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Abstract

With increasing number gene expression data being available, the field of the systems
biology is targeting the genome-wide identification of the structure of biomolecular
interactions. However, the limited amount of gene-expression data and the signifi-
cant amount of noise from the measurement technology place the greatest challenges
for such reconstruction processes. This dissertation addresses the challenges of re-
verse engineering molecular pathways of gene regulation from gene expression data
using the decoupled S-system model. Again, modeling gene regulatory networks
using S-system imposes additional difficulties for the reconstruction algorithms such
as identifying the sparse network architecture and efficient learning of the model
parameters. This work also deals with these issues.

In order to design an efficient and robust optimizer, first, the standard Differ-
ential Evolution (DE) algorithm was hybridized with a crossover based local search
operation to improve its neighborhood exploration capability. This improved opti-
mizer was used in the core of the reconstruction algorithm for inferring the tran-
scriptional regulations in a biochemical network. Besides, a hill-climbing local search
method was embedded in the developed algorithm for obtaining the sparse network
structure efficiently. For identifying the skeletal structure of the target network, en-
hancements of the conventional Mean Squared Error (MSE) based fitness function
and a new Information Criteria based fitness function have been proposed.

The suitability of the method is tested in gene circuit reconstruction experi-
ments, varying the network dimension and/or characteristics, the amount of gene
expression data used for inference and the noise level present in expression profiles.
The reconstruction method inferred the network topology and the regulatory pa-
rameters with high accuracy. The proposed fitness functions have been found more
suitable for evaluating the candidate network models compared to the existing ones.
The proposed algorithm ascertained higher computational efficiency compared to
other algorithms. Finally, the methodology was applied for analyzing two real gene

expression profiles to reconstruct the underlying networks.
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Chapter 1
Introduction

At the beginning of the new millennium, with the completion of human genome
sequencing, a new era of genomic research has begun which will eventually change
many of our long-existing concepts about us and other species on this earth. For-
mally initiated in 1990, the Human Genome Project (HGP) was a 13-year effort
resulted from the high-throughput sequencing technology and developments in func-
tional genomics. The primary goals of the HGP were to determine the sequences of
the three billion nucleotides that make up human DNA and to identify the portions
of the whole genome that constitute functional genes.

The HGP was a landmark genome project and some people believe that the era
of genomics is one of the fundamental advances in human history. With the steady
decrease in genome-sequencing cost and availability of newer technologies many
genome projects were undertaken for many model organisms of different complexity
e.g. from bacteria to chimpanzee. Many of these genome projects have already been
completed which in turn triggered new genome projects to decipher the code hidden
in genomes.

In fact, all the genome projects are aimed to understand the complex organisms
in terms of their constituent components, more specifically genes. It is hypothesized
that the mechanism behind all the complex processes of life are hidden behind the
interactions among the genes. In experimental reality, the endeavor from organism’s
cell to DNA sequence results from the radical reduction fromn higher level to lower
level representation. Without questioning the amount of information lost due to such
reduction it is commonly accepted that all the necessary information for building
and working of cells are encoded in the genomic sequences.

Therefore, determination of the complete genome sequence simply marks the be-

ginning of a new chapter where the reconstruction process will be attempted from
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the molecular components. Consequently, the focus is now shifting to the accu-
rate annotation of genomic sequences, to the interplay between genes and proteins,
and to the genetic variability of species. The genome annotation process is increas-
ingly based on comparative approaches involving evolutionary considerations and
model organisms. The interplay between DNA and proteins is the most fundamen-
tal of biological interactions and has pervasive implications in biology, medicine, and
pharmacology. Genetic variability is the source of phenotypic variation, pathogen
susceptibility, environmental factor susceptibility, and individual differences in drug

response.

1.1 Functional Genomics in Post Genome Era

Understanding the function of genes and other parts of the genome is the task of
functional genomics. The genome projects are just the first step in understanding
organisms at the molecular level. After the sequencing phase is complete, the work to
determine the function of the identified genes begins. Efficient interpretation of the
functions of all genes and other DNA sequences in a genome requires that resources
and strategies be developed to enable large-scale investigations across whole genome
[50]. A technically challenging first priority is to generate complete sets of full-length
¢DNA clones and sequences for model-organisin genes. Other functional-genomics
goals include studies into gene expression and control, creation of mutations that
cause loss or alteration of function in organisms, and development of experimental
and computational methods for protein analyses.

Understanding, not only the function of each gene in isolation but the complexity
of functional networks and control systems is of particular importance for discovery
of novel and valid drug targets. Answering complex biological questions in this con-
text necessitates high- throughput gene functional characterization using an array
of genomic, proteomic and in silico- based tools and technologies.

With the technological advances, as the genomic research keep generating enor-
mous amount of data, the integration of informatics in the field has become indis-
pensable. Computational Biology, Bioinformatics, Systems Biology are terms for
interdisciplinary fields joining information technology, biology, medicine and engi-
neering that has skyrocketed in recent years. These fields are located at the interface
between the two scientific and technological disciplines that can be argued to drive
a significant if not the dominating part of contemporary innovation.

The goal of these fields is to provide computer-based methods for coping with
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and interpreting the genomic data that are being uncovered in large volumes within
the diverse genome sequencing projects and other new experimental technology in
molecular biology. The field presents one of the grand challenges of our times. It
has a large basic research aspect, since we cannot claim to be close to understanding
biological systems on an organism or even cellular level. At the same time, the field
is faced with a strong demand for immediate solutions, because the genomic data
that are being uncovered encode many biological insights whose deciphering can be
the basis for dramatic scientific and economical success[59]. With the pre-genomic
era that was characterized by the effort to sequence the human genome just being
completed, we are entering the post-genomic era that concentrates on harvesting the
fruits hidden in the genomic text. In contrast to the pre-genomic era which, from
the announcement of the quest to sequence the human genome to its completion,
has lasted less than 15 years, the post-genomic era can be expected to last much
longer, probably extending over several generations.

However, the role of informatics in genomic research has significantly changed
from pre-genomic era to genomic era. The pre-genomics informatics or the genome
informatics was developed to manage the huge volume of data generated by the
genome projects. Its primary role was to support experimental projects. In contrast,
the post-genome informatics will focus on knowledge discovery through computa-
tional and statistical analysis of sequence and genetic data and the mathematical
modeling of complex biological interactions, which are critical to the accurate anno-
tation of genomic sequences, the study of the interplay between genes and proteins,

and the study of the genetic variability of species.

1.2 Reconstructing Gene Regulatory Networks

Starting with genomic sequences, the past few years have provided gene expression
data on the basis of ESTs (expressed sequence tags) and DNA microarrays (DNA
chips). These data have given rise to a very active new subfield of computational
biology called expression data analysis. These data go beyond a generic view on the
genome and are able to distiniguish between gene populations in different tissues of
the same organism and in different states of cells belonging to the same tissue. For
the first time, this affords a cell-wide view of the metabolic and regulatory processes
under different conditions. Therefore, these data are believed to be an effective basis
for new revealing the mechanism behind gene regulation and protein interaction.

The advent of novel, cutting-edge technologies permit the rapid and parallel
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measurement of gene expression as either time series or steady-state data. Moni-
toring transcriptomes on a genome-wide scale, scientists are forming global views of
the structural and dynamic changes in genome activity during different phases in a
cell’s development and following exposure to external agents. Interpretation of this
vast amount of experimental data not only capable of providing comprehensive un-
derstanding of the activity of a particular gene in a specific biochemical process, but
can facilitate greater understanding of the regulatory architecture also. Therefore,
with the availability of these massive amounts of biological data the researchers are
trying to unravel the underlying transcriptional regulations in gene circuits using
model-based identification methods.
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Figure 1.1: Model Based Estimation of Gene Regulatory Networks

Given a dynamic model of gene interactions, the problem of gene network in-
ference is equivalent to learning the structural and functional parameters from the
time series representing the gene expression kinetics, i.e. the network architecture is
reverse engineered from its activity profiles. It is often wondered whether it is at all
possible to reverse engineer a genetic network from gene expression data. Though
reverse engineering is possible in principle, the success depends on the characteris-
tics of model involved, the availability of the gene expression data and the level of

noise present in the data.
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1.3. Objectives of the Research

Reverse engineering, of an extremely complex system like genetic networks, needs
the use of a reliable, robust and expert methodology. Moreover, the poor under-
standing of the molecular constituents, limited availability of the information, poor
and limited amount of dynamic responses make the reconstruction task even more
difficult. Evolutionary Algorithms (EAs) have established them as a suitable ap-
proach for working in such an environment and hence the field of genetic network
inference has seen a surge of application of EAs. EAs are population based search
technique that look for the optimum solution of a problem through repeated cre-
ation of new solutions and refining of them. A schematic diagram of the EA based
gene network reconstruction is shown in Fig. 1.1.

As shown in Fig. 1.1, the other components involved in the process are model of
genetic regulation, evaluation criteria for candidate networks and the gene expres-
sion data. Each of these components is of fundamental importance in this research
work. Therefore, each of them will be discussed with great detail in different chap-

ters.

1.3 Objectives of the Research

The ultimate goal of the current investigation is to develop an effective and efficient
evolutionary methodology for automatic reconstruction of gene regulatory networks
from the gene expression data. The challenge consists of many pivotal objectives

which may be states as follows

To study the fundamentals and the principles of gene regulation mechanism and
different approaches for modeling the genetic regulation with their basic char-

acteristics, requirements and implementation parameters.

To make a comparative assessment among the existing algorithms for reconstruct-
ing gene regulatory networks using S-system model in terms of their efficiency,
scalability and the accuracy of the inferred network structure and parameter

values.

- To enhance and accelerate an evolutionary optimizer to work reliably in a highly

multimodal and deceptive environment like the problem in hand.

To modify and/or improve the existing criteria for evaluating the candidate net-
work model to facilitate the identification of skeletal architecture of biological

networks using an evolutionary algorithm.
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- To design and implement an efficient, robust and reliable evolutionary algorithm
for estimating the gene regulatory network architecture and kinetic parameter

values.

- To study the performance of the new method applying into the problem of gene
network inference both from synthetic and real gene expression data sets and

validate the efficiency of the proposal comparing with the existing techniques.

1.4 Scope and Methodology of the Research

In an attempt to make a critical comparison among the different modeling ap-
proaches for gene regulatory networks a thorough survey of the related literature
was made and the relative advantages and disadvantages were analyzed. Based on
this investigation the decoupled form of the S-system formalism [112] was chosen
as the fundamental model for this study. The S-system model offers an excellent
compromise between accuracy and mathematical flexibility.

Then a detailed study was carried out on different reconstruction processes using
the S-system model for pinpointing the shortcomings. It was found that due to the
model flexibility the reconstruction algorithms often converge to some local minima
and fail to identify the sparse network architecture which is the hallmark of biological
networks. Therefore, some modifications and/or extensions of the existing fitness
evaluation criteria were suggested in order to limit the search space and assist the
search process thereby.

Then as the first step of designing an evolutionary algorithm for gene network
estimation, a survey was carried out on the existing evolutionary optimizers. Among
the existing algorithms Differential Evolution (DE) [123] was found promising with
reliable and robust performance for real world applications. But the convergence
velocity of the algorithm still can not meet the requirements for expensive function
optimization like the case under study. Therefore, an attempt was made to acceler-
ate the optimizer using local search heuristics and improve the performance of the
algorithm.

Then a memetic algorithm was designed using the modified DE as the core opti-
mizer for identifying not only the network structure correctly but also for estimating
the parameter values precisely. During the design several issues were taken in consid-
eration, such as: double optimization applied for selecting robust parameter values,
hill-climbing local search included for accelerating the identification of the skeletal
network topology and a mutation-phase embedded to maintain the diversity in the
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population for finding the global optimal solution.

Finally, the developed algorithin was validated by applying it in different gene
network reconstruction problems. Artificial networks of different dimensions and
characteristics were created and were simulated for generating synthetic gene ex-
pression data and these artificial gene expression data were used for reconstructing
the underlying gene circuits. Capability of the methodology was verified introducing
different levels of noise in the expression profile and varying the amount of expression
data used for reconstruction. Comparisons with existing algorithins and previous
fitness criteria were carried out and analysis of some real microarray data was also

performed.

1.5 Layout of the Thesis

The research work conducted for the achievement of the stated objectives is pre-
sented in this dissertation in several chapters organized in a way that the steps
involved in the study may properly delineate the methodology. A brief description
of the contents of each chapter is as follows:

The introductory concepts of this research work such as background, objectives,
scope, methodology and an outline of the thesis are presented in this chapter. Chap-
ter 2 lays a tutorial on the modeling concepts of gene regulation and introduces
many modeling approaches for genetic networks.

Chapter 3 introduces the S-system formalism in detail which is the fundamental
model of this study. Both the canonical form and the decoupled forms of the model
are discussed and then different model evaluation criteria for the model are analyzed.
Then two new evaluation criteria are presented for the evaluation of the candidate
network models and these proposals were based on [88, 90]. Finally a brief review
of the existing reconstruction algorithm is presented.

Chapter 4 attempts to design an evolutionary optimizer with increased veloc-
ity for use in the algorithm of genetic network inference. A crossover based local
search strategy called Fittest Individual Refinement (FIR), is used for increasing the
convergence velocity and robustness of Differential Evolution (DE). The proposed
memetic version of DE (augmented by FIR) is expected to obtain an acceptable
solution with a lower number of fitness evaluations particularly for higher dimen-
sional functions. Using two different implementations, DEfirDE and DEfirSPX, it
was shown, the proposed FIR enhances the convergence rate and robustness of DE

for well known benchmark functions, random problems from landscape generator
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and real world problems. Contents of this chapter appears as part of [85, 86].

Chapter 5 extends the concepts of previous chapter by introducing the adapt-
ability in the local search. Determining a single local search length that can serve for
a wide range of problems is a critical issue. In this chapter, a local search technique
is proposed to solve this problem by adaptively adjusting the length of the search,
using a hill-climbing heuristic. The emphasis of this paper is to demonstrate how
this local-search scheme can improve the performance of DE. Experimenting with
a wide range of benchmark functions, it was shown that the proposed new version
of DE, with the adaptive local search, performs better, or at least comparably, to
classic DE algorithm. Performance comparisons with other local-search heuristics
and with some other well known evolutionary algorithms from literature are also
presented. This chapter is based on [83].

Chapter 6 presents the inference algorithim developed for the inference of the
gene network. After the detail description of the algorithm it was applied for recon-
structing the network structure and estimating the model parameters. The perfor-
mance of the algorithm was analyzed with different artificial networks, with different
noise levels and with different amount of expression profiles for reconstruction. The
contents of this chapter are based on the work in [84, 92]. Chapter 7 validates the
effectiveness of the methodology by applying it for analyzing the real microarray
data. The memetic algorithm was employed for predicting the interaction among
the genes in SOS DNA repair network in Escherichia coli. The results of this chapter
make the partial content of [89].

In Chapter 8 the newly proposed algorithm was employed in the experiment
of inferring regulations in cell-cycle network of budding yeast. The results of this
chapter are presented in [84].

Chapter 9 is devoted for overall discussion of the experimental results. It also
presents some empirical analysis of the reconstruction algorithm and compares it
with other algorithms. Chapter 10 summarizes the general conclusions from this

study and also identifies the topics which warrants further investigation.



Chapter 2

Genetic Networks: In Vivo, In

Silico

The biological process of gene expression is a rich and complex set of events that
leads from DNA through many intermediates to functioning proteins. This chapter
presents the notion of regulation of gene expression which is behind the concept of
genetic networks both from the molecular biological background and mathematical
background. Then different approaches for modeling gene regulatory networks are
presented.

Cells use some mechanism to manage the information contained in their DNA
which is the blue print to construct the whole organism. Management systems are
necessary because of the immense volume of information in the genome and because
different cell types require different information at different times in their devel-
opment. The DNA in the human genome contains about 30,000 genes, and if all
the genes were expressed equally, then all cells would have been the same. It is
estimated that a typical higher eukaryotic cell expresses 10~20% of the total gene
complement of the cell. Each particular cell type has unique function(s), structure
and enzyme(s) and thus needs to express only certain genes and not the others.
Consequently, complex organisms have evolved mechanisms to regulate the expres-
sion of genes so that a unique, specific set of genes is expressed in each cell type.
The general phenomenon of specific gene expression in a certain cell type or during
a specific stage of development is known as differential gene expression [10]. The
mechanisms controlling differential gene expression are a critical part of each species’

genome.
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2.1 Gene Expression is Regulated at Different Lev-

els

Many of the regulatory mechanisms for controlling gene expression in eukaryotes
and prokaryotes are similar but there are some very different, in part because of
the very different environments in which they live. There are multiple points in the
steps between gene expression and protein synthesis at which gene expression can
be controlled in both prokaryotic and eukaryotic cells. These points of control can
be separated into two general areas: transcriptional control and post-transcriptional
control [10].

Transcriptional Control, which is the primary control point, is responsible for
the regulation of RNA synthesis from a DNA template. There is a large set of
sequence-specific DNA binding proteins in all cells that controls the transcription of
RNA by turning genes on or off. DNA binding proteins possess precise structures
that recognize and bind to specific DNA sequences.

Post-transcriptional controls are secondary mechanisms for controlling gene ex-
pression after transcription. These types of controls encompass (1) RNA processing
control (2) translational control (3) mRNA degradation control and (4) protein ac-
tivity control. RNA processing control, only applicable to eukaryotes, determines
how and when the primary transcript is spliced or otherwise processed to form a
usable mRNA. Translational control determines the time and particular type of
mRNA that to be translated into proteins. The stability of certain mRNA types
are managed by mRNA degradation control. Protein activity control selectively ac-
tivates, inactivates, modifies or compartmentalizes specific protein molecules within
the cell or within a certain cell type, thereby affecting how and when the proteins
act.

Among all of these regulatory mechanisms, transcriptional regulation is the most
critical control over gene expression having the greatest impact on the biochemical
properties of the cell [16]. Therefore, the main focus of this study is limited to the

modeling and inferring the transcriptional regulations from gene expression data.

2.2 Basics of Transcription

Transcription is a complicated set of events by which an RNA copy of one of the
strands in the DNA double helix is made. The anti-sense strand of the DNA directs
the synthesis of a complementary RNA molecule. The RNA molecule produced is
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therefore identical to the sense strand of the DNA - except that it contains U (uracil)
instead of T (thymine).

Consider a given gene, as shown in Fig. 2.1(a). The gene consists of a protein
coding sequence, which might be contiguous or broken up into a series of exons and
introns, and which begins with a START codon (ATG) and concludes with a STOP
codon (TAA, TAG or TGA). This coding region is the part of the gene that will be
transcribed into mRNA and translated into a finished protein. Apart from this, a
gene must have requlatory sequences associated with it that contributes the control of
the gene. These are stretches of DNA which do not themselves code for protein but
which act as binding sites for RNA polymerase (RNAP) and its accessory molecules
as well as a variety of transcription factors (TF). Together, the regulatory sequences
with their bound proteins act as molecular switches that determine the activity state
of the gene - e.g. OFF or FULL-ON or, more often, something in between. The

regulatory sequences include the promoter region together with enhancer elements.

TF binding
sites

A

Re ulatory Encoding Regulatory Encoding
egion Region egion Region
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(c) (d)

Figure 2.1: Gene Transcription (a) transcription factor binding (b) formation of
transcriptional complex (¢) RNAP binding and (d) transcription initiation (adapted
from [14])

In simple prokaryotes, the regulatory region is typically short (10-100 bases) and
contains binding sites for a small number of TFs. In eukaryotes, the regulatory
region can be very long (up to 10,000 or 100,000 bases), and contains binding sites

of multiple TFs. TFs may act either positively or negatively; that is, an increase in
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the amount of transcription factor may lead to either more or less gene expression,
respectively [14].

Typically. TFs do not bind singly, but in complexes as shown in Fig. 2.1(c). Once
bound to the DNA, the TF complex allows RNAP to bind to the DNA upstream
of the coding region, called promoter. RNAP forms a transcriptional complex that
separates the two strands of DNA, thus forming an open complex, then moves along
one stand of the DNA, step by step, and transcribes the coding region into mRNA.
Like DNA replication, transcription occurs in three phases - initiation, elongation
and termination. Initiation of transcription usually occurs to the 3’ side of the
promoter, and termination occurs at specific sites downstreain of the coding sequence
of gene.

There are fundamental differences in the ways in which genes are transcribed
in prokaryotes and eukaryotes. Most protein coding genes in prokaryotes are tran-
scriptionally active by default, i.e. in the absence of other factors, RNAP can bind
to the promoter of a gene produce RNA. Transcriptional control is brought to bear
on the gene by repressor proteins that occludes RNAP binding or prevents a bound
RNAP from transcribing by binding itself to regulatory region of the gene. On the
other hand the eukaryotic genes are transcriptionally inactive because eukaryotic

RNAPs are unable to recognize promoter sequences themselves [104].

2.3 cis-acting vs trans-acting

‘eis” and ‘trans’ are two important terms relevant to the study of gene regulation.
The transcription initiation complex is composed of promoter sequences and DNA
binding proteins. These two components of transcription are normally described as
cis-acting elements and trans-acting factors.

cis-acting elements are the DNA sequences in the vicinity of the structural por-
tion of a gene that are required for gene expression. In other words we can say a
locus is cis-acting on a second locus if it must be on the same DNA molecule in
order to have an effect. The operator is a cis-acting element because it works only
when physically attached to the gene whose expression it regulates.

Other cis elements include enhancer, promoters, terminators, attenuators, trans-
lation initiation sites, mRNA splicing signals, mRNA degradation signals, protein
localization sequences, and protein degradation tags.

Genes code for diffusible products, meaning they act in trans and their ultimate

function is not dependent on their location in the genome once they are expressed.
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A locus is trans-acting if it can affect a second locus even when on a different DNA
molecule. Structural genes code for a product that has a structural or enzymatic
function while regulatory genes are a subset of structural genes whose function is
to regulate the expression of other genes. Regulatory genes include transcription
factors, repressors, activators, antiterminators and translational regulatory proteins.

Those factors which bind to consensus module sequences can bind to any pro-
moter that contains the sequence. The binding of multiple factors, for example,
multiple trans-acting factors each with one of the four properties mentioned above,
may be essential for transcription initiation. Enhancers, which normally have a con-
sensus 72 bp repeat sequence, have sites for multiple trans- acting factors to bind.
Thus genes with enhancers may require several complexes to be constructed for gene
expression to be initiated.

To a molecular biologist, a cis-acting regulatory element is usually a target
site for a DNA-binding protein, upstream of the gene whose expression is being
regulated. A tfrans-acting element is the regulatory protein itself, which can diffuse

through the cell from its site of synthesis to its DNA-binding site [16].

2.4 Positive and Negative mode of Control

The molecular mechanism of regulation usually classified in to two broad categories:
negative requlation and positive regulation [34].

In a negative control system the default status is “on” and transcription takes
place until it is switched off by a repressor protein. Typically a repressor protein
either binds to DNA to prevent RNA polymerase from initiating transcription, or
binds to mRNA to prevent a ribosome from initiating translation.

In contrast to negative regulation the default status of a positively regulated
system is “off” and expression is possible only when an active regulatory protein is
present. The regulatory protein interferes with DNA and with RNA polymerase to
assist the initiation event. Such a regulatory protein is called activator protein.

A negatively (positively) regulated system may be either inducible or repress-
tble depending on how the active repressor (active activator) is formed. Inducible
systems function only in the presence of the small-molecule inducer. Repressible
systems function only in the absence of the small-molecule co-repressor. In other
words we can say induction is achieved when an inducer inactivates a repressor
protein or activates an activator protein. And repression is accomplished when a

co-repressor activates a repressor protein or inactivates an activator protein. Fig.
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Figure 2.2: Control Circuits (a) Negative control of induction (b) Negative control of
repression (c) Positive control of induction (d) Positive control of repression (adapted
from [62])
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2.2 shows induction and repression under positive and negative mode of controls.

2.5 Genetic Network

Gene regulation, the core of many biological processes, may be thought of as a
combination of cis-acting regulation by the extended promoter of a gene, and of
trans-acting regulation by the transcription factor products of other genes. If we
simplify the cis-action by using a phenomenological model that can be tuned to
data, then the full trans-acting interaction between multiple genes can be modeled
as a network which is commonly known as gene circuits, gene regulatory network
or genetic network [76]. However, the mechanism behind such biological networks,
which are dynamic and highly nonlinear, is excessively complicated. Because of
poor understanding of the biological components, their dependencies, interaction
and nature of regulation grounded on molecular level, study of such systems had
been impeded until very recent.

Several cutting-edge technologies such as DNA microarrays, oligonucleotide chips
have opened the door of surveying thousands of genes under hundreds of varying
conditions. In order to draw meaningful inference, such data sets may be analyzed
using a range of methods with increasing depth. Beginning with cluster analysis and
determination of mutual information content, it is possible to capture the control
processes shared among genes. However, the ultimate goal of analysis of expression
data is the detailed identification of the molecular mechanism of gene regulatory
networks. Nevertheless, the success of such analysis efforts largely depends on the
breadth, sensitivity and precision of experimental data to accurately identify the

underlying biological system.

2.6 Cluster Analysis of Gene Expression Data

With the advent of the microarray technology large amounts of gene expression data
are being routinely generated. Analysis of these data offers potential insight into
gene function and regulatory mechanism. A key step in the analysis of gene expres-
sion data is the detection of groups of genes that manifest similar expression patters.
The corresponding algorithmic problem is known as cluster of gene expression data
(13].

Many clustering algorithm has been developed for discovering knowledge from

gene expression data. Tavazoie et al. [128] have used k-means algorithm for cluster-
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ing gene expression data of yeast cell cycle gathered by Cho et al. [18] and grouped
the ORFs into 30 clusters on the basis of their common expression pattern. Tamayo
et al. used self-organizing maps (SOM), a type of mathematical cluster analysis, for
analyzing data collected from yeast and human [127]. Wen et al. used the FITCH
hierarchical clustering software for grouping mRNA expression of 112 genes during
rat central nervous system development [138]. Eisen et al. used a system for hier-
archical cluster analysis for genome-wide expression data from budding yeast [26].
Ben-Dor et al. have proposed a clustering algorithm based on random graph theory
and using features of hierarchical clustering and k-means algorithm [13].

Because of the difference in their working principles, different clustering algo-
rithms often generate very different clustering of the genes for the given same data.
Therefore, choosing an appropriate clustering algorithmn for a data is often difficult
because little guidance is available right now. However, some methodologies for

assessing the clustering algorithms from their results are being developed [147].

2.7 Modeling Genetic Networks

Cluster analysis of gene expression data can help elucidate the regulation (or co-
regulation) of individual genes, which provides valuable information and insights,
but often fails to identify system-wide functional properties of a given network [33].
Computational modeling and simulation can provide a much more detailed and
better understanding of the regulatory architecture such as network connections,
rate constants and biochemical concentrations etc.

Various types of gene-network models have been proposed, which integrate bio-
chemical pathway information and expression data to trace genetic regulatory inter-
actions [51, 113, 8, 24, 71]. The modeling spectrum ranges from abstract Boolean de-
scriptions to detailed Differential Equation based models each having own strengths,
weaknesses and domain of applicability. In general, the modeling spectrum varies
in terms of details of biochemical interactions incorporated, discrete or continuous
gene expression level used, deterministic or stochastic approach applied, ete. [25].
And these criteria define how closely the model can represent genetic interactions.
Generally, detailed biochemical modeling is very useful for capturing the precise
mechanism in common regulatory pathways. However, as we try to approach from
more abstract to more real representation, the complexity of the model increases
accordingly. And with the increase in the model complexity the data requirement,

data precision and computational effort for learning the model parameters also in-
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creases. The rest of this section gives brief introduction to some popular models for

gene regulatory networks.

2.7.1 The Boolean Network Model

Boolean networks, introduced by Kauffmann [51] and explored in [117, 2, 66, 44,
61] offer an attractive discrete time, Boolean model for gene expression. In this
model each gene is either fully expressed (ON) or not expressed at all (OFF) at
any given time. Following Akutsu et al. [2] a Boolean network is specified by
pair G(V, F), where the V = v,--- ,v, is a set of nodes representing the genes
of the network and the F' = (f1,- -, fin) is a list of Boolean functions. Each
node has an associated expression value v; that is either 1 (for expressed) or 0
(for not expressed). A Boolean function f;(viy, -+ ,vi) € F with inputs from the
specified nodes v;;, - -+, vy is assigned to each node which correspond to the genes
that influence the expression of the gene associated with the node v; and f; represents
the exact functional dependence.

Other advantages of these models are lower time complexity of the algorithm
for identifying the network from limited amount of expression data. Data require-
ment for inferring a Boolean genetic network is (2% (K + log(N))), where K is the
maximum connectivity of the network and N is the network dimension. And the
time complexity of the algorithm for inferring such a N dimensional network from
M point expression profile is O(N*+1A1).

Though it is evident from the real gene expression data that the gene expression
levels tend to be continuous rather than binary, such coarse representation of the
gene state has certain advantage in terms of complexity reduction and computa-
tion. These models are typically used to obtain a first representation of network

organization and dynamics.

2.7.2 Bayesian Network Models

Murphy and Mian [80] and Friedman et al. [30] have suggested using Bayesian
network models of gene expression networks. The advantages of Bayesian networks
models are that 1) they explicitly relate the directed acyclic graph model of the
causal relations among the gene expression levels to a statistical hypothesis; 2) they
include all of the aforementioned models, and Hidden Markov Models, as special
cases; 3) there are already well developed algorithms for searching for Bayesian

networks from observational data; 4) they allow for the introduction of a stochastic
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element and hidden variables; 5) they allow explicit modeling of the process by
which the data are gathered.

A Bayesian network consists of two distinct parts: a directed acyclic graph (DAG
or belief-network structure) and a set of parameters for the DAG [55]. The DAG in
a Bayesian network can be used to represent the causal relationships among a set
of random variables (such as gene expression levels). A DAG represents the causal
relations in a given population with a set of vertices V when there is an edge from
A to B if and only if A is a direct cause of B relative to V.

There are two main approaches to searching for Bayesian network models. The
first approach (as exemplified in the PC algorithm [99]) performs a series of tests of
conditional independence on the sample, and uses the results to construct the set
of DAGs that most closely implies the results of the tests. The second approach
to searching for Bayesian networks assigns a score to each DAG based on the sam-
ple data, and searches for the DAG with the highest score. The scores that have
been assigned to DAGs for variables that are discrete or distributed normally in-
clude posterior probabilities, the Minimum Description Length, and the Bayesian
Information Criterion. A variety of methods of search for DAGs with the highest
score have been proposed, including hill-climbing, genetic algorithms, and simulated
annealing [36, 99].

Many extensions and improvements of the original model, methodology and al-

gorithm have been done since the first proposal [93, 97, 46, 126].

2.7.3 State Space Models

A state-space description of a gene expression dynamic model has been proposed
by Wu et al., where gene expression levels are viewed as the observation variables
of a cellular system, which in turn are linear combinations of the internal variables
of the system [141]. In fact state space models are a class of dynamic Bayesian
networks which assume that the observed measurements depend on some hidden
state variables which evolve according to Markovian dynamics.

Compared to other competitive models, this model has the following character-
istics. First, gene expression profiles are the observation variables rather than the
internal state variables. Second, from a biological angle, the model can capture the
fact that genes may be regulated by internal regulatory elements. Finally, although
it contains two groups of equations (one is a group of difference equations and the
other, algebraic equations), the parameters in this model are identifiable from exist-

ing microarray gene expression data without any assumptions on the connectivity
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degrees of genes and the computational complexity to identify them is simple.

Though this model is very new in the family but has grown much interest among
the researchers resulting many studies some of which are found in [142, 140, 102,
64, 148, 144, 37

2.7.4 Petri Net based Models

Petri Net (PN) is a description method for modeling concurrent systems mainly used
so far to model artificial systems such as manufacturing systems and communication
protocols. The first attempt to use PNn for modeling biological pathways was made
by Reddy et al. [103] which gave a method of representation of metabolic pathways.
Hofestadt expanded this method to model metabolic networks [38].

Functional Petri Net (FPN) and Hybrid Petri Net (HPN) are the extensions of
the PN formalismms that allow the quantitative modeling of regulatory biochemical
networks. Kitagawa and Iba used FPN for identifying the topology and the param-
eters for typical test-case metabolic pathways [58]. In their work, Matsuno et al.
demonstrated that by using HPNs, it is possible to translate biological facts into
HPNs in a natural manner [71].

Recently, by extending the notion of HPN, Fujita et al. [31] introduced Hybrid
Functional Petri Net (HFPN) in order to give more intuitive and natural modeling
method for biological pathways. They have demonstrated that biological pathways
can be modeled with some basic HFPN components. And using these components
they have modeled fission yeast cell cycle [31] and gene regulation mechanisms of

Drosophila melanogaster (fruit fly) circadian rhythm [72].

2.7.5 Linear and Non-linear Differential Equations

In the differential equation based approach to modeling gene regulation, the con-
centration levels of different reactants are assumed to be continuously changing ac-
cording to differential equations [14]. If a network consists of N genes, an ordinary
differential equation model will represent the change in i-th gene using a equation
of the form
%:fi(xlx"' ,XN) (2.1)
The function f; describes how the transcription rate of i-th gene is directly
affected by that of other genes 1,---, N. The concentration level of i-th gene will

increase, decrease or remain unchanged depending on whether f; is positive, negative
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or zero respectively [17]. Typically, f; will be positive for some combinations of
X1, -, Xn and will be negative for some others. The biological interpretation of
this activity is that in some states the other genes of the network are acting to
switch on the i-th gene and in other states they are switching it off.

The linear or additive models of genetic networks [132, 23, 21] evolve from the
simplest form of the function f;, i.e. the linear form

N

dX; .
pral Za?;j}\j + ag (2.2)

j=1

The quantity a;; is the direct interaction effect of gene-j on the transcription rate
of gene-1. In particular if the j-th gene does not directly affect the transcription rate
of the i-th gene the a;; = 0. Typically, in biological networks very few genes interact
with a particular gene [9]. Therefore, many of the a;; terms will be zero in Eq. 2.2.
In this context, the reconstruction of the network means estimating the parameters
a;; that can reproduce the dynamics observed in the gene expression data.

Similar considerations apply for nonlinear models with the exception that the
function f; of Eq. (2.1) is non-linear. A non-linear model is more desirable because
naturally occurring gene regulatory networks contains significant nonlinearities [35].
In reality the concentration level for a gene and its transcription rate must eventually
saturate at some maximum - which is sufficient for being the function f; nonlinear.
However, reconstructing f; may involve estimating a much larger number of param-
eters for the non-linear models and hence will need a larger volume of data [121].
Among the non-linear models for genetic networks, S-system [112] is a very flexible
and popular one which offers an excellent compromise between accuracy and math-
ematical flexibility. Since this model has been used for reconstructing gene circuits
throughout the study, the details of the model is presented in the next chapter.
Many other models for gene networks have been proposed using special cases of the
rate equation of (2.1) such as piecewise-linear differential equation (PLDE), qualita-
tive differential equation (QDE), partial differential equation (PDE). A nice review

of many such models can be found in [20].

2.7.6 Other Modeling Approaches

Besides, many other models are available for gene regulatory networks and many
new are coming out. These models range in a wide continuum which contains many
other modeling frameworks such as stochastic models, spatial models, particle-based

models etc. There is also a large number of modeling approaches which combine
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aspects of different approaches described earlier. These intermediate models can be
classified as hybrid models. Since real genetic networks are subject to considerable
noise they should be modeled using stochastic differential equations [121]. But it
should be kept in mind that though in-depth biochemical models are very useful in
representing the precise interactions in the gene circuits, but their complexity and
the currently available gene expression data restrict their application to very small
systems.

In this chapter the major modeling approaches to genetic regulation are reviewed.
In the next chapter the focus will be on the specific model that is used in this study

for inferring genetic networks.



Chapter 3

Reconstructing Genetic Network -
EA Approach

This chapter describes the art of the reverse engineering gene regulatory networks
using evolutionary algorithms (EAs). First a detail review of the chosen model, the
S-system, is presented. Then the EA based reconstruction theme is reviewed with
different criteria used for S-system based model evaluation. Finally, new criteria for
model evaluation are presented which are used for inferring the genetic networks in

the subsequent chapters.

3.1 Biochemical Systems Theory (BST)

Biochemical Systems Theory (BST) [110, 111] is the mathematical basis of well-
established methodological framework for analyzing networks of biochemical reac-
tions and provides a general framework for modeling and analyzing nonlinear sys-
tems of genetic networks. It is based on the generic approximation of kinetic rate
laws with multivariate power-law functions. This representation results from Tay-
lor’s theorem in logarithmic coordinates. As BST provides straightforward recipes
for setting up model equations from kinetic and regulatory information and for
analyzing them, this type of mathematical approach is called canonical modeling.
BST and canonical modeling have been discussed and reviewed numerous times
(112, 114, 134] which allow a minimized description of the mathematical background
and theoretical aspects of the analysis.

In generic terms, canonical models are constructed as follows. Each metabolite
that changes over time is represented by a dependent variable, whose concentration

or value at every given time point is governed by an ordinary differential equation.
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This equation relates the dynamic changes in the metabolite to influxes and effluxes
and accounts for all constituents of the system that directly influence the fluxes, for

instance, as substrates or through inhibition.

+ N+M

‘U“ Z Vi— Y Vi (i=1,2-,N) (3.1)
j=1

where an individual metabolite concentration is represented by X;, an individual flux
from X; to X is represented by V;;, and the numbers of dependent and independent
concentration variables are given by N and M. Exact mathematical formulations for
the fluxes are unknown, but a large body of evidence demonstrates that products
of power law functions are often valid and effective representations. This type of
representation is compatible with the observations of biological systems and has been
proven to be capable of describing biological systems adequately [134]. Two most
important variants within BST are the Generalized Mass Action (GMA)-system

representation and the Synergistic (S)-system representation.

3.1.1 GMA-system Representation
In this representation within the power-law formalism elementary fluxes are grouped
into aggregate fluxes that pass through reactions with rate laws given by VJ“ and

V., and Eq. (3.1) can then be written as

€ ‘li
i Z P-> Ve o (i=12-,N) (32)
k=1

where the numbers of reactions entering and leaving the pool X; are given by ¢; and
l;. If each of these rate laws is represented in the power-law formalism, then the

standard form of the GMA-system of equations becomes

e; N+M NaM
—;jt‘“ = Zam H XJuL Zﬁik H X hiji (1 =12 7N) (3_3)
j=1

where the first N metabolite concentrations are dependent variables and the last M

are independent variables. The kinetic orders in these equations are given by

(., = e (30,
o= \ex, ) \vi )y ™ T TNX )\
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the rate constants are given by

N+Af N+M
aw = (VDo [T (X007 and B = (Vo [T (Xj0) "
j=1 J=1

and the subscript “0” indicates that the results are evaluated at the nominal steady
state. The kinetic orders g;;; and h;j; are real numbers, whereas the metabolite con-
centrations X;, the aggregate fluxes Vi and V,, and the rate constants v, and B
are non-negative real numbers. One can use the irreversible strategy of aggregation,
but only if the aggregate fluxes are always positive. This representation becomes
inappropriate if any of the aggregate fluxes goes to zero or changes direction.

The number of parameters involved in a gene network modeled by GMA-system
model is (e; + [;))N(N + 1) where NV = N + M. The value of A can be estimated
from the system and the environment, but in most system the values for ¢; and [; is
very critical to estimate. If we consider the value of ¢; and f; in the order of O(N),
the number of GMA-system parameter becomes in the order of O(n?) which is too
high for application of GMA-system model for optimizing real biological systems.

3.1.2 The S-system Model

The Synergistic (S)-system model [112] is actually a more computationally and

analytically tractable specialization of GMA-system model. For this representation

within the power-law formalism elementary fluxes are grouped into aggregate fluxes

that pass into and out of metabolic pools. These aggregate fluxes have rate laws
given by V; and V_; and Eq. (3.1) can then be written as

dX; . ,

—Jf:VH«—V_i (i=1,2,---,N) (3.4)

If each of these rate laws is represented in the power-law formalism, then the

canonical representation for the S-system of equations is given by

dX N+M N+M N
gtz =a; [[ X7 =5 ]] xj»  (i=12--.N) (3.5)
=1

Jj=1

where X, is the concentration level of i-th metabolite. The first N metabolite
concentrations are dependent variables and the last M are independent variables.
The terms g;; and h;; represent interactive affectivity of metabolite-j to metabolite-
i. For each dependent concentration X; in this biochemical model there exists an

aggregate production function and an aggregate consumption function. The first
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term in right-hand side of (3.5) represents all influences that increase X;, whereas
the second term represents all influences that decrease X,.

The signs of g;; and h;; determine the network structure. An exponent of zero
for any X; means that that variable has no direct influence on the rate of the
corresponding aggregate process, a positive exponent means that they are positively
correlated, and a negative exponent means that they are negatively correlated. More
specifically, if g;; is positive, metabolite j induces the synthesis of metabolite ¢ If
gi; is negative metabolite j suppresses the synthesis of metabolite i. If g;; is zero,
metabolite j has no effect on the synthesis process of metabolite ¢. Similarly if h;; is
positive, negative or zero then the metabolite j induces, suppresses or is irrelevant
to the degradation process of substance-i respectively. The parameters that define
the S-system are: Q = {«, 3,9, h}. In a biochemical engineering context, the non-
negative parameters a; , 3; are called rate constants, and real-valued exponents g;;
and h;; are referred to as kinetic orders. It is known that biological networks are
sparse, which means the number of regulators that have effect on a single gene is
relatively small; so many of the kinetic orders are zero in real condition.

The specialization of GMA-system into S-system reduces the number of parame-
ters to 2N (N + 1), where A/ is the number of independent and dependent variables.
If we assume the system is free of independent variables (i.e. M = 0) then the
number of parameter becomes 2N(N + 1) which makes S-system a more tractable
model to design, analyze and optimize compared to the GMA-system model.

Since the details of the molecular mechanisms that govern interactions among
system components are neither substantially known nor well understood, the descrip-
tion of these processes requires a representation that is general enough to capture
the essence of the experimentally observed response. The S-system model is orga-
nizationally rich enough to reasonably capture various dynamics and mechanisms
that could be present in complex system of genetic regulation. The strength of S-
system model is its structure which is rich enough to satisfy these requirements and
to capture all relevant dynamics; an observed response (dynamic response) may be
monotone or oscillatory, it may contain limit cycles or exhibit deterministic chaos
[129]. Furthermore, the simple homogeneous structure of S-system has a great ad-
vantage in terms of system analysis and control design, because the structure allows
analytical and computational methods to be customized specifically for this struc-
ture [47].

However, the problem of reconstructing genetic network using S-system has the
difficulty of high-dimensionality, since 2N (N + 1) S-system parameters must be de-
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termined in order to solve the set of differential equations (3.5). And estimation
of parameters for a 2N(N + 1) dimensional function optimization problem often
causes bottlenecks and fitting the model to experimentally observed responses (time
course of relative state variables or reactants) is never straightforward and is almost
always difficult. Therefore, the application of S-system model has been limited to

inference of small-scale gene networks only.

3.2 The Challenge of High Dimensionality in S-

system

In order to deal with the problem of high-dimensionality, inherent in the S-system
model based reconstruction, different decoupling approaches have been applied to
the canonical model. This section presents the most popular decoupling techniques.

3.2.1 Decoupling with Linear Programming

Using the idea of linear programming (LP) Akutsu et al. [3] developed a simple
method called SSYS-1 for inference of S-systems. Assuming —‘53‘%1’;@ > 0 at time ¢
and taking log of each side of o; [ X f‘"’ ) > G IIX Jh “(t) the following inequality is
obtained
N N
logay; + Z gi;logX;(t) > logf; + Z hijlogX;(t) (3.6)
j=1 j=1
Since X;(t) are known data, Eq. (3.6) is a linear inequality, if loga; and logf;
are treated as parameters. In case of i"ié—t@ < 0 a similar inequality is obtained
and solving these inequalities using LP the relative ratios of the parameters can be
obtained.
The method is faster compared to the methods for solving canonical problem
and therefore, can be applied to larger networks with hundreds of nodes. However,
the approach can not determine unique parameters and reported to be vulnerable

to noise.

3.2.2 Decoupling in Algebraic Equations

Voit and Almedia [133, 4] have shown that a tightly coupled system of non-linear
differential equations can be validly decoupled as a set of algebraic equations. For
this they substituted the derivatives on the left sides of differential equations with
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estimated slopes which are to be estimated directly from the observed data. And
then the approximated algebraic equations can be processed efficiently in paral-
lel or sequentially. The estimation of slopes for time series of the metabolites is
accomplished with a “universal function” that is computed directly from data by
cross-validated training of an artificial neural network (ANN).

Although the ANN-derived “universal function” is obtained directly from metabolic
profile data and without a predefined mathematical structure, it may not reflect the
“true” underlying function and its resolution may need additional subject area in-
formation which is not always available. However, according to the reported results,
the combination of methods in this form of decoupling speeds up the inverse prob-
lem considerably. But the authors verified their method applying only to very small
scale networks [133, 4]. However, according to the reported results, though the
method speeds up the reconstruction process its accuracy of the estimation was not

very precise.

3.2.3 Decoupling by Problem Decomposition

Maki et al. [70] have used a problem decomposition strategy for decoupling the
canonical S-system model and facilitating its application to larger gene network in-
ference problem. Using the suggested decomposition strategy the original optimiza-
tion problem is divided into N sub-problems [70, 56]. In cach of these sub-problems
the parameter values of gene i are estimated for realizing the temporal profile of
gene expression. In other words, this disassociation technique divides a 2N(N+1)
dimensional optimization problem into N sub-problems of 2(N+1) dimension. In
i-th sub-problem for gene i X (t) is calculated by solving the following differential

equation instead

dX. N ' N N
R | Y ) o

j=1 j=1
For solving the differential equation (3.7) we need the concentration levels Y; (j = 1,
.-~ N). In i-th sub-problem corresponding to gene ¢ the concentration level Y;_;
is obtained by solving the differential equation whereas the other expression levels
Y4 to be estimated directly from the observed time-series data. The optimization
task for the tightly coupled S-system model is not trivial because Eq. (3.5) is
non-linear in all relevant cases, thus requiring iterative optimization in a larger
parameter space, where 95% of the total optimization time is expended in numerical

integration of the differential equations [133]. Therefore, such disassociation could
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be very useful in reducing the computational burden which will become clear from its
applications presented in subsequent chapters. Moreover, the experimental results
showed their usefulness in estimating the network parameters [70, 57]. In this work
this particular decoupled form of S-system model has been used and any subsequent
reference to decoupled form will indicate this particular form of S-system. And for
direct estimation of expression levels Y]y, linear spline interpolation (described in
Appendix B) [100, 28] was chosen.

3.3 Parameter Estimation by Reverse Engineer-
ing

After selecting a model for representing gene regulatory systems it is time to turn
towards the problem of system identification. The methodology of estimating the
interacting mechanisms among system components by using experimentally observed
dynamic responses of the system is generally known as “inverse problem”. This
involves two sub-problems: (1) Writing equations with unknown parameters and (2)
Estimating the values of those unknown parameters that generates system response
closest to the observed dynamics. Since the equations for all bio-chemical reactions
are obtained from the model description, we need only to consider the second sub-
problem.

The general problem of parameter estimation is hugely important across different
scientific disciplines. Different communities have different names for parts of the
process, different problems with which they are concerned, and different techniques.
However, this study is particularly focused on the art of reverse engineering.

Reverse engineering, as the name implies, is the reverse of engineering; in other
words, the attempt to recapture the top level specification by analyzing the prod-
uct - “attempt”™ because it is not possible in practice, or even in theory, to recover
everything in the original specification purely by studying the product. Reverse
engineering can be viewed as the process of analyzing a system to: (1) Identify the
system’s components and their interrelationships, (2) Create representations of the
system in another form or a higher level of abstraction and (3) Create the phys-
ical representation of that system. Reverse engineering has a long history of use
in different fields of engineering and recently it is being widely used in biochemical
engineering. Perhaps because of the poor understanding of the biological compo-
nents at molecular level, inadequate knowledge about the types of their dependencies

and scare information about the nature of their interactions reverse engineering has
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become the most feasible option for learning the parameters for such systems.
Several techniques exist for training parameters from trajectory (behavior) data
which is often formulated as an optimization problem. Among the approximation

schemes for non-linear systems a few deserve special mention.

Neural Networks

For feed-forward neural networks with two-way connections or higher-order ones,
one can develop efficient gradient descent algorithms for training the network to
match a training set of input/output patterns. The best known of these algorithms
is the batch mode version of backpropagation in which an error signal propagates

backward through the network layers and alters each connection.

Simulated Annealing

Another form of stochastic gradient descent is simulated annealing. This technique is
typically much less efficient, but may still work when other data-fitting optimization
procedures become ineffective due to large number of local minima. Simulated
annealing can avoid local optimum traps by occasionally taking down-ward steps.
Simulated annealing is a very powerful method, although it can be quite difficult to

select appropriate parameters.

Evolutionary Computation (EC)

Evolutionary Computation is another class of population based stochastic optimiza-
tion methods that work reliably for solving complex optimization problems in dif-
ferent fields starting from engineering to medicine. The advantages of this approach
include its conceptual simplicity, broad applicability, ability to outperform classical
optimization procedures on real-world problems and ease of hybridization with exist-
ing methods and data structures such as neural networks, finite state machines and
fuzzy systems. Since this work makes extensive use of EC for reconstructing genetic

networks much about this approach will be presented in subsequent chapters.

3.4 Genetic Network Inference using S-system

For reverse engineering a genetic network we need to simulate the network for gen-

erating the system response. In other words, we can say that we can obtain the gene
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expression profile for a S-system model parameter set by simulating the S-system
model (3.5) using the set of model parameters. Simulating a genetic network, rep-
resented by differential equation, is equivalent to solving the differential equation
under given initial condition which is commonly known as initial value problems for
differential equations. While there are many general techniques for analytically solv-
ing classes of ODEs, the only practical solution technique for complicated equations
that can not be solved analytically, is to use numerical methods. Since S-system
belongs to that particular class of differential equations without analytical solution
we have to satisfy ourselves with an approximation to the solution.

The most popular of these is the Runge-Kutta method, but many others have
been developed, including the collocation method and Galerkin method. A vast
amount of research and huge numbers of publications have been devoted to the
numerical solution of differential equations as a result of their importance in fields
as diverse as physics, engineering, economics, and electronics. Among these Runge-
Kutta method is the most popular and widely used numerical integration method
for differential equations. This simple but powerful integration technique can be
found very useful for many precise scientific calculations especially when an adaptive
step-size algorithm is combined with it. The general fourth-order Runge-Kutta
method was used for numerical integration of the differential equations in this work.
Besides Irvine and Savageau have developed ESSYNS (Evaluation and Simulation
of Synergistic Systems) for faster integration of canonical S-system [47].

Reconstruction of gene regulatory networks from gene expression profile using
S-system is formalized as an optimization problem in which appropriate system pa-
rameters of S-system must be found so that the difference between the time course
data calculated by the S-system model and the time course data observed in exper-
iments becomes minimum. Tominaga et al. [129] used Genetic Algorithm (GA) for
searching the set of parameters for S-system that produces the dynamics closest to
experimental results. Since methods for finding analytic solution for this problem
is almost impracticable, use of Evolutionary Computation (EC) has become more
feasible and popular method among researchers [7, 54, 77, 56, 119]. Since this work
also apply an evolutionary algorithm for reconstructing the genetic networks a re-
view of these and many other contemporary works in the field are presented in a

later section.
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3.5 Model Evaluation Criteria

For inferring a genetic network a set of optimal parameters for the network model
that generates closes response to the observed dynamics is searched. Such a compu-
tational problem in which the best of all possible solution is searched for is commonly
known as optimization problem. For global optimization of a problem, a set of pa-
rameters that minimizes/maximizes a system'’s desirable properties is searched. The
desirable properties to be minimized/maximized are often formulated as a function
- commonly known as objective function. In this particular problem of genetic net-
work reconstruction we search for the model parameters that minimize the difference
between the simulated responses and the experimental observations. While search-
ing for the set of optimal parameter for the target network we need some measure
for evaluating different candidate models. Here different fitness criteria found in

literature for model evaluation are reviewed briefly.

3.5.1 Mean Squared Error (MSE)

The most commonly used evaluation criterion is the discrepancy between the nu-
merical solution of the differential equation and the observed system dynamics.
Tominaga et al. gave the sum of mean squared error (MSE), between the resulting
gene expression for the estimated parameter set and the measured gene expression,
as the fitness evaluation function which should be minimized by Genetic Algorithm
(GA) [129]. In other words the fitness of each set of estimated parameters for the

target system is evaluated using the following function [129]

N T cal . erp iy 2
fMSEzZZ (X@ (Q;f“’pé; (ﬂ) (3.8)

=1 t=1

where X (1) is gene expression level of gene X; at time ¢ calculated numerically by
solving the system of differential equation of (3.5) for the estimated parameter set,
and X;"(t) represents the experimentally observed gene expression level of X; at
time ¢, T is the number of sampling points of the experimental data. In this form
of optimization problem the search algorithm tries to find a set of parameters that
minimizes fM5E.

In the decoupled form, the mean error for the expression levels of each gene
is considered individually for evaluating the candidate set of parameters for that
particular gene. In other words, the sum of squared relative errors between experi-

mental and calculated gene expression levels of gene-i is used as the fitness function
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in subproblem-i. So the objective function of the subproblem corresponding to i-th

A real (4} . Y EEP(¢ 2
=2 { (k g m) } (3.9)

=1

gene becomes

And in subproblem-¢ the parameters Q; = {ay, 5i, g5, hi;(j = 1,--+ ,N)} for

f;\ISE

gene-i that minimizes are estimated.

3.5.2 Akaike’s Information Criterion

Information criteria provide a simple method to choose from a range of competing
models. Akaike’s Information Criteria (AIC) [1] is most commonly used in statistical
modeling to show disparity between the true model and the estimated one. Suppose
g;(t) is the error between the experimental and calculated expression level of gene-i
at instant t, i.e. g;(t) = (X (t)—X;"(t)). If we assume g;(¢) is normally distributed
with mean g = 0 and standard deviation o, which are constant for all genes and

over time, then the probability density function of €;(¢) is given by
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The log-likelihood A of the expression data for a set of model parameters €0 is
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and the maximum likelihood estimate of ¢ is obtained from

T N
1 . |
== ZZ (X (t) — X P (1))? (3.12)
i=1
The log-likelihood of the estimated model is obtained by substituting (3.12) into
(3.11).
Different information criteria are formulated as a penalized log-likelihood and

particularly AIC is defined as [1]
AIC = —2A + 20 (3.13)

where @ is the is the number of parameters included in the model. When AIC

is used for selecting among the alternative models then the model with lowest AIC
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value is chosen. This original form of AIC has been used in [6, 5] for model selection.

3.6 New Fitness Criteria for Skeletal Network Struc-

ture

Generally, very few genes or proteins interact with a particular gene in biological
networks [9]. But one major difficulty in the S-systemn based network inference pro-
cess is detecting the skeletal system architecture that generates the experimentally
observed dynamics. Because of the high degree-of-freedom of the model, there exist
many local minima in the search space that mimic the time-courses very closely.
Therefore, any method attempting to reproduce the time dynamics only, often gets
stuck to some local optimum solution and fails to obtain the skeletal structure [54].

One of the main objectives of this work is to design a fitness evaluation function
that can effectively evaluate the candidate network models considering their skeletal
structures. This section presents the new fitness evaluation criteria proposed in this
work for identifying the sparse network structure which is most common in biological

network.

3.6.1 MSE based Fitness Criterion for Canonical Model
In literature, there exist some early efforts in this regard. Kikuchi et al. suggested
to penalize the fitness function by using all the kinetic orders (i.e. gi; and hy; ) of

the network [54] as follows

N T cal exp 2
:ZZ{X pr()f) (t)} + eNT {Z,g” VZIhzﬂ} (3.14)

i=1 t=1 i.Ji#]

where ¢ is the weighted coefficient that balances the two evaluation terms. The first
on the right-hand side of Eq. (3.14) is the same as in Eq. (3.8). And the second term,
called the pruning term is added for identifying the skeletal structures. However, as
reported in [54], using the above fitness function, their method could not identify
the exact structure of regulations for a small network of five genes from noise-free
gene expression data.

Here, a new fitness function is proposed for reverse engineering the canonical



3.6. New Fitness Criteria for Skeletal Network Structure 34

S-system model using a more effective penalty term as follows [87]

N T Xfat ) — X:*:sp ¢ 2 1 ; ‘
fi= ZZ{ ()3?%), ( )} + ¥ {2}: |9:5] + ZJ: yhijl} (3.15)

=1 f==1

The penalty term of (3.15) will force all the kinetic orders (g;; and h;; ) towards
zero. Therefore, while searching, the first term (the original fitness function) will try
to find a set of parameters which will reproduce the time course, on the other hand
the second term will try to find a set of parameters which will minimize it. And
because of their join activity search will be directed to the sets of parameters which
will have many zero values for g;; and h;j, representing the skeletal structure. In
this new fitness function of (3.15) the novelty is the use of the reciprocal of network
dimension as coefficient in penalty term. The reason for using this coefficient is
to reduce the effect of the penalty term in total fitness as the network dimension
grows. As the dimension of the genetic network increases the penalty term as well
as the fitness value will also increase. Since we search for the minimum value of
the fitness function, the search may be misguided because of the presence of large
value of penalty term. Therefore, to balance the effect of the penalty term with the
increase of network components the fitness function of (3.15) is proposed.

Kikuchi et al. exclude h;,; from their fitness function of (3.14) and thus biase it
towards identifying h;,; parameters. The fitness function proposed here is free from
such bias. Moreover, the inclusion of the number to samples (T') in the penalty term
of (3.14) seems not to be reasonable because it supposed not to be related with it.
Furthermore, the fitness function of (3.15) was successful to identify more correct
structure under the same experimental condition [87].

Use of such pruning term or penalty term, based on Laplacian regularization
term, in the basic fitness function of (3.8) was useful for finding a sparse network
architecture in the canonical optimization problem [54, 87]. But because of high
dimensionality these fitness functions have been applied to small scale networks

only.

3.6.2 MSE based Fitness Criterion for Decomposed Model

Based on the same notion, Kimura et al. added another more effective penalty

term to the objective function of (3.9) for obtaining sparse network structure in the
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decoupled form of the problem [56, 57]

(‘ai t)"“ ’Cl‘l?(t) - .
fizz{ T } +e Z(lcuwuﬂux (.10

t=1]

where G; and H;; are given by rearranging gi; and h.;,j, respectively, in ascending
order of their absolute values (i.e., |G| < |G| < -+ < |Gin] and |Hyy| < |Hp| <

- < |H;n|). And [ is the maximum allowed cardinality (in-degree) of the network
and c is the penalty constant. The superiority of this penalty term lies in including
the maximum cardinality of the network. And thereby, this pruning term will
penalize only when the number of genes that directly affect the i-th gene is higher
than the maximum allowed in-degree I, thereby will cause most of the genes to
disconnect when this penalty term is applied.

However, very few genes affect both activation and repression of a specific gene.
Therefore, designing the penalty term considering both synthetic and degradative
regulations together rather than separately will be more effective. Because such
penalty will penalize whenever total number of regulators (whether synthetic or
degradative) is greater than maximum allowed cardinality. Therefore, a further

modification to the penalty term of (3.16) is suggested as follows [88]

Xcal Xfﬂp 2N [
fi= Z{ gg;;szp( = ¢ )} +c Z ‘I‘?Ji (3.17)

t=1

where Kj; are the kinetic orders (i.e. g;; and hy;) of gene i sorted in ascending
order of their absolute values. Use of (3.17) instead of (3.16) as fitness function
can identify the zero valued parameters increasingly and thus obtain the skeletal

network structure more precisely [88].

3.6.3 AIC based Fitness Criterion for Decomposed Model

Ando and Iba have shown that AIC can be a useful measure for evaluating candidate
models during the evolutionary search in a noisy environment [6, 5]. They estimated
the network structure in canonical problems but did not try to estimate the kinetic
parameters for the target network. However, in this study it was found that though
the original AIC can estimate the network topology, is unable to estimate skeletal
network structure and precise network parameters, as will be presented in some later

chapter. Moreover, earlier studies [56, 54, 87] have shown the usefulness of penalty
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term in identifying skeletal network structure. Therefore, a new AIC based fitness
evaluation has been proposed in this work to overcome the weakness of the original
AIC in evaluating alternative network models and making selection among them.
The new fitness evaluation criterion extends AIC by adding another penalty
term for facilitating the task of identifying the sparse network architecture. The
second term of basic AIC is the penalty term which penalizes for addition of model
parameters. However, many modification or extension of the penalty term has been
suggested resulting in various modified forms of AIC such as BIC, HQ, MCp, GCV,
FPE etc. And such an extension of AIC was attempted for obtaining a network
model with sparse connectivity among the components. The proposed fitness eval-
uation criterion for subproblem-i corresponding to gene-i is as follows
IN-T
FC = —2A 20+ Y (1K) (3.18)

i=1

As mentioned in section 3.6.2, this additional penalty term in (3.18) was designed
to penalize a model only if the number of regulators included is higher than the
maximum allowed for the network. Therefore, as long as the number of regulators
is smaller than the maximum in-degree allowed, this additional penalty term will
have zero effect in model selection. But it will interfere with the regular AIC fitness
function only when the number of genes that directly influence the gene under
consideration is higher than maximum allowed in-degree and will assist it in finding
a sparse network architecture. This penalty term also introduces another parameter
¢ in the fitness function but the value of this parameter can be chosen in a very
easy empirical way as will be explained later. Using the fitness function given
in (3.18) both the discrepancy in the expression levels and degree of freedom is
considered for model selection as well as the sparse network structure is searched.
Furthermore, in experimentation it was found that without this penalty term the
pure AIC alone cannot identify the precise skeletal network structure as will be

shown in later chapters.

3.7 Evolutionary Reconstruction Algorithms

As mentioned earlier, because of EAs reliable and robust performance, the inference
of gene regulatory networks using S-system formalism has seen a surge of application
of EAs. This section reviews some of the most prominent evolutionary algorithms

that have been developed for solving this problem.
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At first, Tominaga et al. [129] used a classic genetic algorithm (GA) for the in-
verse problem of parameter estimation of S-system model. Using uniform crossover
and Gaussian mutation with roulette-wheel selection they designed a GA that was
capable to estimate 12 parameters with reasonable accuracy among the 60 parame-
ters in a 5 dimensional network in a noise-free environment.

Morishita et al. [77] developed the Network Structure Search Evolutionary Algo-
rithm (NSS-EA) for inference of genetic network using S-system. Using a 5 dimen-
sional gene circuit it was shown that NSS-EA can efficiently find multiple network
structures that can generate responses similar to target dynamics. However, their
method neither attempted to estimate the parameter values nor gave any direction
to choose the best among the alternative solutions.

Sakamoto and Iba [107] proposed the use of Genetic Programming (GP) along
with Least Mean Square (LMS) for inferring genetic networks. In presence of noise
their method exhibited robust performance in estimating the network structure and
parameter values for small scale networks.

Kikuchi et al. [54] enhanced the initial proposal of Tominaga et al. [129] by
using a more robust real coded genetic algorithm (RCGA) called PEACE1. Using
gradual optimization strategy they were successful to estimate the skeletal structure
of a five dimensional network from the noise free time series data. And the inferred
parameter values by their method were also pretty accurate. However PEACE] was
found computationally very expensive for applying to larger networks.

Ando et al. [7] used an hybrid evolutionary method of GP and statistical analysis
for identifying the concise form of regulation between the metabolites from a given
set of time series. Although this method may be robust in statistical terms, the
algorithm was only tested on small Gene Regulatory Networks (GRNs) ( ten genes)
and the authors detected important scalability limitations when applied to more
complex data.

Iba and Mimura [75] presented an iterative inference approach based on GA
whose learning process was guided by a molecular biologist. One of the most im-
portant drawbacks of this methodology is that it requires that the biologist to have
a good understanding of the dynamics of the GA for selecting leaning parameters.

Ando and Iba [6] used a divide-and-conquer approach for bottom up reconstruc-
tion of the genetic network using an assemblage of UNDX+MGG and messy GA.
They also made use of available genomic knowledge in their reconstruction pro-
cedure. However, they focus on structure identification rather kinetic parameter

estimation for the target models.
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Speith et al. [119, 120] showed in their work that memetic algorithms (MAs)
are more suitable for inferring genetic networks compared to standard evolutionary
algorithm. Using a local search by evolutionary strategy with in the global search
framework of GA, they showed their proposed algorithm is more suitable for opti-
mization and structure identification for genetic networks. However, their methods
were successful to identify the exact network, in terms of topology and parame-
ter values, in 10% or less experimental runs from noise free gene expression data
(119, 120].

Kimura et al. [56] used a memetic algorithm called GLSDC (Genetic Local
Search with distance independent Diversity Control) for reconstructing genetic net-
works using decomposed S-system formalism. Their method, including a parameter
estimation technique for initial gene expression level, was able to reconstruct medium
scale genetic networks (30 nodes) with accurate parameters from the noise corrupted
data. In a follow up work they showed that use of cooperative coevolutionary algo-
rithm can even improve the prediction accuracy [57].

Wang et al. [137] used Lamarckian GA for reconstructing genetic networks using
a differential equation based model. Their methodology reconstructed the regulation
network of 27 yeast cell cycle genes from a real microarray dataset.

Noman and Iba [87] used differential evolution (DE) in gradual optimization
framework for reconstructing GRN and identifying skeletal structure. In [88] it was
shown that use of local search in the general frame work of evolutionary algorithm
can improve the efficiency of the reconstruction algorithm in inferring the model
parameters in decoupled formalisin. The reconstruction capability of the algorithm
was verified using both artificial and real microarray data analysis.

Tsai et al. [130] used hybrid differential evolution (HDE) for identifying the
model structure and parameters. Using small scale networks they showed that there
developed method outperformed PEACE1L and GLSDC. However, their method us-
ing the canonical model representation can not be scaled for very large networks
and exhibited relatively poor performance in case of noise corrupted data.

Nakatsui et al. [81] extended the work of Morishita et al. [77] by using an
analytical method for extracting common core binomial genetic interaction from
different candidate network models. Using small scale artificial network they showed
that their method can identify most of the core interaction in a genetic network.

Almost all of these evolutionary reconstruction algorithms tried to optimize some
fitness function based on MSE or AIC for estimating an optimal set of network

parameters. But the search space is notoriously multimodal and easily traps a search
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algorithm in some local optimum. Moreover, because of the numerical integration
involved in the method the fitness evaluation is the most expensive part of the search.
Therefore, we need to use a very powerful global optimizer for the optimization task
that can work reliably in a multimodal search space, exhibit robust performance in
presence of noise, and possesses a very high convergence velocity for locating the
global optimum. Hence, the first attempt in this work was to improve some existing
evolutionary algorithm by increasing its convergence velocity and robustness. The
next chapter presents the work where such performance enhancement of classic

differential evolution algorithm was attempted.





