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Abstract

Modeling and Recognizing Human Activities from Video

by

Kris M. Kitani

Doctor of Philosophy in Information Science and Technology

The University of Tokyo, Institute of Industrial Science

Associate Professor Yoichi Sato, Advisor

This thesis presents a complete computational framework for discovering human actions

and modeling human activities from video, to enable intelligent computer systems to effec-

tively recognize human activities. This work is motivated by a desire to create an intelligent

computer system that can understand high-level activities of people, thus allowing computer

systems to efficiently interact with people. A bottom-up computational framework for learn-

ing and modeling human activities is presented in three parts. First, a method for learning

primitive actions units is presented. It is shown that by utilizing local motion features and vi-

sual context (the appearance of the actor, interactive objects and related background features),

the proposed method can effectively discover action categories from a video database with-

out supervision. Second, an algorithm for recovering the basic structure of human activities

from a noisy video sequence of actions is presented. The basic structure of an activity is repre-

sented by a stochastic context-free grammar, which is obtained by finding the best set of rele-

vant action units in a way that minimizes the description length of a video database of human

activities. Experiments with synthetic data examine the validity of the algorithm, while exper-

iments with real data reveals the robustness of the algorithm to action sequences corrupted

with action noise. Third, a computational methodology for recognizing human activities from

a video sequence of actions is presented. The method uses a Bayesian network, encoded by

a stochastic context-free grammar, to parse an input video sequence and compute the pos-

terior probability over all activities. It is shown how the use of deleted interpolation with the

posterior probability of activities can be used to recognize overlapping activities. While the

theoretical justification and experimental validation of each algorithm is given independently,

this work taken as a whole lays the necessary groundwork for designing intelligent systems to

automatically learn, model and recognize human activities from a video sequence of actions.
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Chapter 1

Introduction

The ultimate goal of this work is to create machines that can mimic the complex learn-

ing process of humans when learning about the physical world. However, the challenge of

synthesizing the learning process is an overwhelming task. We have been endowed with the

amazing capacity to autonomously learn about both the physical and immaterial world around

us through constant observation and interaction. Through the continuous stimulation of our

sensory organs, say vision, we can grow to recognize thousands of general object categories,

identify a specific person face in an instant and perceive three dimensional shape with only a

glance. What is more, we have been given the unique mental ability to understand these phys-

ical observations as more than physical phenomena but as discrete mental concepts. While

the computing power of computers and the number of sophisticated algorithms has grown,

current research is far from closing the so called semantic gap between physical observations

and semantic expressions. Despite the seemly unsurmountable task of teaching a computer

to learn as we do, the technical aim in this thesis is to propose a computational framework

for modeling, recognizing and discovering human activities in a way that that resembles the

human framework for perceiving activities.

1.1 Motivation

It is my hope that this work will be one of many endeavors to learn human actions from

video for the purpose of creating intelligent systems are more useful to people because they are

better at understanding them. The term “useful” is used to refer to systems that can perform

high-level reasoning tasks and can therefore aid people in processing large amounts of data by

understanding and responding to high-level commands.
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It is expected that the results of this work will cover a wide range of applications. By propos-

ing a system that can automatically learn normal actions ( and consequently detect abnormal

behavior) from a surveillance video, a single dedicated watchman would be enabled to monitor

a wider area. For home care applications, a single elderly person could comfortably remain at

home, while an intelligent surveillance system could be used to monitor daily activities and no-

tify a nurse at a medical center in the case an abnormal activity (e.g. falling down) is detected.

For home use, an intelligent video search system could be implemented to search home videos

for context by using simple key words like, soccer game or birthday party. These examples give

only a small picture of both the potential applications of this work and the ways in which un-

derstanding human activity could enable intelligent computer systems to be more helpful to

people.

1.2 Overview

In this thesis, the process of understanding human activities is simplified by dividing the

task into three sub-tasks: (1) learning primitive actions, (2) discovering the structure of activ-

ities and (3) recognizing structured activities. As such, this thesis presents a bottom-up com-

putational framework activity analysis by presenting the entire system in consecutive stages,

where the output of each task provides the input of the proceeding task. The overview of this

thesis is given as follows:

1. Learning primitive action using motion and visual context in video

(Chapter 3)

Previous work on primitive action learning has primarily used motion as the principle

feature for representing actions. While in recent work the use of appearance information

has been implemented, the use of appearance has been limited to pre-defined object

appearance or object categories and has not taken into consideration the visual appear-

ance of the entire visual context of the action. Based on the fact that the perception of

an action is determined by a mix of motion features as well as key features produced by

the visual context (relevant foreground and background features), a multi-modal latent

variable model that utilizes both motion features as well as visual features is presented.

Through experiments, a set of actions performed by hands on a desktop that include

common actions like typing on a keyboard or flipping the pages of a book, are analyzed.

Furthermore, while recent work on learning human actions has been limited to experi-

ments on videos with plain backgrounds (i.e. very little background variation) this work

deals with videos with cluttered backgrounds. It is shown that the proposed method for
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primitive action learning is able to robustly leverage relevant visual features for action

discovery despite the presence of irrelevant background objects.

2. Unsupervised learning of the high-level syntactic structure of human activities from

video

(Chapter 4)

The aim of this stage is to recover the basic hierarchical structure of a human activity

from an action sequence that is prone to noise (i.e. random actions of people). In previ-

ous work, the underlying human activity grammar was typically created manually and the

input sequences were assume to be without noise. In this work, a framework for identify-

ing noise and recovering the basic activity grammar from a noisy symbol string produced

by video without supervision is proposed. To acquire a video based symbol string, sim-

ple image processing techniques (color thresholds, contour extraction) are used to detect

hands, money and other objects to produce a string of primitive action symbols (e.g. take

money, give receipt, etc.). Noise symbols are identified by finding the set of non-noise

symbols that optimally compress the training data, where the optimality of compression

is measured using a minimum description length (MDL) criterion. Experiments with ar-

tificial data and a real video sequence from a local convenience store show the robustness

of the system to noise and its effectiveness in learning the basic structure of human activ-

ity. Specifically, the proposed method is shown to be able to recover the basic patterns of

a purchase transaction by watching continuous footage of interactions at a cash register

between an employee and multiple customers.

3. Probabilistic syntactic modeling and recognition of human activities from video

(Chapter 5)

The final stage uses a grammar model (defined by a user or learned with an algorithm) to

recognize human activities (i.e. being idle or leaving an object in the scene) that are cap-

tured by a video surveillance camera. Based on the observation that humans understand

activities as discrete concepts with hierarchical structure, a probabilistic model based on

a stochastic context-free grammar of human activity is implemented to analyze a video

sequence. First, the algorithm converts a stochastic context-free grammar into a Bayesian

network, which in turn is used to analyze a symbol string produced by a video sequence.

A smoothing technique from language processing called deleted interpolation is used to

recognize overlapped activities (e.g. a new activity begins while another is in progress).

Through experiments, the proposed model is tested on a database of video surveillance

images from a lobby of a building. Results show that the proposed method is able to

correctly detect high-level activities as well as overlapped activities.
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Chapter 2

Preliminaries

2.1 Video surveillance

Research on activity analysis needs first to be understood in light of the bigger picture,

namely, video surveillance. Video surveillance is the real-time extraction and detection of sin-

gle agent activities and multi-agent interactions from a temporal sequence of video images. It

can be positioned as an integration of the fields of computer vision, pattern recognition, artifi-

cial intelligence and perceptual psychology.

Drawing from the categorizations used by Collins [CLK00] in a IEEE transactions on Pat-

tern Analysis and Machine Intelligence special section on video surveillance, research foci can

be divided into three categories: (1) detection and tracking, (2) human motion analysis and

(3) activity analysis. Detection and tracking involves the identification of a moving object in

a video sequence over time. Human motion analysis goes further by investigating the human

body and its physical change in pose. It is interesting to note that since the publication of

[CLK00], a new paradigm using a bag of features (BoF) approach, that represents human move-

ment as groups of local features, forgoes some of the complexities of a stricter model and has

been shown to be effective in roughly describing human actions [NWFF06]. Activity analysis

strives to extract a high-level description of humans and other agents in a scene. While the first

two parts deal with more or less the low-level descriptions of the agent themselves, activity

analysis looks for semantic descriptions of agent behavior over time in a given environment.
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2.2 Events, activities and actions

In the field of computer vision, words like action, activity, behavior and event have been

used to mean different things. Various key terms are defined here to clarify what is meant by

these words when used in this context and also to make clear the domain of this work.

2.2.1 Events

Events are things that happen [CV02]. Unlike objects which exist, events are said to oc-

cur, happen or take place. Events are understood and recognized by their temporal structure

and not purely by their spatial structure. In contrast to objects that persist through time (con-

tinuants), events take up time and usually have relatively clear temporal boundaries. Some

examples of an event would be, a person going to the bathroom or the sun setting.

2.2.2 Activity

An activity is a subset of events which involves an actor. For example, a person going to

the bathroom is an activity while the sun setting is not an activity because it does not involve

an actor. Activities are usually general abstract concepts of a sequence of shorter actions and

as such not all activities have the same level of abstraction. That is, some activities can include

other activities.

2.2.3 Primitive actions

Similar to activities, actions also involve an actor. However, a primitive action refers strictly

to physically primitive actions. Primitive actions are usually short in temporal duration and are

describe in terms of primitive motions. According to Casati and Varzi [CV96], an action is an

objective happening that is performed at the will of the actor whereas, events (and activities)

are more general and arise only in the perception of the observer.

A helpful definition of a primitive action defined as a first cause is given as: a is a basic

action of A if and only if (i) a is an action and (ii) whenever A performs a, there is no other

action a′ performed by A such that a is caused by a′. [Dan63] (cited in [ZT01]).
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move

powered vehicle non-powered vehicle no vehicle

drive car ride bike run walk skip

brisk walk speed walk

Figure 2.1. Taxonomic hierarchy for move.

2.2.4 Structure of human activity

Taxonomic hierarchy

According to insights from perceptual psychology [ZT01] actions and activities can be tax-

onomically organized. A taxonomic hierarchy is one that views an object with a hierarchical

framework of “type of” relationships. For example, a car or airplane is a type of transportation

vehicle. In the case of human activity, running or walking is a type of moving around. A sim-

ple taxonomic hierarchy for “move” is shown in Figure 2.1. While in this work, the taxonomy

of activities and actions are not used for learning or recognition, taxonomy can be a powerful

tool for discovering the semantic meaning associated to a specific physical motion.

Partonomic hierarchy

Activities are also partonomical and exhibit temporal relationships between its parts. A

partonomic hierarchy views an object as a sum of essential parts. A table, for example, has a

top and four legs. In the case of human activity, eating at a restaurant is a temporal sequence

of an entering, ordering, eating and leaving. In the same way, the parts themselves may also be

broken down in to even smaller sequential parts. A possible partonomic hierarchy for dining

at a restaurant is given in 2.2. This partonomic nature of activities (especially goal oriented ac-

tivities) is an important concept that allows one to give a syntactic interpretation to an activity.
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dine at restaurant

enter order eat leave

open door look at menu pick up utensil put food in mouth place utensil

Figure 2.2. Partonomic hierarchy for dining at a restaurant.

Primitive temporal relationships

Activities and actions display a series of basic temporal relationships. 13 basic temporal

relationships were defined by Allen in [All84]. The different types of temporal primitives are

given in Figure 2.3. Given two actions A and B there are 7 basic temporal relationships, 6 of

which can be inverted.

1. A before B means that the action B will occur some time after A has completed.

2. A meets B means that B will occur at the same time A ends.

3. A overlap B means that B will start some time after A has started and before A is com-

pleted.

4. A during B means that A starts after B starts and A ends before B ends.

5. A start B means that A and B start at the same time and A ends before B ends.

6. A finish B means that A and B finish as the same time and A starts after B starts.

7. A equal B means that A and B start and end at the same time.

Concepts like A parallel B can be defined, for example, as a superset that includes A equal

B, A during B, A start B and A finish B. Phinanez [PB98] has also shown that these temporal

relationship can also be expressed using a Past, Now, Future space.

It is noted here, that for most of the work that follows, it is assumed that actions are discrete

and occur in serial order (relationship 1 and 2). This is another assumption that is critical to a

syntactic approach to activity analysis. The creation of a complete activity analysis system will

most likely require that all of these relationships are modeled by the system.
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Figure 2.3. Different types of temporal primitives. Taken from [PB98, All84].
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Chapter 3

Learning action primitives

In order to formulate a framework for recognizing human activities, one needs a means of

first learning those activities. Likewise, to be able to learn human activities it is then necessary

to learn the basic components (primitive actions) of an activity. In this chapter, an unsuper-

vised method for learning primitive actions from a corpus of actions is proposed. It is shown

that action categories can be discovered effectively when both motion and visual appearance

are used to represent primitive action.

3.1 Introduction

Since the analysis of activities requires that primitive actions are first extracted from video,

this chapter presents a novel framework for the unsupervised learning of human actions from

a video corpus by leveraging relevant visual context. Considering the fact that actions can be

understood at various temporal resolutions, the focus is placed discovering what is called prim-

itive actions. Primitive actions are humans actions that can be defined over a very short period

of time (a few seconds). For example, grabbing a cup, typing on a keyboard or flipping the page

of a book can be recognized within a few seconds of observing the action. Learning primitive

actions are important because they are the basic building blocks of many high-level activities

[ME02, HJB+05, KSS07].

Supervised learning techniques using such models as HMMs [SP95, IB00], Bayesian clas-

sifiers [SHM+04] and temporal dynamics [Sis00] have been successful in describing primitive

actions but need labeled data or a considerable amount of prior knowledge. While most of
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Figure 3.1. Leveraging visual features for action recognition: Relevant visual features (green)
induced by using the telephone and irrelevant features (purple) produced by unrelated back-
ground objects.

these past works have used supervised approaches to learn primitive actions, there have also

been several recent works focused on the unsupervised learning of actions.

An approach of growing interest for unsupervised action discovery is the use of generative

latent variable models (mixture models [NMTM99], PLSA [Hof99], LDA [BNJ03], HDP [TJBB06])

based on the bag-of-words paradigm. Most of these methods were originally developed to

learn topics from text in documents. Given the document analogy, a typical language model

factorizes the observed documents (corpus items) and words (features) to discover a distribu-

tion over a set of hidden topics.

Niebles [NWFF06] proposed the application of a generative model to video to learn action

categories (topics) from a bag-of-features. They used exactly the same framework as [Hof99] by

simply replacing document indices with video indices, and words with spatial-temporal (ST)

volumes. Their approach showed that similar to text, the local features of an action can be

treated as though they were exchangeable (an action can be treated as a bag of uncorrelated

features) to learn action categories. However, the conceptual problem with a straightforward

use of a language model for action discovery is that the models are uni-modal (e.g. use only

words).

It is known from experience that actions are composed of motions and visual appearance.

For example, the hands of a person playing a piano and typing on a keyboard might have very

similar motions but can easily be differentiated using the visual context of a piano or a key-

board. In fact, findings from neural science make it clear that actions are mentally perceived

as a mix of motions and visual features of present objects [FA98]. In the light of this fact, many
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previous approaches to action discovery are limited by the fact that they only consider one

mode, namely, motion.

For example, the ST volumes used to describe dynamic human actions in [NWFF06] do not

explicitly account for important visual features of objects in the scene. Similarly, the approach

proposed by Wang [WMG07] to automatically classify actions of cars and pedestrians at an

intersection uses the change in pixel intensity between two frames as the input feature, making

their system robust to the varying color and shape of automobiles and pedestrians. However, to

apply their current system to more complex interactions between actors and objects will most

likely necessitate the incorporation of more complex motion features and appearance features

to improve performance.

While the joint use of appearance and motion to describe action is not entirely new, this

work differs from previous work in that the proposed method does not use a priori information

about the category, shape, size or color of actors or objects in the scene. For example, work us-

ing the appearance of related objects to recognize actions has depended on a priori knowledge

of the appearance of related objects [GD07] or pre-defined object categories [MEH99]. Work

leveraging the appearance of the actor, such as Fanti [FZMP05] and Niebles [NFF07], have pro-

posed modified generative models that model the human body and account for both the ap-

pearance and motion of body parts. However, explicitly modeling the human body comes at

the cost of losing the ability to apply the model to other types of actors. The more important

distinction with this work however, is that the use of visual information was limited to pre-

defined body parts and therefore could not explicitly take into account other relevant visual

information possibly generated by co-occurring objects or scenic context.

Presented in this chapter is a robust framework for primitive action discovery by leveraging

both motion and relevant visual context without the use of a priori information (e.g. an explicit

shape model or pre-defined object categories). Experiments show that the proposed method

properly leverages relevant visual appearance and is robust against irrelevant visual features

(Figure 3.1) when learning action categories.

3.2 Proposed method for learning action primitives

The goal is to learn the primitive action categories that occur within a video corpus. First

temporal features and spatial features are extracted from each video segment, under the as-

sumption that actions are defined by both temporal motion and visual context (Section 3.2.1).

Then a description of a dimension reduction scheme is given to create a codebook for each fea-

ture type (Section 3.2.2). Finally, an explanation of a bi-modal generative model is presented,
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that uses the histograms produced from a video corpus to learn the latent action categories

(Section 3.2.3).

3.2.1 Extracting spatial and temporal features

The extraction process is explained here for spatial (visual) features and temporal (motion)

features. For each frame in the training corpus, a sparse set of spatial features is extracted by

finding SIFT key points [Low99]. These key points are then represented with a normalized

128 dimensional SIFT descriptor. Other combinations of key point detectors [MCUP02] and

descriptors can be used as well.

Using the same temporal gradient descriptor as [BI05], a sparse set of temporal features

are extracted from the video frames by extracting a 7 × 7 × 4 (a 7 × 7 spatial window over 4

frames) spatio-temporal volume for pixels that detected as a good feature to track [ST94] and

are tracked by optical flow [Bou02] for two consecutive frames. The frontal face of the vol-

ume is centered at the location of the tracked feature in the second tracked frame and each

element of the volume contains the temporal gradient magnitude. The descriptor is a normal-

ized 196 dimensional vector containing the elements of the volume. More complex temporal

keypoints can also be used, such as spatio-temporal cuboids [DRCB05] or space-time interest

points [Lap05].

3.2.2 Two-stage feature clustering

Compared to documents or images, the number of features that can be extracted from a

video sequence can be very large (e.g. about 20 million temporal features for 7 minutes of

video). Therefore, an efficient two stage clustering process that combines an online and offline

algorithm is implemented to process the descriptors generated by the video corpus. The first

stage simultaneously identifies key clusters (learns a codebook) and generates histograms in

one pass over the database. In the second state a more holistic clustering (dimension reduc-

tion) algorithm is implemented to further reduce the dimensions of the histograms.

Nearest representative point clustering

An online clustering algorithm termed nearest representative point clustering (NRPC) is

used to cluster descriptors and generate a histogram for all the videos in one pass. An online

scheme is selected over offline clustering algorithms (e.g. K-means clustering) that are com-

monly used for bag-of-features based approaches because of the enormous computational
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Algorithm 1 – Nearest Representative Point Clustering

1: for every video segment d in the corpus d do

2: Initialize segment histogram vd = 0

3: for every descriptor xdi extracted from segment d do

4: Find nearest representative point cj to xdi

5: if L2(xdi, cj) > θ then

6: Create new representative point ck ← xdi

7: Initialize count of centroid vdk = 1

8: else

9: Increment count vdj of nearest representative point cj

10: end if

11: end for

12: end for

cost involved with iteratively processing a large data set extracted from video. It is noted that

in contrast to basic leader-follower clustering [DHS00], this algorithm represents a cluster with

only one representative data point and the centroid is never updated.

An outline of the NRPC algorithm is given in Algorithm 1. The NRPC algorithm takes a sin-

gle descriptor xdi from the set of all descriptors extracted from segment d and decides whether

to update the count of a pre-existing cluster or create a new cluster, depending on a threshold θ.

After processing all descriptors, a set of n clusters c1, . . . , cn and a corresponding n dimensional

histogram vector of counts vd = (vd1, · · · , vdn)T for the video segment d are obtained.

Each video segment d ∈ d is processed in the same way to produce the set of m = |d| his-

togram vectors of the histogram matrix V = (v1, · · · ,vm). Notice that the number of clusters

n can potentially increase each time a new video is processed (i.e. new clusters are created).

The histograms of previously processed videos are simply padded with zeros to keep the same

dimensionality n. This clustering process is done once for each feature modality (i.e. spa-

tial features and temporal features). This type of online clustering is effective for video because

many nearly identical features are produced by a single action. As a speed-up technique, an in-

crementally trained nearest neighbor classifier is used to find the nearest representative point.

Non-negative matrix factorization

The first stage of clustering was done online and therefore did not take into account any

of the global statistics of the data. In the second stage, the dimensionality of the training

data is further reduced using a more holistic approach. Non-negative matrix factorization
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(NMF) [LS99] is implemented to project the set of histograms V onto a lower dimensional

non-negative subspace H. Since it is assume that actions are additive (actions only produce

features and never delete features), NMF is used over other projection techniques like PCA

or ICA because NMF decomposes the data V as an additive (non-negative) combination of a

lower dimensional basis subspace. It is interesting to note that both PLSA and NMF have been

shown to be instances of multinomial PCA [Bun02]. In fact in the proposed framework, the

projected dimensions of NMF r and the number of hidden categories k are set to be equiva-

lent and as a consequence, this second stage can also be interpreted to be the pre-discovery of

hidden actions categories for each independent modality of input.

Formally, NMF decomposes the n×m histogram matrix V (each column is a histogram of

descriptors for a video) into a n× r basis matrix W and the r ×m encoding matrix H,

V ≈WH. (3.1)

The projected gradient method [Lin07] is used to factorize V and the resulting columns of the

encoding matrix H contain the reduced (encoded) version of V. To allow the iterative process

to converge near an optimal solution, H is initialized by a randomized matrix weighted by

the results of K-means clustering with the top l principle components of the video segment

histograms.

NMF is executed twice independently, once for spatial features and once for temporal fea-

tures, by projecting the spatial and temporal descriptor histogram matrices Vs and Vt onto

the reduced dimensional spaces Hs and Ht, respectively. NMF maps the histogram from each

video segment to a reduced dimensional histogram. As a result, the values of Hs and Ht yield

an approximation to the term-by-document frequency matrix. The term-by-document fre-

quency matrix is commonly used as the input for learning language models, where each ele-

ment of the matrix n(w, d) represents the number of times a feature w is observed in the corpus

item d.

3.2.3 Merging motion and visual context via the action model

Parameter learning

Under the framework of Bayesian networks, the joint probability of a set of random vari-

ables can be simplified by defining the conditional independence between variables. In the

proposed action model (Fig. 3.2), it is assumed that temporal features t are conditionally in-

dependent of spatial features s given a latent action category z. That is, the proposed model is

a bi-modal expansion of the standard mixture of unigrams model [NMTM99] that defines the
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z

s t

Figure 3.2. Bi-modal latent variable model defined by the latent topic z, a spatial feature s and
a temporal feature t.

probability of a video segment d ∈ d as below.

p(d) =
∑

z

p(d|z)p(z) (3.2)

p(d|z) ∝
∏
s∈d

p(s|z)
∏
t∈d

p(t|z) (3.3)

=
∏
s

p(s|z)n(s,d)
∏

t

p(t|z)n(t,d) (3.4)

Based on the conditional independence of the spatial feature s and the temporal feature t given

the latent topic z, the conditional probability of a video segment can be computed as the prod-

uct of the conditional probabilities of all spatial and temporal features in the video segment.

The term n(s, d) represents the number of times a spatial feature s has occurred in a video seg-

ment d. The term n(t, d) is interpreted similarly for temporal features.

To learn the parameters of the bi-modal mixture model, the desired goal is to find values

for the parameters p(s|z), p(t|z) and p(z), such that the log-likelihood of the entire video corpus

d is maximized.

log p(d) =
∑

d

log
∑

z

[ ∏
s

p(s|z)n(s,d)
∏

t

p(t|z)n(t,d)
]
p(z) (3.5)

The expectation maximization (EM) algorithm is implemented to find a locally optimal set

of parameters with respect to the likelihood. In general it can be shown that the data likelihood

p(x; Θ) over a training set x = {x(i)} can be decomposed in to the expectation of the complete

data likelihood E[Lc] and the Kullback-Leibler distance KL(q||p) between an arbitrary proba-

bility distribution q(z) over the latent variable z and the posterior distribution p(z|x).
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The derivation is as follows

log p(x) =
∑

z

q(z) log p(x) (3.6)

=
∑

z

q(z) log
p(x, z)
p(z|x)

(3.7)

=
∑

z

q(z) log
p(x, z)q(z)
p(z|x)q(z)

(3.8)

=
∑

z

q(z)
{

log
p(x, z)
q(z)

− log
p(z|x)
q(z)

}
(3.9)

=
∑

z

q(z) log
p(x, z)
q(z)

−
∑

z

q(z) log
p(z|x)
q(z)

(3.10)

=
∑

z

q(z) log p(x, z)−
∑

z

q(z) log
p(z|x)
q(z)

−
∑

z

q(z) log
1

q(z)
(3.11)

= E[Lc] + KL(q||p) +H(q) (3.12)

This derivation shows that the lower bound of the data likelihood can be maximized by

setting q(z) = p(z|d) (expectation step) and maximizing the expectation of the complete log-

likelihood E[Lc] (maximization step), where the entropy term can be ignored for maximization

since it is a constant. To summarize, the function to be maximized is given as:

E[Lc] =
∑

d

∑
z

p(z|d) log
[ ∏

s

p(s|z)n(s,d)
∏

t

p(t|z)n(t,d)
]
p(z). (3.13)

In the expectation step, the posterior of the latent variable is computed using Bayes’ rule.

p(z|d) =
p(d|z)p(z)∑
z′ p(d|z′)p(z′)

(3.14)

While the values of the parameters are typically initialized randomly, a normalized encoding

matrix H is used as the initial values of p(d|z). This is possible because the reduced dimensions

of NMF r is equivalent to the number of latent states k. Otherwise, the initial posteriors must

be initialized randomly.

L = E[Lc] + σz

[
1−

∑
s

p(s|z)

]
+ θt

[
1−

∑
t

p(t|z)

]
+ ζ

[
1−

∑
s

p(z)

]
(3.15)

Solving for the maxima (taking the partial derivatives) of the Lagrangian function (3.15),

which is composed of the complete data log-likelihood and standard conditions on the pa-

rameters (i.e. probabilities add to one), results in the following stationary equations that lead

to the maximization equations.
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δL

δp(s|z)
=

1
p(s|z)

∑
d

n(s, d)p(z|d)− σz = 0 (3.16)

=
∑

d

n(s, d)p(z|d)− σzp(s|z) = 0 (3.17)

δL

δp(t|z)
=

1
p(t|z)

∑
d

n(t, d)p(z|d)− θz = 0 (3.18)

=
∑

d

n(t, d)p(z|d)− θzp(t|z) = 0 (3.19)

δL

δp(z)
=

1
p(z)

∑
d

p(z|d)− ζz = 0 (3.20)

=
∑

d

p(z|d)− ζzp(z) = 0 (3.21)

δL

δσz
= 1−

∑
s

p(s|z) = 0 (3.22)

δL

δθz
= 1−

∑
t

p(t|z) = 0 (3.23)

δL

δζ
= 1−

∑
z

p(z) = 0 (3.24)

Using system of stationary equations to solve for the optimal parameters, the re-estimation

equations that maximize the likelihood of the data given the current posterior are given as

below.

p̂(s|z) =
∑

d n(s, d)p(z|d)∑
s

∑
d n(s, d)p(z|d)

(3.25)

p̂(t|z) =
∑

d n(t, d)p(z|d)∑
t

∑
d n(t, d)p(z|d)

(3.26)

p̂(z) =
∑

d p(z|d)
|d| (3.27)

This process between the expectation step and the maximization step is repeated until the log-

likelihood function converges at a maximum.

Inference and recognition

Once the parameters of the model have been learned, the naive Bayes model can also be

used to recognize primitive actions. Specifically, given a test video segment d, a set of tempo-

ral and spatial features are extracted and binned to create a histogram of temporal and spatial

features,vt
d and vs

d respectively. Then the histograms are projected onto the respective encod-

ing spaces to obtain the encoding vectors ht
d and hs

d using the zeroed least-square solution
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Figure 3.3. Examples from the KTH action dataset taken from [SLC04].

[OP07]. Normalizing the vectors ht
d and hs

d yields the distribution over the features td and sd

for the test video segment. These distributions are then passed on as likelihood evidence for

the naive Bayes model to infer the distribution over the hidden actions p(z|d) using belief prop-

agation [Pea88].

3.3 Action datasets

Publicly available datasets used for human action recognition, like the KTH dataset [SLC04]

(Figure 3.3), have very little background variation (i.e. a wall or a field) and usually only involves

an actor with no interactive objects [DRCB05, BGS+05, WKC07]. In contrast, it is completely

reasonable to assume that many other objects will be visible in real world videos of human ac-

tions, especially important visual features that help define the actions being performed. This

section presents four new primitive action video datasets, created to include various back-

grounds and interactive objects. These datasets are needed to show how the proposed method

is able to leverage relevant visual context along with motion information to effectively discover

action categories.
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Touch type on keyboard Beginner on keyboard Dial telephone Flip pages of a book

Skim page of a book Write on paper Sift papers Take cup

Figure 3.4. Key frames for the corpus COBJ with 8 desktop actions involving objects.

3.3.1 Actions with objects corpus

The first motion and object corpus COBJ consists of eight different primitive actions that

involve a related physical object. A list is given below:

1. Touch typing on keyboard

2. Beginner on a keyboard

3. Dialing a phone

4. Flipping the pages of a book

5. Skimming the page of a book with finger

6. Writing with a pen on a piece of paper

7. Sifting through a stack of papers

8. Take a cup

Each action video was spliced into three second intervals. Using the first five segments per

action yielded a total of 40 video segments. Each video segment was 90 frames long and all

videos were created at a resolution of 160 × 120. Notice that some of the actions involve the

same object. Key frames from the corpus are given in Figure 3.4.
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open / game wipe / tools take / cook

Figure 3.5. Examples from corpus CBG with 9 actions including 3 different motions and 3 dif-
ferent background objects. Direction of motion is shown in white.

3.3.2 Actions with backgrounds corpus

The second motion and background corpus CBG consists of three different motions and

three different visual scenes (backgrounds). The three motions are:

1. Take (vertical movement)

2. Wipe (horizontal movement)

3. Open (hand opens and closes in place)

The three background scenes are:

1. Board game scene

2. Tools scene

3. Cooking scene

The combination of movement and scenes yields nine different actions. Five videos seg-

ments for each action resulted in a corpus of 45 videos. Each video segment was 90 frames long

and all videos were created at a resolution of 160 × 120. Key frames of several combinations of

motions and visual contexts are given in Figure 3.5.

3.3.3 Actions with objects and backgrounds corpus

The third motion with objects and background (messy desktop) corpus CBGOB contains

the same actions as the first corpus COBJ but also includes random backgrounds (Figure 3.6)
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Touch type on keyboard Beginner on keyboard Dial telephone Flip pages of a book

Skim page of book Write on paper Sift stack of paper Take cup

Figure 3.6. Examples from corpus CBGOB with 8 different actions with objects and varied ran-
dom background objects for each video segment.

which act as visual noise. The visual characteristic of each video segment was varied by includ-

ing different random static objects in the background. This corpus used the same number of

video segments and the same resolution as the first corpus COBJ .

3.3.4 Actions with objects and extraneous motion

In the three datasets introduced earlier, each segment consisted of a single action taken

from one repetitive sequence of the action and therefore did not include any extraneous move-

ments that are not produced by one of the action categories. Since it is conceivable that a typ-

ical video corpus will include some extraneous motion, the dataset used in the next set of ex-

periments utilizes a more challenging corpus that includes the transitions between actions (see

Figure 3.7). This fourth extraneous motion CEXMO consists of four different primitive actions

involving a related physical object. Furthermore, the same set of actions are repeated twice

at different time instances to introduce more variations within each action category. Sample

images from the dataset are given in Figure 3.7 and the action categories are:

1. Type on keyboard

2. Dial phone

3. Type on laptop

4. Punch numbers on calculator
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Figure 3.7. Dataset CEXMO of four desktop actions (top row) including extraneous movements
(bottom row)

A three minute video sequence of the four actions was indiscriminately segmented into

90 frame intervals and the video was created at a resolution of 160 × 120. As a results of the

segmentation, this corpus had a total of 68 segments. Since the frames are cut indiscriminately

some segments do not contain motions produced by an action category. These segments act

as noise during the learning process.
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3.4 Experiments with hand action datasets

First a baseline experiment is performed using only temporal features with NMF. Since it

has been shown that NMF is essentially equivalent to PLSA [GG05], this baseline experiment is

very similar to the approached use in [NWFF06]. Then four experiments are performed using

the proposed framework and it is shown how leveraging visual context improves learning per-

formance. For each experiment, the values of r and k are provided as prior knowledge but can

also be learned using a model selection criteria as in [VG02]. To initialize the encoding matrix

H for NMF near an optimal solution, the data is clustered into r clusters to compute the initial

values. That is, the set of histograms V were clustered with k-means clustering using the top

eight principle components (via PCA) of the histograms. For each column in the initialization

matrix Hinit, the element representing the nearest cluster was set to one and all other entries

were set to zero (binarization). Then a random non-negative proper fractions was added to ev-

ery element (random noise). This initialization scheme sets the initialization matrix to a value

near a optimal solution while retaining some randomness. Likewise, to initialized the EM pro-

cess of the bi-modal mixture model near an optimal solution, the initial values of p(z|d) are

set using the results of NMF, namely, the normalized values of the encoding matrix H of one

of the modes (usually spatial features). For each experiment, the initial codebook is generated

by heuristically setting the NRPC distance thresholds for both temporal features θt and spatial

features θs to 0.015.

3.4.1 Baseline experiment: Results using only motion features

The result of the first baseline experiment using only temporal gradient features is given in

the form of a bar graph of the posterior probabilities p(z|d) (the probability of a latent action

category z given the video segment d) in Figure 3.8. The average of the posterior probabili-

ties for each action category is also given in Table 3.1. A single row of the table is created by

taking the average of the posterior probability distributions of a group of video segments (in-

dices of the segments indicated in the leftmost column) from the same action. The columns

(latent states z) are labeled based on the element that has the greatest average probability. The

probabilities marked in bold indicate the average probability matched to the correct action.

Performance metric

For the experiments in this section, the average of the bold values are used as a measure

of performance, which is termed here as the probability of correct categorization (PCC). The

higher the PCC value, the greater the certainty that a video segment is associated to the correct
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category. This measure is used in tandem with the standard AUC (area under the (ROC) curve)

measure because the AUC values do not express the degree to which a dataset is properly cat-

egorized. That is, the AUC of a set of results will yield a score of 1.000 if there exists a single

threshold at which all of the items can be correctly classified. That means that the AUC only

describes the ability of a classifier to categorize data and does not describe the margin (or de-

gree) by which the data is classified when there exists an ideal threshold value. For example, a

binary classifier A that gives an average score of 49% for class 0 and 51% for class 1 and classifier

B that gives an average score of 1% to class 0 and 99% to class 1, both receive an AUC score of

1.000 if the data can be split at 50%. However, one would prefer to use the second classifier B

because it has a smaller margin of error.

Results

The PCC of the motion and object corpus COBJ using only motion features was 85.12% and

the AUC was 1.000. Since the simple temporal gradient descriptors only capture motion and

they are not invariant to scale or rotation, there is some uncertainty about the classification,

despite the high AUC score. The point to be made here is that the descriptive power of the tem-

poral features is not strong enough to categorize the primitive actions with high confidence.

The next experiment will show an increase in classification confidence when visual context is

also used as an input.
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Table 3.1. Average posterior probabilities for each action category using only temporal features.

Discovered Actions (z)

touch write begin flip sift take skim dial

keyboard paper keyboard page paper cup page phone

1 2 3 4 5 6 7 8

1-5 0.8724 0.0605 0.0065 0.0135 0.0007 0.0443 0.0012 0.0009

6-10 0.0686 0.0192 0.8508 0.0009 0.0077 0.0173 0.0340 0.0016

11-15 0.0290 0.0383 0.0705 0.0371 0.0073 0.0058 0.0103 0.8018

16-20 0.0159 0.0092 0.0055 0.9159 0.0374 0.0116 0.0044 0

21-25 0.0315 0.0176 0.0180 0.0382 0.0021 0.0298 0.7619 0.1007

26-30 0.0258 0.8148 0.0210 0.0349 0.0019 0.0544 0.0306 0.0165

31-35 0.0219 0.0297 0.0029 0.1029 0.7238 0.0674 0.0176 0.0338

36-40 0.0030 0.0041 0.0041 0.0932 0.0771 0.7804 0.0126 0.0254

Touch type
keyboard

Beginner 
keyboard

Dial phone

Flip pages

Skim pages

Write paper

Sift papers

Take cup

Figure 3.8. Baseline results using only temporal features for corpus COBJ . The horizontal axes
gives the ground truth for each video d and the discovered action category z. The vertical axis
is the posterior probability p(z|d).



CHAPTER 3. LEARNING ACTION PRIMITIVES 26

3.4.2 Learning actions using object appearance

Now the proposed method using both motion and visual context is utilized to learn action

categories from the same motion and object corpus COBJ . It is observed from the bar graph

(Figure 3.10) of the posterior probability that all actions contained in the video corpus have

been accurately discovered with high confidence. That is, the average PCC of the corpus COBJ

was increased to 99.05%. Leveraging the visual appearance of the action and related objects

significantly increased the confidence of classification performance.

As a reference, the results (posterior probabilities) of action discovery using only spatial

features is also given in Figure 3.9. It is observed that the action categories identified by both

the visual context and motion helped to disambiguate each other. This resulted in an improve-

ment in certainty regarding the classification of the segments. For example, when only the

spatial features are used there is some uncertainty about the first two segments – a small dis-

tribution of the probability is shared between category 1 and category 3 of the z axis. In other

words, there is some confusion as to whether the first two segments contain a person touch

typing on the keyboard or a beginner using the keyboard. Without the use of temporal fea-

tures, the visual context of the keyboard and hands are very similar and therefore NMF is not

able to differentiate the two actions completely. However, after the integration of temporal in-

formation via the bimodal model, the first two segments are classified with greater certainty.

Note that the index of the discovered actions differs between the experiments. This has to do

with the fact that the algorithm is unsupervised and is initialized randomly.
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Flip pages

Skim pages

Write paper

Sift papers

Take cup

Figure 3.9. Using only spatial features for corpus COBJ . The horizontal axes gives the ground
truth for each video d and the discovered action category z. The vertical axis is the posterior
probability p(z|d).
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Figure 3.10. Posterior probabilities using the proposed bi-modal method with the corpus
COBJ , which contained 8 different actions.
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3.4.3 Learning actions using background appearance

The assumption of this approach is that visual context is relevant when it is constantly ob-

served with a certain motion. Here the action and background corpus CBG is utilized to test

whether the proposed method is able to distinguish between actions with very similar (same)

motions, that can only be differentiated by their visual context. That is, given a video corpus

containing three different motions performed in three different environments, can the pro-

posed method discover nine unique actions from the database?

A bar chart of the posterior probability is given in Figure 3.14. Notice that each combina-

tion of visual context and motion have been correctly categorized with high probability (high

confidence). The average PCC of the corpus was 92.29% and the AUC was 1.000. For this cor-

pus, the visual features induced by the combination of motion and background enabled the

system to differentiate the nine different action categories.

The independent results of the motion features and the visual features are given in Figure

3.11 and Figure 3.12. Notice that the PCC for action discovery with only temporal features was

44.96% and the AUC was 0.878% (Figure 3.13). Since there are only three differentiable motions

in the database, the NMF decomposition of the temporal feature histograms is very difficult

resulting in low performance.

In contrast, the PCC for action discovery using only spatial features was 91.35% and the

AUC was 1.0000. In the special case of this corpus, it is observed that the information encoded

by the visual context is sufficient to properly categorize the actions with high confidence. This

experiment shows how the statics of static key frames can sometimes be sufficient to charac-

terize certain types of motion.

As mentioned earlier, it is assumed that visual context is relevant when it is constantly

observed with a certain motion. It is noted here that the proposed system will have problems

when the number of irrelevant background types is less than the number of motion types in

the database. That is, if a certain motion is frequently observed in front of the same unrelated

object, the proposed method will include those visual features as part of the primitive action.

In most cases, this should not be a problem given a sufficiently sized database generated over

various backgrounds.
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Figure 3.11. Results from corpus CBG using only temporal features.
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Figure 3.12. Results on the corpus CBG using only spatial features.
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Figure 3.13. ROC and AUC for action discovery with only temporal features on corpus CBG
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Figure 3.14. Results using the proposed method (bimodal) with the corpus CBG which includes
3 different motions and 3 different backgrounds. Ground truth labels are given along the axis.
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3.4.4 Learning actions over a messy desk

In reality, primitive actions occur in various types of visual contexts and it is important to

be able to leverage only the relevant visual features that should be associated with an action

(Figure 3.1). In this experiment, the proposed method is applied to the motion with object and

background corpus CBGOB and it is shown how the proposed method can leverage relevant

visual features to discover actions categories, even with various cluttered backgrounds (visual

noise).

Results show that the proposed approach is able to learn the actions of the corpus CBGOB

with an average PCC of 93.62% (Figure 3.15) and the AUC was 1.000. A high AUC score was

obtained despite the visual noise generated by the different background objects because the

relevant visual features have a stronger signature (occur more often) in the histograms; a trait

which is preserved during the NMF stage. The information gained from the relevant visual fea-

tures is then used by the bi-modal model to effectively discover all of the eight latent primitive

action categories.

Again, as a reference the PCC and AUC values achieved with only temporal feature and only

spatial features are included. The PCC for action recognition with temporal features only was

77.32% (Figure 3.18) and the AUC was 0.998 (Figure 3.17). The PCC for action recognition with

spatial features only was 82.68% (Figure 3.16) and the AUC was 1.000. It observed from the AUC

values that the statistics of both the spatial features and the temporal features are sufficient

to categorize the corpus. However, by integrating both modes, the bimodal model is able to

categorize the corpus with higher valued probabilities.
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Figure 3.15. Results of the proposed method (bimodal) with corpus CBGOB which has 8 actions
observed over various messy desktop environments.
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Figure 3.16. Results from the corpus CBG using only spatial features.
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Figure 3.17. ROC and AUC for action discovery with only temporal features on corpus CBGOB .
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Figure 3.18. Results from the corpus CBGOB using only temporal features.
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3.4.5 Learning actions from a corpus with extraneous motion

Up to this point, the previous experiments have worked with corpus elements (segments)

that contain only the action categories to be discovered. It is conceivable that a video corpus

will include segments that (1) do not contain target actions or (2) segments will contain only a

portion of a target action or (3) segments will include non-target actions (extraneous motion)

that might have an adverse effect on the discovery process. To examine the performance of the

proposed method on a corpus that includes this type of noise, an experiment were executed

on the extraneous motion corpus CEXMO. The PCC for action recognition with both features

was 61.69% (Figure 3.20) and the AUC was 0.978 (Figure 3.19).

Again as a reference, the results of using temporal features and spatial features indepen-

dently is given. The PCC for action recognition with temporal features only was 64.62% (Figure

3.22) and the AUC is 0.902 (Figure 3.21). The PCC for action recognition with spacial features

only was 93.16%(Figure 3.24) and the AUC is 0.996 (Figure 3.22). Here it is observed that a bi-

modal model incurs a penalty when the statistics of one of the features is weak and not able

to correctly categorize the corpus. In this case, the extraneous motions (temporal noise) in the

database has adversely effected the statistics of the temporal features. However, with informa-

tion gained from the visual context, the final categorization results in an average categorization

performance between the two modes. In this case, better performance could be achieved by

using only the visual features. However, this is dependent on the contexts of the video corpus

and is not always the case. It has been observed from previous experiments that using both

modes makes the system robust to a greater range of corpus content.



CHAPTER 3. LEARNING ACTION PRIMITIVES 35

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FALSE POSITIVE RATE

T
R
U
E
 P
O
S
IT
IV
E
 R
A
T
E

ROC curve  (AUC = 0.978)

Figure 3.19. ROC from the extraneous motion corpus using the proposed bimodal model.
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Figure 3.20. Results of the proposed bimodal method with corpus CEXMO with four actions
including extraneous motion.
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Figure 3.21. ROC of the corpus CEXMO using only temporal features.
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Figure 3.22. Results using only temporal features with corpus CEXMO.
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Figure 3.23. ROC curve of corpus CEXMO using only spatial features.
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Figure 3.24. Results using only spatial features with corpus CEXOB .
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3.4.6 Comparing clustering methodologies

Many works using the bag-of-features representation of categories use offline algo-

rithms to vector quantize the data by using such algorithms as the K-means clustering algo-

rithm [CDW+04], the EM algorithm with mixtures of Gaussians [Per08] or random sampling

[DRCB05]. While offline approaches work well for text or images, the comparatively large num-

ber of features that can be extracted from video can pose some challenges for offline algorithms

regarding computation time and memory usage.

This section makes a limited comparison between the standard offline K-means cluster-

ing algorithm and the proposed online nearest representative point clustering algorithm. It is

shown that the overall performance of the NRPC approach is on par with K-means while at the

same time offering faster processing and more efficient memory usage.

K-means clustering

The K-means algorithm [Mac67] is an iterative algorithm that clusters a set of data points

by minimizing the distance (typically the Euclidean distance) between the points in a clus-

ter. It utilizes termination criteria such as cluster centroid movement between iterations or a

maximum number of iterations. The computation time is therefore dependent on the char-

acteristics of the data points and the termination criteria. The termination criteria are usually

set heuristically and the criteria have a direct impact on how long it will take the algorithm to

converge.

The K-means algorithms also requires that all data records are stored in memory. While this

is usually not a problem for small datasets, memory usage becomes an important issue when

the number of data points becomes very large. For example, a computer with 4 GB of main

memory can only store about 7 million SIFT features extracted (about 21 minutes of video if an

average of 200 features are extracted from each frame). Since it is reasonable to assume that

even a typical video database of home videos will contain several hours of video, the memory

usage limitations of K-means is a very real issue.

K-means performance on datasets

A comparison between the performance of the NRPC algorithm presented in section 3.2.2

and the standard K-means clustering algorithm for the three datasets (section 3.3) is given in

Table 3.2. It can be said that both NRPC and K-means obtain comparable results by correctly
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Table 3.2. Comparison of NRPC and K-means on the same video corpus

NRPC Kmeans

PCC AUC PCC AUC

Motion and object corpus COBJ 99.6 1.000 99.89 1.000

Motion and background corpus CBG 95.7 1.000 94.95 1.000

Motion, object and background corpus CBGOB 98.2 1.000 99.38 1.000

Extraneous motion corpus CEXMO 61.7 0.978 76.36 0.936

discovering all of the actions. It was observed that for simple datasets both clustering algo-

rithms yield similar performance.

Table 3.3 contains a detailed comparison of the results for NRPC versus K-means clustering

for different parameters.When the maximum number of iteration (Max It) and the stop criteria

(Stop Crit) for K-means clustering are set to 10 and 1, respectively, it is observed that K-means

clustering and NRPC have similar performance with respect to the AUC value and process-

ing time. However, as stated earlier, speed and classification performance are data dependent

and it would not be reasonable to make conclusions about the general case from this specific

case. That being said, one possible reason for the success of NRPC is the fact that the features

generated by video has the unique characteristic that the same spatial features are detected

repeatedly for a series of frames that contain the same object. This means that small subsets

of the data points are naturally grouped together in small clusters, which would explain why

NRPC clusters the data with similar overall performance as K-means clustering.

The main difference that is observed is the memory usage. For example, the corpus CBGOB

generates about 253,000 features, which requires about 130MB of memory to store to run K-

means clustering. In contrast, NRPC processes the features online and only requires that the

cluster centers be stored. For the corpus CBGOB NRPC requires only around 0.7 MB of space.

Other considerations

Just as K-means clustering requires that the number of clusters is known, NRPC also re-

quires that the cluster radius be known. In practice, a radius value between 0.01 and 0.02 was

shown to be effective on preliminary tests with vectors (i.e. multi-dimensional data points)

normalized to unit length. The data also shows that NRPC tends to produce more clusters in

comparison to K-means. However, from the standpoint of memory usage the number of clus-

ters is considerable smaller than the amount of space needed to store all of the data points.

Also, NRPC clustering can also be used as an initialization step for K-means clustering to
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leverage the strengths of both algorithms. Since K-means clustering can also be parallelized

[OARS04], it would be possible to create a hybrid clustering technique that retains both the

optimization and speed advantages of both algorithms.

3.5 Conclusion

A novel framework for discovering action categories by leveraging relevant visual context

and motion features has been presented in this chapter. In the proposed framework, a fast

two stage clustering algorithm was implemented via nearest representative point clustering

and non-negative matrix factorization, to generate a term-by-document matrix as the input

to the bimodal mixture model. The bi-modal mixture model used both visual features and

temporal features to discover latent action categories. Through the experiments it was shown

that the proposed approach is able to accurately classify actions by leveraging relevant visual

appearance to disambiguate similar motions. It was also shown that the proposed method is

robust against irrelevant visual features generated by the background while at the same time

leveraging relevant visual features to accurately discover primitive action categories.
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Chapter 4

Learning the structure of activities

The previous chapter focused on the extraction of primitive actions from a video dataset

by utilizing both motion features and visual context. As a result, the proposed method can be

used to represent a video sequence as a temporal series of actions – an action symbol string. In

this chapter, a new framework for discovering the basic temporal structure (grammar) within

a action symbol string is proposed. To find the optimal grammar in a information-theoretic

sense, the minimum description length principle is used to identify a set of primitive actions

that defines an optimal stochastic context-free grammar.

4.1 Introduction

The stochastic context-free grammar (SCFG) is a model that has been widely utilized for

natural language processing and in recent years, has also been shown to be effective in mod-

eling human activities extracted from video [IB00, WSXZ01, ME02, MES03, OKA05, RA06]. The

success of SCFGs in analyzing natural languages is largely due to its ability to represent the

hierarchical structure found among words in a sentence. According to perceptual psychol-

ogy [ZT01], this hierarchical structure is also characteristic of the primitive actions of a human

activity1 and like sentences, activities are perceived to have partonomic structure (a discrete

temporal sequence of primitive actions). This similarity between strings of words and a series

of actions gives one the rational basis for the use of an SCFG for activity analysis. Other non-

hierarchical sequential state-based models (finite-state automata, hidden Markov models, n-

1As stated in chapter 2, the term activity is based on terminology introduced by Collins [CLK00] to refer to the
high-level description of a temporal sequence of primitive actions.



CHAPTER 4. LEARNING THE STRUCTURE OF ACTIVITIES 43

grams, etc.) have also been successfully applied to human activity recognition but are limited

by the fact that they do not explicitly describe the hierarchical structure of human activities.

One important task involved in using an SCFG for activity analysis is the task of learning

the grammar. Most of the previous works however, have manually designed their own gram-

mars and have avoided the issue of grammar learning. Ivanov [IB00] extracted primitive action

words from a video sequence of a conductors arm using HMMs and was able to recognize the

rhythmic meter using an SCFG. The grammar and it’s probabilities however, were defined by

Ivanov. Moore [ME02] used an SCFG to recognize people playing Black Jack and used the a

priori information encoded in the grammar to deal with errors in the string of action words.

Again, the grammar was defined by the author based on the basic rules of the game. Similarly,

Minnen [MES03] leveraged the a priori knowledge of a predefined grammar to infer an action

when the agent under analysis is occluded in the scene.

In contrast to works that used manually defined grammars, research dealing with the

issue of automated learning has been minimal and assumes a pure data set for learning.

Wang[WSXZ01] used an experimental scenario similar to Ivanov and implemented HMMs to

produce primitive action symbols from a video segment of a conductors hand motions. The

primitive actions produced by the HMMs were then fed into a pre-existing CFG learning al-

gorithm COMPRESSIVE [NMW00] to learn the activity grammar. Due to the fact that COM-

PRESSIVE requires positive examples to generate the CFG, it can be shown that their system

is very sensitive to noise in the input symbol string. That is, an unstable detector or an un-

related action would have an adverse affect on the learning process because this noise would

be included into the learned grammar. While a noise-less input stream may be a reasonable

assumption when learning a grammar from a string of words, it is a naive assumption when

learning an activity grammar from a symbol string produced by stochastic detectors from a

highly variable action sequence created by human actors.

In summary, most of the works using CFGs for activity analysis have used grammars man-

ually designed by knowledge engineers while research focused on automated grammar learn-

ing has only used pre-exiting algorithms, assuming activities to be a noise-less stream of sym-

bols. In contrast to previous works, this chapter proposes a new grammar learning method that

deals with the issue of noise. The proposed method places an assumption of noise on different

combinations of terminal symbols and tests that assumption using the minimum description

length (MDL) principle. Then using the results of the MDL evaluation, the proposed method

finds the best set of terminal symbols that yields the most compact and descriptive activity

grammar.



CHAPTER 4. LEARNING THE STRUCTURE OF ACTIVITIES 44

4.2 Conceptual example

In order to understand the basic concepts underlying the proposed approach, this section

gives a conceptual example to introduce the reasoning behind the proposed method. Given a

symbol string S, the goal is to find the most compact yet expressive grammar that yields an op-

timal description of the symbol string. At first glance, no regularity is observed in the example

string:

S→ a x b y c a b x c y a b c x.

Since it is assumed that noise exists in the string, it is possible that by removing different com-

binations of symbols, the underlying pattern may become more visible. Here for the sake of

example, the convenient hypothesis is made that y is noise. Therefore, all of the y symbols are

removed from the string2. This assumption shrinks the string into its new form:

S→ a x b c a b x c a b c x.

It is now observed that the substring c a b occurs twice in the string but no obvious regularity

(some rule) that completely describes the symbol string can be observed. Therefore, another

hypothesis is made that x is also a noise symbol, which results in the string:

S→ a b c a b c a b c.

Now it is clear that the substring a b c is repeated three times in the symbol string and so a new

rule A is created and the symbol string S is encoded with the new rule, yielding the compact

description:

S→ A A A

A→ a b c.

Through this example it has been observed that by correctly assuming x and y to be noise, a

compact grammar (A → a b c) and a deterministic description of the basic structure of the

original symbol string was obtained as S→ A A A. It will be shown later that this algorithm can

be interpreted to be a type of hypothesis testing based on a description length criterion on the

resulting grammar. The technical formulation of the concepts and methodology introduced

here are given in the following sections.

2The y symbol is deleted for an illustrative purposes. Symbols are not actually deleted in the proposed method.
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4.3 Preliminaries

4.3.1 The focus

It is necessary to first understand the focus of the proposed approach before proceeding

to explain its details. First, the primary interest is high-level grammatical inference of human

activities and not the methods for low-level primitive action extraction (as covered in chap-

ter 3). The proposed method assumes a reliable low-level processing system (such as the one

proposed in chapter 3) that returns a string of primitive action symbols. Second, this method

works only with a strictly sequential string of primitive action symbols as the input (refer to sec-

tion 2.2.4 for details). It is recognized that while most activities are sequential streams of prim-

itive actions, intra-action relationships can also have other modes [All84], such as overlapping

and concurrence. As such, other methods such as propagation networks [SHM+04], Petri net-

works [GDDD04], deleted interpolation [KSS05] and other approaches using CFGs [RA06] have

been proposed to address different temporal modes between primitive actions and activities

for the recognition task. In contrast, in regards to the learning task, the claim of this chap-

ter is that discovering the basic sequential structure between key actions is the first important

step in establishing a strong context to discover other types of temporal modes. Here the is-

sue of learning non-sequential temporal relationships is left for future work and this chapter

will focus primarily on the discovery of temporally sequential action patterns. Therefore, given

this focus, the discussion in this chapter is limited to the discovery of the grammar of a strictly

sequential string of key action symbols.

4.3.2 Definition of noise

When considering the task of learning an activity from a string of action symbols, it is rea-

sonable to expect different types of noise that might hide the basic structure of the activity that

is to be learned. The first type of noise is inherent to human activities which is termed here as

inherent noise. Inherent noise is caused by superfluous actions that do not play an important

role in defining the activity to be learned. These secondary action symbols (noise symbols)

tend to appear with irregular frequency and order, and fill in the gaps between the important

action symbols. The second type of noise is system noise caused by the instability of the image

processing system. System noise can be attributed to changes in appearance that cause the

image processing system to insert, substitute or delete (miss) random symbols from the sym-

bol string. Symbols that are inserted, substituted or deleted with a high frequency should not

be used for learning because they introduce much randomness to the symbol string.



CHAPTER 4. LEARNING THE STRUCTURE OF ACTIVITIES 46

Since it is a very challenging task to address all the different modes of noise, several key

assumptions are made to narrow the focus on a more manageable sub-problem, namely, in-

herent insertion noise in the training data. First, the assertion is made that a symbol is either

a noise symbol or a non-noise symbol (a symbol cannot be noise and non-noise at the same

time). Second, a non-noise symbol is defined to be a primary action symbol that defines or is

directly related to the target activity. As for its properties, it shows regularity in its appearance

and is observed with constant frequency and ordering. Noise symbols on the other hand are

secondary action symbols that display random behavior with respect to frequency and order-

ing. The assumptions of this chapter are summarized as follows:

1. Noise symbols exist in the symbol string,

2. Non-noise symbols exist in the symbol string,

3. Noise and non-noise symbols are mutually exclusive,

4. Non-noise symbols occur with regularity.

While the primary assumption is that of inherent insertion noise, it is also shown in section

4.5.2 how the proposed method also shows robust performance when these assumptions are

violated by using strings corrupted by both inherent insertion noise and system noise.

4.3.3 Context-free grammar

As mentioned before a context-free grammar (CFG) is used here to model human activity

because of its ability to explicitly and compactly describe hierarchal structure. A CFG is defined

by the 4-tuple G = {T,N, S,R}, where T is a finite set of terminal symbols, N is a finite set of

non-terminal symbols, S is the start symbol (a special non-terminal symbol) and R is the set of

production rules. The production rules take the form A → λ∗, which states that non-terminal

symbol A produces the string λ∗ of one or more symbols. When a probability P (A → λ∗) that

satisfies the condition
∑

i P (A → λ∗
i ) = 1, is associated to each rule, the grammar becomes a

stochastic content-free grammar (SCFG).

When a SCFG is used to model activity, each terminal symbol represents a primitive ac-

tion and each non-terminal symbol represents an abstraction of a substring of terminal sym-

bols. The start symbol S represents a single activity, a complete symbol string produced by the

grammar.
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Training data W Optimal grammar

Setup presuppositions Gi
0 Total description length

Hypothetical grammar Gi

DL of grammar

DL(Gi)

DL of data likelihood

DL(W|Gi)

Next presupposition (i + 1)

Figure 4.1. Flowchart of the proposed MDL-based grammar learning method.

4.4 Proposed method

In this section, the key concepts introduced through the conceptual example in section

4.2 are formalized and it is shown how the MDL principle can be used to perform hypothesis

testing to identify the correct noise symbols.

4.4.1 Setting up the presuppositions

To learn a grammar from the training data, it is required to first remove any noise that

might be contained in the training data. Formally, given the training data W = {W1, . . . ,Wl},
a concatenation of l activity sequences Wi, where each activity sequence Wi = {w1, . . . , wp}
is a string of primitive action symbols wj ∈ T, it is the goal of this method to identify the

symbols that are not useful (noise) for learning the grammar. However, since it is not know

a priori which symbols are noise, it is proposed to set up various presuppositions (noise or

not noise) against each unique primitive symbol and evaluate those presuppositions using an

MDL criterion. Here it is explain how a single presupposition or hypothesis is set up.

A single hypothesis divides the set of primitive actions (terminal symbols) into two sets: the

set of noise symbols wf = {wf
1 , . . . , wf

v} and the set of non-noise symbols wt = {wt
1, . . . , w

t
u}.

Next, an initial grammar is constructed to reflect the hypothesis. The initial grammar given in

its general form is the set of production rules



CHAPTER 4. LEARNING THE STRUCTURE OF ACTIVITIES 48

R0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S →W′

N1 → wt
1

...

Nu → wt
u

η → η η

η → wf
1

...

η → wf
v

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.1)

The first rule of the form S → W′ is the start production rule. S is a nonterminal symbol

that represents all possible symbol strings produced by the grammar and in the initial stage W′

is the concatenated training data encoded by the other production rules of the initial grammar.

To attain the encoded input symbol string W′, a plain input symbol string W is encoded to re-

flect the presuppositions made about each terminal symbol. This is done by replacing each

terminal symbol wi with the appropriate nonterminal symbol using the preterminal produc-

tion rules, which are defined next.

The set of production rules of the form Ni → wt
i is created for each presupposed non-noise

symbol, where wt
i is a non-noise terminal symbol and Ni is a newly created nonterminal. These

preterminal rules effectively preserve the unique identity of the symbol in the training data.

The set of generic preterminal production rules of the form η → wf
j is created for each

noise terminal symbol, where wf
j is a noise terminal symbol and the nonterminal η is a generic

nonterminal representing all noise symbols. The generic absorption rule η → η η is also cre-

ated, which encodes a series of adjacent noise symbols. An example of setting up a hypothesis

in the form of an initial grammar is given in Figure 4.2.

4.4.2 Learning the hypothesis grammar

Now that the presuppositions on the primitive action symbols have been encoded into the

initial grammar, the next step is to learn the hypothesis grammar. This initial grammar is called

the hypothesis grammar because it reflects a hypothesis (presupposition) about which symbols

are noise and which symbols are not noise. In later sections it is shown how each hypothesis is

tested by measuring the expressive power of each hypothesis grammar.

In this proposed method the heuristic CFG learning algorithm COMPRESSIVE is imple-

mented to learn the grammar. When the original (hidden) grammar conforms to certain con-

straints and there is sufficient training data, the algorithm is able to learn a grammar that is
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Input strings:

W1 = 1 c a b a a b

W2 = 2 c a b a a b c

W3 = 3 a b a a b c

Hypothesis:

c is noise.

Initial grammar R0:

S → 1 η A B A A B 2 η A B A A B η 3 A B A A B η

A→ a

B → b

η → c

η → η η

Figure 4.2. An example of setting up a hypothesis grammar.

of the same family of the original grammar. Four assumptions made regarding the original

grammar are: (1) there are no cyclic (recursive) rules in the grammar, (2) there are no alterna-

tive expansions for non-terminals (only one expansion for a given non-terminal), (3) there are

no abstractions (the number of symbols on the left-hand side of a rule is never 1) and (4) the

grammar is optimal with respect to its description length.

When the original grammar does not conform to these assumptions, the grammar learned

by the algorithm tends to be more complex (have more production rules) than the original

grammar. However, since it is later shown that the primary concern is that of identifying the

hypothesis that minimizes the overall description length, the relative difference in complexity

between hypothesis grammars is more important than the absolute similarity (distance) to the

original grammar.

COMPRESSIVE uses a function that quantifies the change in description length ΔDL to

find the best n-gram in the grammar that minimizes (compresses) the overall size of the gram-

mar. For a n-gram ν with length nν and occurrence mν , the function is given as

ΔDL = nν ·mν − (nν + 1)−mν . (4.2)

In words, the change in description length is equivalent to the decrease caused by the removal
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Input symbol string:

S → a b c d a b c d b c d a b a b

Pattern Occurrence Frequency Length Compression Factor
ν nν mν ΔDL

b c d 3 3 2
a b c d 2 4 1
a b 4 2 1
c d 3 2 0

(1) Replace N-gram with maximum compression as new rule:

A→ b c d

(2) Encode input:

S → a A a A A a b a b

(3) Repeat steps (1) and (2)

Figure 4.3. An example of COMPRESSIVE.

of ν (m occurrences of length n), minus the increase of inserting a new rule n + 1, minus the

increase of inserting of the new nonterminal symbol m times. An example is given in Figure

4.3.

Once the best substring ν has been found and replaced by the new nonterminal, the al-

gorithm repeats that process on the resulting grammar until there are no more n-grams can

be found that decrease the size of the grammar. During the iterative process, the occurrence

counts for the best n-grams are stored and are used later to calculate the rule probabilities.

Upon completion of COMPRESSIVE, the grammar is post-processed. Recall that the origi-

nal segmented input symbol string W was encoded by the presuppositions to acquire W′. Now

after the completion of the COMPRESSIVE algorithm, the input string has been compressed to

its new form W′′. In the post-processing step, the string W′′ is reverted back to its original l ac-

tivity sequences and sequences that have the same structure are grouped together. To do this,
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the S rule, S →W ′′
1 · · ·W ′′

l is removed from the grammar. Next, each sequence separated and a

new S rule is placed back into the grammar for each unique sequence S → W ′′
1 , · · · , S → W ′′

h .

Since unique sequences are only inserted once into the grammar h ≤ l. The probability for

each production rule is calculated with the following equation:

P (N → λ∗
i ) =

c(N → λ∗
i )∑

j c(N → λ∗
j )

, (4.3)

such that N is a nonterminal, λ∗ is the right-hand side of the rule and c(·) is a count function.

Rules with zero probability are removed from the grammar.

This completes the step for learning the hypothesis grammar based on the initial presup-

positions. The next section explains the framework used to evaluate the quality of the hypoth-

esis grammar.

4.4.3 Testing using the MDL principle

The next goal is to find a presupposition on the primitive action symbols that yields both

a compact yet expressive grammar that describes the input symbol string. Reworded in the

framework of MDL, the goals it is find an optimal selection of non-noise symbols that will yield

a grammar G that minimizes the sum of the description length of the grammar DL(G) and the

description length of the data encoded by the grammar DL(W|G) (data log-likelihood).

Ĝ = arg min
G
{ DL(G) + DL(W|G) } (4.4)

= arg min
G
{− log P (G)− log P (W|G)}. (4.5)

In this section, the encoding technique proposed by Stolcke [Sto94] is implemented to find

the description length of the grammar and the inside (beta) probabilities introduced by Pyna-

dath [PW98] are implemented to calculate the description length of the data likelihood.

Description length of the grammar

The first term of the MDL equation is the description length of the grammar DL(G).

DL(G) is a measure of the compactness of the grammar and is an indicator of the regularity

found in the training data.

Since the probability of the grammar can be interpreted as the joint probability of the pa-
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rameters θG and structure GS of the grammar,

P (G) = P (GS , θG) = P (θG|GS)P (GS), (4.6)

the description length of the grammar can be acquired by summing the description length

of the grammar parameters DL(θG|GS) and the description length of the grammar structure

DL(GS). The description length of parameters DL(θG|GS) is computed by using the param-

eter probability P (θG|GS) and calculating the prior on the structure DL(GS) directly from the

grammar using information theory.

First, the prior on the grammar parameters P (θG|GS) is calculated as the product of Dirich-

let distributions (equation 4.7), such that each Dirichlet distribution represents an uniformly

distributed probability across all q possible productions of a nonterminal symbol N .

PN (θG|GS) =
1

B(α1, . . . , αq)

q∏
i=1

θαi−1
i (4.7)

where the parameters for each nonterminal is represented by the multinomial distribution

θ = (θ1, . . . , θq) and B is a beta distribution. Since there is no prior knowledge about the dis-

tribution of the grammar parameters, the rule parameters θi and prior weights αi are set to

be uniformly distributed, similar to the original work [Sto94]. The description length of the

parameters of the grammar is given by− log P (θG|GS).

Second, the structure probability P (GS) is calculated by directly computing the descrip-

tion length of the structure DL(GS). DL(GS) can be defined as the sum of two parts: (1) the

description length of the production rule symbols and (2) the description length of number of

symbols in the production rule. The description length of the number of symbols is computed

from equation (4.8) on the assumption that the length of the production rule is drawn from a

Poisson distribution (μ = 3 is used for experiments) shifted by one since the smallest possible

rule is of length two.

− log P (r − 1;μ) = − log
e−μμr−1

(r − 1)!
. (4.8)

Assuming all symbols have the same occurrence probability, log2 |Σ| bits per symbol is

needed, where Σ is the set of all symbols. Therefore, the description length of r symbols re-

quires r log |Σ| bits to transmit. The total description length of the structure is given by:

DL(GS) =
∑
R∈R

(− log P (rR − 1;μ) + rR log |Σ|) . (4.9)

Further explanation and justification of the formulation of the description length of the

grammar can be found in the original work [Sto94].
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Description length of the likelihood

It is not enough to evaluate the description length of the grammar because a grammar cho-

sen purely based on grammar size will favor a very small grammar which may not explain the

data well. The second term in the MDL equation is the description length of the data likelihood

DL(W|G). DL(W|G) works to balance the effect of the first term by quantifying the expressive

power of the grammar.

First, the data likelihood is calculated and then converted into a description length using

Shannon’s coding theory (negative log of the probability). The data likelihood is calculated us-

ing a chart of β probabilities created using the procedure outlined in the original work [PW98].

The chart defines a function β(N, j, k), the probability that the non-terminal N is the root node

of a subtree, at abstraction level k, with a terminal substring of length j. Once a chart has been

constructed for a sequence W = {w1, . . . , wjmax
}, the data likelihood can be computed as a

sum of β probabilities for all strings of length jmax produced by the root node S. Due to the

insertion of abstraction rules when constructing the initial grammar and the possible creation

of abstraction rules at post-processing, the maximum abstraction level kmax is two.

P (Wi|G) =
kmax∑
k=1

β(S, jmax, k), (4.10)

The total likelihood for all the sequences W is computed by equation (4.11) as a product of

likelihoods for each sequence Wi. After the total likelihood has been computed, it is converted

into a description length by taking the minus logarithm.

P (W|G) =
n∏

i=1

P (Wi|G). (4.11)

In summary, by calculating the description length of the grammar and the description

length of the data likelihood, a framework for evaluating the quality of a presupposition made

on the terminal symbols has been created. By identifying the hypothesis grammar that mini-

mizes the total description length, the grammar that optimally describes the data is acquired.

4.4.4 The recovered grammar

The proposed method uses the MDL criterion to discover the most optimal grammar from

a set of hypothesis grammars. This section gives a brief discussion on the nature of the recov-

ered optimal grammar and also clarifies the focus of the proceeding quantitative analysis.
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No claim is made that the recovered optimal grammar has a topology that is the same as

the original grammar. Except in the special case where the grammar conforms to a set of as-

sumptions made by the COMPRESSIVE algorithm (section 4.4.2), the underlying assumptions

significantly inhibit the type of structures that can be learned.

This however is not a problem for the proposed framework since the aim is to identify a

grammar that optimally characterizes the basic structure (rules) between the correct non-noise

symbols. To this end, the propose method is primarily concerned with the relative differences

between hypothesis grammars and not the difference from the original grammar. In fact, de-

pending on the form of the original grammar, the basic structures that are learned might be

less complex or more complex than the original grammar.

Next, the goal of the following quantitative analysis is to show that the proposed method

can consistently assign an optimal score to the grammar that uses the correct non-noise sym-

bols and learns the basic structure of the original grammar.

4.5 Experiments with synthetic data

This section explores the conditions under which the proposed method is valid through

experiments with synthetic data generated by a known grammar. It is also shown through an

experiment with real data that the proposed method is able to produce intuitive results that

aligns well with a human understanding of the target activity.

The synthetic data for each experiment was created using a pre-defined stochastic context-

free grammar written according to a set of conditions. A set of d sample strings was generated

by the artificial grammar and was used to analyze the proposed method. After the analysis,

each hypothesis grammar was ranked according to its description length. Throughout this

section, the grammar which uses the correct non-noise symbols is termed as the true grammar

and use the rank of the grammar as a measure of the success of the proposed method. The

desire is for the rank of the true grammar to always be first (i.e. the global solution of the

MDL criterion). An example of a predefined grammar is given in Figure 4.4 and a ranked list of

hypothesis grammars in given in Table 4.1.
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S → EN ACT EX [1.0]

EN → A [0.5]

EN → A INSERT [0.5]

EX → B [0.5]

EX → B INSERT [0.5]

ACT → C [0.5]

ACT → C INSERT [0.5]

A → a [1.0]

B → b [1.0]

C → c [1.0]

INSERT → nd [0.333]

INSERT → ne [0.333]

INSERT → INSERT INSERT [0.334]

Figure 4.4. An example of an one pattern synthetic grammar with three non-noise symbols and
two noise symbols.



CHAPTER 4. LEARNING THE STRUCTURE OF ACTIVITIES 56

Table 4.1. Ranked list of hypothesis grammars - The true grammar marked in bold is given a
sub-optimal rank due to a small sized training set.

Rank Symbols DL(G) DL(W |G) Total

1 a b 2 117.85 487.04 604.89

2 a c 2 126.81 489.01 615.82

3 a b c 3 348.69 327.84 676.52

4 b c 2 187.57 517.32 704.89

5 a 1 85.58 689.34 774.92

6 c 1 89.69 703.08 792.77

7 b 1 113.80 758.57 872.37

8 a ne 2 362.22 622.20 984.42

9 a nd 2 403.36 604.69 1008.05

10 1 70.82 942.46 1013.28

11 nd 1 223.37 826.17 1049.53

12 ne 1 223.37 854.10 1077.46

13 a c ne 3 664.92 415.79 1080.71

14 c nd 2 540.10 566.35 1106.45

15 c ne 2 512.91 604.70 1117.61

16 a c nd 3 749.00 399.35 1148.35

17 a b nd 3 774.74 397.38 1172.12

18 a b ne 3 758.90 422.24 1181.14

19 b nd 2 608.16 636.22 1244.38

20 b ne 2 608.30 675.64 1283.94

21 b c nd 3 981.49 398.73 1380.22

22 b c ne 3 999.61 422.70 1422.31

23 a b nd ne 4 1268.58 260.39 1528.97

24 a b c nd 4 1300.13 257.39 1557.52

25 a b c ne 4 1300.13 257.39 1557.52

26 a c nd ne 4 1300.13 257.39 1557.52

27 b c nd ne 4 1300.13 257.39 1557.52

28 a b c nd ne 5 1300.13 257.39 1557.52

29 nd ne 2 885.68 706.60 1592.28

30 a nd ne 3 1145.23 489.99 1635.22

31 b nd ne 3 1151.62 487.99 1639.61

32 c nd ne 3 1280.75 377.39 1658.15
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4.5.1 Inherent insertion noise

Three different grammar parameters were varied to examine the performance of the pro-

posed method to different types of inherent noise. First, three types of artificial grammars with

different numbers of patterns were defined to evaluate the response of the proposed method

to grammars with increasing complexity. Type one grammars had only one basic pattern (one

S rule) while type two and type three produced two patterns (two S rules) and three patterns

(three S rules), respectively. The basic patterns of type two and type three grammars were dif-

ferent permutations of the same non-noise symbols. An example of a type one grammar and a

type two grammar are given in Figure 4.4 and Figure 4.6, respectively. Second, for each type of

synthetic grammar, the number of terminal symbols were varied from 6 to 10. Several permu-

tations between the number of noise and non-noise symbols were tested. An insertion noise

rule was added for every non-noise production rule to simulate the random insertion of noise

between non-noise symbols. Third, to evaluate the effect of the sample size on the results,

several training sets consisting of d = 50, 150, 300, 500, 1000 randomly produced strings were

analyzed for each artificial grammar. The parameters and results for each artificial grammar

are given in Table 4.2.

The results show that the proposed method has identified the correct set of non-noise sym-

bols when the sample size is sufficiently large (Table 4.2). Equivalently, the proposed method

has been shown to produce sub-optimal results when the size of the training set was too small.

The results also show that complex grammars require more training samples than do simple

grammars. It was also observed that the rank of the true grammar converges faster to the top

position for simpler grammars (Figure 4.5). Sub-optimal results were encountered when the

sample size was not sufficient because the learned grammar was under-developed and the

data likelihood was under-representative of the data. Specifically with respect to the learned

grammar, the insufficient sample size means that the extent of the randomness of the real noise

symbols is not fully observed and therefore not fully described by the learned grammar. As a re-

sult, grammars using noise symbols are under-developed and are not properly penalized with

a long description length.

With respect to the description length of the data likelihood, an insufficient sample size

means that the data is not representative of the true set of strings that could be produced by

the hidden grammar. As a results, the description length of the data likelihood becomes a small

value and is constrained to a narrow range of values. This means that the description length of

the data likelihood plays a weaker role in determining the optimal grammar. When these two

aspects are combined, a small sample size creates a strong bias toward simple grammars. In

fact in the experiments with synthetic data, the true grammar was always outranked by smaller
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grammars when the sample size was insufficient (e.g. Table 4.1). Later a strategy for balancing

the total description length is introduced in section 4.6.3.
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Table 4.2. Results with synthetic data (inherent insertion noise).

d = 50 d = 150 d = 300 d = 500 d = 1000

Type Non-noise Noise Rank of the true grammar

1 3 3 3 1 1 - -

1 3 4 3 1 1 - -

1 3 5 3 1 1 - -

1 3 6 5 1 1 - -

1 3 7 4 1 1 - -

1 4 3 12 4 1 1 1

1 4 4 15 4 1 1 1

1 4 5 11 4 1 1 1

1 4 6 14 4 1 1 1

1 5 3 30 15 5 1 1

1 5 4 34 15 5 1 1

1 5 5 54 15 5 1 1

2 3 3 11 4 1 1 -

2 3 4 12 4 1 1 -

2 3 5 28 4 1 1 -

2 3 6 8 4 1 1 -

2 3 7 30 4 1 1 -

2 4 3 25 11 5 1 1

2 4 4 49 11 5 1 1

2 4 5 28 11 5 1 1

2 4 6 65 13 5 1 1

2 5 3 55 35 16 6 1

2 5 4 91 43 16 6 1

2 5 5 242 34 16 6 1

3 3 3 23 5 1 1 -

3 3 4 28 5 1 1 -

3 3 5 28 6 1 1 -

3 3 6 84 7 1 1 -

3 3 7 177 7 1 1 -

3 4 3 37 26 11 4 1

3 4 4 71 18 11 4 1

3 4 5 102 43 11 4 1

3 4 6 213 89 10 3 1

3 5 3 85 69 26 16 5

3 5 4 87 80 30 16 5

3 5 5 181 136 27 17 5
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Figure 4.5. Rank of the true grammar converging to the top position for a grammar with five
noise symbols and five noise symbols.

4.5.2 Synthetic system noise

Despite the fact that the method proposed thus far has been designed to address inherent

insertion noise, it has been shown in preliminary experiments that the proposed method is also

able to deal with system noise. More specifically, the results show that the proposed method

is able to cope with random insertion, deletion and substitution errors. Insertion caused by

system noise introduces the possibility of a non-noise symbol to appear randomly in the input

sequence. The deletion of a non-noise symbol creates sequences with incomplete patterns.

Substitution is a combination of a deletion and an insertion, where an important non-noise

symbols is removed and replaced by either a noise symbols or another non-noise symbol.

One of the grammars used to produce the training samples is given in Figure 4.6. In addi-

tion to the insertion (INS) rules which represent inherent insertion noise, a substitution (SUB)

rule was added to randomly insert a symbol in the place of a non-noise symbol. The parame-

ters of the substitution rules have been distributed in such a way that non-noise symbols are

inserted as noise 10% of the time. This is reasonable if it is assumed that key non-noise symbol

detectors have high reliability. Using the artificial grammar, the training data was randomly

generated for various values of d.
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S → EN ACT EX [0.5]

S → ACT EX EN [0.5]

EN → A [0.45]

EN → A INS [0.45]

EN → SUB [0.10]

EX → B [0.45]

EX → B INS [0.45]

EX → SUB [0.10]

ACT → C [0.45]

ACT → C INS [0.45]

ACT → SUB [0.10]

A → a [1.0]

B → b [1.0]

C → c [1.0]

INS → nd [0.25]

INS → ne [0.25]

INS → nf [0.25]

INS → INS INS [0.25]

SUB → nd [0.30]

SUB → ne [0.30]

SUB → nf [0.30]

SUB → A [0.0333]

SUB → B [0.0333]

SUB → C [0.0334]

Figure 4.6. An example of a two pattern synthetic grammar with three non-noise symbols and
system noise.
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Table 4.3. Results with synthetic data (inherent insertion and system noise).

d = 50 d = 150 d = 300 d = 500 d = 1000

Type Non-noise Noise Rank of the true grammar

1 3 3 12 3 1 1 1

2 3 3 15 7 4 2 1

3 3 3 23 17 7 4 1

Table 4.3 shows that the new modes of noise introduced by system noise increased the

complexity of the task, which resulted in a need for more training samples to identify the true

grammar. The proposed method was able to recover the correct non-noise symbols despite

the increase of noise types because partial patterns could still be described by the CFG while

incurring only a minimal increase in grammar size. As a result, the description length of the

grammar and the data likelihood of the true grammar attained smaller values relative to those

of other hypothesis grammars. These results show that as long as there is more order among

the non-noise symbols compared to the noise symbols, an optimal solution can be identified.

Consequently, if the structure between the non-noise symbols is corrupted to a degree, such

that the randomness of the non-noise symbols becomes similar to the randomness of the noise

symbols, the proposed method will only be able to identify a grammar using a subset of the

correct set of non-noise symbols as the optimal solution.

4.5.3 Time complexity

Let C be the maximum number of symbols in a single sequence and let B be the number of

training samples (sequences). The COMPRESSIVE algorithm has a theoretical time complexity

of O((BC)2) because it makes multiple passes over the input string. However, in practice it is

very fast compared to the calculation of the data likelihood when the speed-up techniques in-

troduced in the original work [NMW00] are used. The linear time Sequitur algorithm[NMW97]

could also be implemented for additional time savings.

The computation of the beta probabilities in the worst case is O(PCDKD), where P is the

number of induced productions, K is the maximum number of abstraction levels (for the pro-

posed method K = 2) and D is the maximum production length. The beta probabilities must

be computed for each sequence, which means the time complexity for computing the data like-

lihood is O(BPCD2D). Furthermore, since the proposed method evaluates every combination

of terminal symbols, the total time complexity is O(2A(BPCD2D)), where A is the number of
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Figure 4.7. Overhead view of the CCD camera mounted above the counter.

terminal symbols. When the hidden grammar is complex, the calculation of the data likeli-

hood dominates the computation time because the average number of symbols in a sequence

C, the number of terminal symbols A and the maximum production length D become large.

The Stolcke-Earley parser [Sto94] could be implemented as an alternative algorithm to speed

up the calculation of the data likelihood.

4.6 Experiments with real data

A surveillance system in a local convenience store was setup to test the proposed method

on real data. The system consisted of a single overhead CCD camera (Figure 4.7) that captured

the hand movements of the employee and the customer. In the experiment a total of more

than 9700 frames were recorded and processed offline according to the proposed method.

Since the main goal was to learn the high-level grammar (not video segmentation) for a typical

employee-customer transaction, the video was manually segmented for each new customer.

While the issue of segmentation is not addressed in this paper, finding the beginning and ends

of an activity will be an important task to address in future works when using a syntactic ap-

proach to learning.
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Figure 4.8. A frame from the image processing module showing the detection of hands and
tray.

4.6.1 Extracting primitive action symbols

For this experiment primitive actions symbols were detected using simple image process-

ing using application-specific domain knowledge for simplicity. However, a unsupervised tech-

nique such as the method proposed in chapter 3 could also be implemented. Skin color was

detected in the HSV (hue, saturation, variance) space by merging a thresholded binary im-

age from each channel. Similarly, the blue tray was detected using different thresholds in the

HSV color space. The removal of the scanner and the receipt was detected by monitoring pixel

changes over a small spatio-temporal window over the target region. Similarly, the addition

and removal of money into the tray was detected by monitoring a spatio-temporal window

over the center of the tray. An example of the results of the image processing module is shown

in Figure 4.8. For this experiment a total of ten different types of primitive action symbols were

extracted. An explanation of the terminals is given in Table 4.4. Again, a simple rule-based im-

age processing system was implemented to extract the primitive action symbols in a top-down

fashion. However, the proposed method will also work with any low-level image processing

system that produces a string of primitive actions symbols.

A total of 369 symbols were automatically extracted from the convenience store surveil-

lance video. The longest symbol sequence was eleven symbols long and the shortest sequence

was three symbols long. Each sequence was concatenated into one long symbol string as the

input to the propose algorithm. The size of the training data was d = 55 strings.

After acquiring the training data, each hypothesis was evaluated for every possible sub-

set of primitive symbols as outlined in section 4.4.1. Since there were ten different terminals

symbols, the system evaluated 1024 possible grammars. While the proposed method has the

advantage of a complete search over the entire solution space, evaluating every possible com-
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Table 4.4. Definition of the terminal symbols.

NO. TERMINAL SYMBOL DESCRIPTION

1 CUS AddedMoney Money found in tray after customer comes in

contact with the tray

2 CUS MovedTray Customer moves tray

3 CUS RemovedMoney Customer removes money from tray

4 EMP HandReturns Employee hand returns after long absence

5 EMP Interaction Employee interacts with customer

6 EMP MovedTray Employee moves the tray

7 EMP RemovedMoney Employee moves money from tray

8 EMP ReturnedScanner Employee returns scanner

9 EMP TookReceipt Employee takes the receipt from the register

10 EMP TookScanner Employee picks up scanner

bination leads to a combinatorial explosion as the number of terminal symbols increase. While

a brute force approach was adopted for this method, which resulted in the evaluation of every

combination, results suggest that it may be possible to optimize the search by first evaluat-

ing grammars that use many non-noise symbols and limit subsequent evaluations to symbol

subsets that are contained only in the top scoring set(s). This will be a topic for future work.

4.6.2 Initial results

The MDL identifies a single optimal grammar but from a practical perspective it is use-

ful to present a list of the top hypothetical grammars. The top scoring hypothetical grammar

for each class of grammars using the same number of non-noise symbols can be ranked as a

list. While a certain user may be satisfied by a grammar that identifies two or three non-noise

symbols, another user might desire a more descriptive grammar using five or more non-noise

symbols despite the cost of a more complex grammar. Providing such a list would allow the

user to choose the preferred grammar from a list of high scoring hypothetical grammars. A list

of the top ranking grammars for each class of grammars using the same number of non-noise

symbols x is given in Table 4.5.
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Table 4.5. Top hypothesis grammars - Optimal grammar marked in bold.

x Non-noise Symbols DL(G) DL(W |G) Total

0 140.11 1319.31 1459.42

1 EMP TookScanner 221.41 1194.29 1415.70

2
CUS RemovedMoney

EMP TookScanner 245.34 1191.28 1436.62

3

CUS MovedTray

CUS RemovedMoney

EMP TookScanner 294.19 1187.16 1481.35

4

CUS MovedTray

CUS RemovedMoney

EMP TookReceipt

EMP TookScanner 493.40 1054.20 1547.60

5

CUS MovedTray

CUS RemovedMoney

EMP MovedTray

EMP TookReceipt

EMP TookScanner 658.55 1011.17 1669.72

6

CUS MovedTray

CUS RemovedMoney

EMP MovedTray

EMP ReturnedScanner

EMP TookReceipt

EMP TookScanner 1100.30 818.56 1918.86

7

CUS MovedTray

CUS RemovedMoney

EMP HandReturns

EMP MovedTray

EMP ReturnedScanner

EMP TookReceipt

EMP TookScanner 1557.83 713.17 2271.00

8

CUS AddedMoney

CUS MovedTray

CUS RemovedMoney

EMP HandReturns

EMP MovedTray

EMP RemovedMoney

EMP ReturnedScanner

EMP TookScanner 2040.80 545.23 2586.03
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Figure 4.9. Imbalance between description lengths - Range of the grammar description length
is consistently larger than the range of the likelihood description length (error bars shows range
of description length).

It is expected that a minimum point will exist for a hypothetical grammar that uses actions

such as EMP TookScanner and EMP ReturnScanner that are known to consistently occur dur-

ing standard transaction sequences. However, it is also know from experiments with synthetic

data that a sample size of 55 is likely to produce sub-optimal results when there are more than

two true non-noise symbols. In fact, in these initial results a global minimum is found for a

grammar that uses only one non-noise symbol EMP TookScanner. As suspected, the proposed

method has given more weight to the simplicity of the grammar and less weight to its descrip-

tive ability. Furthermore, it is observed that high scores are given to grammars using symbols

that occur less frequently in the data. For example, the top scoring grammar using x = 2 non-

noise symbols includes the terminal CUS MovedTray, an action that was only detected twice

in the entire training set. Intuition requires that general rules should not be generated from

symbols of rare occurrence.

4.6.3 Balancing description lengths

Figure 4.9 compares the range (difference between the minimum value and maximum

value) of the description lengths of the grammar and the data likelihood produced by the real

data. It is observed from this figure that the range of the description length of the grammar

is consistently greater than the range of the description length of the data likelihood. This in-
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dicates that the size of the grammar always has a greater influence on the total description

length.

As in this specific case, it may not always be possible to gather enough samples to apply an

MDL criterion directly to the training data. In order to compensate for the imbalance between

the description length of the grammar and the description length of the data likelihood, it is

helpful to introduce a weighting scheme into the MDL criterion.

It is possible to heuristically balance the effect of the description length of the grammar and

the description length of the data likelihood by introducing a factor γx into the MDL equation,

where γx has been interpreted to be the prior weight of the grammar or the inverse of the data

multiplier[Sto94], or the representativeness of the data[QR89].

γxDL(Gx) + DL(W|Gx). (4.12)

The value for γx is defined as the ratio between the range of the description length of the

likelihood and the description of the grammar, where x is the number of non-noise symbols

used in the grammar. This global prior weighting has the effect of minimizing the contribution

of the description length of the grammar and boosts the contribution of the description length

of the data likelihood, giving lower priority to grammars that use rare symbols.

γx =
DLmax(W|Gx)−DLmin(W|Gx)

DLmax(Gx)−DLmin(Gx)
(4.13)

The top ranking grammar for each class, after compensating for the small size of the train-

ing data using the balanced total description length is given in Table 4.6. Figure 4.10 shows

that the grammar with the smallest overall description length is the hypothesis grammar that

uses the three symbols EMP ReturnedScanner, EMP TookReceipt and EMP TookScanner. The

grammar learned with these three symbols is given in Figure 4.12.

4.6.4 Recovered basic structure

The hierarchical structure (parse tree) learned for a common activity H is given in Figure

4.11. The parse tree depicts the activity of an employee who first begins (node E) the transac-

tion by taking the scanner to enter the bar codes of items for purchase into the register. Then,

the employee ends (node D) the transaction, by returning the scanner to its holder and issuing

the receipt.

Notice that the symbols identified as non-noise symbols are all predictable actions per-

formed by the employee. Since the employee has been trained to follow a certain protocol, his
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Figure 4.10. Description lengths for top hypothesis grammars - Global minimum at x = 3.

actions are predictable and ordered. In contrast, the actions of the customers show less regu-

larity. Therefore, it makes sense that the MDL criterion identifies a grammar dependent only

on the predicable actions of the employee as the optimal grammar.
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Table 4.6. Top hypothesis grammars (Balanced) - Optimal grammar marked in bold.

x Non-noise Symbols γx γxDL(G)+DL(W|G)

1 EMP TookScanner 0.383 1279.0016

2
EMP ReturnedScanner

EMP TookScanner 0.2897 1160.7076

3

EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 0.3096 1140.0563

4

CUS MovedTray

EMP ReturnedScanner

EMP TookReceipt

EMP TookScanner 0.3847 1211.0414

5

CUS MovedTray

CUS RemovedMoney

EMP ReturnedScanner

EMP TookReceipt

EMP TookScanner 0.4246 1260.2536

6

CUS MovedTray

CUS RemovedMoney

EMP MovedTray

EMP ReturnedScanner

EMP TookReceipt

EMP TookScanner 0.4859 1353.1436

7

CUS AddedMoney

CUS MovedTray

CUS RemovedMoney

EMP MovedTray

EMP RemovedMoney

EMP ReturnedScanner

EMP TookScanner 0.5335 1523.8244

8

CUS MovedTray

EMP HandReturns

EMP Interaction

EMP MovedTray

EMP RemovedMoney

EMP ReturnedScanner

EMP TookReceipt

EMP TookScanner 0.6228 1784.4875
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S→D (0.02) D→ L η (1.000)

S→H (0.16) E→ η C (1.000)

S→ G (0.18) F→ A η (1.000)

S→N η (0.04) G→ C D (1.000)

S→ J (0.13) H→ E D (1.000)

S→Q (0.05) I → η B η (1.000)

S→ η (0.02) J→ C F (1.000)

S→N (0.02) K→ η D (1.000)

S→ R (0.05) L→ F B (1.000)

S→ J B (0.02) M→ C η (1.000)

S→M L (0.04) N→ E A B (1.000)

S→M A H (0.02) O→ E η (1.000)

S→ C K (0.04) P→ E I (1.000)

S→ C A M F (0.02) Q→ E K (1.000)

S→O F (0.02) R→ E L (1.000)

S→M (0.02)

S→O L (0.02) η→ η η (0.309)

S→O (0.02) η→ CUS AddMoney (0.153)

S→ P (0.05) η→ CUS MovedTray (0.006)

S→ I (0.04) η→ CUS RemMoney (0.003)

S→ K (0.04) η→ EMP HandReturn (0.080)

A→ EMP ReturnedScanner (1.00) η→ EMP Interaction (0.275)

B→ EMP TookReceipt (1.00) η→ EMP MovedTray (0.028)

C→ EMP TookScanner (1.00) η→ EMP RemMoney (0.147)

Figure 4.12. Recovered optimal grammar using three non-noise symbols.
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4.7 Conclusion

This chapter has introduced a new method for acquiring the basic structure of an activ-

ity from a noisy symbol string produced by video. The proposed method placed presupposi-

tions on each combination of terminal symbols and tested that hypothesis using an MDL cri-

terion. The MDL equation measured the balance between a compactness and expressiveness

of a grammar to encode the data, and provided a means of quantifying the quality of each pre-

supposition. Experiments with artificial data showed the proposed method is able to correctly

identify an optimal grammar when the size of the training data was sufficient. Results also

exemplified an inherent bias toward smaller grammars when the size of the training data was

insufficient. Based on insights from experimental results, a heuristic method of balancing the

MDL equation using a data multiplier γx which minimized the bias toward smaller grammars

was proposed. This new balanced equation resulted in the discovery of a compact grammar

that captured the basic structure of activities found in the training data.

While creating a symbol string from video has allowed the proposed method to use pre-

existing syntactic analysis techniques to learn the optimal grammar, the method is far from

utilizing the full range of information contained in video. For example, a more intuitive gram-

mar could be attained by analyzing temporal information between two actions (e.g. one action

always occurs 30 seconds after another) or by comparing the relative location (e.g. two actions

occur in the same location) or by observing that two actions are always connected to a com-

mon object. Future work will use temporal, spatial and contextual information in the grammar

learning process.

Furthermore, when one considers the applications of human activity learning techniques,

most use cases will have some general a priori information about the activities to be learned.

For example in the experiments, it is already known that an employee-customer interaction

will begin with the placement of an item on the counter and end with a payment for the item.

In future works, this type of rough a priori grammar will be used to guide the learning process,

to discover more subtle and complex grammars found in human activities.
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Chapter 5

Recognizing structured human

activities

The two previous chapters have introduced a method for identifying the primitive actions

in a video sequence and a method for learning the temporal structure between those primitive

actions. In this chapter, a method for recognizing a string of primitive actions as an activity is

introduced. The proposed method uses a weighted set of Bayesian networks, created from an

underlying activity grammar, to detect activities occurring in the action symbol string.

5.1 Introduction

The automated real-time understanding of human activities from a video sequence is a

topic of growing interest in recent times. In the field of video surveillance, detecting suspicious

activity in real-time would mean stopping crimes while they are happening or even before they

happen. In application to human-computer interfaces, computers could adjust according to

the activity context of the user. An intelligent system that recognizes high-level human activi-

ties offers a wide range of applications to aid people in everyday activities.

To implement a system that recognizes human activities, the task can interpreted to be

two-fold. The first task is to formulate a computational framework for characterizing human

activity which is grounded in finding of experimental psychology. The second task is to create

a computational technique for analyzing those activities.

First, the characteristics of human activities can be learned from perceptual psychology

[ZT01]. According to recent findings, activities are hierarchical. That is, they are taxonomically
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organized, existing at various levels of abstraction. For example, walking and running are a type

of moving. Activities are also partonomical, meaning that primitive actions are temporally or-

dered (sequential). For example, the activity of leaving an object in a room might consist of a

sequence of primitive actions: (1) enter the room, (2) put down the object and (3) exit the room.

Activities can also be temporally overlapped. For example, the transition of a person walking

through a room might overlap with the activity of the person departing from the room. From

the perspective of the system, it is difficult to identify the exact time at which the activity walk-

ing through has ceased and when the activity departing has started. Thus there is an inherent

ambiguity at transitions between human activities which should be represented by a cognitive

system.

To address the latter half of the problem, namely the computational recognition of hu-

man activities from a sequence of video images, an efficient algorithm for incorporating the

partonomic characteristic of activity needs to be formalized. More specifically, the recognition

system must encode hierarchical information, capture temporally constrained activities and

accurately represent temporally overlapped activities.

The contribution of the proposed method described in this chapter lies in the novel ap-

plication of deleted interpolation (DI) – a smoothing technique used in natural language pro-

cessing – for recognizing temporally overlapped activities. This chapter addresses the issue of

hierarchical structure by implementing a stochastic context-free grammar (SCFG). The SCFG

is converted into a Bayesian network (BN) to create a hierarchical Bayesian network (HBN)

which enables the system to execute more complex probability queries across the grammar.

Then the HBN is applied to a string of observed primitive action symbols via DI to recognize

various activities, especially those that are overlapped.

It is noted here that the issue of extracting symbols from a video sequence has already

been described in chapter 3. Here it is assume that a set of reliable low-level observations

(e.g. appearance and movement attributes) are available, an as such this chapter focuses on

building up a scheme for activity recognition. Furthermore, the method of grammar creation

has already been covered in chapter 4 and is therefore not the focus of this chapter. The activity

grammar is assumed to be given.

The majority of models that have been proposed for activity analysis are models that rep-

resent an activity as a sequential transition between a set of finite states (i.e. NDA [WM98],

FSA [AS01], HMM [YOI92], CHMM [ORP00], VLHMM [GJH01], LHMM [OHG02], DMLHMM

[GX03], ODHMM [LC03], SHSMM [DBPV05]). However, due to the fact that most simple activ-

ities do not have complex hierarchical structure, these models have not explicitly incorporated

the concept of hierarchy into the model topology.
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On the other hand, there have been a few works that have proposed hierarchical mod-

els to recognize structured activities. Contributions from computer vision started with Brand

[Bra96], when he utilized a deterministic action grammar to interpret a video sequence of a

person opening a computer housing unit. Multiple parses over a stream of outputs from the

low-level event detector were ranked and stored, giving priority to the highest ranking parse.

Ivanov [IB00] first used a SCFG for action recognition using the Earley-Stolcke parser to ana-

lyze a video sequence of cars and pedestrians in a parking lot. Moore [ME02] also used a SCFG

to recognize actions in a video sequence of people playing Blackjack. They extend the work of

Ivanov by adding error correction, recovery schema and role analysis. Minnen [MES03] built

on the modifications made by Moore by adding event parameters, state checks and internal

states. They applied the SCFG to recognize and make predictions about actions seen in a video

sequence of a person performing the Towers of Hanoi task. From a background in plan recog-

nition, Bui [BVW01] used a hierarchy of abstract policies using Abstract Hidden Markov Models

(AHMM) implementing a probabilistic state-dependent grammar to recognize activities. The

system recognizes people going to the library and using the printer across multiple rooms. AH-

MMs closely resemble the Hierarchical Hidden Markov Models (HHMM) [FST98] but with an

addition of an extra state node. Nguyen [NBVW03] used an abstract Hidden Memory Markov

Model (AHMEM), a modified version of the AHMM, for the same scenario as Bui.

The aforementioned works used domains with high-level activities delineated by clear

starting points and clear ending points, where the observed low-level action primitives are as-

sumed to describe a series of temporally constrained activities (with the exception of Ivanov

[IB00]). However, in this chapter the focus is placed on a subset of human activities that have

the possibility of being temporally overlapped. It is shown that these types of activities can be

recognized efficiently using the framework proposed in this chapter.

5.2 Modeling human action

Most human activities are ordered hierarchically much like sentences in a natural lan-

guage. Thus an understanding of hierarchy about human activities should be leveraged to

reason about those activities , just like one might guess at the meaning of a word from its con-

text. It is asserted here that the SCFG and the BN lay the proper groundwork for hierarchical

analysis of human activity recognition using a vision system.

The justification for using a SCFG to model human activity is based on the idea that it mod-

els hierarchical structure that closely resembles the inherent hierarchy in human activity. Just

as series of words can be represented at a higher level of abstraction, a series of primitive ac-
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tions can also be represented at a higher level of abstraction. By recognizing the close analogy

between a string of words and a series of actions, it is reasoned that SCFGs are well suited for

representing grammatical structure.

A SCFG is also able to describe an activity at any level in the hierarchy in the same way

humans are known to perceive activities at different abstractions levels within a hierarchical

structure. In contrast, standard sequential models like finite state machines, n-grams, Markov

chains and hidden Markov models, do not explicitly model hierarchical structure.

Despite the expressive power of the SCFG, they were created to characterize formal lan-

guage and thus in general, syntactic parsers are not well-suited for handling noisy data.

Bayesian networks have the robustness needed to deal with faulty sensor data, especially when

dealing with human actions. In contrast to standard parsing algorithms, the merit of using an

BN is found in the wide range of queries that can be executed over the network [PW98]. In

addition, BNs can deal with negative evidence, partial observations (likelihood evidence) and

even missing evidence, making it a favorable framework for vision applications that deal with

uncertain observations.

5.3 Recognition system overview

The proposed recognition system consists of three major parts (Figure 5.1). The first is

the action grammar (a SCFG) that describes the hierarchical structure of all the activities to

be recognized. Second is the hierarchical Bayesian network that is generated from the action

grammar. Third is the final module that takes a stream of input symbols (level 1 action symbols)

and uses deleted interpolation to determine the current probability distribution across each

possible output symbol (level 2 action symbol).

The details of the proposed system are described here based on the use of the CAVIAR data

set [CAV] to provide concrete explanation of each aspect of the algorithm. The CAVIAR data is

a collection of video sequences of people in a lobby environment. The ground truth for each

agent in each frame is labeled in XML with information about position, appearance, move-

ment, situation, roles, and context. For practical reasons, the ground truth is used to produce

a sequence of primitive action symbols as the low-level input into the proposed system for the

experiments.
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Window over input string
(Level 1 actions)

DI Distribution over activities
(Level 2 actions)

SCFG HBN

Figure 5.1. System flow chart. Dashed lines indicate off-line components and solid lines in-
dicate online components. Level 1 actions symbols and the HBN are merged via the deleted
interpolation step to produce level 2 actions.

5.3.1 Action grammar

The set of terminals (level 1 action symbols) is defined as T= {en, ne, ex, mp, wa, in, br, pu,

pd } (definitions given in Table 5.2). The level 1 action symbols were generated directly from

the CAVIAR XML ground truth data using logical relationships between the appearance, move-

ment and position information for each frame (Table 5.1). The set of action symbols (called

level 2 actions) A = {BI,BR, TK,LB,PT,AR,DP}, along with a set of intermediate action

symbols I = {AI,MV,MT,MF} were created manually to be the set of high-level actions to

be used by the system (Table 5.3). Level 2 actions are a special subset of nonterminal symbols

in the level 2 grammar because they are direct abstraction productions of S (start symbol), i.e.

they are directly caused by S. The set of nonterminals N is defined as N = I ∪ A. The set

of production rules Σ and their corresponding probabilities are given in Table 5.4. Again, it

is noted here that since grammar creation is not the primary focus of this chapter, the gram-

mar (including the rule probabilities) are manually defined. It is clear from chapter 4 that the

grammar can also be learning from a sufficiently sized dataset.
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Table 5.1. Grammar for producing level 1 symbols.

Level 1 Actions Appearance Movement Position

en appear - -

ex disappear - -

ne visible active/walking near exit/entrance

br visible active/inactive near a landmark

in visible inactive -

mp visible active -

wa visible walking -

pu referenced to object properties

pd referenced to object properties

Table 5.2. Definition of the level 1 actions (terminal symbols).

Level 1 Actions Meaning

en enter : appears in the scene

ex exit: disappears from the scene

ne near exit/ entrance : moving near an exit / entrance

br browse : standing near landmark

in inactive: standing still

mp move in place : standing but moving

wa walk : moving within a certain velocity range

pd put down : release object

pu pick up : contact with object
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Table 5.3. Definition of the level 2 actions and intermediate actions (nonterminal symbols).

Level 2 Actions Meaning

AR Arriving : Arriving into the scene

BI Being Idle : Spending extra time in the scene

BR Browsing : Showing interest in an object in the scene

TK Taking away : Taking an object away

LB Leaving behind : Leaving an object behind

PT Passing Through : Passing through the scene

DP Departing : Leaving the scene

Intermediate Actions Meaning

AI Action in Place: Taking action while in place

MV Moving : Moving with a minimum velocity

MT Move to : Moving in place after walking

MF Move from : Walking after moving in place
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Table 5.4. Level 2 action grammar.

S→ BI 0.20 BR→ br 0.20

S→ BR 0.10 BR→MV br 0.20

S→ TK 0.05 BR→ br mp 0.30

S→ LB 0.05 BR→MV br mp 0.30

S→ PT 0.30

S→ AR 0.15 LB→ pd 0.50

S→DP 0.15 LB→MV pd 0.20

LB→ pd mp 0.05

BI→ AI 0.10 LB→ pd wa 0.05

BI→MV AI 0.10 LB→ pd mp wa 0.10

BI→ AI MV 0.10 LB→mp pd mp 0.10

BI→mp AI MV 0.10

BI→mp 0.20 DP→ ex 0.40

BI→MF mp 0.10 DP→wa ne ex 0.30

BI→MF 0.10 DP→ ne ex 0.20

BI→MV ne MV 0.10 DP→wa ne 0.10

BI→ AI wa ne 0.10

MV→MF 0.20

TK→ pu 0.50 MV→MT 0.20

TK→MV pu 0.20 MV→wa 0.30

TK→ pu mp 0.20 MV→mp 0.30

TK→ pu wa 0.10

TK→MV pu MV 0.10 MF→mp wa 1.00

MT→wa mp 1.00

PT→ en wa ex 0.70

PT→ ne wa ne 0.30 AI→ in 0.60

AI→ br 0.20

AR→ en 0.50 AI→ pu 0.10

AR→ en MV 0.50 AI→ pd 0.10
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5.3.2 Hierarchical Bayesian network

A previously proposed method [PW98] is used to transform the action grammar (level 2

grammar) into a hierarchical Bayesian network (HBN). The term HBN is used here because

information about hierarchy from the SCFG is embedded in the BN. However in a broader

sense, all Bayesian networks (directed graphs) are hierarchical by definition.

As mentioned before, the SCFG is converted into a BN because it has the ability to deal with

uncertainty. When the sensory input is uncertain, the BN can process a multinomial distribu-

tion across a discrete variable instead of a single value with a probability of one. In addition, the

BN can also deal with missing evidence (a missed detection) by marginalizing over the values

of the missed variable.

By converting the action grammar into a HBN, evidence nodes E contain terminal sym-

bols, query nodes Q contain level 2 actions A and hidden nodes H contain production rules

Σ or intermediate action I. Results of transforming the grammar in Table 5.4 into a HBN is

depicted in Figure 5.2.

The probability density function (PDF) for level 2 actions1 is denoted as P(A|e) where A =

{A1, A2, . . . , Av} is the set of all level 2 actions (states). The input vector e = [e1, e2, . . . , el] is

a string of evidence at the evidence nodes of the HBN where l is the maximum length of the

HBN. The probability of a specific level 2 action is defined as the sum of the probabilities from

each of the query nodes,

P(A|e) = P(Q1 = A|e) + · · ·+ P(Qu = A|e). (5.1)

When there are v different level 2 actions, P(A|e) represents a set of v equations

P (A1|e) = P (Q1 = A1|e) + · · ·+ P (Qu = A1|e),

P (A2|e) = P (Q1 = A2|e) + · · ·+ P (Qu = A2|e),

· · ·
P (Av|e) = P (Q1 = Av|e) + · · ·+ P (Qu = Av|e). (5.2)

The probabilities of the level 2 actions A = {A1, A2, . . . , Av} always sum to one when the ev-

idence can be explained by the grammar because A is the set of all possible productions of S

(start symbol). Thus,
v∑

i=1

P (Ai|e) = 1. (5.3)

1P will be used when dealing with probabilities of multi-valued discrete variables. It denotes a set of equations with
one equation for each value of the variable.
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Figure 5.2. Hierarchical Bayesian Network (maximum length l = 3). The content of each node
type is depicted by a bar chart.
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Computational cost

The computational cost of calculating the beta probabilities is O(Pnmdm) and the cost of

building the Bayesian network is O(Pnm+1dmTm) (more details in the original paper [PW98]).

P is the number of rules induced by the grammar, d is the maximum number of abstraction

levels, n is the maximum length of a sentential string, m is the maximum production length

and T is the maximum number of entries of any conditional probability table in the network.

Although the cost of building the network grows exponentially as the grammar grows in com-

plexity the network only needs to be computed once offline. With respect to inference with

the Bayesian network, exact inference becomes intractable as the network grows in size, which

means that other well known approximation algorithms will need to be utilized for bigger net-

works.

5.3.3 Deleted interpolation

The concept of deleted interpolation (DI) involves combining two (or more) models of

which one provides a more precise explanation of the observations but is not always reliable

and the another which is more reliable but not as precise. A precise model requires that the

input data be a close fit to the model and will reject anything that does not match. A reliable

model exhibits greater tolerance in fitting the data and is more likely to find a match. Combin-

ing models allows one to fall back on the more reliable model when the more precise model

fails to explain the observations. It is called deleted interpolation because the models which

are being interpolated use a subset of the conditioning information of the most discriminating

function [MS03].

In the proposed system it is assume that the analysis of a long sequence of evidence is

more precise than that of a shorter length because a long sequence takes into consideration

more information. However, when analysis over a long (more precise) input sequence fails one

would like to fall back on analysis based on a shorter (more reliable) subsequence.

To implement this the current probability distribution S across level 2 actions, at each time

instance, is calculated as a weighted sum of models,

S =
l∑

i=1

λiP(A|Oi), (5.4)

where Oi is the string of full evidence when i = 1 and represents smaller subsets of the evidence

sequence as the index i increases. The weights are constrained by
∑l

i=1 λi = 1.

Representing the proposed system as a dynamic Bayesian network yields the network in

Figure 5.3 where only the evidence is passed on across time slices. Memory nodes are added to
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Current state

Memory

Observed evidence

St−2 St−1 St

m2 m2 m2

m1 m1 m1

et−2 et−1 et

Figure 5.3. System depicted as a dynamic Bayesian network where the memory elements store
past evidence.

the network to store past evidence and l is the length of the analysis window. When l = 3, the

current probability distribution of the level 2 actions over the temporal window is given by the

equation

S = λ1P(A|O1) + λ2P(A|O2) + λ3P(A|O3), (5.5)

where2

O1 = {et
1, e

t−1
2 , et−2

3 } (5.6)

O2 = {et
1, e

t−2
2 , enone

3 } (5.7)

O3 = {et
1, e

none
2 , enone

3 }. (5.8)

The first term P(A|et
1, e

t−1
2 , et−2

3 ) is the activity probability distribution of the complete

set of evidence and represents activities that have started at t − 2. The second term

P(A|et
1, e

t−2
2 , enone

3 ) is the activity probability distribution for a partial set of evidence and rep-

resents activities starting at t − 1. Likewise, the last term P(A|et
1, e

none
2 , enone

3 ) is a probability

distribution for activities starting at t. This is the mechanism that effectively allows the system

to represent overlapped activities.

2enone is a terminal symbol that represents an end of the sequence.
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Table 5.5. Logic equations for level 1 actions.

Action symbol Logic equation

enter ent = appeart

exit ext = disappeart

near entrance net = visiblet ∧ (activet ∨walkingt) ∧ near doorwayt

browse brt = visiblet ∧ (activet ∨ inactivet) ∧ near landmarkt

inactive int = visiblet ∧ inactivet

move in place mpt = visiblet ∧ active

walk wat = visiblet ∧walkingt

pick up put = near object(leaving objectt ∧ ¬int ∧ int−1)

put down pdt = near object(leaving objectt ∧ int ∧ ¬int−1)

5.4 Experiments

5.4.1 Extracting the action symbols

Since the ground truth for each agent in each frame is labeled in XML (information about

position, appearance, movement, situation, roles, and context), the ground truth data is used

directly as the low-level input into the system for practical reasons. Each video sequence was

processed to create a sequence of level 1 action symbols by applying the logic equations given

in Table 5.5 to the XML data. The extracted symbol stream for each sequence is given in Table

5.6. It is noted here that as presented in chapter 3, the actions symbols can also be produced

by a probabilistic classifier.
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Figure 5.4. Key frames for the ”Leave Behind and Pick Up” (Leave1) sequence.

5.4.2 Results of activity recognition

The following experiments show that the proposed method is well-suited for recognizing

sequential and overlapped single-agent activities. In the first two experiments it is shown that

the use of DI improves performance as opposed to not using DI. In the latter two sections, the

effect of the values chosen for grammar rule probabilities and the mixture weights are exam-

ined. It is shown that the parameters of the grammar and the parameters of the mixture weight

have only a minimal impact on the results.

The video data used for this experiment was taken in a lobby environment (Figure 5.4) and

the sequence of level 1 actions were generated using the labeled CAVIAR data. Analysis was

run on six video sequences (Walk1, Walk2, Browse1, Browse2, Leave1 and Leave2) to test the

performance of the system. The recognition results are depicted as stacked area graphs for

each type of activity and are shown in Figures 5.5, 5.6 and 5.7. In each figure, the ground truth

is given along with the results for each of the four different experimental setups.
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Probabilistic inference with the BN was performed using an exact algorithm (belief propa-

gation with the junction tree algorithm) with Netica [NET] for all of the experiments. However,

as mentioned previously, as the size of the grammar (and the BN) increases, approximation

algorithms such as loopy belief propagation [MWJ99] will need to be used to perform the infer-

ence task.

5.4.3 Ground truth

The ground truth was compiled from multiple users, as a normalized sum of the interpre-

tations of the video data. Each labeler was given a definition (Table 5.7) for each level 2 action

and directed to label every frame for each action independently. Users were given the option

of labeling each frame with a yes, maybe or no (10 points for yes, 5 points for maybe and 0

points for no). No restrictions were placed on the number of times they could re-label or re-

view the video sequences. They were not shown the string of primitive symbols extracted from

the CAVIAR data.
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Table 5.7. Definitions for ground truth labeling.

Arriving A period of time where the agent has just entered the scene. It

must occur near a known exit or entrance.

Passing Through Agent appears to be simply walking through the lobby. Pattern

should look like: Enter + passing through + exit. Agent is not

looking around.

Being Idle The agent appears to be walking around aimlessly. Usually

characterized by walking slowly and stopping in place. Some-

times includes browsing.

Browsing Period of time where the agent is near a landmark (counter,

magazine rack, information booth). The agent appears to be

looking at a landmark.

Taking Away Agent appears to be picking something up or preparing to pick

something up. Includes movement just before and after picking

up the object.

Leaving Behind The agent appears to be putting something down or preparing

to put something down. Includes movement just before and af-

ter putting down the object.

Departing Period of time where it seems that the agent is about to exit the

scene. Ceases once the agent exits the scene.

Table 5.8. Definitions (a) Definition of the data types (b) Formulas for the different rates.

A Number of RELEVENT documents RETRIEVED

B Number of RELEVENT documents NOT RETRIEVED

C Number of IRRELEVENT documents RETRIEVED

D Number of IRRELEVENT documents NOT RETRIEVED

(a)

Recall: A/(A+B) Relevant data retrieved from relevant data

Precision: A/(A+C) Relevant data retrieved from retrieved data

Miss: B/(A+B) Relevant data missed (1-recall)

False: C/(C+D) Irrelevant data retrieved from all irrelevant data

(b)
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5.4.4 Using deleted interpolation

The recall rate, precision rate, miss rate and false detection rates are given for each of the six

video sequences in Table 5.10 when deleted interpolation was implemented using the grammar

in Table 5.4. The definition of each rate is given in Table 5.8.

The precision rate was 88% after filtering out a common problem (explained later). Ar-

riving and Departing had the highest precision rate (∼95%) because the activities were highly

dependent on location (i.e. near a known exit or entrance) which made early detection rela-

tively easy. In contrast, Taking Away had the lowest precision rate because the system was only

able to detect the activity after the removed item was detected visually.

The frequent mis-detection of Being Idle as Passing Through had a negative effect on

four of the six sequences, contributing to a 16% drop in the precision rate (Browse1, Browse2,

Leave1 and Leave2). This drop in performance can be explained by the fact that the ground

truth was collected under conditions that differ from the proposed system. Under normal con-

ditions, a system cannot know if an agent will become idle or not and therefore can only label

an initial detection of a mobile agent, as Passing Through the scene. In contrast, the ground

truth was labeled with the foreknowledge of what the agent would do in the subsequent frames,

giving the user the ability to mark an agent as being idle upon entry into the scene. Therefore,

it is reasonable to remove the mis-detection of Being Idle as Passing Through to obtain a more

realist precision rate.

The recall (capture) rate was 59% (equivalently, a miss rate of 41%) which indicates that

the system was not able to detect the activity for the complete duration of the level 2 action

as described by the ground truth data. The low recall rate is caused by similar reasons stated

for the precision rate. The foreknowledge of the entire sequence gave the labeler the ability to

recognize activities much earlier than the visual information permits. In contrast, the system

changes its output only when a new terminal symbol (a significant visual change) is encoun-

tered.

The false alarm rate was 3% (not including the effects of Passing Through ). The low false

alarm rate is expected because the input symbols (level 1 actions) only change when there is a

significant change in an agents visual characteristics.

An example of the detection of overlapping (concurrent) activities can be seen in the first

transition from Passing Through to Departing in Figure 5.5(c). At about frame 315, both activ-

ities are detected and depicted as two stacked regions. Similar detections of overlapped activi-

ties are observed for Browsing and Being Idle in Figure 5.6(c).

In comparison to the ground truth, is was observed that the transitions between activities
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were abrupt for the experimental results. The sharp transitions can be attributed to the fact that

the input into the system was a discrete sequence of primitive actions (level 1 actions), where

each symbols was output only when a significant visual change was detected in appearance

and movement (as defined by the CAVIAR data). In contrast, the ground truth was based on

more detailed visual queues (e.g. body posture, head position) and foreknowledge of the entire

sequence. The ground truth was also averaged over the labels of multiple users, which allowed

the transition between activities to become smoother.
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Table 5.9. Counts for the different rates.

Type WALK1 WALK2 BROWSE1 BROWSE2 LEAVE1 LEAVE2 Total

Arriving

A 52 144 87 90 116 38 527

B 3 129 42 50 49 3 276

C 8 0 0 7 2 13 30

D 218 904 553 443 719 836 3673

Passing Through

A 215 569 0 0 0 0 784

B 32 63 0 0 0 0 95

C 0 48 202 320 263 143 976

D 34 497 480 270 623 747 2651

Being Idle

A 0 0 360 63 229 645 1297

B 0 0 211 346 208 158 923

C 0 0 0 29 151 43 223

D 281 1177 111 152 298 44 2063

Browsing

A 0 0 189 21 0 209 419

B 0 0 65 112 0 155 332

C 0 0 5 0 0 42 47

D 281 1177 423 457 886 484 3708

Taking Away

A 0 0 0 0 82 12 94

B 0 0 0 0 32 56 88

C 0 0 0 0 76 0 76

D 281 1177 682 590 696 822 4248

Leaving Behind

A 0 0 0 0 62 16 78

B 0 0 0 0 27 47 74

C 0 0 0 0 8 27 35

D 281 1177 682 590 789 800 4319

Departing

A 26 158 20 48 151 45 448

B 94 522 31 9 76 27 759

C 0 0 16 0 1 0 17

D 161 497 615 533 658 818 3282
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Table 5.10. Rates for recall, precision, miss and false alarm.

Rate WALK1 WALK2 BROWSE1 BROWSE2 LEAVE1 LEAVE2 Average

Arriving

Recall 94.5% 52.7% 67.4% 64.3% 70.3% 92.7% 65.6%

Precision 86.7% 100.0% 100.0% 92.8% 98.3% 74.5% 94.6%

Miss 5.5% 47.3% 32.6% 35.7% 29.7% 7.3% 34.4%

False 3.5% 0.0% 0.0% 1.6% 0.3% 1.5% 0.8%

Passing

Through

Recall 87.0% 90.0% 89.2%

Precision 100.0% 92.2% 44.5%

Miss 13.0% 10.0% 10.8%

False 0.0% 8.8% 29.6% 54.2% 29.7% 16.1% 26.9%

Being Idle

Recall 63.0% 15.4% 52.4% 80.3% 58.4%

Precision 100.0% 68.5% 60.3% 93.8% 85.3%

Miss 37.0% 84.6% 47.6% 19.7% 41.6%

False 0.0% 0.0% 0.0% 16.0% 33.6% 49.4% 9.8%

Browsing

Recall 74.4% 15.8% 0.0% 57.4% 55.8%

Precision 97.4% 100.0% 0.0% 83.3% 89.9%

Miss 25.6% 84.2% 0.0% 42.6% 44.2%

False 0.0% 0.0% 1.2% 0.0% 0.0% 8.0% 1.3%

Taking

Away

Recall 71.9% 17.6% 51.6%

Precision 51.9% 100.0% 55.3%

Miss 28.1% 82.4% 48.4%

False 0.0% 0.0% 0.0% 0.0% 9.8% 0.0% 1.8%

Leaving

Behind

Recall 69.7% 25.4% 51.3%

Precision 88.6% 37.2% 69.0%

Miss 30.3% 74.6% 48.7%

False 0.0% 0.0% 0.0% 0.0% 1.0% 3.3% 0.8%

Departing

Recall 21.7% 23.2% 39.2% 84.2% 66.5% 62.5% 37.1%

Precision 100.0% 100.0% 55.6% 100.0% 99.3% 100.0% 96.3%

Miss 78.3% 76.8% 60.8% 15.8% 33.5% 37.5% 62.9%

False 0.0% 0.0% 2.5% 0.0% 0.2% 0.0% 0.5%
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5.4.5 No deleted interpolation

To understand the advantage of using DI, an experiment was performed again on the same

sequences but without the use of DI. The removal of DI is equivalent to the use of a single HBN

shifted over time over a fixed temporal window to recognize activities. Since subsequences of

the evidence are not used to interpolate the results, several level 2 actions based on smaller

strings were not detected by the system.

The level 2 action that was effected the most was Departing because the sequence of prim-

itive symbols {wa, ne, ex} was never detected by the input sequences. Furthermore, since

Departing relies heavily on the use of smaller substrings of one or two level 1 action symbols

to detect, removing the DI framework significantly reduces the systems ability to recognize

departures. In contrast, one instance of temporal concurrence was detected in Figure 5.7(b)

between Being Idle and three other activities. This overlap was captured because in the gram-

mar, a subset of the sequences of actions used by Being Idle was also used for the recognition

of Browsing, Leaving Behind and Taking Away.

5.4.6 DI using uniformly distributed grammar parameters

The original grammar parameters (production rule probabilities) were set at the discre-

tion of a knowledge engineer, giving greater weight to sequences that were more likely to oc-

cur. However, in this set of experiments, the probabilities were distributed uniformly among

all possible productions for each nonterminal symbol. That is, the production probabilities

P (N → ζi) were uniformly distributed such that for the nonterminal N ,
∑

i P (N → ζi) = 1

where ζ is a string of one or more symbols on the right-hand side of the production rule.

Since changing the probabilities of the rules changes only the proportions between over-

lapped activities and not the duration of activities themselves, the rates remain the same. It is

interesting to observe that the proportion of the probabilities between activities remain virtu-

ally unchanged after rule probabilities have been changed (Figures 5.5(d), 5.6(d) and 5.7(d)).

This is due to the fact that the structural analysis of a symbol sequence plays a larger role in de-

termining the results compared to the role of the probabilities of the rules. Therefore, it is more

important to include the correct rules in the grammar than to assign the optimal probabilities.

5.4.7 DI using uniformly distributed mixture weights

Previously, the mixture weights for deleted interpolation were set so that λ1 > λ2 > · · · >
λl, giving more weight to longer subsets of the data. For this experiment, the mixture weights
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λi were uniformly distributed, giving equal weight to each term in the interpolation equation.

That is,
∑l

i=1 λi = 1 and λi = 1/l. A uniform weighting scheme can be interpreted as giving

equal confidence to each of the l terms in the DI equation.

Small changes in the proportions between overlapped probabilities were observed for the

detection of Departing and Passing through (a higher probability for Departing ), which was

closer to the ground truth. In general however, the results remained similar to the results of

using the original weighting scheme (Figures 5.5(e), 5.6(e) and 5.7(e)). As in the previous exper-

iment, it was observed here that the structural constraints outweigh the values of the mixture

weights such that the proportions between overlapped activities change only nominally when

the mixture weights are varied. Again, since the mixture weights only effect the proportion

between the probabilities of the actions and not their durations, the detection rates remain

unchanged.
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5.5 Conclusion

This chapter has addressed the issue of hierarchical representation of human activity by

basing the proposed system on a SCFG. The SCFG was then converted to a HBN to allow the

system to make complex probabilistic queries needed for uncertain inputs. As a preliminary

test, the HBN was used to discover overlapped activities over a string of discrete primitive ac-

tion symbols via DI. Through a set of preliminary experiments, it was shown that the proposed

methodology is well-suited for detecting the overlap of simple single-agent activities.

Admittedly, manually defining the grammar may be problematic when a pre-defined gram-

mar is not available or when the input string is noisy. However as covered in chapter 4, an

unsupervised grammar learning technique can be implemented to extract a grammar from a

noisy input sequence generated from a real video sequence [KSS07] when there is sufficient

data.

Finally given the current capacity for computation within a reason amount of time, this

proposed system is not feasible to real-time use for more complex (large grammars). That is, as

the grammar grows in complexity, the complexity of the resulting Bayesian network also grows

exponentially because it must explicitly model every possible string produced by the grammar.

While a heavily syntactic approach is appropriate for strictly goal oriented behavior, a hybrid

approach using both statistics and syntax may be more favorable for less organized behavior.
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Chapter 6

Conclusion

6.1 Summary

This thesis has presented a bottom-up computational framework for modeling, learning

and recognizing human activities. In the first section, it was shown that by describing primi-

tive actions as a combination of both motion and visual context, the proposed algorithm was

able to correctly categorize actions from a video database of actions. As a result, the segments

of an action sequence were labeled according to the respective class yielding a string of action

symbols. In the second section it was shown that by testing various hypothesis using an MDL

criterion enabled the proposed system to discover the basic structure of an activity sequence

from a symbol string of primitive actions corrupted by noise. As a result, an optimal SCFG ex-

pressing the grammar of the activities contained in the action string was acquired. In the third

section it was shown that given a stochastic context-free grammar that describes human activ-

ity, the activities occurring within a stream of observations (a string of action symbols) can be

detected, even when the activities are overlapped. Taken as a whole, the algorithms presented

in this thesis describe a prototype system for learning and recognizing human activities from a

video sequence.
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6.2 Contributions

• Contributed a bimodal learning approach that used both motion and visual context

without the use of a priori scene knowledge, whereas previous work used only motion

or relied on a priori knowledge of the appearance of objects or actors.

• Contributed a new unsupervised algorithm for learning syntactic structure from noisy

data (potentially all negative examples), whereas previous work on grammatical induc-

tion used a training set of positive examples.

• Contributed the first work that robustly recognizes overlapped human activities using a

syntactic framework.

6.3 Discussion and future works

6.3.1 Learning primitive actions

It was shown that using both motion features and visual context (visual features) improves

classification performance when the actions in the video corpus contains actions that are de-

fined by both motion and visual context. On the other hand, in the case where one mode is not

able to effectively categorize the corpus, it was also observed that the faulty mode degrades

the overall performance. This phenomenon is based on the fact that the current model couple

both modes and gives equal weight to both modes. Therefore the overall performance is ef-

fected when one mode fails to categorize an action. From the standpoint of a generative model

it might be beneficial to model a weight parameter that determines the degree to which a given

category effects the distribution over a mode. Intuitively, there are some actions like walking

are distinguished mostly by motion features and depend very little on the visual context.

Considering the potential applications of the broader topic of latent category learning from

a video corpus, the computational cost with respect to time and memory are very critical issues.

The proposed method has taken only a preliminary step in considering an online algorithm for

latent category learning but there are still many more variations to be explored. For example,

the NMF (and likewise PLSA) algorithm has online counterparts [CSS+07] that could be used

to make the entire framework work online.
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6.3.2 Learning the structure of activities

The proposed method for learning the structure of activities was presented as a bottom-

up framework that assumes no available a priori knowledge about the grammar to be learned.

However, in the case of activity learning for surveillance applications, it is highly likely that

there will be some prior knowledge of the scenes to be encountered and activity patterns to be

learned. The integration of top-down prior knowledge and bottom-up learning is a potentially

fruitful direction for future research. In fact, hybrid approaches have been proposed for image

segmentation to leverage both top-down and bottom-up information [BSU04].

6.3.3 Recognizing structured activities

The probabilistic syntactic model was shown to be successful at recognizing structured hu-

man activities. However, it is also true that many activities do not always conform to a strict

syntactic rules. As such, syntactic approaches (grammars and state machines) to activity recog-

nition are limited to a subset of ordered human activities. The use of petri nets or propagation

networks have been proposed to address the loosely ordered nature of activities. While meth-

ods for learning such models is still a topic to be addressed, using more expressive models for

recognition is also a topic that has yet to be fully explored in computer vision.

6.4 Final thoughts

In the final analysis, it still remains that mimicking the human process of learning and

perceiving human actions is a very challenge task. This work has focused solely on a computa-

tional framework of learning and recognizing the physical phenomena of human activity using

a bottom-up approach. Therefore, this work has yet to touch on the topic of actually closing the

semantic gap that exists between physical motion and mental understanding. In other words,

while the techniques introduced in this thesis can robustly identify the actions patterns found

in noisy video data, there is no way to assign the proper semantic label without the interaction

of human interpretation. This however should not be interpreted to be a short-coming of this

work since even we as humans are not able to learn without someone teaching us the seman-

tic expressions needed to describe an activity. The next step for human activity recognition

is then, the integration of human interaction (top-down knowledge) as a means of semantic

acquisition and bottom-up computation to model activities.
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