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1. Introduction

Recently the author has considered a higher-
order approximate procedure for the Neumann prob-
lem using the isoparametric finite element method
with the relevant lumping operator and he has obta-
ined the optimal order of convergence [1]. The
present paper is a report of the numerical experi-
ments on such a problem. For Poisson’s equation
with inhomogeneous Neumann boundary condition in
a domain with a curved boundary, several finite-
element procedures are constructed by using piece-
wise linear or piecewise quadratic basis functions and
some relevant lumping operators. For each procedure
a series of approximate solutions are obtained by
subdividing the domain and its convergence order is
compared with the theoretical one.

2. Notations and Theoretical Reuslts

Let Q denote a bounded domain in R’ with
boundary I',which is sufficiently smooth. Let H™(Q)
be the usual Sobolev space and its norm is given
by

/2
uuum,a={z|a|<_mfaln°u|’dxdy} /

where a = (e, @), @ and a, are non-negative integers,
le] = ey +a, and D“u=§;<87,l—,zla—l;a—,
H(Q) is usually expressed as L*(Q). Throughout
the present paper the following notations are used,
(f,v) =/ of-v dxdy for f,v€EL’(Q), (1)
a(u,v) =(du/9x, av/ax)+(aw/dy, ov/dy)
for u,ve H'(Q), (2)
and

[g, vI=/rg-v dt for g, veL2(I. (3)
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We consider the following problem,
{-A u=f in Q
du/dn=g on I. (4)

Here 4=3"/3x*+8*/3y and n refers to the outer
normal to I. In order that a solution exists it is
necessary that the inhomogeneous data, f and g,
satisfy the condition

(f, D+(g, 1=0. (5)

If f and g have appropriate smoothness, a solu-
tion exists in H®(Q) uniquely under the condition

(w D=0, (6)
for some m.

We triangulate 2 so that all the angles of the
triangles are greater than some positive number.
Let To be a closed fundamental triangle with vert-
ices Ay (0, 1),A, (0,0) and A;(1,0). In T,
there exist k fundamental nodal points, {Adi%,, inc-
luding three vertices. Let T=I¢h%, be the set
of the fundamental basis functions corresponding to
{A%, such that

(/;x(A:) =0y
and ;=0 on any side which does not contain A,
i=1....,k Required points are added in 2 so
that there exist k nodal points in the neighbourhood
of each triangle. (Three of them are vertices of
its triangle, and most of them are shared with the
neighbouring triangles. ) Let N be the total number
of all the nodal points in @ and {P;}Y be the set
of the numbered nodal points. Let {Bil;%; be the set
of nodal points for the j-th triangle. (Bj, B; and
B! are vertices.) Then F,=2%Bi¢.€ TV,
which satisfies -

F,(A)=B{ for i=1.....k,
determines an isoparametric finite element K as

K;=F; (To).

Let Q. be the interior of the union of all the iso-
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parametric finite elements and Iy be its boundary.
We define the trial function space S(@,), as a
N dimensional subspace of H'(Q,) spanned by
{¢). Here

$|=Z¥=13(P1, B{)(Z';(E—l) in each KJ,

where &P, B) =1 if P, =B} and =0 otherwise.

Let P be an interpolating operator from C(,) into
S(Qn) such that

Pu=X\, u(P)g:,

where C(@,) consists of all the continuous functions
in Q.. We consider {¢,}%, inTo, which is associative
with {&:}%,.(Some conditions are imposed on (@} 5,.
See [1].) Then Q, a lumping operator - from
C(Qy) into L*(Qu), is defined similarly to P repla-

cing J. by &.

The finite element solution of (4) and (6), which
we consider, is € S(Q.) such that

an(u, 8 )=(f;, Q@ Jut-[gs, #1n for any 3 € S(Q0),
7
and @

(8, 1)n=0, 8)
where fi=Pf-k,, g,=Pg, k;={(Pf, 1 )ua+[Pg, 1 ]ul/
mes(2y), and (f, v)n, an(u, v) and (g, vl are
defined by replacing @ and I" with @, and I, in (1),
(2} and (3).

Remark 1 : It should be noted that Pg on I, is
determined only by the nodal values of g on I.
(See the definition of ¥.)

Remark 2 : (7) forms N linear equations, but they
are linearly dependent in virtue of k.

Now let us consider some concrete examples of
P and Q which are used in numerical experiments.
Example 1.
k=3 and g, is as follows :

This is the usual piecewise linear basis. Then
- three kinds of Q are considered. In the first case
{@ddy is as follows:

=1 in S,

‘Zzz 1

and =0 otherwise,

in S, and =0 otherwise,

and

¢:=1 in S, and =0
where S, is a quadrilateral with vertices A;, A,
G and Aq, and S, and S; are taken similarly. (See
Fig. 1.)
In the second case,

(Zl=‘/7z=(Zs=1/3.
In the third case,

</_/x=§7/1 for i=1,2,3.

otherwise,

A

G ! barycenter

Fig. 1 Fundamental

Fig. 2 Curved

element

triangle

Example 2.

k=6. We take A, A; and As at the midpoints of
AA;, A.A; and AsA, respectively. {¢:}i% is as
follows :

‘7’1=77(277‘ 1),

dr=(1-&-mi1 -2 (§+m)i,

$s=5(26-1),

& =41(1-§-1),

$s=4£(1-£-1),
and

‘2’6::457]-

This is the usual piecewise quadratic basis.
For the interior element K;, at least two vertices
of which are in the interior of @, B{ (i=4,5,6)
is taken at the midpoint of each side. For the
boundary element K;, two vertices of which, Bi and
Bi, are on the boundary I, B{ is taken at an int-
ersecting point of the boundary and a perpendicular
bisector of the side B{Bi. B{ and B} are taken at
the midpoints of B{Bj and B]B] respectively. Four
kinds of Q are considered. In the first case,

9’2 1=‘/:==‘]/3= 0, ‘

¢=1 in S, and =0 otherwise,

¢s=1 inSs; and =0 otherwise,
and

¢s=1 in Se¢ and =0 otherwise,

where S, is a triangle with vertices A,, A, and G,
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and S; and Ss are taken similarly.

In the second case,
G=¢h=¢=0,

and
;”4=‘7’5=§Z‘6= 1/3.

In the third case,
4=—1/5+3/5 17,
4= 2/5—3/5 ¢
#=—1/5+3/5§,
&= 3/5—4/5 &
&= 3/5—4/5 M

and
H=—1/5+4/5 & +4/57

In the fourth case,
h=d for i=1,..., 6.

We conclude this section by stating theoreti-

cal results in [1].

Theorem 1.

—3/5 7,

For each example, (7) and (8) have unique
solution 1€S(Q,) and the order of its convergence
to the exact solution u of (4) and (6) is shown in
Table 1.

Here @ is a continuous extension of u from
H™(Q) into HM(QUQ,) and h is a maximum length
of all the sides of the triangles.

3. Numerical Experiments and Their Results

In the first place we consider the following

domain,

Q=l(x, y); v=*Fy* <10}.

As the domain is symmetric with respect to
the x-axis and the y-axis, it is sufficient to solve
the equation only in a quarter part of it.
(Inhomogeneous data f and g are assumed symmetric
with respect to both the x-axis and the y-axis.) Its
subdivisions and Q, are lustrated in Fig. 3, where
the upper row corresponds to Example 1 and the
lower one corresponds to Example 2. We
consider two problems, whose solutions are

u=1og(300-x*- 2 y*) -¢c (9)
and

u=x"% 2 y‘-c, 10
where each ¢ is a constant which is determined
from (6). In Figs. 4 and 5, the left graphs show
the results in H'-norm and the right ones in L2

Table 1 Order of convergence
Ex.1-1, |Ex.2-1, Ex.2-3,
1-2,1-3 2-2 2-4
a-al h h? h?
1,9n
- 0 :
| G-0 0,0n h

av4

VAVAVAVAVAVAYS

N=13 N=29

N=71

Fig.3 Subdivisions of the domain
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-norm. And /N, which is measured by the abscissa,
is proportional to K 'since subdivisions may be
regarded uniform on the whole. Figs. 4 and 5 are
concerned with (9) and (10 respectively. As the
results of Examples 1-3and 2-4 lie close to the
ones of Examples 1-1 and 2-3 respectively, they
are omitted in Figs. 4and5.

In the second place we take the following

domain,
Q=ix, ys 4 <y/xFy <10}

Its subdivisions and Q, are shown in Fig. 6. We
take (9) and (10 as the solutions; of course, c takes
different value from the former one. Their results
are represented in Figs. 7and 8.

In computing the right hand side of (7), the
integral in K, is converted into one in To by the
transformation F;! for each j- Tables 2 and 3 give

1 T T T T T7
L ]
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sy
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the values of (g, &, )1,
From Theorem 1, the plotted lines in the
above graphs should take the following slopes:
-lin H'-norm for Examples 1-1 and 1-2,
-2in H'-norm for Examples 2-1,2-2 and 2-3,
-2in L*-norm for Examples 1-1,1-2, 2-1 and 2-2,
and
-3 in L%norm for Example 2-3.

It can be seen that the slopes of the plotted
lines are nearly equel to these values in each
graph. The results of Examples 1-1 and 1-2 are
not so different from each other. Although the
theoretical convergence order of Examples 2-1 is
the same as one of Example 2-2, each graph shows
that the former gives better approximate solutions
than the latter. But it is clear from Table 3 that
the former needs more computation than the latter
in determining the right hand side of (7).
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Fig. 4 Relative errors of the approximate solutions
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Fig.6 Subdivisions of the domain
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Table 2 Components of Table 3 Non-zero components of (¢:» ¢,)30 in Example 2
(¢;» ¥5) 1o in Example 1 ;
Ex.}—l Ex. 2—1 Ex. 2—2
Mz o4 o6 N1 2 3 4 5
111 -2 1 16 4-3-8-3 4
217 5 5 2 4 4 28 -8 28
3 1 1 =2 3 6 4 —3 —8
4 5 17 5 X1/162 4 44 4 28 X1/600
B 1=z 5~z 1 1 5 | syMm. 6 4
N1 2 3 65 5 1 6 4
11 11
2 1 1 X1/18 Ex. 2—4
3 [SYM. 1 .
iN[1 2 3 4 5 ¢
Ex.1—3 116 0 -1 —-4-1 0
i 2 32 0 16 —4 16
N1 2 3
112 11 3 6 0 —1 —4
2 2 1 X1/24 4 32 0 16 X1/360
3 |SYM. 2 5 SYM. 6 0
6 32
1 T T LI 1 , . —T
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