A Solution Of Chandrasekhar’s Integral Equation
For Radiative Transfer In Plane-Parallel Atmospheres

With Thin Optical Thickness
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1 Introduction

In the area of satellite remote sensing, we observe the radiance at the top
of atmosphere (TOA) by instruments aboard satellites. We then retrieve
the surface reflectance and the optical thickness from the observed radiance
(inversion problem). The observing equation based on the single scattering
approximation is given as
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where p is the observed generalized reflectance, 7; (o) is the direction of
the observation (the incident sun light), P is the scattering phase function,
8, (6o) is the zenith angle of 7; (%), and 7 is the optical thickness of the
atmosphere. We retrieve the two unknown variables r and 7 from p.

The Coastal Zone Color Scanner (CZCS) aboard Nimbus-7 launched in
1978 was the first satellite instrument to retrieve chlorophyll concentration in
the ocean.! As a high accuracy atmospheric correction is needed to retrieve
chlorophyll concentration, many methods to solve the inversion problem of
radiative transfer have been developed. The single scattering approximation
was first introduced to solve this problem. ‘

In the mid-1990s, new algorithms were required for new satellite in-
struments, such as Ocean Color and Temperature Scanner (OCTS) aboard
ADEOS and Sea-WiFS aboard Sea Star.2 ® The single scattering approxima-
tion does not yield the radiance at the TOA to meet the required accuracy,
so the forward calculation and look-up table method are employed. The ra-
diance at the TOA is evaluated by the forward calculation and look-up table
and is very accurate but implicit in term of the optical thickness.

In this thesis, we seek the solution of radiance at the TOA in the form of
a polynomial in 7.

Radiative transfer in a plane parallel atmosphere has been a major sci-
entific and mathematical subject for many years.* ® Fig. 1 illustrates the
geometry of the radiative transfer process. The solar irradiance Fy enters
the layer of vertical optical thickness 7. The radiance scattered by the layer,
I (0,;1), emerges from the top, while the the radiance transmitted by the
layer, I (0,;:1)7 emerges from the bottom. We assume a perfectly absorbing
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Figure 1: Geometry of Radiative Transfer

surface at the bottom. The direction of the radiance ;n with a suffix of an
even (odd) number is the lower (upper) bound. We employ a polar coordi-
nate system in which the zenith angle 8 is measured from the zenith and the
azimuth angle ¢ is measured between the projection of the direction onto the
equator and the fixed direction on the equator. We denote the cosine of the
zenith angle of the direction in as pin and the azimuth angle of the direction
in S Qn.

We introduce the scattering function S(7,¢;,t) and the transmission func-
tion T(7,1,,1). The scattered radiance in the direction 7, from the top of the
layer 1(0,71) is given by

- = -

. 1 e
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where I(0,7) is the incident radiance from the direction 7, Q is the solid angle
subtended by the incident radiance and the integral domain is the upper unit
hemisphere. The transmitted radiance in the direction i4 from the bottom
of the layer I(0,1,) is given by

- 1 - = - T -
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where the second term is the attenuated direct solar radiance.
The input solar radiance [(0,1) is expressed as

1(0,7) = Fod(i — io) (4)

where 6(7) is Dirac’s delta function. We assume no incident radiance from the
bottom. Substituting the above equation into the scattering and transmission
functions, we obtain

- F bl -
1(0,2,) = 471_;15(7',”,10) (3)
and
- Fo -
I(0 = —T . 6
( ,14) 47"|#4l (7—714)10) . ( )

If 7 is considered sufficiently small, we have the first approximation of

Sl(Ta ;17 ;0) and Tl(Tv ;47 ;0)7

51(1—7;17;0) - P(il7i0)7—7 (7)
and
T1(77;4,;0) = P(i47i0)7'- (8)

The radiative transfer process for the layer of atmosphere is governed by
the integro-differential equation given as

d[(T,;) . - - - - dQI FO T - -
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where (T, 1) is the radiance at the optical thickness 7 and i in the direction 1 Z,
z, is the direction of the sun, u is the cosine of the direction 2 z Fy is the solar
irradiance, y, is the cosine of the zenith angle of the sun hght, and d€) is an
infinitesimal solid angle around the direction v

Based on this integro-differential equation, there have been various meth-
ods to calculate scattered radiance at the top of the atmosphere. Hansen® and
Goody” summarized advantages and disadvantages of these methods. The
primary thrust for those methods has been to solve the forward problem, that
is, to evaluate the radiance at the TOA in terms of an optical thickness and a



surface reflectance. Since 7 is a variable in the integro-differential equation,
it is impossible to obtain the radiance in the explicit form in 7.

Chandrasekhar’s work®* in 1960 derived the simultaneous integral equation
for radiative transfer by the principles of invariance. Since 7 is not a variable
but is a parameter in this integral equation, we can obtain the solution
of radiance at the TOA in the form of a polynomial in 7 by iteratively
integrations with regard to the zenith angle. The integral equation is given
in the form of non-linear, two unknown functions X and Y.

X() = 1+ [ XX - YWY ()l (10)
Vi) = exp (- 2)+ [ VW)X - XY WA % )
.Using X and Y, S(7, u, po) and T(7,u7, po ) are given below.
(o IS (gt i) = (X)X o) = YWY ()] (12
G = I T(rgn i) = V(X (o) = X(0)Y ()] (13

The solution of integral equation for X and Y, however, is not unique.
Chandrasekhar gave an expression of a family of solution®.

Busbridge derived the same X and Y functions from the Milne integral
equation not from the principle of the invariance®. The Milne integral equa-
tion is an integral equation with two variables, y and 7 but is linear different
from Chandrasekhar’s integral equation.

Hapo) = e~y + [ [esp(-E st (14

where J(z, o) is the unknown function to solve. Using J(z, o), S(7, p1, pho)
and T(, p1, o) are expressed as,

S(T, 11, p0) = /OT eXP(—i‘)J(y’#o)dy (15)

T(7, p1, po) = /OT eXP(—T}:ly)J(ya/lo)dy (16)

Busbridge showed that the iterative integration of the Milne equation gives
the unique solution®. Busbridge also derived a linearized integral equation
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for X and Y?°.

1 X (u)du -7, [t Y{u)du

T(p)X(p)=1- - —) | =—— (7

(1) X (k) “ o 2(p —u) HEXP 1z )/(; 20p + ) ()

T U X (p)du 1 Y(u)du
TGY () = exp (- D1 - [ 20800 - [T )
“\
where T'(p) is given as
U u?du

Based on this linearized equation Mullikin ® gave the the family of the so-
lution of X and Y functions. Mullikin ? also showed that the iterative in-
tegration of X and Y with initial function X(u) = 1 and Y(u) = €=7/#)
converges for atmospheres with thin optical thicknesses and high albedos
and that this solution is unique. Chandrasekhar * integrated the second it-
eration with the same first iteration for X and Y and made a complemental
correction. He concluded that the second approximation agreed well with
the exact calculation up to 7 = 0.5. '

We employ the similar iterative integration as Chandrasekhar obtained
the second approximation for X and Y but begin with integral equation of S
and 7. In section five we show the agreement of the our iterations U/ and V'
with the iteration for X and Y. And we also show that our iterated solution
is only possible solution in the family of the solutions given by Mullikin.

We discuss the iterative integration of Chandrasekhar’s integral equation
to solve the inversion problem of the radiative transfer in section two.

In section three, we evaluate the second and third approximation for an
isotropic atmosphere. We often encounter integrations of the exponential-like
functions shown below

- 11 1 _ T d/,tg
Up(r,ig) = | (—+ —)"'(1— — . 20
2(7: %) /0(#3 |uo|) (1 —exp (=02 3 |H0|))2#3 (20)

Expanding "exp” in the above equation into the power series in (—7) and
integrating indefinitely, we obtain

Ut ;O) _ /01[_(_7_) 3 (L + T#l_(]l)(_f;) ... g__zf
1 1 | logus (-7)* 1
= l-logua(-7) - (—,73 M—OI)T T ] (21)



Substituting g3 = 1 at the upper integral limit, we can obtain the upper
integral value. However, substituting ps = 0 at the lower integral limit, each
coefficient of the powers in 7 is either co or —co. We must sum up all the
powers on the interval (¢,1) and then make ¢ approach 0. In other words,
we cannot change the order of lim and ¥ at the lower integral limit. The
problem of the radiative transfer is thus deduced to evaluating convergences
of exponential-like functions in the form of a series expansion at the lower
integral limit. We evaluated several series expansions, which are necessary
to obtain the second and third approximation for the isotropic atmosphere.
We evaluate the third approximations numerically for isotropic atmospheres.
The results of the first, second, and third approximations are then compared.

In section four, we evaluate the second approximation of the scattering
function for anisotropic atmospheres. In addition to the integration in equa-
tion (20), we must evaluate moment integrations shown as shown below
11 1 T T ptdu

Up(ryis) = [ (F ) (el = NS,

(22)

We show that we can evaluate the higher powers in 7 of the power series
expansion of UJ(7,13) separately at the lower integral limit. Based on this
consideration, we show that the coefficients of the quadratic polynomial of
the second approximation of the scattering function can be expressed as the
surface integration of products of the scattering phase functions on the unit
hemisphere. We evaluate the second approximations numerically for the
Rayleigh scattering and the maritime aerosol atmosphere, and compare the
result with the single scattering approximation and the exact solution.

In section five we summarize the properties of the solutions obtained by
the iterative integration of Chandrasekhar’s integral equation.

We conclude the thesis in section six.



2 Radiation Transfer Process

2.1 Chandrasekhar’s Integral Equation

The radiative transfer process is governed by Chandrasekhar’s integral equation®
in which the two unknown functions, S(r, 1, %) and T(r, i, zo) are described

S(rinin) = (S + ) x [ {1 —exp(T2 + ED)1pG T

g1 |pol 33! 1ol
i - = dQ3 T > S ng
P ) » 43y VO 1T /T » %13 P )
+ /U (21,23)5(T, 3 10)471_“3 exp( ],u I) (7,11,13)P(33 10)4 -
- - - - dQ - dQ2
+ / S(T Zl,ZQ)P(ZQ,Zo) LuZI — €Xp /P 7,1,12 T Zg,lo)m
- = sz dQ3
+ / / T, 7’177'2 7’2723)5(7- 13,%0 )471_'#2' 471_#3
- - - dQy dQs
- T 2
/ / T 21,13 13,22) (T 12’20)47r|y2|47r,u3 ) ( 3)
and
T(r, i) = (o — =)™ {exp(—) = exp(— 1)} P(Es, o)
Tylg,09) = (— — — exp(——) — exp(—+— I4,1
T M ual Tsol " T wa
-+ > - =, dQ ;o = = d{s
P P
+ /L (14,22)T(T,22,10)4 P 2| — exp(— i |)/ (14,13)S(T, 13’20)47”13
- - -. > dQ3 dQ,
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||
- - dQ df}
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The cosine of the zenith angle in the lower bound directions, which has an
even index, is negative. For the convenience of the following evaluation, we
replace y, by a new parameter, x4 which is equal to —u, for n = even. Using
the new variables, the integration on the lower unit hemisphere is changed
to the integration on the upper unite hemisphere, shown below

f /‘27 dQ? ‘/2“ -1 flu% ’ )( dou2)
T 4rmlps| 0 Am(—pa)
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d / 2
/0 72 0 4mpy /(= 47r/12 (25)

Since we adopt the new variable u; and the integral domain is changed to the
upper hemisphere, we omit the U for the integral domain unless the domain
has a special meaning. The cosine of the angle between the upper and lower
bound directions is thus expressed as negative as shown below

C05(0e,0) = frepto + (1 — p2) /(1 = p2)"? cos (. — 0,)
= —p7 o+ (1= (7)) 2(1 = p2)'72 cos (e = o) (26)
The phase function is assumed to be a function of the angle 8,,, between

the directions m and n and is normalized in the whole solid angle 47r. We
express the phase function P(im,i,) as

P(im,in) = P(cosOmn) = 3 w; Pi(cos Imn), (27)
7=0

where P;(z) is a Legendre function of the first kind.

2.2 Iteration Scheme

The simultaneous integral equations of radiative transfer can be solved by
successive iteration. The first approximations Si(7, zl, zo) and Ty(T, zl,zo) are
the first terms on the right-hand side in equations (23) and (24), and are
expressed below

St = (- o —enC 4 Epan), )
Ti(ry o) = (= = =) (exp(—) =~ exp(—Z)PlEnio). (29

Substituting the first approximations into the integrals in the original
equations, the second approximation S,(r, i, zo) is obtained

1 1

Sa(7,11,10) = Si(7,31,%0) + (— + —) 7
H1 #0
- - dSs dQ
/P 21,13 )S1(7, 13, %0) —exp(—— /P 13,20 VT (T, 11,13) 3
dmus dmus
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. . dOs - = dD
-+ /P 22,20 )S1(T 21,12)4 — exp /P 21,22 )T (7 22,10)4 2_
T

Mo o
- = dQ df
+ //51 T Z1,22 12,l3)51(7' 13710)477/122— 471_;3
- =, dQ; dfds

(30)

T (T, T, 1 ; ,; T(T, 12,1 .
= [T B PE BT B i)
We also obtain the second approximation of T'(7,%,%4) in the same manner.
We designate the integral part in the above equation as the second iteration
AS>(7,11,10). The second approximation is thus expressed as below,

52(7-7 ;la;O) = Sl(Ta ;17;0) + AS?(T7 {la?())' (31)

Iterating this procedure, we obtain the nth iteration AS,(7,1;,%), given
below

P 1 1
A5n77i,i = —+—__1X
(7211, %0) (#1 Ho )
- - dQ - - dQ
/P 11,23 JAS,_1(T,13,10) 2 —exp(—— /P 13,10 VAT, (T, 21,23)——3—
4T s AT g
- - dQ5 - -, dQ
+ /P Z2,20 ASn 1(7' llaz2) 2_ —e‘(P - /P Z1,22 ATn— (T, 22310) 2_
4Ty 4mpy
- o dQ d?
+ //AS _I(T,Zl,ZQ)P(lQ, Z3)ASTL 1(7' Z3,7,0)47ru22 47{':3
- = - -, dQ; dQ
//AT _1(7',7,1,13)P(7,3,12)AT." 1(7' ZQ,lQ)ﬁlq:ﬂ_:S . (32)
The nth approximation of S,(7,171,7) is evaluated as
Su(T,11,%0) = Y AS;(T, 11, 70) (33)

i=1

We can obtain the nth iteration AT, (, ;4, ;0) and then the nth approximation
T.(r, T4 Zo) in the same manner.

Since the first approximations, S;(r, ;1,;0) and Ti(r, ;4,;0), have factors
P(?n, Zm), the first approximation accounts for the single scattering. As the
number of multiplications of P(;n,;m) in ASy(T, Zl,;o) and AT, (T, ;4,20) is
equal to or greater than n, they account for the nth and higher order scat-

tering.



3 Integration of the Isotropic Atmosphere

3.1 Iteration Scheme

The phase function for the 1sotroplc atmosphere P(zn, zm) equals 1. The first
iterations are expressed below

11,0 ! Ly exp(—T7 1L :
S1(7,11,%) (/: + #—5) 1 p( )(/L1 + ua)] (34)
- = 1 1 T T
Ty(7,24,%) = (;4: - E) Hexp(— E) - eXP("E)]- (35)

As the first approximations do not explicitly include the azimuth angle dif-
ference between ¢, and 19, we denote, hereafter, the arguments of S; and T}
as ug and g;. Exchanging the order of the arguments of the cosines does not

change S1(7, p1, o) and Ti(7,p5, 1g )-

51(7—7/“1’/“6):51(77“5a/"'1) (36)
TI(T’ /“27/“6) = Tl(Tv /L(-)-’.“Z)' (37)

Integrating with respect to the azimuth directions, we obtain the recurrence
relation of AS,(7, p1, g ) and AT, (7, u7, o) for n > 2, given below,

_ 1 1 _
ASn(Talula.uO) ( + _) ! X
H1  Ho
d d
/ ASn_1(T, /»‘3,#0)2ﬁ—exp —— / AT,y (7, p1, p3) = i
K3 2u3
dpy Tt - dpz
+/AS_T , =~ —exp(—— AT, (7 pg iy ) —=
(7,1 #2)2‘H2 p( ul) A (7, 1 #o)Zu2
d d
+ / ASn_1(T,p1,13) M / ASn_1(7, 13, o ) 5— ke
0 2/,63
1 ~ dus
/ AT, —I(T’.u2 v.uo / AT, (T /11,/13)2 ] (38)
0 M3
and
1 1
AT (7,45, 45) = (= — —=) 7' x
(7,13 1o ) (#4 .Uo) |
dpy dps
AT, o) [ A (i) 2
/ (7, pg ,uo)%; exp( (7, 13 #0)2u3
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d,LL3

1 dus
f AT (7, pg 43 ) = o

2 +exp(—— / AS,1(T, pg ,13)
2

1 d
+ / ATn—l(Ta/‘LgauO / ASn 1 T ”47,“3) s
0 2u3
du
)2 2 ]7
3

where ASI(T7NE7/‘LS) = SI(T7/LO HuB) and ATI(T7 Po > Hq ) = TI(T7 ﬂaau;)
We introduce new functions U, (7, p*) and Va(7, u*) as below

1 d
- /OATH—I(Tv/LZHUZ t / ASn- I(T M3, Ho (39)

o) = [+ o - exp(-n) 4 0l 0
Wlrs) = [ = ) llexp(=5) - exp(- ;njjj (11)

It is noted that Uy(7, ™) and V,(7,u*) are not independent, and one is cal-
culated from the other without integration.

-
Us(r,u™) = eXP(—/‘F)Vz(ﬂ —u") (42)
T -
Va(r, ™) = exp(—;)Uz(T, —u). (43)
Using Uy (7, u*) and V,(7, u*), we obtain Sy(r,p*) and Tp(T, u*),
1 1
ASy (T, p1,u5) = (—+—=)7" x
Hi  Ho
T T
[ Uar,pg) + Ua(7, 1) — eXP(—;l‘)Vz(T, [ ) — eXP(—#—_)Vz(T,ul)
0
+  Ua(7, 15 )Ua(, 111) = Va(7, g ) Va(T, 1) |, (44)
and
ATy (r, 7, 13) = (= = 2=)1 %
2 7/‘4 ’#0 /J,Z lu(;
T T _
[ Va(mug) = Va(rm,uy) — eXP(—F)Uz(ﬂ fo ) + exp(—;;)Uz(T, Ky)
4 0
+  Va(r, 40 )Us (T, 1y ) — Va(m, uy )Us(T, 1g)]- (45)

Exchanging the order of the arguments in equations (44) and (45) does not
change AS,(7,11,10) and AT3(7,14,10)-

AS2(7'7#17#5) = AS?("" N(-J.Hu‘l) (46)
ATy(1, 17, 10) = ATo(7, 10, 17 )- (47)

11



Repeating this procedure for n = 3,4, - -, we obtain the recurrence re-
lations for U, (,u*) and V, (7, u*) that are defined as the first integration in
equations (38) and (39).

* ! * dlu
Un(rop) = [ A8 i), (48)
7 f *\ d
‘/n\'ra/‘ )= / AT, T y Hy B )25 (49)

Un(m,p™) and V,(7, ™) satisfy the recurrence relation given below,

1
Unsa(ro?) = [ [Un(r %) + Un(7, 1)

-exp<—,§)vn<r, by — exp(—im(r,m
LU, 1" Un(ms 1) = Vi, u*)vm,m](—f; + #i)%g (50)
and
)= [ Valrow) = Valro )
—exp(— ”w( >+exp<—§->Un<r,u)
- . PR 1. _,du
+Vn(7-7.u )Un(Tvl‘l‘) - Vn(Thu)(/n(Tﬂu )](; - /—1:) 5; (51)

We obtain AS,(7, ?1,20) and AT,(T, f4,;0) in the same manner as in the
equations (44) and (45).

1 1

ASu(T, p1, 4o ) = (ul + E) ' x
[ Un(roi3) + Un(ry ) — exp(—;—lwn(r, ug) - exm—f;-)vn(r,m
+ Un(T’ /‘L(;)UH(T,NI) - Vn(Ta Ma)Vn(Tvul) ]7 (52)
and
S LN e
AT (7, pq 100 ) = (uZ ua) X
[ Va(rou) = Valm, 1) — exp(—;%wnwa) + exp<—5§)Un(T, uy)
+ V ( Ty Ko )Un(T7 /‘Z) - Vn(T7 /“Z)Un(ra #5)] (53)
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Changing the order of arguments of the cosines in equations (52) and (53)
does not change AS,(7, p1, g ) and AT, (7, u7, 45 ) ,

ASn(Tnub,uO—) :ASH(T7/‘L(;3”1) (54)
ATu(7, 1y, 80) = ATa(T, 149, 13 )- (55)

From equations (42), (43), (50), and (51),we obtain an relation between
U, and V,.

exp(—7/u")Un(7, —p™) = Va(7,1") (56)

Once we integrate U, (7, u™), we can obtain V,(7, ™) by a simple multiplica-
tion by exp(—7/u*), and vice versa.

Changing the variable and the parameter from y to p = 1/u and from p*
to p* = 1/u”, we rewrite the recurrence relation as

Un(r,p") = [ [ Una(r,p") = exp(=7p)Vaca (7,)
+ Uns(7,p) — exp(=7p")Vaoi(7, p)

d
+ Unaa7,0")Un1(7,p) = Vaur(7,p")Vaui(7,p) ]m, (57)
with the initial integration,
® 1 —exp(—7(p+p*))dp
Up(r,p™) = / . 58

Since the denominators of the integrand in the above two equations are o(p?),
the integrations converge as p goes to oo, if the numerators are bounded. It
is shown later that all the terms in the numerator are bounded.

3.2 Integration of U,(r,p*) and V,(7, u*)
3.2.1 Integration of Uy(r,u*) and V,(r,p*)

We now evaluate Vy(r,p*).

Vy(r, p") = /loo exp(—Tf;)——p?‘))(p(—Tp) g_i (59)
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The integrand has an apparent singularity at p = p*, but not a true singular-
ity. Expanding the exponential function into the power series, the apparent
singularity vanishes as shown below

M= i L (60)

n=1

The function exp(—7p) can be expanded in a power series around 0, and
the expanded series converges uniformly except for —mp = *oo. We can
thus interchange the order of summation and integration. Expanding the
integrand into a power series in p, we obtain the following (refer to derivation

1).
/ _ i (_Tp)n]‘ dp

n—o = nl 2p—p)p |
- (2;? b33 ;ﬁ%)(—rp*)" rlogn 3 O (o)

Substituting p = 1 into the equation above, we easily obtain the lower limit
integral value. For the upper limit at p = co, we need the following further
derivation (refer to Derivation 2 and section 3.3).

,}gglo[(z P +r),) +logp] = Z " +logp] + qX_:l ;
=—7—Iogr+2—=—0+z— (62)

where v = 0.577216 is Euler’s constant and C' = log T 4+ 7. We thus obtain
Va(r,p*) as

T L, L & (=)t ) (=)
2 | C+:A=:1m :L;m(n+l+m)!) ](n-{-l)!' (63)

Substituting the above equations into Us(T,p*) = exp (—1p*)Va(r, —p*), we
obtain the function U, (7, p*) (refer to Derivation 3).

e D iy iy e L)

!
n=0 m=1 mm. m=0
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The truncated forms of Us(7,p*) and Va(7, p*) in the power series in (—7) are
given below

Ua(r,p") = %[ (C —1)(-7)+{1+(C— %)p*}(;)?
+ o +e- S (65
and
irp) = SO =D(=n)+ {1 - (-C+ 0 )
* {% - (=04 %)p‘z}(—;—)B]- (66)

It is noted that Us(7,p*) and V,(7,p*) are polynomials in (—7) with no
0th power of (—7). The lowest power of their expanded series is not simply
7 but (—log 7)7. Near 7 ~ 0, Uy(7,p*) and V,(T,p*) are given as

—(log 7)1

Ui(r,77) ~ Vi, p7) ~ BT (67)

When 7 approaches oo, U, (T, p*) converges to a fixed value.

oo | — —- * %) d
o0 J1 2(p+p*)p 1 2(p+p)p
Thus we have log (1
R og (1l +p”

Un(oo,p) = 28LEE), (69)

2p*
When 7 approaches oo, V,(oc0,p™) converges to 0, due to the equation
(59),
Va(oc0,p™) = 0. (70)
3.2.2 Integration of Us(r,p*) and V3(7,p*)

The third iteration, V5(r,p*), is evaluated by integrating second iterations
Ua(r,p*) and Vo(7,p*) given below.
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Vs(7,p%)
= [T 1Valrp) = exp(=1p)Ua(r. p7) + exp(=7p")Ui(7,) = Va(.p)

. . dp
+U2(T,p)Vz(T,p ) - VZ(Tvp)U2(Tap ) ]‘)p(p p,,)
B /°° Va(r,p*) — Va(r,p) dp / = Us(7,p) dp
= —exp(—7p") -
1 p—p 2p p—p 2p
Va(r, —Vo(r,p) d
+ UQ(T,p*)Vg(T,p*) +U2(T,p*)/ 2( 14 ) *2( ; )9_}7
‘ 1 pP—p <p
* e U2(Tv P*) - U2(T7 p) dp
— Va(r, — 71
2(r07) [ e (71)
We need two integrations,
_ ° Uz(T,P*) — Uy(7,p) dp
Uy (r,p) = / — 72
3 (T P ) 1 p— p* 2p ( )
and
_  Vy(r,p*) — Va(7,p) dp
V(. p%) = / i 73
3 (T P ) 1 p— p* 2p ( )

Using U3 (7, p*) and V5 (7,p*), we obtain V3(r, p*) expressed below.

Va(r,p") = Ua2(p")Va(p™) + V5 (7,p") — exp(—7p")Us (7,p")
+ Us(p")V5 (7, p7) = Va(p™)Us (7,p7) (74)

As U,(7,p*) and Va(7,p*) are expressed as summations of exponential-like
functions in the equations (64) and (63), we need to evaluate each exponential-
like function to obtain both V5 (7,p*) and Us (7,p*). Designating the coef-
ficient of each exponential-like functions as a,, the indefinite integration is
performed as below (refer to derivation 4).

T o (=7p) T (=7p)" dp
/[5,;)“’“( +1)! '2-;,“’“( +1)']2(p—P*)p
. Am+1 q m+]. q (’_"T )
= ——mz__:l[a"H—l IOgP +Z ++m+1_£((1) ) )](mp))|
) Amt24q(m + 2)/(=7p)?  (—Tp")™"
= - Llemsa(logs) +qz_: i e )](m+2) (75)
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Inserting p = 1 in the above equation, we obtain the coefficient c,, at the
lower integral limit given below.

2\ Amgqm!(—T)7
=§1 q?mwfq)!) (78)

Cm

For the upper limit, the converged value b,, as p approaches to oo is evaluated
as

e A Apgqm(—Tp)? | -

9=1
The integration in equation(75) is then expressed as a new exponential-like
function given below,
)" -
™ ™ . 78
+2 C+2(m+9), (78)

L) .

Evaluation of b,, for several exponential functions is discussed in subsection
3.3. ‘

U,(7, p*) is composed of the three exponential-like functions expressed in
equation (64). Substituting b, and c,, for those exponential-like functions
that constitute Us(7, p*), we obtain U3 (,p*) as below.

U:;(T,p‘) = 4 (—‘C - Z

(__T)z © oo n+21 1 (__T)m (-—Tp*)n
[_C+Z;+ n+2+m](n+2+m)m!](n+2)!

2 (=)™ X (n+ 2)H(=T) (=)
(=p")"

)"" }(n+2)‘( )]
n+2+q+m)m' qg(n +2+ q)! (n+2)

A

n=0 q-l m=0

In the same manner, we obtain V37(7,p*) as below.

) = oo S HEEL
_F)2 o nt2 n+2 n+2 72 (—rp*)"
y (4) go[@l C+Zl Zi—gﬁ )
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(-7)° & E1 (=) (n+2), (=7p7)"
B 4 nz=:omz=:1 C+qz_:lq mn+2+m)](n+2)l
(-7 & & Mﬂql( (=) (=7 )"
4 Z:oq; C+Z:1an+2+q)}( +2)!

(n+2+q)!(=7)",(n + 2= T)")]( p)"
m(n+2+q+m)!” qn+2+9)' " (n+2)

Substituting U5 (7, p*) and V5 (7, p*) into equation (74), we obtain V5(r, p*),
truncated to the third power in 7.

+
ol d
M8
NgE
——
NE

3
il
o

L~
(1)
3
!l

Vi(rp?) = R(=0)+5(=0)
+rl-5(=Cr + 01
B0 4T (-0 T T )

Us(t,p*) is obtained by exp(—7p*)V3(T, —p*).

Us(r,p*) = i[z(—C)2+5(—C +
+l-a-or+a
+ 2[3(—0)2+75(—0)+——%]P*——(—T) (82)

It is noted that the lowest power of Us(7,p*) and V3(7,p*) in (—7) is the
second order,or the first powers in (—7) vanish. The lowest power of their
expanded series is not simply 72 but (—7 log 7)2.

Near 7 ~ 0, the following relation holds

1
Us(r, ) ~ Va{r, ) ~ (~log7)’7" (53)
We can then choose the ratio of Us(7, p*)/Us(r,p*), as less than 1 ,

Us(r,p")
__Uz(r = <1. (84)
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The similar relation for V holds
V3(7", p*)

Valrop) <1. (85)

At 7 = oo, V3(7,p*) has the following form.

VB(OOaP*) =4/1 [ Vg(oo,p*) - ‘/Q(OO’])) - exp(—oo : p)UQ(Ooap*) (86)
d
- exp(—oo ) P*)U2(007P) + Ug(oo,p)Vg(OO,p*) - ‘/2(007P)U2(ocvp*) ]m{;p:)‘
Since V3(o0,p*) =0, and Uy(oo, p*) is bounded, we conclude,

lim V3(r,p") = V3(00,p") = 0. (87)

Substituting Uz(oo, p*) into the equation (57), we have Us(oo,p*)
Us( )d % [/3(o00,p)d
U3(Oo,p*):/ 200p p 2OOP 14
1 2pt+p)p 1 20p+p)p
+/‘°°U2 00, p*)Usz (o0, p)dp
2(p+p*)p
> U2(OO,p)dp
= U , * 1 U. , * / L e
2(00,p")? +(. + Uz(o0,p")) v 20p+pp
The last integration is evaluated as below (refer to Derivation (5)).
> Up(co,p)dp _ [ log(p + 1)dp
v 2(p+pp v Ap+pi)p

. 1 7 (log2)? >
= apziog2 - {5~ P2 4 tog2logp + 1) - 3

1
" ol
(1<p™<3)
2 2 x oo
= (1/4p")[2log2 - }%[(1—0%3)— + % —log2log Z, :L 1 + mZZI %( -
(p" 2 3)
Due to the equation (69), Uz(o0,p*) < Us(o0,1), we also obtain
Uy(o0,p°) < Us(oo, 1) (90)
Us(c0,1) and Us(o0,1) satisfy the following relation.
Us(oo,1) < Usz(oo, 1){Uz(00,1) + Us(oo, 1)(1 4+ Usz(0, 1))}
< Uz(oo,1). (91)

)"

pr—1

19



3.2.3 Higher Iterations

Repeating the same procedure that derives the third approximation, we ob-
tain the higher approximation,

Vari(7,p") = Ua(7, p")Va(7,p") + V11 (7,P") — exp(—7p") U, (7, P7)

+ Un(p)WVaia(7,P7) = Va(p")Upia (1, P7), (92)
where the two integrations are evaluated as
- %0 ( *)lhhm)
U y(mp™) = 93
i V)
Vo..(rp") = dp. 94
w1 (T:P7) ﬁ 2ﬂp P (94)

Un(r,p*) and V,(r,p*) are expressed as summations of exponential-like func-
tions. We designate U,(7,p*) and V,(,p*) as W, (r, p*) and their coefficients
as a, given below,

()™~ i am+n_1(7)_ﬁﬁ_. (95)

Walr.p") = (m+n-—1)!

Substituting W, (7, p*) into the integration of U, (7, p*) or V1 ,(7,p*), we
obtain W, (7,p") as

Wen(rp) = [ GBI tne),,

T)n i[bm%-n cm+n]%‘nz_€‘£")—! (96)

where b, and ¢p4n are given below (Derivation 4).

: X, Gmpgin(m +n)(=7p)?
bm n = li m n1 tat
4n = lim[a +ozg;1r)+q=l dmtatn) ] (97)
i = i am+q+n(m + n)!(""-)q (98)
=i  4(m+q+n)

For the upper limit, we evaluate following,

Amtq(m)!(=7p)*
g(m + q)! ! (99)

by = llrn[amlogp+z

g=1
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As we point out in the section 1, the problem of radiative transfer is deduced
to evaluate b,, in the above equation. The convergence of the series b, is
affirmed because the denominator of the integrand in equation (96) is o(p®)
and the numerator is bounded. '

We begin the iterative integration with V5(r, p*) in equation (61), and all
the coefficients of the power series of the mtegrand are 1. The resulting inte-
gration of V5(7, p*) is given in equation (63) and consists of three functions.
The coefficients of those functions in the power series expansions are given
below,

ntl 2, (—=7)™(n + 1)!
—-C, 7;‘2:41 — and mz;l mn 1T m) (100)

. By evaluating exp(—7p*)Vs(7, —p*), we obtain Uy(r, —p*) given by equation
(64).
It is noted that the lowest power of Us(r,p*) and V5(7,p*) in (—7) is
—7logT
2
For higher iterative integration, we integrate equations (93) and (94). The re-

sulting coefficients of those functions that constitute V., (7, p*) and U, (7, p*)
are given below,

(101)

ntl ‘ 2 (—7)"(n !
o o EL Com EETE

m=1

Substituting V, (7, p*) and U, (7,p*) into equation (92), we obtain
Vot1(7, p*). By the relation U,.1(7, p*) = exp(—7p#*)Voy1(—7, p*), we obtain
UTH-l (7-7 p*) .

It is noted that and the lowest powers in (—7) of V,, 1.1 (7, p*) and U, 11 (7, p*)
are Us(7, p*)V,(7,p*). Thus near 7 ~ 0, the following relation holds.

* * —log T * <
Unir(r, ) ~ Vanr(rp) ~ Ty (103)
We can then choose a ratio of U,y1(7,p*)/Us(7,p*) as less than 1,

Un+1(Ta p*> ’

TP ) 104
Uur,7) Ho
Vn+1(T7 p*)

— < L. 105
() (1),
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At 7 = oo, V3(7,p") has the following form.

Va(T,p") =/1 [ Va(7,p") = Va(, p) — exp(=7p)Us(7, p) (106)
. d
+ exp(=7p")Us(7, p) + Ua(1,p)Va(7, p*) = Va(7, p)Ua(7, p7) ]9———2—7
2p(p—p~)
Va(r,p*) =0, and U;(7,p*) is bounded, we conclude
lim V3(7,p") = V3(c0,p") = 0. (107)
Substituting U, (o0, p*) into equatlon (57), we have U, 1(oc, p*)
dp (o0 Un(o0, p)dp )Ydp
Unii(o0,p") = /
+1(c0,p%) /1 p+p L 2(p+p)p
Un (00 p")Un(0, p)dp
+
/ 2(p+p)p
* Un(o0,p)dp
= Us(00,p")Un(00,p7) + (14 Un(oo.p") [ 52222 (108
2(00, p™)Un(o0, p%) + ( (00.27)) | St P (108)

Because of the relation in equation (90), the following recurrent relation
holds. '
Up(o0,p™) < Upg(oc,1) (109)

Us(oo,1) is evaluated as below.

Ung1(00,1) < Un(o0, 1){Uz(00,1) + Us(00,1)(1 + Un(o0, 1))}
< Un(o0,1){Uz(00,1) + Uz(o0,1)(1 4 Uy(o0, 1))}
< Upn(oo,1) (110)

3.3 Convergence of Integrated Functions at Infinity

The converged values of integrated functions, which are necessary for the sec-
ond and third iterations, are discussed in this section. The detailed deriva-
tions are given in the references.!® 1 12

3.3.1 Converged Values (1)

We evaluate the converged value for the series given below.

JH&[Z

+logp] (111)
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We begin to evaluate 1/1+1/2+4---+ 1/n as

1 1 5 1 1] —2"
Z— = /(1+x+:c ++ - +2" )dfv:/ dz
el 0 0o 1—=z
I1—(1—-y) nl—-(1-£% ‘
= / I-(-yr y) dy=/ ———-—-———( ) dp, (112)
0 Yy 0 p

where the variables are changed (y = 1 — z, p = ny). Subtracting J* d?p from
both sides in the equation above, we obtain

Z——-/ dp /nl—_(l:———)—dp log n. (113)

p

As n — oo, the term (1 — 2)" approaches exp(—p) and the left hand side
approaches v,

v = lim [/On 1—Lp(”p)dp—logn]. (114)

n-—>00 p

where v = 0.577216 is Euler’s constant. Dividing the integral interval (0, 7p)
and (7p,n), we obtain : '

P | — — nl— (—
n—oo 0 p ™ p
. (=mp)™ . " exp(—p)
= - — - - ————2dp. (11
mz=:1 — log —logp nlggo S p. (115)

Thus we obtain the converged value

o0

Jim Z "+ logp) = —log(r) =7 = =C,

(116)

where C is designated as log 7 + 7.

3.3.2 Converged Values (2)

We evaluate the converged value for the series given below

lim i(ﬁi (117)

P00 “— (g 4+ 1)q!
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For r = 1, we derive the series as below.

S (=p) _ L &) L (P
;(qﬂ)!-(—p); 4 e e (1

As p — oo, we obtain the converged value for r = 1.

[e.e]

-1 | (119)

p—>00

The recurrence relation for r # 1 is given below (refer to Derivation 6).

; ( (—p)?

=1 (g+7)d!
r=13 (=) r-1 & (=p)F°
= - + 120
B R CEry i Diery B
As p — 0o, we obtain the converged value.
lim i S (121)
p—yoo I (¢ + T) q' T

Next, we evaluate the converged value for the series, given below.

n _ = nl(_p)m
9 (p) -mg EET " (122)

We derive it as below.

o0

o = i 23 SO -y

pooo (—p)n i (r+ ) (9! = (r + q)(
1 . n! = (_p)q ]

=— + lim 123
n+r poo(—p) [q_—_1 (r +9)q¢! (123)
As p —» oo, we obtain the converged value.
1
== 124
9= (124)
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3.3.3 Converged Values (3)

We evaluate the convergence of b,, in equation (76) for different a,.
First we evaluate the converged value for a, = 1.

m!(—-7p)?
b, = lim ———————+lo P 125
P*w[; dmtql  ° ) (129)

Due to the Derivation 2, we obtain the following.
=1
bm:-c+z; (126)

Second we evaluate the converged value for a, = Y|, %

— lim[3( %ql mi(=rp)® £ Hiogpl (127)
pvoot it [ q(m+q = l '
Due to the Deviation 7, we obtain the following.
m m ™o 7'('2

(O D+Y 5 (128)

g=1 q r=1

=25

r=1

=3 I

Third we evaluate the converged value for a, = Zl 1 I—T) n'. The

(n+)!
derivation is given below.
- L T R
= 35 G e
- ile"‘“z( Tll)‘ Zl C+§q lml-r?)' (129)

()
(n+D)it"

. e e
b = R e a2 G el %)

And finally we evaluate the converged value for ‘a, = 312,

(130)
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The derivation is given in Derivation (8),

oo 1 —Tl
b’“:z[em’LmH(rszz' Z[ C+Z o (n(1+3)l!

(131)

3.4 Evaluation of S,(7, p1, uq)
Based on the iterations of U, (7, u*) and V,(7, u*), we evaluate S,(7, 1, iq )-

341 71~0

The nth approximation of the scattering function S(7, u1, ;1; ) is expressed as

n 1 n
Su(T, 1, g ) Z (7o p1,80) = S1(Ty p1, 49 ) + (— Z
i=1 /“1 0 j=2
_ T _ T
U(m,p5) + Us(1, 1) — exp(—;l-)Vj(T, Bo) — exp(—u—_)Vj(ﬂul)
0
+U;(7, 10 )U;(7, 1) = Vi (7, 10 ) Vi, 1) |- (132)

Near 7 ~ 0, U,(,p*) and V,(7,p*) hold the relations in equation (104) and
(105). Substituting equation (104) into the first term in the bracket of the
summation in the above equation, we obtain

En:Uj(ﬂuS) < Uz(f,/za)zn:k”- (133)

71=2 1=2

All the other terms in the bracket of the summation are also expressed in the
same manner as the above equation. Since we can choose k < 1, the series
Sn(T, p1, g ) converges absolutely.

nlgl&) SH(T,/"'lv/‘ta) = S(Tnul,/*‘a) . (134)
We also conclude the convergence of series T,,(T, 41, ttg ) in the same manner.

nli)nolo Tn(Ta/"'la ,u(;) = T(Tnuh/"l) (135)
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34.2 T=

The nth approximation of the scattering function S(oo, uy, ;) is expressed
as

Sn(oomu’lvua) :ZASJ‘(OO»M,#(;)=Sl(°°a#17/15) (136)
=1
1 1 i
+(E + E)_l Y [Uj(00,145) + Uj(oo, 1) + Uj(o0, g )Us (00, p1)]-
J=2

At 7 = oo, U,(o0,p*) holds the relations in the equation (110). Substi-
tuting the relations in the above equation, we obtain

Y- Uj(oo, 1) < Un(o0,u5) K72 (137)
7j=2 7=2

All the terms in S, (oo, p1, 45 ) are also expressed in the same manner as the
above equation. Since we can choose k = 0.813 < 1, the series S,(o0, p1, g )
converges absolutely.

lim Sn(OO, 'uh,u'(;) = S(OO,,LLI,,UJ) (138)

n—r00

Since Va(oo, pg ) is 0, Tn(oo, i1, g ) is 0 due to equation (53),
7}1{{.10 Tn(OO, /‘17:“’(;) = T(OO, /‘Llhul) =0 (139)

3.4.3 Truncated Polynomials of Scattering and Transmitted Func-
tions

Substituting Vo(r,p*) (66) and V5(r, p*) (81) into equation (71), we obtain the
third approximation S3(7, u1, gg ) of the scattering function in the polynomial
up to the third power in 7 nearer 7 ~ 0,

S3(T, p1, g ) = S1(T 11, g ) + ASo (T, 1, g ) + AS3(T, pa, 1o )
11 ‘

= 7= %(#Ll + %)72 + %(Nl + 5)273
+%(- log 7)7? (4§ - %)72 (140)
+(é - ;,1-‘-(;1; %))(—log )’ + [18'Z + % — (—% + %)(;1: %)]#
+2(=log ) + T+ 2)(—log )’ + ('7; - %, % - %) 3



In the above equation, the second line is the first iteration, the third and
fourth lines are the second iteration, and the fifth line is the third iteration.

[n

the same manner as for S3(7, uy,ug ), we obtain T3(T, uy, pg ) of the

scattering function.

Ts(m,uz,05) = Ta(mpg,mg) + AT(7, py g ) + ATs(T, 17, 1g)

1,1 1., 11 1 1|3
T—s(—=+—=)" + —Zt—=+ _2)T
2°py o 6" ps Hallo  Ho
1
t(~logr)r? + (5 — Ty (141)
1 1,1 1 vy 7 v 3,1 1
Ho—=(—+ )(=logT)’ + [z + — — (=5 + ) (—+ =)’
g 3+ 2N log ) + (4 5= (< 4 D)o + o)
1 2.3 Y, 9 s, 5 T,
ba(—log )+ (< L+ (= log ) + (L= 3y + 55— 7o)

We rewrite the above equations in cubic polynomials in 7 and insert albedo
w where P(11,19) might occupy.

where

S3(T7 Mh#&) = WoT (142)
1
+3210w3(— log 7')7'2 + {3200w§ + sao1wo(— + “—_)}7'2
b1 Ho
0, 1 1
+5320wg(— log 7)27% + {31005 + 5311w5(#— + I_J_:)}(_ log 7)7°
1 0
1 1 1
+{ 3002w + Sa003w§ + 8301wa(— + —) + szoewo(— + —)?}r°
. H1 Ho Ky po

Ts(my uy  pg ) = woT (143)
1
+t210wg(— ].Og 7)7'2 + t200w37'2 + t201wO(——: + —T)TZ
By Ho

1 1
+t320wg(— ].Og T)2T3 + {t310w373 + t311w3(‘#—_' + ;:‘)}(— log T)T3
4 0

1 1
+{t3002wg + t3003wy + tamws(— + —)

B1 o Mo
1 11
+izpowo(—5 + —— +
0

1
— + — —5)}°
Hq Ha Ho

S210 = 0.5 S200 = 0.461 S201 — -0.5
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S320 = 0.25 $310 = 0.461 S311 = —025
83002 = 0.167 S3003 = 0.221 8301 = —0.231 $302 = 0.167

timno = Simno-

Substituting equations (69) and (89) into equation (52), we obtain the
third approximation S3(oc, uy,xg) of the scattering function in the polyno-
mial at 7 = co.

S3(7, p1, g ) = S1(oc, 1, i) + AS,(o0, #mua) + AS3(00, 1,45 )

Biko ¢ 1
—#1‘5‘#0_[1 ({ log(1+ )+1}{ log(l—{-;—)—%l}—l)
+ﬁ{w (00, 1) + 1H{Us(o0, 45) + 1} — 1] (144)

3.5 Numerical Calculation of Scattering

We calculate the first, second, and third approximations as linear, quadratic,
and cubic polynomials. Fig.2 illustrates the scattering function for w = 1 and
w = 0.7 and the pairs of the incident solar and observing angles are (0°,0°),
(30°,30°) and (45°,45°).

We recognize the characteristics of the approximation of the scattering
function as '
(1) the third approximation is nearer to the first approximation than to the
second approximation in all cases,
(2) the effect of the albedo w is recognized but not is so significant,
(3) the effect of the incident and observing angles is also recognized.

It is noted that the truncated Sy(, us, p;) and To(T, i, ;) up to the sec-
ond order in 7 are identical. And the truncated S3(7, i, ;) and T5(7, ps, i)
to the third order in 7 are slightly different. The last terms of the truncated
polynomials of Ss(7, u;, 4;) is given as

1 1

S302W ( + _)2} 37
020 H1  Ho

while that of T5(7, u;, i) is given as
1 11 1

ssnwo(—5 + —— + —_—2)}7'3-
221 Ka Ho Mo
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8(0.0,¢)

8(x¢ ,.30,30)

S(t, 45, 45)

0.4

0.2

0.2
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Figure 2: Scattering for |sotropic Atmosphere
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4 Integration of the Anisotropic Atmosphere

The second iterations, AS,(7,7;,%0) for the anisotropic atmosphere is ex--
pressed from equation (23) as '

ASy(T,71,10) = (— + —) 7!
27, t0) (/ll #o)
dQ - df}
/P 21,13 Z3,Z())U1 (o) 3 —/P z1,13 23,10)L71(—u1)47r;3
dQ_ - = ., dQ
+ /P Z1122 Z2,20)U1(,ul —/P 11,12 YP(22,20) U1 (—pg )4 2_
ko
T T
— {exp(=—=—-—) -1} x
Ko 231
- = > = dQ dQ_
{ /P(Zl7z3)P(23720) (= #1 > +/P z1712 P(l27lo)U1( #0)47r —}
- > = dQl; dQ
+ //P 11712 Zz,ls)P(la,ZO)L (11,13 )Ul(”3’#°)47ry2 47r:3
- - o, _ dS), dQ)
//P 11,13 Zsalz)P(lzaZO)Ul("#o7#2)U1(—#1,#3))47T;2_ 47T:31
T T
{exp(=—= - —) -1}
Ho 1 :
- - = o dQ; dQ)
//P 11723 23,12)P(22,20)U1(—u0,,u2 )Ul( /Jla.“3))4ﬂ_#2 471_:3]
(145)

where Uy (T, po, 1) is given as

1 1 | (-t (—7)
Ui(T, p1, g + —) 7M1 — exp( + —)]. 146)
(mppe) = (04 L2 B kg (
In equation (145) the arguments in the functions U,(r, 11,%) are omitted
except for the significant ones.
Using the addition theorem of the Legendre function, we decompose the
phase function into the the associate Legendre functions, P (u3), as

~—

- =

PGis) = {302 bom)(3 w" B () P (12)) cos m{ips — 1)} (147)

m=0 l=m
P(iayio) = { 352 = fom)( 3 wl B (s) P~ ) cos mlos — po)'}, (148)
m=0 k=m .
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where &g, and w]* are given as

dom =1 (m=0), dom =0 (m#0), (149)
m_ ({=m) 3
w; = wzm. (100)

The minus sign in equation (148) is due to the opposite direction of the
vectors 73 and 7g, or a pair of directions: one is the upper bound and the
other is the lower bound (refer to equation(26)).

Due to the orthogonality of the functions P™(u3) cos m(ps — 1) for dif-
ferent m, we obtain the integration

- =

1 m > = > =
o= | PG ) PG, fo)des

27 Jo

= D (2= Gom)( D (=1)fwlwl P () P (g ) P () P (ss))
m=0 Lk=m

X cosm(p; — @o). (151)

The minus sign (—1)* is due to the odd/even characteristic of the associated
Legendre function P[*(pg).

In the same manner, we obtain the integration of the triple product of
phase functions as

2 27r _, - - = d d
/ f 11,12 12, 13)1)(13,lo)‘—(p‘z"'(f3

2 2w
= / / [zv—aom{l§wrpm ) B (—7)} cos m(pz — 1))
x [20(2 - 50‘"‘){1; w* P (—py )P (p3) } cosm(ips — 2] d;:rz
<13 (2= Bom MY w B (i) (-5 cosm{ = )
= @ dmeosmiza— ) 3o (~L)H
U P (i) P (i) P i) P o) PP ) PP )}, (152)

We define an integration, Q7%(7, ig ), as
m - 1 m m | - dll’3 ~
QTk(T, o) Z/o P (ps) Py (#S)Ul(ﬁlla,ﬂo)%- (153)
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Using Q7% (T, ko ), we obtain AS,.

- - 1 1 '
2 T,il,io = |- -1 —50m cosm 1 — $o
ASs( ) (M+#0 mzzoo ) (1 — o) x
[ Z wiwi { P (p1) P (po )(— 1)k{QTk(T’#o_)“(—1)I+kQTk(T,-#E)}
3 lLLk=m
+ Z wlw{ P () PO (3 ) (—1)H QT (7, 1) — (—1)*QT (7, — 1)}
l,k=m
—{exz)(—#—1 - E) -1}
x “; wirwp { PP () PE (5 ) (= 1) QT (—15) + (1) *QT (=)}
b S (DRl P () P ()OI 7 i) QR )
a,b,c=m
S (PuTper P P QT ) Q)
a,bjc=m
- {eXP(—;a———l)-l}
5 3 (U T P P kg Q{7 ~m QR ~)] (154)
a,b,c=m

In the above equation, the sign of each term is determined by the choice of
l,k,a,b, and c. This determination originates from the even/odd character-
istic of the associated Legendre functions.

4.1 Zenith Angle Integration

The second iteration ASy(7,11,10) is expressed as Q% (7, 1) in equation (154).
The integrand of Q7% (7, ug) has a factor P™(us) P (p3) and it is reduced to
the polynomial of the degree [ + &k in T given below.

I+k

P (pa Za"‘““ 5 (155)

We integrate the moment integration, U (T, ig ), as below.

n dp
Uz (7,1 ) / pa Uy 7'/13,#0)2 > (156)
H3
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UZ (7, pg ) is evaluated by partial integration and its recurrence relation
is given in Derivation 9. The coefficients of the series expansion of U(T, g )
in (—7) are also polynomials of 1/u5. The truncated form of U} (r, pug) for
n > 1 is expressed as

n (_T)'2 n 1 (—T)2

Uy (T 00) = ulo(—7) + Y2051 T Uy Y +--- (157)
! o !

where u, is the coeflicient of nth power and is given in Derivation 9. It is
noted that the coeflicient of the first power (—7) does not include yg .

Substituting equations (157) and (155) into equation (153), we obtain
Q7%(7, 1) as a power series expansion in (—T),

m _ mik(_ G T Gt S S 158
Ql,k(T7 fo) = 10 (=7) + ‘120 o1 +q, N Lo +- - (138)
: - Ho

where a™* is the coefficient of the nth degree-power in u3, given below.

[+k
7 = 3 ag (159
n=0
It is noted that the coefficient of the first power (—7) in Q7%(7, to) does not
include g .
Substituting equation (158) into the first term in the bracket of equation
(154), we obtain following.
ik (—7)7 2

QTk(Tv po) — (= )I+lek(T -y ) = 42,1 51 F +--- ({+k = even)
)

+o- (I +k = odd) (160)

mik (— T)2
21

For the case ({ + k = odd), adding the second term in equation (154) to the
first term, we obtain
PP (1) P (10) (= 1)*{QTk(0) = (=) Q7 (—po) },
+ Pm(#l)PF( o) (=DH{QM(k1) — (1) QT(~m)}
2

_ 0! 271) L. (161)

From the first and second terms in equation (1534), the first power in (—7)
vanishes and the second power emerges only for the case ({ + k = even).

= 2q75°(—7) + 245
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From the third terms in the bracket of equation (154), we only need the
first power in (—7) because it is multiplied by another first power in (—7).
Substituting the equation (158) into this term, we obtain

QUk(—

po) + (“I)H-kQTk(—/ll) = ‘Zq}’fé"(—r) +--+, (I 4+ k= even)

= 0(=7)+--- (I+k=odd). (162)

From the fourth and fifth term, substituting the equation (154) we obtain

(=1 ewlwpwl P () PT (10) Qs (1) Qb (o)

(-l)bwﬁnw?wlnpf(#1)P:1(/10)Q$b(*#1)@3}(“#0)
0(=7)*+--- (a+c=even)
[ > (1) wlwpwl PP () Pl (o) ars e ) (—7)% + - - -

a,b,c=m

(a +c=odd). (163)

No (—7)? term emerges from the sixth term in the bracket of equation

(154).

Thus we obtain the truncated second iterations given below,

X

AS?(Ta zlv ZO)

2 (2= dom)[ D (~1) wlwi (a51" — 2470") P (1) P (o)

2—+—=)"" 3 (-1 wwiwl g aro P (1) P (o))

M1 Ho (a,b,c)?
2
—T
cosmipr — o) (164)

where ([, k) denotes [,k > m and [ +k is even, and (a, b,c)* denotes a,b,c >
m and a + ¢ is odd.

It is noted that the truncated second iteration does not have a first power
in (—7). It is also noted that the fourth and fifth terms vanish for w, = 0 or
w, = 0 for all the possible combinations of a 4+ ¢ = odd such as in Rayleigh
scattering.
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4.2 Separated Integration

We consider changing the order of lim and ¥ in the integration of AS,. We
begin with the integration of U} (r,17).

Uz (r,17) = /01(1 —exp(—: - ))M“_

u pr’” 2 s+ )
L d
= —lim | —)"‘“1 nll (165)
e—0 m' u.(- 7] ‘)N

On the integral interval (g,1), we interchange the order of [! and ¥~ and
divide the summation into two parts: one is m < n and the other is m > n

Ui(r,i7) = — 27:[/1(:7 +1)™! n"mdu](z;)‘m
= rtim S L e Ly B yedy (T
(-t 3 (G 7 G+ U gy (169

The first part of the summation (m < n) consists of ordinary integrations
because the minimum power in the yx in the integrand is 0 and there is no
singularity at 4 = 0. We can separately integrate the powers of U}(7,%7) in
(—7). We call this part the Separated Integration Part (SIP). The order of
the power in 7 of Uj(7,17) that is integrated separately is equal to or less
than n.

The second part ( m > n) involves negative powers in p or logp, and
has singularities at u = 0. Therefore, we cannot interchange the order of lim
and ¥ and so we cannot integrate the terms separately. We call the second
part the Non-Separated Integration Part (NIP). The order of the power in
7 of Uy(r,i7) that cannot be integrated separately is greater than n. NIP
converges as u approaches 0, because it is equal to the converged U3 (r,16)
minus the bounded SIP.

We apply the above observation to equation (154).

4.2.1 First and Second Terms

Due to equation (164), the first power in 7 vanishes from the first and the
second terms in equation (154) and we can select only the case ({4 k = even)
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of P/™(u3) P (us). The polynomial of P/™(u3)P*(us) in p3 are given below
(refer to derivation 9).

P (us) P (ps) = ao+agus+- - (m + [ = even),
= agus + aquz + - -(m+1=odd). (167)

We must calculate the moment integrations: UJ(u3), UF(us), Us(us), -+ In
U?(p3) the second power in 7 is include in a NIP, and in the other moment
integrations the second powers in 7 are included in SIPs. Taking account of
ag = P*(0)P[*(0), the integration QF}(7,uq) is then divided into SIP and
NIP as below.

m - 1 m m _ d[,t
Qr(roiz)= [ P o) P () Ui (s, ) 5
0 H3

N _\dps

= i PP O)PP(0) [ U(rpsoii5)5,
d/.t3

+ [P us) B as) = BP0 PRONUA (ot 1) 5 (168)

Substituting the second power of (—7) in the polynomial U(po) into NIP
and truncating SIP to the second power of (—7), we obtain

Qf(rou3) = {1+ (€ = ==} EPOPE(0)

2
1 + _L)@_B] (—7)2

) 169)

_ /Ol(le(yg)P;:n(/ls) - P (0) A (0))(

4.2.2 Third Term

We only need the first order power in 7 from the third term integration in
equation (154). Due to equation (164), we can select only the case (I + &k =
even) of P/*(u3) Pi*(p3). We can select the first power in the same manner as
in the first and second terms. We then obtain the integration Q7% (T, g )-

QR(r,—13) = [5(C = VP O)PE(0)
— [P s) - BROPPO)ZR-T) (170)
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4.2.3 Fourth and Fifth Terms

Due to equation (164), the first power in 7 vanishes from the fourth and
fifth terms in equation (134) and we can select only the case (a + ¢ = odd)
of P™(u3)P(u3). The polynomial of P™(us)P{"(ps) in g3 are given below
(refer to derivation 9).

The lowest powers of u; and us for the product of P*(u; ) are given
below (refer to the Derivation 9),

P 3 ) P13 B i) P ()

= cia(py ) (p3)? (m+b=odd,a+b=even)

= ca(pg ) (u3) (m+b=odd,a+ b= odd)

= co1(u3) (m + b= even,a+ b= even)
= cor(p3) (m + b = even,a + b = odd)

We integrate the fourth and fifth term below.

S I i _.du; _.dus
L[ P us) B u ) By (s) P2 s Us (s, 7 5 U (s i3 ) 5> (171)
0 Jo Ko 2p3

For m + b = odd the integration is the product of two SIPs: one for x5 and
the other for u3. For m + b = even the integration is a product of one SIP
and NIP. The integration is then expressed for the following,

= //P () B (pz ) B (Hs)Pm(#B)dzz ZZZ]( 7)?

+ (m+ b= odd),

[—%(0 ~DRPORO) [ BPs) P52

[ R ) - PR PR O} ) P ) o 52 )

(m + b = even,a + b = even),
= [__(C_ l)Pb (O)Pc (0) Pa. (/‘1’2 )Pb (”2) 2_
2 0 2/—12

+ /01 /0 1 P (ug) By (ug By (ua) P (p3) — P{‘(O)Pf‘(o)};l/;—;-_;—i:'](—r)z

+ - (m + b= even,a + b = odd) (172)
Sine the lowest power in 7 is 3 in the last term in equation (154), we do

not need to integrate this last term.
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4.3 Surface Integration

We can bring back the idea of division of integration to the surface integration
on the unit hemisphere expressed in equation (145). This division is possible
because the integrations in equation (145) are expressed as the summation of
the integrations of the products of the associated Legendre functions shown
in equation (153) and further the products become polynomials of definite
order in 3 (155). It is noted that from the last integration in equation (154)
no second power in (—7)? emerges.

4.3.1 First four integrations

The first integration in equation (145) is divided into SIP and NIP and
expressed as

df;
4mps
= [{P@,@)PG i) = P, )P ) U (7 k5 )

| PG i) PG ) U7, 15 13)
dQs
4 s

> = = _ an
+ lim / (PG, ) Py, i) YU (T, 13 » 3) (173)

uz—0 47!'#3 ’

where Zg denotes the projected direction of i3 onto the equator of the unit
sphere (refer to Figure 1). At the equator of the unit sphere, uj3 is 0. Substi-
tuting the second power term of the polynomial U;(7, g1, g ) into SIP and
the second term of the polynomial Uy (7, ¢y ) into NIP in the above equation,
we obtain the truncated polynomial of the second degree in 7,

dQs

4 s
> el v 7 _1_ L dQ; (‘7)2
~[[ (PP To) = PR, B) P )Moz + )
: 1.1 2m - - d(,9 —T)2
¥ {1+(c—§>;1—_}[/0 PG 2P, i) 222 T (174)

0

/P 11,13 ls,lo)Ul(T #07#3)

Substituting the above equations into the first and second integrations in
the bracket in equation (145), we obtain

d0s Qs

4mps

fP(;l,fs)P(z3,zo)Ul(u0 —/P i1, i3) P(is, 10) Ur (—p1)
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- ! - dQ —T 2
/{P £ PG ) — P, B) Pl o) o] )

, 1 m o - o d(,93 (_T)
+ ((/ - 5)(#1 + — i )[ o P(’Ll,l3)P(l3,lo)E'] 21

f

We evaluate the third and fourth integrations in equation (145) in the
same manner.

4.3.2 Fifth and sixth integrations
The fifth integration is divided into SIP and NIP as below.

T - = > Ty df)
~{exp(-—=~ 1) -1} /P(zl,zapm,zo)vl(—uo ,
/~‘0 dmps
1 des
= oty Lyeo-a / (i1, 35) P (i}, 20) =
(#1 Ho ) v ) am

= K s (
/{P 11,23 23,20) P(Z1,Z3)P(z3 ZO)}47I'/133] 2!) +--- (176)

The equation above holds for the two cases described in (170). We can
evaluate the sixth integration in equation (145) in the same manner.

4.3.3 Seventh and eighth integrations

The seventh integration is divided into SIP and NIP as below.

dQ; dQ
dmpy Ampg

//P 11,12 7’2aZB)P(;I%;0)071(/117/12_)0’1(”37:u’(;)

// 21722 P 'Lg,Zg)P(;3,;0) - P(;I7ZI2)P(?27;3)P(;3’;0)
R, dQ; dQs
dmpy Amps

P(’I,U)P(Z%’s)P( 3720)](]1(/11’#2 )Ul(.usa/lo)
+ //P lhlz 27Zs)P(Zs,;o)Ul(#h#5)0'1(/13,/16)

+ //P i1, 12) P2, 1) P(i5, 0)Ur (g1, 7 )Us (13, 15 )]

- - - = - = - =

= //{P T 72 P (i i) P (Ga, 50) — P31, 1) P (i, 35) P(is, 30)
45 dQ,
ATy 4mus

dQy; dQs
dmpg 4mps

- -

P(ZlaZ2)P(1232§3)P(;{3’;0)}
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- =+ = dpy dS)
- (C-1) //P 11,12 2,13)P(13, o)ﬁ >

Am Amps
- —1)//P 7,1,7,2 22723)P( )

dQ3 dps
dmpy 4w

——1(=7)" (177)

The equation above holds for all the cases described in (172). We can
evaluate the eighth integration in equation (145) in the same manner.

4.4 Result of the Second Approximation

Expanding the first approximated scattering function into a power series
expansion in 7 and truncating up to the second degree, we obtain

S R 1 1 7-2 P - 2 178
1(T,11,%) = [T—(Z“Fmv)?!"] (21, %0)- (178)

The second iteration is expressed by the integration of the products of the
phase functions as below.

ASy(7,51,70) = [(3 = 2C) L(31,%0) + Lu(31,70) + Li(21, 70) |
b2 (O DRl o) + Do) + 3G
(179)

The coefficients are evaluated on the unit hemisphere (we return the vari-
able u3 to pg).

-+ = - = - -+ dQ)
L.(21,%0) = /U{P(llﬂs)P(ls’lo) = P(Zl’lg)P(%’lo)}zﬁ; (180)
> = < = > = s dQ
Li(¢1,10) = /L{P(h,lz)P(h,lo) - P(ll’Z;)P(z2’zo)}47r|:2| (181)
o o 21 oo - . d
Ie(il,io):/ P, ) P(ih, 1) 222 (182)
0 4r
and
- = 2m - - 2 - = - - =+ =, dpad2
Laivio) = [ [ (PGP, )P o) = PGo, ) P&, ) P, )} gty
(183)
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- - - -

- = 2w - - - - = > - > - - T
[”(Zl,'lo) = A 0 {P(Zl’ZQ)P('lQ,lg)P(lg’Zo) -— P(lo.‘ Zz)P(l2,lg)P(Zg’ll)}

Iul(gl,;o) = / / {P Z1,12 22,2‘3)13(;3,{0) —P(;o,zz)P(;z,73)13(;37;1)}

- =

— {P(i1,15) P(ih,33) P(is, i0) — P(io, 15) P(i}, 83) P(is, 01)}

- dydS)y
1672 |p2|ps

- {P(Zlv7’2)P(l272:">)P(;§’>7;0) - P(;07;2)P(;2’ %)P(lé’ll)}]

Adding the first approximation to the second iteration, we obtain the
second approximation.

- - - 1 ]. Indiird (""T)2
SQ(T,'ll,lo) = P(Zl,lo)T - (;’1‘ + |“/L_0|)P(l1,lo)2—!
+ {=2L(31,%0) + 2( + )7 (Luu(11,20) + Tu(i1,%0))} log 72—
g1 pol 2!
+ [Iu(lla 'Lo) + Il(ll, 'Lo) + (3 - 27)Ic(i1, Z()) +
1 - = (—7)?

2( —)"H (v = 1)(Luu(ir, o) + Tu(n, 0)) + Iu,(il,io)}](

o
(186)

I#I

4.5 Numerical Calculation of Scattering

To evaluate the accuracy of the second approximation discussed in the previ-
ous subsections, we carry out calculations for the Rayleigh and aerosol scat-
tering atmospheres for various cases and compare the result with the exact
solutions. To appreciate the improvement of accuracy from single scattering,
we calculate the the single scattering reflectance by the equation (1) as,

Lo wo P e
o, 1, 70) = o 20 lir, fo) (187)
4par | o

where wy is the single scattering albedo. The albedo for the Rayleigh scat-
tering is 1 and its phase function is given as,

- =2
L . .-
PG = 3( —I—cos4(zl A1) )

(188)
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The maritime aerosol with relative humidity of 80.0% at a wavelength of
443 nm is used and its phase function is given in Figure 3. The Maritime
aerosol model has a single scattering albedo of 0.9929.

The successive-order-of-scattering (SOS) ' method is used in solving the
radiative transfer equation for the Rayleigh-scattering atmosphere and the
aerosol-scattering atmosphere. The SOS code for the ocean-atmosphere sys-
tem was developed for the atmospheric correction algorithm for the ocean
color sensors. '* ! This code computes the upward radiance at the top and
the downward radiance at the base of the medium for the ocean-atmosphere
system. The code is capable of yielding radiances that are accurate to nearly

0.1%. 4

4.5.1 Rayleigh Scattering Atmosphere

Figure 3 quantitatively evaluates accuracy using the second approximation
for a Rayleigh scattering atmosphere for the various solar-sensor geometries
and for the eight wavelengths from 412nm to 865nm. The Rayleigh op-
tical thicknesses corresponding to the eight wavelengths are 0.3185(412nm),
0.2361(443nm), 0.1560(490nm), 0.1324(510nm), 0.0938(560nm), 0.0436(670nm),
0.0255(765nm) and 0.0155(865nm). Figures 3(a) to (d) show the error (%) in
the computed upward reflectance as a function of the solar zenith angle and
for a sensor viewing angle of 45°. The left (right) part of each plot in Figure

3 corresponds to a relative azimuth angle of 0° ( 180°) (principal scattering
plane).

Results in Figure 3 show the significant improvement in accuracy with
using the second approximation compared with the single scattering formula.
Using the new formula, the errors are all within 1% for the red and near-
infrared wavelengths, while errors are within nearly 10% for the blue bands
for zenith angles less than 60°. It is important to note that, with the second
approximation, the error in a given wavelength (optical thickness) is almost
independent of the viewing geometry.

4.5.2 Maritime Aerosol Atmosphere

The double scattering approximation is the second approximation without
triple scattering. Computations for various coefficients are much more in-
volved due predominantly to the aerosol forward scattering characteristics.
Figure 4 shows examples of error (%) for a sensor viewing angle of 45° as a
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function of the solar zenith angle for the principal scattering plane. Figures
4(a) to (d) are the results for the aerosol optical thicknesses of 0.05(a), 0.1(b),
0.2(c), and 0.3(d).

The results in Figure 4 show significant improvement in accuracy using
the double scattering approximation compared with the single scattering for-
mula particularly for the part of the results with A¢ = 0°. It is interesting
to note that the scattering angles for the A¢ = 0° part (the left part of the
plot) vary from 55° to 135°. (all forward scattering), while the scattering
angles for A¢ = 180° (the right part of the plot) change from 135° to 180°
(all backward scattering). We are usually more interested in the results with
the large scattering angles because measurements with the large scattering
angles are generally accessible for satellite remote sensing. With the double
scattering approximation and scattering angles > 100°, the reflectance error
is usually within 1% for an aerosol optical thickness of 0.05, while the error
is within 4% for an optical thickness of 0.1. As expected, the error increases
for the turbid atmosphere. The error is proportional to the slant path of
the optical thickness, i.e., 7,/cosf. The aerosol reflectance errors are within
about 7% (12%) for an optical thickness of 0.2 (0.3).

103:"'l"‘l"'I"‘I"'I"'I"'I"‘l"
D 1 Rayleigh Scattering
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Figure 3: Phase Functions
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5 Properties of the Solution

5.1 Uniqueness of the solution

The functions U,(r,u) and V,(r,u) are identical to the nth iteration of X
and Y respectively because of equation (48) and (49) for U, and V, and
corresponding equations for X and Y.
X(Taﬂ) =1+ UZ(THU) + U3(T7,u) +-
Y(Tnu) = exp(—‘r/p) + V2(T,/‘L) + %(Ta“) +-+- (189)
S(7, p1,po ) and T(7, py, o ) are given below.
1 1

(- + 205 5) = X)X (13) = Y ()Y 5]
(;1;" - :—Oﬂ"(n urois) = Y (i) X (47) = X(u3)Y (67)] - (190)

Due to Mullikin, the family of the solution X and Y for w =1 are given

X(r,p) = Xo(w) + (bg + @) Xo(u)p + bXo(w)u® + aYo(u)u + bYo(u)p*
(191)

Y (r, 1) = Yo(p) — (bg — a)Yo(u)p + bYo(p)n® — aXo(p)n + bXo(p)n®
(192)

where Xo(7, ) and Yo(7, 1) are the solution of the iterative integration with 1
(exp(—7/p)) as the initial function for X (Y'), @ and b are arbitrary constants,
and g is the given as

g= (%/01 Xo(r, p)pdp + %/01 Yo(r, u)udu)(%/ol Yo(r,p)dp)™".  (193)

Substituting X (7, u) and Y (7, ) into S(7, u1, pg ) and taking account of the
following,

li_%S(T,ul,ug) =7+ o(7), (194)
we conclude that

a=b=0 (195)



The condition in equation(194) comes from the single scattering for the thin
layer in the plane-parallel atmosphere in equation (34).

The inclusion of log 7 in S(7.u;.45) in the equation (140) implies the
possibility of the non-uniqueness of S(r, 1, g ). From the theory of function,
log z is a many valued function, given as

log z = log |z] + n2m: (196)

where n is an integer and z is a real number. On a different branch, n is
different. In most cases, we select the branch where n is 0. On branches
where n is not 0, log z explicitly has an imaginary component. However a
function f(log z) that has powers in log z may become a real valued function
on branches where n is not 0. The function S(7, 41, fg ) is such a function as
it has powers in log 7.

5.2 Polynomials

The lowest power in 7 of the expanded series of the second iterations ASy (7,1, 1)
and ATy(7,1,,14) for the isotropic atmosphere is 2 and that of the third iter-
ations are 3. In general the lowest power in 7 of the expanded series of the
iterations is raised by 1 as the iteration step is raised. For an anisotropic
atmosphere, we only show that the lowest power in 7 of the second iterations
ASy(7,11,10) is 2. We conjecture that the lowest power in 7 of the iterations

is raised by 1 as the iteration step is raised. Therefore, we need only up to the
third iteration, if we want the cubic polynomial approximation for S(t,,1)
and T'(7,11,14).

The second approximations Sy(, 4y, %) and T(T,1;,14) are not pure quadratic
polynomials but quadratic polynomials with terms 7% log (7). The log term
comes from the singularity at the lower integral limit. It is possible that, by
expanding log 7 around 7 # 0.0, we can obtain the quadratic polynomials
of the scattering function S(r, 71,;0). Rather, we leave it as log to maintain
the validity of the expression in the range 7 > 0.0. The third approxima-
tions S3(7,%1,170) and T5(7,1;,%4) are similarly 'quasi’ cubic polynomials with
73(log 7)? and 7°log 7. The term 7%(log 7)* is more significant than 7° but
less significant than 72, as expressed below.

3 2
lim U987 _ (197)

T—0 T3
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3(] 2 2 2
m(logT)* ,m(logr) zlim_(l(.)gj_)_:limrzo (198)

70 T2 T30 1/7‘ 70 —1/1’ T—0

Therefore the terms 72 log 7 and 73(log 7)? do not affect the second approxi-
mation truncated up to the second power in 7. The order of significance in
the third approximation, as 7 approaches to 0, is given below.

2

, T (logT)?, tilogT, T (199)

2
T, T logT, T

Near 7 ~ 0, the dominant term in the polynomials of the expanded series
of ASy(7,1y,10) and ATy(7,11,14) is (1/2)(—log 7)7? and that of AS;3(7,1%1,1)
and ATs(7,1,,14) is (1/4)(—logT)*r®. In general, the dominant term in
the polynomials of the expanded series of AS,(7,11,%0) and AT, (7,11,14) is
(1/2"=1)(—log 7)""'r". The ratio S,(7,%1,%0)/Sn+1(7,%1,%) = (1/2)(—log )7
is far less than 1. Therefore Si(7,11,10) + S2(7,%1,%) + - + - + - converges to
S(7,1,10) near 7 ~ 0. Furthermore the series also converges to S(oo,?1,1)
at T = oo.

5.3 Surface Integration for Anisotropic Atmosphere

In the polynomial of the second approximation for the anisotropic atmo-
sphere, the coefficient of the powers in 7 are characterized by the number of
multiplications of the scattering phase function: one phase function corre-
sponds to single scattering, two multiplications corresponds to double scat-
tering and three multiplications corresponds to triple scattering. The coeffi-
cients that include P(;l, ;0) are single scattering, the surface integrals /I.,[;, I,
are double scattering and the surface integrals I,,, Iy, I; are triple scatter-
ing. For the atmosphere with a scattering phase function that does not have
the odd order Legendre functions in its series expansion in the cosine of the
angle, such as the Rayleigh scattering, there are no triple scattering terms in
the second approximation.

In the second approximation for the anisotropic atmosphere we evaluate
the coefficients of the quadratic polynomial by integrating products of the
phase functions on the surface of the unit hemisphere. We do not need to
decompose the phase functions into Legendre functions and trigonometric
functions. This greatly simplifies calculations.

At T = 0o, we can integrate the iterations easily without the difficulties
that exist in the integration when 7 is finite.
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6 Conclusion

We can integrate Chandrasekhar’s integral equation based on two impor-
tant mathematical break-throughs: evaluating the converged value of several
exponential-like functions at oo; and evaluating the coeflicients of the poly-
nomial by integrating products of phase functions on the surface of the unit
hemisphere.

We obtain the approximate scattering and transmission functions, as the
cubic polynomials in the optical thickness for the isotropic atmosphere.

We obtain the approximated scattering function as a quadratic polyno-
mial in the optical thickness for the anisotropic atmosphere. The coeflicients
of the polynomial are surface integrated values of the phase functions with
respect to the unit hemisphere.

The numerical calculation of approximation for the isotropic atmosphere
shows that the cubic approximation is nearer to the linear approximation
than to the second approximation for 7 < 0.5.

The numerical calculation by the quadratic approximation for the anisotropic
atmosphere yields generalized reflectively more accurate than by the single
scattering approximation. In particular the improvement is remarkable when
the observing direction is close to the the solar input direction.

The computation time for all the numerical evaluation is significantly
short.
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Derivation 9

We define a new function W,(7) as

1 T.d
Wa(r) = [ u3exp(——) %2
us 2z
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The recurrence relation of W,(7) is given as

. exp(-7)  (=7)
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We can evaluate W, (7) by the recurrence relation and the initial function
Wo(r). Using W, (1), we can derive the recurrence relation for U (T, 1)
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