直流電動機電機子電流の速応制御

沢井善三郎 · 鄣 炳 漌

まえがき

サーボ、速度調整その他の目的にサイラトロンによっ て直流電動機を運転制御する方式がひろく用いられてい る. この方式は一般の工業施設で容易に利用できる交流 電源から直接給電できること、制御電力が小さいこと等 の長所を持つ反面、その制御特性が非線形であり、特に 陽極電流(電機子電流)が点弧角だけではきまらず電機 子逆起電力(したがって電動機速度)に非線形に依存す るという欠点を持つため、制御要素としての取扱いに不 便があった・ サイラトロン-電動機の 線形制御について は実用的でかつ高精度な方法はほとんど発表されていな し,1).

筆者らはアナログ積分器とトランジスタ・スィッチと を利用して、電機子電流の各周期ごとの平均値を検出し それを負帰還する制御系を構成して電動機時定数に比し 十分速応的に平均電流を制御する一方式を考案し、試作 装置によって実験を行なった、これによって、サイラト ロン-電動機を全体として 近似線形要素として 取り扱う ことができるばかりでなく、線形トルク制御、尖頭負荷 時の電流制限制御が容易に行なえる、以下、その概要に ついて説明する.

2. サイラトロン-電動機の基本関係式

(1) 陽極電流

回転している直流電動機の電機子は第1図(A)のよう に,抵抗 R, インダクタンス L および電機子逆起電力 Ei(回転速度と界磁磁束の積に比例し電流を阻止する方 向の極性を持つ)の直列回路で表わされる. 同図(B) に示したように,格子電圧 eg が格子臨界曲線と交わる 所でサイラトロンが点弧し次の微分方程式にしたがって 陽極電流 i が流れる.

$$L\frac{di}{dt} + Ri + E_i = \sqrt{2} E_s \sin \omega t, \quad \theta_f \le \omega t \le \theta_s, \quad (1)$$

第1図 直流電動機を負荷とするサイラトロン

ここで、 θ_f は点弧角、 θ_e は消弧角であり、 E_e は陽極交 流電圧 (rms) である. (1)の解は

$$i = \frac{\sqrt{2} Es}{R} [\cos \varphi \sin (\omega t - \varphi) - a + \{a - \cos \varphi \sin (\theta_f - \varphi)\}e^{-(\omega t - \theta_f)/\tan \varphi}]$$

$$k \neq \pm \tan^{-1} \frac{\omega L}{P}, \quad a \equiv \frac{E_i}{\sqrt{2} E}, \qquad (2)$$

である、消弧角 θ ,は、 $\omega t = \theta$ 、でi = 0であることから、

$$\{a - \cos \varphi \sin(\theta_{a} - \varphi)\}e^{\theta_{s}/\tan \varphi}$$

$$= \{a - \cos \varphi \sin(\theta_f - \varphi)\}e^{\theta_f / \tan \varphi}, \qquad (3)$$

によりきまるが, これを 陽表的に 求めることは できな い.次に陽極電流の時間平均値は(1)から,

$$I_{dc} = \frac{1}{\pi} \int_{\theta_f}^{\theta_s} id(\omega t) = \frac{1}{\pi R} \int_{\theta_f}^{\theta_s} \left(\sqrt{2} E_s \sin \omega t - E_i - L \frac{di}{dt} \right) d(\omega t)$$
$$= \frac{\sqrt{2} E_s}{\pi R} \left\{ \cos \theta_f - \cos \theta_s - a(\theta_s - \theta_f) \right\}$$
(4)

が得られる.

(2) 電流増幅率

電機子逆電力 E_i (またはa)をパラメータとするサイ ラトロンの電流増幅率を求める. これは後の4章での説 明で重要な変数である.サイラトロンの格子制御は第2

図に示したよ うに, 陽極交 流電圧より 90° 位相のお くれた交流バ イアスのを与 えておき,こ れに重ねて加

5

えられる直流制御電圧 E_e により点弧制御する,いわゆ る交直重畳制御法により行なった.サイラトロンの臨界 格子電圧を零に仮定すれば、点弧角 θ, は,

$$E_c - \sqrt{2}E_1 \cos \theta_f = 0 \tag{5}$$

できまる.ここで、 E_1 は交流バイアス電圧 (rms) であ る. (5)から,

$$\frac{d\theta_f}{dE_c} = -\frac{1}{\sqrt{2E_1\sin\theta_f}} \tag{6}$$

が得られる.次に(4)から $\partial I_{dc} / \partial \theta_f |_{E_t=\mathrm{const}}$ を求め 6 ると,

$$\frac{\partial I_{dc}}{\partial \theta_f}\Big|_{E_i} = \frac{\sqrt{2}E_s}{\pi R} \Big\{ a - \sin \theta_f + \frac{\partial \theta_s}{\partial \theta_f} \Big|_{E_i} \cdot (\sin \theta_s - a) \Big\}$$
(7)

を得る. (7)中の $\partial \theta_s / \partial \theta_f \big|_{E_i}$ を求めるには $i(\omega t = \theta_s) = 0$ と,

$$\frac{\partial \theta_s}{\partial \theta_f}\Big|_{E_i} = -\frac{\partial i(\theta_s)}{\partial \theta_f}\Big|_{E_i, \theta_s} \Big|\frac{\partial i(\theta_s)}{\partial \theta_s}\Big|_{E_i, \theta_f}$$
(8)

との関係を利用する(付録参照). 結果だけをあげると,

$$\frac{\partial \theta_s}{\partial \theta_f}\Big|_{E_t} = -\frac{(a - \sin \theta_f)e^{-\tau}}{\sin \theta_s - a}, \quad \tau \equiv \frac{\theta_s - \theta_f}{\tan \varphi}$$
(9)

(9)を(7)に代入した結果と(6)とから,求める増幅率は

$$A = \frac{\partial I_{dc}}{\partial E_c} \bigg|_{E_i} = \frac{E_s}{\pi R E_1 \sin \theta_f} (\sin \theta_f - a) (1 - e^{-\tau})$$
(10)

で表わされる. あるいは入出力を正規化して,

$$A' = \frac{\partial (I_{dc} R/\sqrt{2}E_s)}{\partial (E_c/\sqrt{2}E_1)} = \frac{1}{\pi} \left(1 - \frac{a}{\sin\theta_f}\right) (1 - e^{-\tau})$$
(11)

で表わせば一般化される.

実験に用いた直流電動機 (200W) の電機子回路の各定 数を測定し,(11)を計算した結果を第3 図に示す.

3. 制御系の構成と各部の説明

制御系の構成

先に述べたように、本制御系は電機子電流の各周期ご との平均値を検出し、これを基準入力と比較してその偏 差を無くするように動作する.したがってその基本構成 は第4図のようになる.平均電流 I_{dc} は(4)が示すよう に点弧角 θ_f と電機子逆起電力 E_i によってきまるが、 E_i の変化に比べて制御ループ十分速く訂正動作を行な

うので、結局 E: にほぼ無関係に平均電流が設定される ことになる.

次に述べるように,平均電流検出には時間おくれを少 なくし精度を高めるために特殊な方式を採用した.その ため補償器も連続線形要素(たとえば PID 調節器や RC 回路網)を用いず,むだ時間要素で構成した.

(2) 平均電流検出器

不連続に流れる電機子電流の各周期ごとの平均値を正 確にかつ制御の目的に適した形で検出するために,アナ ログ積分器とトランジスタ・スイッチとを利用して良好 な結果を得た.第5図(A)がその回路である.同図で入 ロゲート,出口ゲートは 25% の矩形波によって開閉す

された抵抗(2Ω)の両端に生じる電圧降下は、 $0 \sim T$ 秒の 間はたとえば No.1 の積分器の入口ゲートを通過して積 分される(II, III).

次の周期 ($T \sim 2T$ 秒) には No.1 の入口ゲートは閉じ られるので積分器の出力はそのまま保持される.他方, この期間は No.1 の出口ゲートが開かれているので,保 持されている出力電圧は次段の加算器の入力端子に加え られる(IV). t = 2T 秒の直前に放電スイッチが働き,コ ンデンサを短絡して積分器出力を零にもどし次の周期 ($2T \sim 3T$ 秒) での積分に備える. No.2 積分器の各部は

6

第12卷第1号

T 秒だけずれて上とまったく同様に動作するので(V), 加算器出力には電機子電流の各周期ごとの平均値に比例 した電圧があらわれる(VI). 積分の周期を T=0.02 秒 (電流パルス2個に相当する)に選んだのは, 両波整流 用の2個のサイラトロンの特性の不平衡の影響を避ける ためである.この検出方式では,ある周期の平均値が次 の周期に階段状電圧として得られるので,ちょうど一周 期のむだ時間が含まれると考えられる.この特長が次節 に説明するような補償器を要求することになる.

第6図は電動 機速度 500 rpm および1,000rpm での平均電流検 出器の特性の実 測結果である. 電機子電流およ び電動機速度の 変化に対して約 ±2% のばらつ きが見られるが われわれの目的 には十分な精度 である. アナロ グ積分器の演算 増幅器は直結高 利得増幅器でゲ インは約60db,

周波数帯域は0から5kcまでである.積分コンデンサに はいわゆるスチコンを使用し,ろうえい,吸収にもとづ く誤差をできるだけ小さくしている.直流増幅器のもっ とも厄介な問題であるドリフトは,積分コンデンサが各 周期ごとに短絡されるため余り問題にならない.アナロ グ積分器固有の演算誤差よりも,第5図(A)の出入ロゲー トおよび放電スイッチに用いているトランジスタ(OC76, 松下電器)のスイッチング特性による誤差の方が重要で ある.すなわちトランジスタ・スイッチは on-状態でも エミッターコレクタ間に残留電圧が残り,またoff-状態で も遮断電流が流れ,これが誤差となって検出器出力にあ らわれる.実験に使用したトランジスタでは,いわゆる 逆接続で用いた場合,残留電圧約20mV,遮断電流約2μA で,これらによる検出誤差は最大5%と計算される.

(3) 補償器

補償器は次章で述べる制御系動作原理にもとづいてシ ンセサイズされたもので、第7図のような回路から成っ ている. ここでの入力は基準入力と平均電流検出器出力 との差,つまり系の偏差であり、出力はサイラトロンの 格子制御電圧である. 第7図から分かるように補償器は それ自身正の帰還ループをなしており、その途中にコン デンサと平均電流検出器と同様のゲートとから成るむだ 時間要素を持っている.補償器の出力はゲートの開閉に より交互に2個のコンデンサに貯えられ、一周期後に交 互に取り出されて正帰還される.この帰還ループの一巡 ゲインは正確に1に調整されているので、補償器は一周 期ごとに新しい入力を過去の出力に加え合わせていくこ とになる. これはちょうど連続制御系の積分動作に相当 する. この補償器の特性の優劣をきめる最大の要因はル ープ・ゲインがいかに正確に1に調整されているかとい うことである.実験結果によれば、全動作範囲でのルー プ・ゲインの変動は約 ±2% である.

4. 制御系の動作原理

(1) 本制御系の特長

電動機電機子を負荷とするサイラトロンの動特性は, 陽極交流周波数に近い周波数領域では線形連続要素とし て取り扱うことはできない.サイラトロンが一度点弧し 次の周期に再び点弧するまでの格子制御電圧の変化は出 力に影響しないことから,むしろサンプリング作用を持 つ非線形要素と考えられる.その上,われわれの場合平 均電流を一周期間ホールドされた階段状電圧の形で検出 しているので,基準入力がステップ関数であるかまたは その変化がゆるやかである場合には,サンプル値制御系 の近似モデルによって系を解析することができる.ただ 注意すべきことは,電機子逆起電力(したがって,電動 機速度)が変化すると,それが外乱入力となって制御量

(平均電機子電流)に直接影響するばかりでなく、2章 (2) で明らかにしたようにサイラトロンの電流増幅率Aが変ることである.理論計算および実験の結果によれば 電動機速度変化 500 rpm \rightarrow 1,500 rpm に対して、電流増 幅率は約%に減少する.系の動特性の厳密な解析はわれ

7

われの目的ではないので,シンセシスの一応の目安とし て系の特性を概評するために,電流増幅率は一定と考え て電動機速度 500 rpm, 1,000 rpm および 1,500 rpm の 各レベルについて解析する.

上の仮定にもとづいて、基準入力および外乱について 第8図のような近似モデル系を考えることができる、各 入力は t=0 すなわち第1回のサンプリングの瞬間に始 まるものとする、またここでは制御量である平均電機子 電流は仮想のイムパルス列で代表されている、第8図に おいて $e^{sr}=Z$ でおきかえれば、第9図のような Z-変 換³ された形で表わされる。

(2) 基準入力に対する応答

単位ステップ関数の基準入力に対する応答を求める. 入力関数を **2**-変換で表わせば,

$$R(Z) = \frac{Z}{Z-1} \tag{12}$$

であり, 系の閉ループパルス伝達関数は

$$\frac{C(Z)}{R(Z)} = \frac{AKZ}{Z - 1 + AK} \tag{13}$$

であるから、出力は

$$C(Z) = \frac{AKZ^2}{(Z - 1 + AK)(Z - 1)}$$
(14)

になる.出力の定常値は、いわゆる最終応答定理から、 $\lim_{t \to \infty} C(t) = \lim_{Z \to 1} [(Z-1)C(Z)] = 1$ (15)

であるから,出力が発散しない限り, (少なくとも理論 的には)定常偏差は零である.出力の時間応答は,

$$C(nT) = 1 - (1 - AK)^{n+1}$$
(16)

である. これから明らかなように, |1-AK| < 1. いい かえれば 0 < AK < 2 であれば系は安定で収斂し, AK が 1 に近いほど定常値への収斂は速くなる. 前にも述べた ように, A は電動機速度によって変化する訳であるが, 電動機速度 1,000 rpm の時 AK=1 になるように調整し ておけば, 応答の整定時間は 1,000 rpm の時零, 500 rpm

および 1,500 rpm では 3*T* (*T* =0.02 秒) になる.また最大行 過ぎ量は, 1,000 rpm の時零, 500 rpm の時は 50%, 1,500 rpm の時は行過ぎは無いが逆に時間 おくれを持つ.

(3) 外乱入力に対する応答 本制御系では電機子逆起電力 (または軍動機速度)の変化を外 乱として考えている.サンプル値制御系モデルのサンプ リング周期(=0.02秒)に比べて電動機の機械的時定数 は大きいので,普通電動機速度の変化は比較的ゆるやか

Z-変換はそれぞれ,

$$N(S) = \frac{1}{S(1+T_N S)} \tag{17}$$

$$N(Z) = \frac{Z(1 - e^{-T/T_N})}{(Z - 1) (Z - e^{-T/T_N})}$$
(18)

である.一方,外乱入力から出力応答へのパルス伝達関 数は

$$\frac{C(Z)}{N(Z)} = \frac{Z - 1}{Z - 1 + AK} \tag{19}$$

であるから出力応答は,

$$C(Z) = \frac{Z(1 - e^{-T/T_N})}{(Z - 1 + AK) (Z - e^{-T/T_N})}$$
(20)

になる. 前節と同様に定常値として

$$\lim C(t) = 0 \tag{21}$$

を得るから,やはり定常偏差は零である. (20)から時間 応答は

$$C(nT) = \frac{(1 - e^{-T/T_N})}{(1 - AK - e^{-T/T_N})} \{ (1 - AK)^n - (e^{-T/T_N})^n \}$$
(22)

になる. $T_N=0.3$ 秒として AK が 1.5, 1.0 および 0.5 の場合 (それぞれ電動機速度 500 rpm, 1,000 rpm およ び 1,500 rpm の場合にあたる) について C(nT) を計算 した結果を第1表に示す. 数値はすべて第 10 図の外乱 入力の定常値を 100% として表わしたものである. 第1 表から明らかなように, 帰還制御を行なわない場合に比 べて電動機速度変化の影響は過渡状態で最大 10%, 普通 は約 5% に減少され,また定常状態では全然影響しない.

5. 試作装置による実験結果

(1) 静特性

前章での解析から知られるように、本制御系の最適応 答を得るためには二つのゲイン調整,すなわち補償器の ループ・ゲインを厳密に1に調整することと主ループ・

第1表 外乱入力に対する時間応答

経過 AK時間 (rpm)	0 2	r 21	T 32	T 4	T 51	T 6	T 71	T 8	T
1.5 (500)	0%	6.50	2.82	4.27	3. 18	3. 38	2.96	2.87	2.63
1.0 (1,000)	0%	6.50	6.08	5.70	5.34	4.96	4.65	4. 35	4.06
0.5 (1,500)	0%	6.50	9.36	10.4	10.5	10.2	9.79	9.27	8.72

8

写真1 試作装置の外観

ゲインを電動機速度の全運転範囲のほぼ中位(1,000rpm) でできるだけ1に近くなるように調整することが要求さ れる.前者の調整は比較的容易であるが,後者は各要素 が多段に接続され,しかも非線形であるため正確な調整 は困難である.しかし幸いなことに,この調整の正確さ はそれほど敏感に影響しないので,おおよそのところで 十分である.基準入力を与えるには,第5図(A)中の点 線のように加算器に別の入力端子を付加して負電圧を加 えればよく,その電圧値が平均電流の目標値になる(こ の電圧を基準電圧と呼ぶことにする).

第 11 図は直流電動機電機子を負荷とするサイラトロン(C3J×2)の制御特性,つまり帰還制御を行なわない場合の特性の実測結果である. 電動機速度一定の電機子

電流-格子制御電圧曲線の勾配は (10) で定義した電流 増幅率であり,第3図の計算結果と大体一致している.

このサイラトロン-電動機に本制御装置によって帰還 制御を行なった場合の静特性を実測して第 12 図の結果 を得た. 同図右方の制御不能領域とは、この実験でのサ イラトロン陽極交流電圧値(150V)では、カバーできな い運転範囲である. 同図から分かるように, 基準電圧を 一定に保持した場合, 電動機速度変化250rpm~1,000rpm に対する電機子電流の変動は約3%である.また各速度 での基準電圧変化に対する電機子電流変化の直線性もほ ぼ良好である.静特性の良否をきめる主な要因は,平均 電流検出器の精度と補償器のループ・ゲインの調整の正 確さである. 平均電流検出器はフィードバック要素であ るのでその精度はそのまま制御系の精度になる.また補 償器のループ・ゲインが正確に1に調整されていないこ とは、まちがった制御動作を行なうことになる. たとえ ば第9図において補償器ループのフィードバック伝達関 数が Z^{-1}/K ではなくて Z^{-1}/K' ($K' \neq K$) である場合に は、ステップ入力に対する応答は(15)の代りに、

$$C(Z) = \frac{AKZ^2}{\left(Z - \frac{K}{K'} + KA\right)(Z - 1)}$$
(23)

になり,その定常値は

$$\lim_{t \to \infty} C(t) = \frac{1}{1 + \frac{1 - (K/K')}{AK}}$$
(24)

である.つまり定常偏差は零にはならない.特にAKの 小さい所(電動機速度の高い所)では,この補償器のル

第14 図 外乱入力に対する過渡応答(上: 電機子電流,下: 直流速度発電機出力電圧)

ープ・ゲイン調整の不備の影響は大きい.

(2) 動特性

本制御系の過渡応答をオシログラフによって調べ, 4 章での近似モデルによる解析の結果と大体一致すること を確めた。

第13 図Ⅰ, Ⅱおよび Ⅲ はステップ波形の基準電圧に 対する電機子電流の過渡応答のオシログラムであり,同 図Ⅳは正弦波形の基準電圧に対する過渡応答オシログラ ムである. I は電動機速度 500 rpm の場合で,かなりの 行過ぎが見られ, II は 800 rpm の場合で,なおいくらか の行過ぎがあり, II は 1,200 rpm の場合で行過ぎは無い が時間おくれを示している. いずれの場合にも 27~37 の時間で整定している. II の場合は電機子電流は連続通 電の状態にあり,過渡状態の終り頃に電流パルスに乱れ が見られる. この確定的な原因はまだ分かっていない.

第 14 図は 基準電圧を 一定に 保持して 電動機速度を

1,000rpm→250rpm に変えた場合の応答,つまり外乱に 対する応答を示したものである.最初電動機速度変化の 起こった直後の 2,3 パルスに動揺が見られるが,以後 はほとんど影響を受けていない.

6. むすび

以上,サイラトロンによって供給される直流電動機電 機子電流の速応制御の一方式について述べた.その特長 を要約すれば,

(1) 平均電流を検出する手段として、時間おくれをで きるだけ小さくするために、普通用いられる低域フィル タによる平均化を行なわず、アナログ積分器とトランジ スタ・スイッチによって一周期ごとに積分する方法をと った・

(2) このような特殊な平均電流検出法とサイラトロン 固有の性質とから、制御系をサンプル値制御系の近似モ デルによって解析し、補償器をシンセサイズした.

(3) 制御系の静特性と動特性を実測した結果,近似モ デルによる解析の結果と大体一致し,それは所期の目的 を一応満足させるものであった.

(4) しかし高利得直流増幅器を使用するため,電源の 安定化,保守等の点で多少の不便がある.また電機子電 流の平均値が大きく連続通電となる場合に,電流パルス に多少の乱れが生じる.

(1959. 10. 31)

<付録> $\partial \theta_s / \partial \theta_f / E_i$ の求め方

 $\omega t = \theta_s \ \mathcal{C} \ i = 0 \ \mathcal{C} \ \mathcal{S} \ \mathcal{S} \ \mathcal{S},$

$$i(\theta_s) = \frac{\sqrt{2}E_s}{R} \left[\cos\varphi \sin(\theta_s - \varphi) - a - \{\cos\varphi \sin(\theta_f - \varphi) - a\}e^{-\frac{\theta_s - \theta_f}{\tan\varphi}} \right] = 0$$
(25)

まず
$$\partial i(\theta_s)/\partial \theta_f \Big|_{a,\theta_s}$$
を求める. (25)から,

$$\frac{\partial i(\theta_s)}{\partial \theta_f}\Big|_{a,\theta_s} = \frac{\sqrt{2}E_s}{R} \Big[-\cos\varphi\cos(\theta_f - \varphi)e^{-\frac{\theta_s - \theta_f}{\tan\varphi}} - \{\cos\varphi\sin(\theta_f - \varphi) - a\}\Big(\frac{1}{\tan\varphi}\Big)e^{-\frac{\theta_s - \theta_f}{\tan\varphi}}\Big]$$
$$= \frac{\sqrt{2}E_s}{R}e^{-\tau} \cdot \frac{1}{\tan\varphi} [a - \{\cos\varphi\sin(\theta_f - \varphi) + \sin\varphi\cos(\theta_f - \varphi)\}] = \frac{\sqrt{2}E_s}{R}e^{-\tau} \frac{1}{\tan\varphi} (a - \sin\theta_f)$$
(26)

次に
$$\partial i(\theta_s)/\partial \theta_s|_{a,\theta_f}$$
を求めると

$$\frac{\partial i\left(\theta_{s}\right)}{\partial\theta_{s}}\Big|_{a,\theta_{f}} = \frac{\sqrt{2}E_{s}}{R} \left[\cos\varphi\cos\left(\theta_{s}-\varphi\right) - \left\{\cos\varphi\sin\left(\theta_{f}-\varphi\right)-a\right\}\left(-\frac{1}{\tan\varphi}\right)e^{-\frac{\theta_{s}-\theta_{f}}{\tan\varphi}}\right]$$
$$= \frac{\sqrt{2}E_{s}}{R} \frac{1}{\tan\varphi} \left[e^{-\frac{\theta_{s}-\theta_{f}}{\tan\varphi}}\left\{\cos\varphi\sin\left(\theta_{f}-\varphi\right)-a\right\} + \sin\varphi\cos\left(\theta_{s}-\varphi\right)\right]$$
(27)

一方, (25)から

 $e^{-\frac{\tan\varphi}{\tan\varphi}} \{\cos\varphi\sin(\theta_f - \varphi) - a\} = \cos\varphi\sin(\theta_s - \varphi) - a$ (28) の関係があるから、これを(27)の括弧の中に代入して、

$$\frac{\partial i(\theta_s)}{\partial \theta_s}\Big|_{a,\theta_f} = \frac{\sqrt{2}E_s}{R} \frac{1}{\tan\varphi} (\sin\varphi\cos(\theta_s - \varphi) + \cos\varphi\sin(\theta_s - \varphi) - a) = \frac{\sqrt{2}E_s}{R} \frac{1}{\tan\varphi} (\sin\theta_s - a)$$
(29)

が得られる.(26)と(29)を(8)に代入すれば(9)が得られる.すなわち,

$$\frac{\partial \theta_s}{\partial \theta_f}\Big|_{E_i} = \frac{-\partial i(\theta_s)/\partial \theta_f |_{E_i,\theta_s}}{\partial i(\theta_s)/\partial \theta_s |_{E_i,\theta_f}} = -\frac{(a-\sin\theta_f)}{\sin\theta_s - a}e^{-\tau}$$

文 献

- G.G.E.Low : Electronic Engng., Vol. 30, No. 30, p. 715~716.
- (2) E.I. Jury: Sampled Data Control Systems, John Wiley & Sons, Inc., 1958.
- (3) 沢井,鄭:第2回自動制御連合講演会論文抄録集,247
 (1959 年 11 月)

表 紙 写 真

桑名市西方上空約 4,200 m から赤外線写真で撮影したもので河川 の薄い色調の部分は 濁りが はなはだしいことを示している. 長良川 (手前),木曽川(中央薄色),鍋田川(木曽川支流)に各数個所の堤 防 決測がみえる.本文"伊勢湾台風によせて"を併読されたい.

次号	寻 予	告 ()	2月号)
----	-----	------	------

寺 集 ーイオン交換樹脂の展望—

イオン交換発展の歴史	山辺	武郎
単位操作としてのイオン交換	山本	寛
無機化学工業とイオン交換樹脂	山辺	武郎
原子力工業とイオン交換樹脂	山本	寛
イオン交換樹脂と分析化学への応用	武藤	義一
腸イオン交換体としてのアルギン酸	高橋 江村	武雄 悟