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ON THE CRITICAL SIZE OF DROP DETACHMENT DURING
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1.

The critical size of drop detachment during
dropwise condensation is one of the most im-
The

authors have initiated an experimental investiga-

portant factors that control the process.

tion in which it has been attempted to find out
the effect of reducing the critical size of drop
As the

means to reduce the critical size the authors have

detachment upon the heat transfer rate.

employed (1) the shear stress by vapor flow and
also (2) the centrifugal acceleration field produced
by rotation®.

As is widely understood, the critical size of
drop detachment is a quantity determined from
the balance between the adhesive force due to
surface tension and the external forces such as
gravity, vapor shear stress, etc. Fatica and Katz®
and Sugawara and Michiyoshi®® have respectively
derived an equation giving the critical sizes of
the drops on inclined surfaces under the action
of normal gravitational force. However, their
results show considerable difference when com-
pared with those values obtained by the observa-
tion of the actual dropwise condensation process.
For example, the critical diameter measured by
the present authors®’ for the condensation of steam
under one atmospheric pressure is about 2 mm
when the inclination of the condensing surface
is 90°, while the ones calculated by Fatica et al.?
and Sugawara et al.® are about 4 mm.

This discrepancy may be partly because the
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former value is obtained during actual condensa-
tion, while the latters are for the stationary, non-
condensing drops. Since the drops are always
moving around during dropwise condensation as
the consequence of repeated coalescences, it is
very likely that the actual critical size is much
smaller than is calculated from the static balance
of forces. However, the present authors have had
some doubt on the analyses carried out by Fatica
et al. and Sugawara et al. In both of the ana-
lyses, the balance of forces were considered only
for the thin semicircular slab at the plane of
symmetry of the drop (Fig. 1), and the contribu-
tion from the rest of the drop was ignored. There
was given no evidence at all as to whether this
was really an allowable approximation.

Thus, the present authors took it very im-
portant to establish more exact theory on the

critical size of drop departure.

Fig. 1
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2. General Consideration upon the Profile
of a Drop on a Horizontal Plate

Similar to the number of other physico-chemical
phenomena occurring in the universe, the shape
of a drop at rest under the action of several kinds
of forces is thought to obey the general principle :
the law of minimum energy. Let us first consider
a liquid drop placed underneath a horizontal plate
(Fig. 2). It is assumed that the drop is non-
spreading, and the atmosphere sorrounding the

drop consists of the pure vapor alone of the liquid.
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Fig. 2

In may easily be seen that in this-system there
exist three kinds of interfaces; liquid-vapor (I{v),
liquid-solid (/s) and wvapor-solid (vs). Each of
these interfaces has its own interfacial energy.
The energy per unit area is denoted here o.;
where 7 and j represent two of the three phases
(v, I and s).

In the case of Fig. 2, if it is assumed that the
drop shape is symmetrical around =z-axis, the

interfacial energy of [v-surface is
Ev=2n0u( 1)V T+77%dz (1)
0

where 7' =dr|dz. The energy of Ils-interface is

Eis=mos{r(0)}? (2)
The energy of ws-interface is apparently depend-
ent upon the control area. If the area inside a
circle of radius R is considered

Eys=1R%,s—1 {r(0)} 20,5 (3a)
However, the first term to the right side of Eg.
(3) has no concern with the determination of
the profile of the drop, and it can be replaced
by a constant, C. Then
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Eys=—m{r(0)} 264s+C (3b)
On the other hand, the potential energy stored
by the drop due to the action of external forces
(in this case, the gravitational potential energy)
is

U= —npgS:'z (=)} 2dz (4)

where o is the liquid density and g is the accele-
ration of gravity.
Thus, the total energy of this system becomes
E=Elv+EIS+EvS+U

= ZTZ'O'IVSZl 7']/1 -+ r’zdz
0

+7{r(0)) Z(Ozs—au;)—ﬂ:pggzlzrzdz-l—c
(5)
In addition to the above, there is a constraining
condition that the mass M of the drop is invari-
able, and M is expressed as
M:npgz’rzazz (6)
0
According to the law of minimum energy, the
profile of the drop should be so determined that
the total energy £ may be minimized under the
condition of constant M. This is a typical vari-
ational problem and can be written as below :
0E=0 (7a)
M =const. (7b)
Or, if we introduce the so-called Lagrange multi-
plier A, Egs. (7) become
0H =0 (8a)
H=E+4+IM (8b)
Subtitution of Egs. (5) and (6) into Eq. (8a)
yields

6[521(201,;1/1 +r2—pgzrit-pArt)dz
o

+ (+(0)) 2<ms—om>]:o (9)

It is evident that at the bottom end of the drop
=21
r(z1)=0 (10)
On the other hand, on the contacting surface
z=0, the periphery of the drop is movable, and
the natural boundary condition as below is ap-
plied®.
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[6 ~=(20,rV 1472~ pgar?+ p2r? )} 067‘(0)

+2(015—00s)r(0)57(0) =0 (11)

or

{ 26101/1 5 H2r(os— ov;)} 06r(0):0

(12)
Since it can be assumed physically 7(0)20 and
0r(0)=:0

7'(0)
O'Ivm Oys—0us ’ (13)
Thus
Jis— 0'05
0) \/Ulv —(Uls—ﬂus) (14)

A little consideration would reveal a fact that
the right-hand side of Eq. (14) is equal to a
cotangent of the contact angle 0, which seems
physically quite reasonable. One more im-
portant result here is that this angle of contact
is independent of the gravitational force. Thus,

the boundary conditions are written as below :

r'(0)=cot 0 (15a)
r(z1)=0 (15b)
The authors solved this variational problem by
a numerical method and found out that the solu-
tions were identical with the result of a classicdl
analysis of Bashforth®.
(Manuscript received, December 24, 1973)
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