps abstract operation on ASR
to transitional operation on VSR. Using this model, only two sets of mapping rules, i.e., visual

mapping rules and transitional mapping rules, are necessary to create an animation. Complex ani-
mation techniques, such as slow-in-slow-out and squash-and-stretch [76], can be specified easily in

our model.
This chapter describes a prototype system based on this extended model. This system uses a

visual mapping module similar to TRIP [65, 67], TRIP2 [85, 120], and TRIP3 [88, 87]. Thus, the
same visual mapping rules can be used in our animation system. In particular, using the TRIP3

system, users can easily create visual mapping rules by example for this animation system.
The rest of this chapter is organized as follows. Section5.2 explains how the programmer makes

an animation, and Section5.3 describes the implementation details of our system. Section5.4 shows
various examples of use of our prototype system, and conclusions are presented in Section5.6.

5.2 How to Construct an Animation - Insertion Sort Example

To create an algorithm animation with TRIP2a, programmers have to write the following:

Visual mapping rules Visual mapping rules are used for translating ASR to VSR. They specify
how to visualize application data; i.e., they specify how to lay out graphical objects in the

target animation (Figure 3.5(a)).

Transition mapping rules Transition mapping rules are used for mapping abstract operations to
transitional operations. They specify how to move graphical objects in an animation (Fig-

ure 3.5(b)).

Annotations Annotations output abstract operations when an application executes its correspond-

ing operations. They are used for extracting information from the executed application pro-

gram, and can be regarded as specifications of translations from applications' operations to
abstract operations (Figure 3.5(c)).

For example, to create an animation of an insertion sort algorithm, a programmer must write an

insertion sort program, and annotate it so that the information on the execution of that program is
obtained. Figure 5.1 shows an insertion sort program written in Prolog. Annotations are inserted

at points where the application executes an interesting algorithm operation. In this example, after

performing insert/3, write_asr/2 outputs ASR data such as:

numlist ([3, 8, 4, 9], [1, 2, 5, 6, 7]).

The first argument of numlist represents numbers to be inserted, and the second argument repre-

sents already sorted (= inserted) numbers. At the same time, the predicate write_ ao/1 outputs an

5.2. HOW TO CONSTRUCT AN ANIMATION-INSERTION SORT EXAMPLE 65

Figure 5.1: Annotated insertion sort program.

abstract operation insert (N), which means that the program inserts the number N. The character

% output just after insert/1 separates these data from those generated at the next execution of
insert/1. This output is logged to a file (Figure 5.2), and used to create an animation of this
execution.

Then, the programmer writes the visual mapping rule shown in Figure 5.3 to visualize the ASR
data numlist (). There are two parts to this rule. In the first part, the predicate 'o' translates

all the numbers in numlist/2 into box/4 using num2barmap/1, and in the second part, the

predicate 'r' translates numlist/2 into three horizontallisting/3, which arranges boxes
horizontally with appropriate intervals.

Last, the transition mapping rule shown in Figure 5.4, which specifies that the inserted obj ect (X)

should move clockwise, is provided.

Figure 5.2: Log file of the insertion sort program.

66 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

Figure 5.3: A visual mapping rule for insertion sort animation.

Figure 5.4: A transition mapping rule for insertion sort animation.

Figure 5.5 shows the resulting animation created with the above mapping rules1. Note that
not only the inserted bar is moving; the other two bars are also being moved to make room for

the inserted bar. The programmer did not describe such movements, but the system automatically
created the transitions for the movements of the two bars (See Section 5.3.1).

Figure 5.5: Animation of an insertion sort algorithm.

5.3 Implementation of TRIP2a

We have implemented a prototype system based on the extended bi-directional translation model.
This system is integrated with TRIP2 [85, 120] and shares the TRIP module and the interaction
module. This system was written in Objective-C, and was created on NextStep using the NextStep
1

 Our system uses color, but most screenshots in this thesis have been converted to gray-scale pictures. In addition,

some figures show trails of objects, which are displayed only to illustrate the animation and are not actually presented in
the real system.
2
 NextStep is the operating system developed by NeXT computer.

5.3. IMPLEMENTATION OF TRIP2A 67

Application Kit3 and Interface Builders. This section describes how we generate pictures inter-

mediate between those generated from the application data, what kinds of transitional operations

(including various animation effects) have been built, and how we obtain data from a running appli-
cation program.

5.3.1 Implementation of Animations

In our implementation, a picture is represented as a set of picture objects in Objective-C. Thus,

an animation is a set of transitions from the objects in one picture to those in another picture. An
animation from picture A to picture B is created in the following manner:

1. Find correspondences between the objects in picture A and the objects in picture B, and
examine how the object in picture A is changed to the corresponding object in picture B

(Figure 5.6(1)).

2. Make instance objects of Transition class with the above pairs of corresponding objects,
which will change the object in A to that in B (Figure 5.6(2)).

If the corresponding object is not found, the system will make a transition from/to the object to/from

a null object (an object whose size is zero).

(1)

(2)

Figure 5.6: Making an animation.

Correspondences between objects in two pictures are searched for using the names of the ob-

jects. For example, if obj X in picture A and obj Y in picture B have the same name, it is assumed
that they are the same object, and that obj X is moved and/or resized to obj Y. This means that
to animate an object, the programmer must maintain its name in a sequence of pictures; i.e., the

programmer has to name objects in a consistent way. The names of objects are specified in visual
mapping rules.

Other animation systems often require explicit specification of transformations of graphical ob-

jects in an animation. For example, to generate animations using Pavane[103, 28], the programmer
has to write a rule that maps data in the old and current states of a program into graphical objects,
which change over time. In our system, the transformations of graphical objects are detected auto-

matically, and do not need to be specified. Programmers have only to write a rule to layout abstract

data, and alter the method of transformation if the default method is not sufficient.

3 NextStep application kit is the Objective-C class library for developing various software on NextStep.

68 CHAPTER 5. TRIP2A--CONSTRUCTING ALGORITHM ANIMATIONS

One interesting feature of our method of creating animations is that the structure of the moving
sub-picture is often preserved automatically. For example, in Figure 5.7, which shows an animation

of a list structure, the layout of the sub-structure ((b) c d) is maintained during its movement4.
This is because the transitions of these cells and arrows are created using the same (straight) tran-

sitional operation, and the starting and the ending layouts of the sub-tree are the same. This kind
of movement would be cumbersome to specify if the programmer had to specify the movements of

every graphical object in the animation.

Figure 5.7: A cons-cell animation.

5.3.2 Specifying Transitional Operations

In our system, the motions of graphical objects are specified with transition mapping rules that-
translate abstract operations on ASR into transitional operations on VSR. These transitional opera-

tions are attached to each graphical object in the picture translated from ASR, and are used to make
object transitions.

There are several ways to specify transitional operations:

1. No specification. When the programmer does not specify transition mapping rules, tran-

sitional operations for the graphical objects are determined automatically. For example, if a

movement of a graphical object is not specified by the programmer, the transitional operations
that move the object in a straight line and that scale linearly are used by default. Therefore,

at the beginning of the construction of an animation, the programmer does not necessarily
have to provide a transition mapping rule. The programmer can execute an animation without
transition mapping rules, and may later improve it by specifying transitional operations.

2. Using predefined transitional operations. The following operations are provided:

move Specifies how to move a graphical object. The following operations are provided:

straight A straight path is created. The graphical object to which straight is attached
moves in a straight line from the starting location to the ending location. This

operation is used by default when no transitional operation is assigned to a moving
object.

clockwise, counterclockwise A path that goes clockwise/counterclockwise to the des-
tination is created.

lazy, immediate The lazy operation keeps an object from moving until the end of this
transition. The immediate operation moves an object immediately at the beginning

of this transition, to the final position and size.

up, down, left, right These operations specify tangent vectors at the start and the end

of a movement of a graphical object.
4

 Here, the list (e a (b) c d) is changed to (((b) c d) a).

5.3. IMPLEMENTATION OF TRIP2A 69

rotate Specifies how to rotate an object during movement. The direction and the number of
rotations can be changed.

scale Specifies how to scale an object. immediate, lazy, etc., are provided.

color Specifies how to change the color of an object.

Furthermore, several decorative animation effects can be specified in the same way. The
techniques of cartoon animation [76] are also important in graphical user interfaces [24]. The
following are examples of these techniques:

blink The object blinks during the movement, or blinks before and after its movement.

shake The object trembles before moving so that the start of its movement can be easily
recognized.

slow-in-and-slow-out This operation slows down a graphical object near the start and the
end of its movement, which makes the movement seem more natural.

squash-and-stretch This operation squashes or stretches a graphical object as it moves. This
effect can depict rigidity of an object, and makes the object more vivid.

Figure 5.8 is a screenshot of an animation of the tower of Hanoi. It shows the trajectory of
the disk moved from the left tower to the right tower. This is an example of use of slow-in-
and-slow-out and squash-and-stretch. The moving disk in the figure is specified by the
following simple transitional operations:

The disk moves upward at the start. The movement of the disk is slowed down near the start

and the end, and the disk is stretched as it moves5.

Figure 5.8: Slow-In-Slow-Out and Squash-and-Stretch.

3. Defining transitional operations. It may be convenient if the programmer can define transi-
tional operations by writing functions that describe the motion of a graphical object. We are

planning to implement this feature by using a fast constraint solver to evaluate these functions.

5.3.3 Application Interface

As mentioned above, the layout and the movement of graphical objects can be determined by speci-

fying only two mapping rules; i. e., a visual mapping rule and a transitional mapping rule. However,

to obtain information from the running application, some programs must be inserted into the target
application program. At present, there are three ways to dothis:
5 Here, the object is stretched in proportion to its acceleration.

70 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

・ Writing the operations and the data in the application to a log file as ASRs and AOs. This can

be used for almost all programming languages as it uses only file operations.

・ Sending abstract operations and data using the ToTripSpeaker class, which is a subclass

of the Speaker class in the NextStep Application Kit. In this case, the execution of the
application and its animation run concurrently. However, the application program must be

written in Objective-C.

・ Inserting the predicate intrEvent into the application program on ASR6.

All of the above methods require modification of the application program, which is obviously unde-

sirable. We are planning to use the technique employed in debuggers to obtain operations and data
in the application without modification of the application program.

5.4 Examples

This section describes several examples using our system. Our system uses color, but all screenshots

of the system in this chapter have been converted to gray-scale pictures. In addition, some figures in
this chapter show tracks of objects, which are displayed to illustrate an animation but do not actually

appear on screen. The mapping rules for all the examples in this chapter are listed in Appendix D.

5.4.1 Animations of Data Structures

Animating Graph Structures

As mentioned above, we have a special constraint solver for the layout of undirected graphs. Using

this constraint solver, a graph structure can be visualized easily by providing only its nodes and
edges7.

In the animation shown in Figure 5.9, a new edge between b and d is added to the graph in
Figure 5.9 (a). In this transition, due to an error with our graph constraint solver, the positions of
nodes e and g are reversed in Figure 5.9 (c). However, using an animation, users would easily be

able to see that the positions of the nodes are exchanged8.

Animating List Structures

List structures are often illustrated as box-and-pointer diagrams. Using almost the same visual

mapping rules listed in [65, 67], we have animated list structures.

Figure 5.10 shows an animation depicting the allocation of a new cell. The boxes that represent

the new cell (c) and the arrow pointing to the cell are newly generated in this transition. They

gradually become larger, increasing eventually to the size of the cell. We can also easily move the
cells in the list together (Figure 5.11). In this animation, the list (e a (b) c d) is changed to

(((b) c d) a) . The cells corresponding to ((b) c d) are moved together to the destination.

6
 ASR is implemented as clauses in Prolog. To use this method, the program has to be written in Prolog.
7

It is also possible to specify relative lengths of edges.
8

The exchange of nodes is caused by the differences in the initial conditions of the graph constraint solver. Of course,

these sudden changes of an image are undesirable. We are currently working to improve the algorithm of the graph

constraint solver.

5.4. EXAMPLES 71

(a)

(b)

(c)

Figure 5.9: Animation of a graph structure.

72 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

Figure 5.10: Allocation of a new cell.

5.4. EXAMPLES 73

Figure 5.11: Moving the substructure of a list

74 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

5.4.2 Sorting Algorithms

Sorting algorithms are often used for algorithm animation systems. The previous section already

described the insertion sort animation. This section describes a bubble sort animation, a quicksort
animation, a merge sort animation, and a heap sort animation.

Bubble Sort

The bubble sort algorithm is a naive sorting algorithm, which searches for a maximum number in

order. This algorithm is thus named because the process of searching looks like a rising bubble.

Figure 5.12 shows animations that represent a "rising" number. To move bars linearly, the default
transitional operation straight is used in this animation. Therefore, this animation is created

using only a simple visual mapping rule that lays out bars horizontally.

Quicksort

Quicksort is based on the divide-and-conquer paradigm. The numbers to be sorted are put in an
array, and divided into two parts so that the numbers in one part are smaller than a key and those in

the other part are larger than the key. Then, the two parts are sorted recursively.

The dividing process is performed using two indices. In our quicksort animation, they are
represented as two small black rectangles (Figure 5.13(a)). The bars between the two indices are to
be partitioned. The number at the right end of the sorting region is used as a key, which is drawn in

black.

The process of partition proceeds as follows. First, the left index searches for a number larger
than the key to the right, which is represented in the animation as its movement to the right, and

then the right index searches for a number smaller than the key to the left, which is represented in
the animation as its movement to the left. When these two numbers are found (Figure 5.13(b)), they

are exchanged (Figure 5.13(c)). Here, the clockwise transitional operations are attached to the
two moving bars. This process is repeated until the indices meet each other. In this partition, as only

one number is larger than the key, no more exchange is necessary. At the end, the key is exchanged
with the number at the boundary of the partition (Figure 5.13(d)). Then, the smaller and the larger

part are each sorted in order. Figure 5.13(e) shows a screenshot at the beginning of the sorting of
the smaller part.

Merge Sort

Merge sort is also based on the divide-and-conquer paradigm. First, the numbers are divided into
halves. They are sorted severally, and then merged.

The numbers in the two parts before merging are drawn as white rectangles bounded with black

or gray (Figure 5.14 (a)). Merging is achieved by taking the larger of the two numbers at the right
end of the two parts, and arranging it in a different place. In Figure 5.14(a), the number at the right

end of the left part is larger, so it is moved above (Figure 5.14(b)). Next, as the number of the left

part is larger, it is moved above and arranged at the left of the previous bar (Figure 5.14(c)). The
bars that are moved above are represented as gray shaded rectangles. When merging is finished,

the merged numbers are moved down (Figure 5.14(d)), and the next merging process is started.
Figures 5.14(e) and (f) show the final merging process.

In this example, no transitional operation is specified. Thus, the transitional operation straight
is automatically used, and the rectangles move linearly.

5.4. EXAMPLES 75

(a)

(b)

(c)

Figure 5.12: Bubble sort animation.

76 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

(a) (b)

(c) (d)

(e)

Figure 5.13: Quicksort animation.

5.4. EXAMPLES 77

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Merge sort animation.

78 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

Heapsort

In the heap sort algorithm, the numbers are put into a heap, i.e., a binary tree in which each node is

larger than its two children. Therefore, the root node is the largest number in a heap. The heap sort

algorithm proceeds by repeating the following procedure:

1. Creating a heap.

2. Exchanging the root node with the node at the end of the heap, and excluding it from the

heap. That is, the largest numbers are removed one by one from the heap.

We visualized these heap structures as binary trees, and animated this algorithm.

For example, Figure 5.15 (a) shows a heap in the shape of a binary tree. First, the root node
is exchanged (Figure 5.15 (b)). The exchanged root node is drawn in black. Then, the heap is re-

structured by moving the new root node down to the appropriate position (Figures 5.15 (c) and (d)).
Again, the root node is exchanged (Figure 5.15 (e)), and the heap is restructured. Figures 5.15 (f)

and (g) illustrate the final steps of this sorting procedure. To help identify the movements associ-
ated with removal of the max number and restructuring the heap structure, we used the clockwise

movement to remove the max number.
The layout of a heap is specified by a visual mapping rule for ordinary tree structure data. The

transitional operations are not specified in this animation. Only a visual mapping rule is provided
to create this animation. In the same way, a number of animations can be constructed by modifying
mapping rules for ordinary data structures, such as graph and tree structures. A number of mapping

rules for various data structures are already available.

5.4.3 The Tower of Hanoi

The tower of Hanoi is a game played with three poles and a set of disks, in which the player tries to
move the tower to another position by moving only one disk at a time; i.e., to move the tower shown

in Figure 5.16 (a) to the position shown in Figure 5.16 (f). However, the player is prohibited from

putting a larger disk on a smaller one as shown in Figure 5.16 (b).
We have animated the process of playing this game. Figures 5.16 (c) and (d) show the first two

movements of a disk, and Figures 5.16 (e) and (f) show the last two movements. In this animation,
the tangent vectors at the start and the end of a transition are specified as up and down, respectively,

so that a disk first moves up and finally moves down at the destination. Note that we do not need to

specify whether it should move left or right, and the destination is automatically determined by the
next picture translated from the next state data.

5.4.4 Bin-Packing Problem

The bin-packing problem concerns finding the optimum way of packing objects into the minimum
number of unit-size bins. In our animation, an object is drawn as a gray shaded rectangle (Fig-
ure 5.17). Bins are not visualized explicitly, but the height of the large background rectangle repre-
sents the size of the bins.

We implemented the first fit approach, which means that an object is packed into the first bin that
can contain it. For example, an attempt was made to pack the object placed at the left in Figure 5.17

(a) into the first bin (Figure 5.17 (b)), but this failed. This process was repeated at the next bin, and
was successful (Figure 5.17 (c)).

As in the animation of the tower of Hanoi, the transitional operations up and down are specified
for the tangent vectors of the transition of this animation.

5.4. EXAMPLES 79

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.15: Heap sort animation.

80 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

(a) (b)

(c) (d)

(e) (f)

Figure 5.16: The tower of Hanoi.

5.4. EXAMPLES 81

(a)

(b)

(c)

Figure 5.17: Bin-packing algorithm.

82 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

5.4.5 Finding a Minimum Spanning Tree

A spanning tree is a subset of an undirected graph that is acyclic and connects all the vertices. A
minimum spanning tree is a spanning tree that has the minimum total weight of its edges. We

have implemented and animated Kruskal's algorithm [26] for finding a minimum spanning tree from

a given graph. Kruskal's algorithm consists of two phases. In the first phase, all edges are first
removed and sorted, and in the second phase, edges are added one by one from lighter to heavier

until all vertices are connected.
In this example, the user inputs the graph by drawing it with a MacDraw-like graphical editor.

Figure 5.18 (a) shows the given graph. First, all edges are removed from the graph, and arranged
vertically to the right (Figure 5.18 (b)). Thin edges in the figures mean indicate that they are not

included in the graph. Second, the edges are sorted (Figures 5.18 (c) and (d)). Then, the edges are
inserted into the graph from the one above (Figure 5.19 (e)), but any edges that make a cycle are

excluded (Figures 5.19 (f) and (g)). The thick edges represent the edges that are included in the

graph. Figure 5.19 (h) shows the final minimum spanning tree.
As TRIP2a has a special constraint solver for graph layout, only the data of nodes and edges are

necessary for visualizing general undirected graphs such as that used in this animation.

5.5 Incorporating Event-Driven Animations

We have developed TRIP2a based on the bi-directional translation model that was described in the

previous chapter. This tool can animate transitions of internal application data by specifying two
mappings declaratively: (1) mapping between application data and its visual representation; and (2)

mapping between operations executed in an application and corresponding motions in the visual
representation.

However, as this model assumes that an animation is constructed by connecting short animations
that depict the changes from one state to the immediately subsequent state, it is difficult to display

extended motions that represent the change from one state to that some time later. To cope with
this problem, we have incorporated event-driven animations into our framework, which enable us

to specify an animation with just the start and end events.
This chapter first describes the basic model formally and the difficulties in showing extended

motions. Then, we describe a slightly modified model that incorporates event-driven animation.
Last, implementation of the model and its application to visualization of the execution of a concur-

rent program are described.
The implementation of the system is tailored to visualizing program executions and has been

extended to handle 3D animations. A brief description of the system is attached as Appendix B.

5.5.1 The Basic Model

The model for creating animations described in the previous chapter assumes that an animation, A,
is generated by inbetweening the sequence of frames f0, f1,...,fn9. Animation A can therefore be
written as:

(5.1)

where I(fi, fi+1) is a short animation generated by inbetweening frames f and fi+1, and '+' indi-
cates the concatenation of two animations. The frame fi is a visualized picture translated from the

9Strictly speaking, we should refer to these as ketiframes. However, as we do not refer to the frames generated by
inbetweening keyframes, the word frame refers to kevframe in this chapter.

5.5. INCORPORATlNG E VENT-DRIVEN ANIMATIONS 83

(a) (b)

(c) (d)

Figure 5.18: Minimum spanning tree algorithm (1).

84 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

(e) (f)

(g) (h)

Figure 5.19: Minimum spanning tree algorithm (2).

5.5. INCORPORATlNG EVENT-DRIVEN AMMATIONS 85

internal state si by the visual mapping function vm: S → F.

(5.2)

This model assumes that the execution of a target application is a sequence of operations, op,

that change the internal data of the application.

(5.3)

As described above, the animation is a concatenated sequence of short animations I(fi, fi+1)(Egn5.1).
That is, each short animation I (fi, fi+1) represents the operation opj.

5.5.2 The Problem

There are situations that cannot be represented well with the above model. As an example, let us

consider the message-passing animation in which two nodes, A and B, send messages to each other.
We represent these nodes as two boxes, and messages as spheres (Figure 5.20).

Figure 5.20: Sending a message.

With our model, the animation that shows a message m1 being sent from node A to node B is

constructed by concatenating three units of animation that interpolate four successive states. Each
state is described by the state of the message. There are three types of state: (1) no message exists;

(2) a message exists at node A; (3) a message exists at node B. The following are the four successive
states that occur during message sending:

1. There are two nodes in the state.

a, b: node

2. The message m1 is located at node A.

a, b: node

ml (a): message

86 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

3. The message is located at node B.

a, b: node

mi (b): message

4. There are two nodes in the state.

a, b: node

The three units of animation that interpolate the above states are:

I (1, 2): The animation that shows the appearance of the message object.

I (2, 3): The animation that shows the movement of the message object from node A to node B.

I (3, 4): The animation that shows the disappearance of the message object.

The entire animation Al is a concatenation of the above animations, i. e., A1=I (1, 2)+I (2, 3)+
I (3,4).

Next, consider the case in which two messages m1 and m2 are sent from node A to node B. This
is simple if the second message is sent after the arrival of the first at node B, because it is achieved
by concatenating the above message-passing animation twice.

(5.4)

However, the case in which the second message m2 is sent before receipt of the first message is diffi-
cult to handle with the model. In this case, we cannot construct the animation by only concatenating
the unit animations:. I (1, 2), I (2, 3), I (3, 4).

To make the animation of this execution, these units of animation must be overlapped. However,

this is difficult with our basic model, because it is necessary to determine the state when the message
is still in transit and generate a keyframe by visualizing it. For example, when the second message

m2 starts moving, the first message m1 is still in transit to node B. As the first message is at neither

node A nor node B, the position of the message cannot be specified statically.
That is, in our model, (1) animations are created by concatenating short animation units, and

(2) the programmer must specify the location and size of all objects at the start and end frames
of each animation unit. It is difficult to satisfy these constraints if multiple objects start and stop
moving asynchronously, because it is difficult to know the positions of moving objects as the system

calculates them by interpolating frames.

5.5. INCORPORATING EVENT-DRIVEN ANIMATIONS 87

5.5.3 Approach

To cope with this problem, we modified the model to enable specification of the ends of unit anima-
tions. The unit animations are constructed with respect to each object in keyframes. In the original
model, it was assumed that unit animations of all objects are generated by interpolating the current
and the next keyframe. The new model makes it possible to make unit animations of some objects
by interpolating the current and distant keyframes. When interpolating distant keyframes, the in-
between keyframes are ignored so that the programmer does not need to determine the positions of
moving objects, which allows overlapping of unit animations.

More formally, the original and the new model are described as follows. Each frame fi is a set
of graphical objects.

A unit animation of an object is written as Iobj (objkj, objlj) which is a motion from objkj (the object
objj in the frame fk) to objlj. The animation in the original model is written as follows.

(5.5)

(5.6)

In the above equation, '+'means parallel concatenation of motions of objects in which element

animations may overlap, and'Σ'means sequential concatenation of unit animations. On the other

hand, the animation in the new model is written as follows.

(5.7)

Here, ej (k) is the kth number of a monotone increasing subsequence of 0...n. Figure 5.21 shows
both the original model and the new model. To differentiate the new type of unit animations, we

(a) the original model

(b) the new model

Figure 5.21: The original & new models.

call Iobj (objkj, objlj) long actions if k+1<l. On the other hand, we call Iobj (objkj, objkj+1) instant

88 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

actions. For example, in Figure 5.21, Iobj (obj02 obj32) is a long action, and Iobj (obj13, obj23) is an
instant action. The actions in the original model (Figure 5.21 (a)) are all instant actions.

To make the animation Iobj (obj02, obj32, only the keytrames f0 and .13 are required, and f1 and

f2 are not necessary. Similarly, to make Iobj (obj11, obj41), the keyframes fi and f4 are required, and

f2 and f3 are not necessary. Therefore, the programmer does not need to specify the positions of
moving objects. For example, the frame f1 is specified only by the positions of obj1 and obj3, and
the frame f2 is specified only by the positions of obj0 and obj3. This enables the overlapping of unit
animations, such as Iobj (obj02, obj32) and Iobj (obj11, obj41).

5.5.4 Implementation

Based on the new model described in the previous section, we have built the TRIP2a/3D system

to handle long actions. This section describes the implementation details of the new TRIP2a/3D
system.

Specifying Long Actions

A long action is specified by a pair of transitional operations. Usually, each operation corresponds

to an event during the execution of an application. The programmer modifies the program so that
it writes out the events and the current state together to a log file when such events occur during its

execution.

Events are treated as abstract operations on ASR. Similar to abstract operations, the programmer
defines events as terms, but each must have an ID number. The ID number of an event is necessary

to allow searching for a pair of events. Two events with the same ID are considered to be a pair of
events that represent a long action. The event data are translated to special transitional operations of

type move/2, which indicate long actions. The translation from events to transitional operations is
specified by mapping rules written by the programmer.

As an example, consider the message-passing animation example described above. In this case,

sending a message corresponds to the start event of a long action, and receiving a message corre-
sponds to the end event. First, the programmer defines these events: snd (Obj, From, Id) and

rcv (Obj, To, Id). This means that the message Obj is sent from From to To. The third
variable, Id, is the ID number of the pair of events.

Then, the programmer defines mapping rules that map these two events to special transitional

operations. These mapping rules are written as follows:

Thus, two types of events, snd (Obj, From, Id) and rcv (Obj, To, Id), are mapped to
the transitional operations move (Obj, [from (From, Id)]) and move (Obj, [to (To, Id)]),
respectively.

The variables Obj, From, To in the arguments move/2 are IDs of graphical objects. The two
moves that have the same ID10 are regarded as a pair, and are thought to represent the long action
in which Obj moves from the position of From to the position of To.

10 This ID is unique to this type of transitional operation, and is not concerned with the IDs of graphical objects.

5.5. INCORPORATING EVENT-DRIVEN ANIMATIONS 89

Generating an Animation for a Long Action

Chapter 5 described how animation is generated by interpolating pairs of keyframes that are trans-

lated from application data. In our new model, animations that represent long actions are generated
in the same way, but this leads to a problem in implementing the system. In the previous model, the

two keyframes to be interpolated were adjacent, and a unit of animation was generated by interpo-

lating two adjacent frames. In the new model, the two keyframes that correspond to the start and
end events may be distant. Even when the system finds a frame that corresponds to the start frame

of a long action, it cannot know when the end frame will appear in the execution log. As both events
are necessary to generate an animation for a long action, the system will have to search for another

event for the rest of the log file once one of them is found.

There is no problem if the animation is generated after the execution is finished, because the
entire log can be obtained and searched. However, if the animation must be displayed parallel to the

execution of the target application, the start of the animation for a long action must be delayed until
the end event occurs. Currently, we only generate animations after the execution has finished.

Architecture

Figure 5.22 shows the architecture of TRIP2a/3D. The programmer creates the hatched area in Fig-
ure 5.22 for each target application. The programmer first instruments the application to output

execution logs. Unlike TRIP2a, TRIP2a/3D reads only from text log files. The application must

output its internal data and events into a text file, and then TRIP2a/3D reads and visualizes them.
When it is difficult to output data directly in the format of ASR terms, especially when they are dis-
tributed applications, the programmer must write a program to collect log files from each executed

application and compile them into the ASR data file.
The programmer then writes visual mapping rules, and builds a mapper module for each type of

execution log. Visual mapping rules are compiled and linked with other libraries. They are written
in KLIC [23], a concurrent logic programming language. The resulting module reads the input ASR

data and translates them into animation scripts for the viewers.

Figure 5.22: Architecture of TRIP2a/3D.

The major difference from the implementation of TRIP2a is that the viewers and the visual

90 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

mapping module are separate, and several viewers are provided for different platforms. It is also

possible to view animations in different ways, such as two-dimensionally or three-dimensionally,
by changing the viewer. The three-dimensional viewer is implemented with Open Inventor [126]
and OpenGL, and the two-dimensional viewer is implemented with Tcl/Tk and STk. We have also
implemented the viewer with Java using Java3D. The multiple viewers can be easily implemented,
because we defined a simple animation script, which is a series of low-level operations on graph-
ical objects such as move objects and change size. The viewers are interpreters that interpret the
animation scripts. Their syntax is described in Appendix B.

Figure 5.23 shows a screenshot of the viewer implemented with Java. The viewer has two
modes. In animation mode, the animation is displayed in the window. By pressing the button at
the lower-left corner of the window, the user can switch the viewer to the step mode. In this mode,
the user can freely wind the animation forward or backward using the slider. The window displays
the still image at the moment corresponding to the slider position. The 3D viewing position can be
changed with a mouse and a keyboard. The user can rotate the displayed objects by dragging on the
window, and can shift the view or zoom-in/out by using the cursor keys and Page-Up/Down keys,
respectively.

Figure 5.23: Screenshot of Java-TRIP2a/3D.

5.6. CONCLUSIONS 91

5.5.5 An Example

The N-Queen Problem

Figure 5.24 shows a search tree for the N-Queen (N=6) problem. Each branch represents a choice

of position where a queen can be placed. In this search, queens are placed from the first to the last
row in order. Only one queen can be placed in each row, so there are only six choices. However,

the program cuts branches when some of the choices conflict with the queens already in position. If
there is no choice, the node cannot extend a branch.

This animation shows two types of action. The first type of action is the extension of branches.
When the N-Queen program has found the position choices for the next row, the animation shows

the emergence of new child nodes. For example, when the program has found that there are three
choices of position, the animation shows the creation of three new children (branches).

Another type of action is the sending of messages to the root node. A message is sent when
the program has succeeded in placing six queens on the board. In this case, messages are sent from

the node at a depth of six. A message is also sent when the program has failed to find a choice of

position in the next row. In this case, the program cannot extend any more branches, and the depth
of such a node is less than six.

In the animation, the messages are represented as flying circles, which fly from the source node
to the root node. The color of nodes in the search tree represents the machine on which the search is

executed. For example, two machines are used for the search shown in Figure 5.24. The left and the
right halves of the tree are executed on different machines. The light green nodes on the left part of

the tree are executed on one machine (A), and the other brown nodes are executed on another (B).

The execution is started on machine A. The first six choices are divided into two parts, and

half are sent to machine B. The execution on machine A proceeds faster than that on machine B

(Figure 5.24). In addition, the message from the last node arrives immediately at the root node. On
the other hand, many messages have been sent from machine B, but have yet to arrive at the root

node (Figure 5.24), because the left part of the tree is executed on a different machine from the root
node. This is represented by many flying circles in the animation.

Figures 5.25 and Figure 5.26 show a program that solves the N-Queen problem11. The program
runs on several machines in parallel. The log data output from the program are shown in Figure 5.27.

The data are converted to ASR by the special converter. The resulting ASR are shown in Figure 5.28.
The visual mapping rule for displaying a search tree is presented in Figure 5.29.

5.5.6 Summary

We have described the problem of parallel program animation in our previous model and the solu-

tion. In our previous model, it was difficult to overlap unit animations. This problem is alleviated
in our new model by allowing programmers to specify the start and end events of unit animations.

We have also described the TRIP2a/3D system based on the new model and an example animation

created with TRIP2a/3D.

5.6 Conclusions

We have proposed the extended bi-directional translation model for animations, and have imple-
mented a prototype system based on this model. Animations can be created by providing visual and

11 This program was written in Schematic [122].

92 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

(a)

(b)

(c)

(d)

Figure 5.24: Screenshot of an animation that shows a search tree for the N-Queen problem.

5.6. CONCLUSIONS 93

Figure 5.25: The target parallel N-queen-solving program (1).

94 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

Figure 5.26: The target parallel N-queen-solving program (2).

5.6. CONCLUSIONS 95

Figure 5.27: An example of log data.

Figure 5.28: The ASR data for N-queen animation.

96 CHAPTER 5. TRIP2A-CONSTRUCTING ALGORITHM ANIMATIONS

Figure 5.29: The visual mapping rule set for the N-queen animation.

5.6. CONCLUSIONS 97

transitional mapping rules, and by annotating an application program so that the data and the oper-
ation of the application are passed to the animation system. We have applied this model to several

algorithms, such as sorting algorithms, the tower of Hanoi, and Kruskal's algorithm for finding a

minimum spanning tree. Our experience has shown that animations can be created quite effortlessly.

In future studies, we plan to provide a way to specify animations by demonstration using the

techniques of TRIP3/IMAGE [88, 87] described in Appendix A.

