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Introduction

It has been well known that the success of the
finite element method in continuum mechanics is
due to the division of the continuum into the
material elements. We can extend this division
or discretization procedure to the deformation
process in plasticity by adopting the incremental
theory or the piecewise linear formulation of the
problem. Further, for the viscoelastic materials
which are concerned with in the present analysis,
we can incorpor;te the discretization of the ma-
terial properties by assuming the discontinuous
spectra of mechanical elements which compose the
viscoelastic models. Mathematically, this can be
phrased that we express approximately the shear
and bulk creep compliances (or relaxation moduli)
of the materials by the exponential series (i.e.

D~ Tt must be noted that the

Prony series)
analysis easily allows for the thermal effects by
assuming the thermo-rheologically simple natur
of materials that obeys the temperature-time
equivalence hypothesis,

The mechanical model of the present paper is
the generalized Voigt (or Kelvin) type of Fig. 1.
This is due to the fact, as will be shown in the
last section, that we can determine reasonably by
experiments the relevant shear and bulk creep
compliances.

First, we attempt to obtain the constitutive
equation of the linear viscoelastic materials in the
form that®

{O} =[D¢]{e} — {0} ] 1)
or {do} =[D¢]{de} — {dod}, {dva} = {64} dt

* Dept. of Applied Physics and Applied Mechanics,
Inst. of Industrial Science, Univ. of Tokyo.

A

o A

where {d} and {¢} are the stress and strain-rates
respectively. [D¢] denotes the elastic stiffness
matrix, {0} is the apparent stress-rate associated
with the viscous and/or plastic components in

the respective mechanical model. Eq. (1) may be

Jo Eo(t)
EL:I 7 &/ (1)
Ji
Jy % 1 ﬁ =T €1 ()
e (1)
J, % 2 H 72:% Cz(i)
—
|
j
_
J
I N
" €a(t)

Fig. 1 The generalized Voigt (or Kelvin) model
for uniaxial stress field. For deviatoric or
bulk deformation, Jo, J1, Ti--- are replaced
by Do, D1, Tp.1-++ and Bo, Bi, Ts.a---.
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Bt 5% ped
used as a forward difference equation, but the
accuracy and stability of the solution are expected
to be improved considerably by assuming the
linear change of stress (or strain) during each
discrete time interval. The improvement is ex-
emplified by a case study of the stress relaxation

of the generalized Voigt materials.

Viscoelastic Stress-Strain Matrix

The constitutive equation of the viscoelastic
material can be expressed by the hereditary in-
tegral, by assuming the uniaxial stress field :

L do
e(t)=So_J(t—r)Edf (2)
where J(¢) is the tensile creep compliance. The
lower limit of integral 0~ is adopted to allow
for the discontinuous change of stress at ¢=0.

By discretizing the element distribution func-
tion in the mechanical model and adopting the
generalized Voigt model of Fig. 1, the compliance
J(t) can be expressed by the following exponential

series of Prony :

J(e)=Jotely+ 5 JiL—exp(—t/T)] (3)
where Jo and 7 are the glass compliance and vis-
cosity of a Maxwell element. J; and 7' represent
the compliance and retardation time of the 7 th

Voigt element. By substituting (3) into (2)
e(t)=¢o(t)+es(t)+ X &ilt) (4)
where

Eo(t) =Jo0(2), ef(z)=v717—S;+o(r)dz l

ei(t)= ?r,iigmci(r) exp{—(¢t—7)]Ti}dc f

Note that €0, €7 and €; can be interpreted physi-
cally as strains in the respective elements of the
model of Fig. 1.

Differentiation of Eq. (4) yields

s(t)=J0@(t)+<f_7(7L)+i=§1(%W)_E%f_)) (6)

Eq. (6) is the incremental relation of the type of
Eq. (1), and may be used as a forward difference

relation or as the first approximation in the
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predictor-corrector integration scheme. Accuracy
of the numerical computation is expected, how-
ever, to be improved significantly by applying
the integral form given by (5). We assume in
the present analysis that the stress varies linearly
within the time interval ¢ —A<7<t¢ so that

o(t)=0(z ~h)+’[—2+h

do(t) (1)
where Ado(¢) {s the stress increment for the time

interval 2. By substituting (7) into (4) and (5),

we obtain the following difference equation :
Ae(t)= deo(t)+de 5 (£)+ § dede)  (8)
where
deo(t)=Jedo(2)
_h h
Jsf(t)—27]410+50(t —h)
dei(t)={1—ai(h)} {Jio(¢ —h)
—&i(t —h)} +JiBi(h)do(t)

and

Bilh =111~ as(h)

ei(t)=ai(h)ei(t —h)+J [ Bi(h)da(¢)
+ {1—a:i(h)}o(t—h)]
By solving Eq. (8) for 4dao(z)
do(t)=E{de(z)— 4I(¢)} 11
where £ and 4I(t) are

ai(h)=exp(—h/T}) ]

_ b L
YE=Totgot 3 Ti6il0) ]

AI(t) :%a(z _h) (12)

D (L=} (Jeo(t—h)—ei(t—h)}

i=1
Thermo-viscoelastic Constitutive Equation

When we assume that the materials behave in
a thermo-rheologically simple way™, there exists
the temperature-time equivalence which is ex-

pressed in terms of the reduced time &(z)
é0={ JrT@1az (a3

T(r) is the absolute temperature, and ¢[T(z)]

denotes the shift function which is determined
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experimentally. Then, extending Eq. (2) to the
general three dimensional case, the constitutive
equation in the varying temperature field can be

written as®

eult)=5\, DLEW &% de
er(t) —3aol(t) (14)
=5 Braw-ee1tas

where
Err=EzzT+Eyy+Erz, Or=0zz+0yy10zz

and

1 1
¢ij=€ij——=0iiC, 5;‘j=0{j~-3—5¢'j01</e

3
In Eq. (14), the shear and bulk creep compliances
D(z) and B(t) are defined with respect to the
reference temperature T, Note that the effect
of thermal expansion is included in Eq. (14), where
ap denotes the coefficient of thermal expansion
at temperature To and 6(¢) is the pseudo-

temperature specified by
1¢T

0(;):75 a(THdT (15)
Qov T,

By assuming that the shift function ¢ is con-
stant within each time interval, we can obtain
for the deviatoric and dilatational components the
following reccurence formulas which are similar

to (11). For deviatoric components :
m%g:m{&mm—%umuﬂ (16)
where
1/G = Do-4-hel(@no)+ m§=1 DB, m(he)
ALij(2)=(hefno)sii{t—h)
+ 3 U—ana(h)

ADpmsii(t—h)—eij,m(t —h)} an
eij,m(t)=ap m(he)eijm(t—h)
+ D[ B, m(he)dsii(t)
+ {L—ap,m(he)} sii(t —h)]
o, m(he)=exp(—he/ Tp,m)
Bp,m(hg)=1— (T, m/he) {1 — ap,m(he)}

For dilatational components :

Aou@):SK{AsMU)—é%d]ﬂz}—3am460)
where

1/K=Bo-hel(2ns)+ 3 Bubo,n(he)

(18)

AI3(2)=(he/n)ore(t —h)
+ 3 {L—asa(he)

 (Bmowa(t — ) —Err, m(t — 1)} (19)
Exe, m(t) =g, m(he)Ere, m(t —h)
+ Bl Bo, m(he)dowu(t)
+ {1 —ap,m(he)} ot —N)]
ap,m(he)=exp(—he/ Ts,m)
B, m(he) =1—(Ts,m/he) {1 — s, m(he)}
In Egs. (17) and (19), he represents the reduced

time interval, i.e.
he=8(2)—&(t—h) (20)
We can take into account of the variation of the
coefficient of thermal expansion a by putting
46(¢) in Eq. (18) as
49 = {a[T(t—h)1+al T(¢)1}
AT (&)= T(t—m}/(2ao) (21)
By combining (16) with (18), the incremental

stress-strain relation is given as

AOij=2GA€ij+6ij<K—~§—G)AEkk

-GAIﬁ—aﬁK(%AIK+&uAG> (22)

Alternatively, in the matrix form for which use
is made of the engineering shear strain in place
of the tensor component :
{do} =[D]{de} — {do.} — {dos}  (23)
[D]=

K+5G
SYM.
K-2G K+36G
2 2 4
k-26 K-1G K+36
0 G
0 0 0 0 G
L o0 0 0 0 0 GJ
29

UL LR T L L DL TR T LRI T LTI R DV LR TR RN R TR T T R e
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The apparent stress vectors {4o,} and {do},

which respectively are due to the viscoelastic de-

formation and the thermal expansion, are

J

G 0 0 0 0 0 %{ Al
41,
0o G 0 0o o o XK

3 1 Al
{dosk={0 0 G 0 0 o % A,z
0 0 0 G o0 0 o]ll4=
00 0 0 G o o] 4

Lo 0 0 0 0o G o]l4

(25)

{40g)T=3a,KA0, 111000, (26)
or
{doo} =[HI{4I}, {do}=[C140 (27)
The stress-strain relation for the plane stress field

can be obtained as a special case of Eq. (23).
Finite Element Solution Procedure

The explicit viscoelastic constitutive equation of
(23) can be easily incorporated into the standard
finite element procedure. The resulting stiffness

equation for the element is
{AF}=[K]{4d} — {4F.,} — {dFs} (28)

where [K], {4d} and {4F} are the stiffness
matrix, the displacement and external load in-
crements at nodes respectively. {4F,} and {4F,}
arise from the apparent stresses {4o,} and {40}
of Eq. (27). In evaluating {4F,}, the tempera-
ture increment 40 at a generic point is inter-
polated in terms of the temperature increments
at the nodal points.

Assemblage of the element stiffness gives the

incremental stiffness equation of the system as
{dF}=[K]{4d} — {dF.} — {dFs)  (29)

The computational algorithm for the present solu-
tion is summarised as follows :

(1) The first step is to solve the elastic prob-
lem for the instantaneous mechanical and thermal

loads {4F} and {4} at t=0.

4 FE B % (SEISAN-KENKYU)
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(ii) Assign the appropriate real time interval
h. The corresponding reduced time interval g
for individual element can be determined accord-
ing to the element temperature.

(iii) Solve the overall stiffness equation (29)
for the unknown nodal displacement {4d}.

(iv) The stress {0} and strain {g} can be
calculated from the solution {4d}. Compute and
store the components eij,m of Eq. (17) and &, m
of Eq. (19), then return to stage (ii) and proceed

to the next cycle of calculation.

Numerical Example

(a) Relaxation of stress under constant
strain condition

Fig. 2 shows the relaxation of stress of a
Maxwell model under the constant strain input of
€(¢)=1(¢). This problem was solved to test the
finite difference equation (11) and consequently
the validity of the underlying numerical proce-
dure of the present paper. It can be seen that
the assumption of linear change of stress expressed
by Eq. (7) gives a satisfactory result in comparison

with the one obtained by Zienkiewicz’s method®

504
exact solution
40 [ present solution
oh=0.5 A h=]
§ 30
2
; ° solution by the method of Ref. (3)
w
< e h=0.5
5 oot
w
. ‘:E
10F 50 kg/mm? 50 kg sec/mm 2

time ¢(sec)

Fig. 2 Stress relaxation test of a Maxwell model.
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where the stress is assumed constant within each

time interval.

(b) Relaxation of stress under transient
thermal load

Fig. 3 shows the stress relaxation in a visco-
elastic bar element fixed at both ends and
subjected to a uniform heat loading. The material
is assumed to be represented by a three element
Voigt model whose creep compliance is

J(@)=Jo{2—exp(—1)} mm¥kg
where 7 is the nondimensional time scale normal-
ized by the retardation time 7 of the Voigt
model. The temperature input given for the
problem of Fig. 3 is
. 0(t)=10{1—exp(—7/2)} deg

where 2 denotes the parameter specifying the
rate of heating. By comparing (A) and (B) of
Fig. 3, it can be seen that the temperature
dependency of material properties is a decisive
factor in the stress relaxation. The WLF equa-
tion® used as the shift function is indicated in the
figure.

The second example concerns with a semi-
infinite plate subjected to the thermal shock on
the edge surface. As the temperature is uniform
in the direction of 7, we can use the material
strip division in the x direction of Fig. 4. The
material property is assumed to be expressed by
the following shear and bulk compliances :

D(£)=0. 04—0. 02 exp(—£/200) mm?/kg
and B(¢)=0.008
The rapid stress relaxation at the heated edge

mm?/kg

surface in the case of temperature-dependent
material (B) should be notified.

Determination of Shear and Bulk
Creep Compliances

Uniaxial creep test is simplest and most
convenient to obtain the shear and bulk properties
of the viscoelastic materials. In the creep test,
the axial stress is constant so that

0(t)=0.0H(t)=const. (30)
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0.2 — — — — ordinary stress relaxation curve
at constant temperature T,
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\ WLF equation
\
\ 1 —8.86(T—T,)
L A(T) =———  Joga(T) =—2:80U — 10
0-8 N oD =y, lsneD =g 5Ty

N
A=0.0625 \
S

stress o

0 0.5 Lo T,

2.0

ot

time 7

Fig. 3 Stress relaxation of a viscoelastic bar. Material
property is temperature-independent in (A),
and temperature-dependent in (B) according
to the WLF postulate.

where 0z is the stress amplitude and H(z)
denotes the unit step function. The longitudinal

and transverse strain €z, €y for the creep test are

ex(t)=0z0J(t) (31
£y(t) = —S;_ya —f)(f;;dr (32)

J(¢) and u(¢) represent the axial creep compliance
and the Poisson’s ratio respectively. The Laplace
transform of (31) and (32) are, with the transform
variable s

ex*=J*0z (33)

Ey* = —su¥e ¥ = —sp*¥J*g (34

L e e e T T e T T T T T R e
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On the other hand, the following relations hold

between the transformed compliances according

to the well-known correspondence principle of

viscoelasticity

D*=2J*(14-sv%) (35)
B*=3J*(1—250%) (36)

where D* and B* are the transformed shear and

bulk compliances. By substituting J* and o*

from Egs. (33) and (34), we obtain after the in-

verse transformation

D<t>=§m{ex(t>~ey<z>} 37

Bl)=-(e(t) 42,0} (39)

It must be emphasized that the shear and bulk
creep compliances D(¢) and B(¢) can be directly
determined from the strain data €.(¢) and &y(¢)

of the uniaxial creep test.
Concluding Remarks

Present paper exemplifies the power and ver-
satility of the incremental approach for the prob-
lems of material nonlinearity. Test examples
indicate that the assumption of the piecewise
linear variation of the relevant variables is
suitable for the accuracy and stability of the
numerical solution. Temperature dependency of
the material properties has considerable effects
on the stress and/or strain solutions. Care
should be taken for the appropriate choice of the
time interval of the incremental computation,
depending upon the degree of the temperature

dependency.  (Manuseript received Jan. 11, 1972)
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