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Abstract

This thesis presents a computational framework to jointly analyze auditory and visual

information. The integration of audiovisual information is realized based on synchrony

evaluation, which is motivated by the neuroscience discovery, that synchrony is a key

for human beings to perceive across the senses of different modalities. The works in

this thesis focus on answering two questions: how to perform and where to apply this

audiovisual analysis with synchrony evaluation.

To answer the first question, we develop novel effective methods to analyze the au-

diovisual correlation, and perform a classification and an experimental comparison of

the existing techniques, including the ones we developed. Since this is the first work that

classifies and experimentally compares the methods of this field, it supplies a basis for

designing algorithms to computationally analyze the audiovisual correlation.

To answer the second question, we apply audiovisual correlation analysis to solve

three different problems.

The first problem is the detection of a speaker’s face region in a video, whose previ-

ous solutions either require special devices like microphone array or supply only highly

fragmental results. Assuming that speaker is stationary within an analysis time window,

we introduce a novel method to analyze the audiovisual correlation for speaker using

newly introduced audiovisual differential feature and quadratic mutual information, and

integrate the result of this correlation analysis into graph cut-based image segmentation

to compute the speaker face region. This method not only achieves the smoothness of

the detected face region, but also is robust against the change of background, view, and

scale.

The second problem is the localization of sound source. General sound sources are

diverse in types and usually non-stationary while emitting sounds. To solve this problem,

we develop an audiovisual correlation maximization framework to trace the sound source

movement, and introduce audiovisual inconsistency feature to extract audiovisual events
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for all kinds of sound sources. We also propose an incremental computation of mutual

information to significantly speed up the computation. This method can successfully

localize different moving sound sources in the experiments.

The third problem is the recovery of drifted audio-to-video synchronization, which

used to require both special device and dedicated human effort. Considering that the

correlation reaches the maximum only when audio is synchronized with video, we de-

velop an automatic recovery method by analyzing the audiovisual correlation for a given

speaker in the video clip. The recovery demonstrates high accuracy for both simulation

and real data.

While the theoretical justification and experimental justification are performed inde-

pendently, this thesis taken as a whole lays a necessary groundwork for jointly analyzing

audiovisual information based on synchrony evaluation.



3



To Danhua and Xiangbao



Acknowledgements

I would like to extend my deepest thanks to my advisor, Yoichi Sato, for his discus-

sions, guidance and encouragement over the past three years. He directed my research,

proofread all my submissions, and gave me, a foreigner in Japan, generous help in many

aspects. His comments and suggestions were invaluable to me.

I am indebted to many of my lab members who were often a source of inspiration to

my research and life during my studies. Special thanks to Imari Sato and Takahiro Okabe,

for their advices to my research. I thank Kris Kitani for giving me advices on campus

life and correcting my English errors. I thank Daisuke Sugimura for proofreading my

paper and helping improve my Japanese. I would like to thank Yusuke Sugano for our

free discussions on various topics and getting me to think differently. I thank Michihiro

Kobayashi for answering my questions about Matlab and discussing optical flow with

me. I also thank Shiro Kumano, Fei Du, Gabriel Pablo Nava, Lulu Chen, and Chung-Lin

Wen, for spending the time to help me work through different ideas.

I would like to express my thanks to my ex-colleagues in Sony research for their

kind help even after I have quitted the company. I thank Takayuki Yoshigahara and

Weiguo Wu for their advices and help to my research. I would also like to thank Keisuke

Yamaoka, Yoshiaki Iwai, and Akira Nakamura for their enthusiastic encouragement.

I thank my parents for their encouragement. Special thanks to my wife Danhua. She

gives me quiet and consistent support, and hides her needs to let me focus on my work.

I have not even noticed many of these needs until a great difficulty fell to her. I should

never wait for a convenient time to take care of the people who love me.



i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 7

2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Classification of audiovisual correlation analysis . . . . . . . . . . . . . 14

2.3 Evaluation of features and measures . . . . . . . . . . . . . . . . . . . 17

3 Face region segmentation of a stationary speaker 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Audiovisual correlation analysis . . . . . . . . . . . . . . . . . . . . . 32

3.3 Segmentation of speaker’s face region . . . . . . . . . . . . . . . . . . 40

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Conclusions and future works . . . . . . . . . . . . . . . . . . . . . . 49

4 Visual localization of a non-stationary sound source 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



ii

4.2 Outline of our method . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Audiovisual feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Incremental analysis of audiovisual correlation . . . . . . . . . . . . . 63

4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Recovery of audio-to-video synchronization 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 AV-sync recovery by analysis of audiovisual correlations . . . . . . . . 73

5.3 Analysis of audiovisual correlations . . . . . . . . . . . . . . . . . . . 74

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusions 83

A Scale invariance of our audiovisual correlation analysis 87

B Incremental computation of entropy 89

C Limit of Equation (4.17) 91

Biblography 92

Publications 98



iii

List of Figures

1.1 Camera and microphone. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The audiovisual correlation analyzed by (Hershey and Movellan, 1999). 8

2.2 Experimental results of localized sound sources. Figures (a), (b), (c),
and (d) show the localization results of a sound source of (Smaragdis
and Casey, 2003), (Fisher and Darrell, 2004), (Kidron et al., 2007), and
(Monaci et al., 2005), respectively. . . . . . . . . . . . . . . . . . . . . 11

2.3 Experimental results of sound separation. Figures (a) and (b) show
the experimental results of sound separation in (Casanovas, 2006) and
(Barzelay and Schechner, 2007), respectively. In both figures, separation
results are shown in spectrograms, whose horizontal and vertical axes
represent time and frequency, respectively. . . . . . . . . . . . . . . . . 13

2.4 An illustration of the generated samples with different mapping functions. 19

2.5 An illustration of the generated samples with different noise and mapping
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Audiovisual simulation data. . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Audiovisual real data. Figures (a) and (b) respectively show the visual
and audio data of the speaker video, and figures (c) and (d) show the data
of the piano video. Red rectangles show the region where the audiovisual
correlations are analyzed and averaged. . . . . . . . . . . . . . . . . . 24

3.1 Special effects given the speaker’s face region. Figure (a) shows the
original image, figures (b) and (c) show the speaker face region localized
by our method, and figures (d) and (e) show the special effects imposed
based on our estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Analyzed audiovisual correlation for different video sequence. Correla-
tion in (d–f) are normalized independently. The whiter a pixel, the higher
its correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



iv

3.3 Division of audio frames. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Audiovisual correlation with different optical flow elements. Figure (a)
shows an original video frame, and figures (b), (c) and (d) show the an-
alyzed audiovisual correlation by using horizontal element, vertical ele-
ment, and amplitude, respectively. . . . . . . . . . . . . . . . . . . . . 35

3.5 A demonstration of the N-D image and the neighborhood. . . . . . . . . 42

3.6 Segmentation results of simulation data. Figures (a) and (b) respectively
show the visual random dot pattern and the audio, figures (c) and (e)
show the analyzed audiovisual correlation, and figures (d) and (f) show
the mask of the segmented face region. . . . . . . . . . . . . . . . . . . 45

3.7 Statistical audiovisual correlation using different frame numbers. Figure
(a) shows a video frame, and figures (b), (c), and (d) demonstrate the
analyzed correlation using 20, 40 and 80 frames. Correlation values are
normalized independently for a better visualization. . . . . . . . . . . . 47

3.8 Estimated results by the method in (Boykov and Funka-Lea, 2006) and
ours. The areas blended with blue represent the region of estimated back-
ground. The pixels located at the boundary between speaker and back-
ground are colored as white. Figures (a), (b) and (c) show the segmen-
tation results of our method with different non-stationary backgrounds,
figure (d) shows our designated segmentation seeds, and figures (e), (f)
and (g) show the segmentation results by the method in (Boykov and
Funka-Lea, 2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Segmentations for different views. Figures (a) and (c) show the seg-
mented face region for a frontal view, and figures (b) and (d) show the
results for a lateral view. . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Segmentation for different visual scales and audio gains. Figure (a)
shows the results with visual resolution 240x160 and original audio data,
and figure (b) shows the results when the visual resolution was increased
to 360x240, i.e., visual scale was changed to 1.5 times. Figure (c) shows
the results when original audio was gained by 3.5dB, i.e., audio magni-
tude was increased by 1.5 times. . . . . . . . . . . . . . . . . . . . . . 50

3.11 The experimental results for other persons. Figures (a), (b) and (c) show
the results for a single person, and figures (d), (e) and (f) show the results
for multiple persons within different time windows. . . . . . . . . . . . 51

3.12 Ground truth and the detection rate of our method. The ground truth in
the first row shows the manually labeled face region superimposed over
the original image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



v

4.1 Audiovisual correlation maximization. (a) shows original audiovisual
data, (b) demonstrates search of visual trajectory, (c) figures optimal vi-
sual trajectories starting from different pixels (differently colored), and
(d) audio (red) and visual (blue) features following one of the optimal
visual trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Accumulated optical flow. Figures (a) and (d) show the begin frames of
two silent intervals, figures (b) and (e) show the end frames, and figures
(c) and (f) show the accmulated optical flow of these two silent intervals,
which become the correspondence maps. . . . . . . . . . . . . . . . . . 57

4.3 Audio and visual inconsistency. Figures (a) and (b) respectively show
the consistent and inconsistent visual motions, and figures (c) and (d)
respectively show the consistent and inconsistent changes of audio energy. 59

4.4 Localizations of non-stationary sound sources. Figures (a) and (d) show
the original data. Figures (b) and (e) visualize the analyzed audiovisual
correlation with jet color map. The redder a pixel, the higher its correla-
tion. Figures (c) and (f) show the sound source region localized. . . . . 67

4.5 Localization of non-stationary speaker. Figure (a) shows the original
audiovisual data. Figures (b) and (d) show the analyzed audiovisual cor-
relation and localization results of our method, respectively. Figures (c)
and (e) show the results when using the method in Chapter 3. . . . . . . 68

4.6 Speaker localization of different time windows. Figures (a) and (c) show
the analyzed audiovisual correlation, and (b) and (d) show the localiza-
tion results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Localization of a fast moving sound source. Figure (a) shows the original
data, figure (b) shows the result when d = 1 and L = 10, and figure (c)
shows the result when d = 3 and L = 20. . . . . . . . . . . . . . . . . 70

5.1 Process to detect drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Experimental results for ground truth data. Both visual data (dotted pat-
tern and its temporal movements) and audio data are shown, where white
rectangles indicate assumed speaker regions. Bottom figure plots change
in C(d), with d∗

av shown at top left. . . . . . . . . . . . . . . . . . . . . 79

5.3 Experimental results on real data. (a), (b), and (c) are experimental re-
sults corresponding to woman, man, and two persons including only one
speaker. First column shows video images and detected speaker regions.
Second column shows change in C(d), with d∗

av shown at top left. . . . 80

5.4 Experimental results for different languages. (a) photograph of native
speakers of Chinese and (b) that of Japanese. First column shows video
images. Second column shows change in C(d), with d∗

av shown at top left. 82



vi

List of Tables

2.1 Feature classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 A comparison on measures with deterministic maps. . . . . . . . . . . 20

2.3 A comparison on measures with noise. . . . . . . . . . . . . . . . . . . 22

2.4 A comparison on the magnitude of audiovisual features. . . . . . . . . . 25

2.5 A comparison on the vertical element of audiovisual features. . . . . . . 26

3.1 Segmentation performance on simulation data. . . . . . . . . . . . . . . 44

5.1 Detected drift vs. ground truth . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Added drifts vs. computed values. . . . . . . . . . . . . . . . . . . . . 81

5.3 Detection results with audiovisual-scale changes. . . . . . . . . . . . . 81



vii



1

Chapter 1

Introduction

We human beings can naturally fuse the auditory and visual senses. What we hear is

unconsciously associated to what we see, and vice versa. With this astonishing ability,

we can efficiently localize an approaching predator, can feel the beauty of a rhythmic

dance with music, and can communicate with each other with both speech and nonverbal

signals.

However, such a natural ability is still difficult for a machine to realize, regardless

of the progresses independently made in audio processing and computer vision. Re-

cently, motivated by the mechanism of how human beings jointly perceive audiovisual

information, researchers are getting believed that synchrony is the key to understand this

audiovisual integration. The remained problems following this idea are how to compu-

tationally analyze this synchrony and where to apply the audiovisual analysis by using a

machine. This thesis focuses on finding the answers for these two questions.

1.1 Motivation

Techniques have been developed to utilize both auditory and visual information to

enhance the processing that used to utilize only one of them. An example of this idea

is to improve speech recognition with a visual observation of the lips (Petajan, 1984).
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Other examples include audiovisual person authentication (Poh and Korczak, 2001), au-

diovisual human tracking (Li et al., 2004), audiovisual face detection (O’Donovan et al.,

2007), and so on.

These approaches took advantage of audiovisual information by directly using the

classical processing framework of either audio or visual information and incorporating

the information of the other modality as an additional feature. An advantage of these

approaches is that they can adopt the framework that has been researched thoroughly in

audio or visual processing. On the other hand, a critical defect lies in that it is usually

difficult to extract this feature from the signals of another modality.

The difficulty to extract this feature is resulted from the substantial difference be-

tween audio and visual signals. Audio signal captured by a microphone varies in tempo-

ral domain only and is omni-directional, which means that microphone summates audio

signals from all directions. While visual signal captured by a camera varies in both spa-

tial and temporal domains. Such difference is demonstrated in Figure 1.1. Consequently,

if the feature is to be extracted from visual signal, the spatial location of the sound source

is required as a prerequisite. This is why that audiovisual speech recognition demands

the camera to focus on the mouth of a speaker (Petajan, 1984; Rivet et al., 2006). Con-

versely, if the feature is to be extracted from audio signal, an array of microphones is

usually required because only one microphone cannot supply spatial information (Li et

al., 2004; O’Donovan et al., 2007). The use of such special devices not only severely

limits the applicability of the techniques based on this approach, but also demands a

complicated process to calibrate the world coordinate of the microphone array to that of

the camera.

This problem remains unresolved until Hershey and Movellan introduced the discov-

eries of neuroscience into this field (Hershey and Movellan, 1999). In the second half

of the twentieth century, a series of neuroscience discoveries have revealed a fact that

human beings sense the auditory and visual information in a fairly interactive way. For

instances, we used to think that speech is perceived by hearing only, although vision

supplies auxiliary information. This opinion was proven to be wrong by the McGurk

effect discovered in 1976 (McGurk and MacDonald, 1976), which suggests that speech
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With geometrical informationOmni-directional

Figure 1.1. Camera and microphone.

perception involves at least both hearing and vision. Similarly, the discovery of illusory

mis-location (Bertelson et al., 1994; Driver, 1996) revealed that the position of a sound

source can be mis-localized to its visible place, although the sound in fact comes out

from a different position (e.g., consider a show of ventriloquism). These phenomena

are robust in a wide variety of conditions, and have been found to be strongly depen-

dent on the degree of “synchrony” between the audio and visual signals (Bertelson et al.,

1994; Driver, 1996; McGurk and MacDonald, 1976). Inspired from this fact, Hershey

and Movellan developed a method to localize a sound source by evaluating the degree of

synchrony (Hershey and Movellan, 1999).

The contribution of the work in (Hershey and Movellan, 1999) lies in not only a new

method to localize a sound source, but also a novel framework to process the audiovisual

information, where problems are solved by optimizing an audiovisual objective function

rather than the one in only one modality. This objective function is related to the eval-
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uation of synchrony of the events between the audio and visual signals, which has its

root in the neuroscience discoveries (Bertelson et al., 1994; Driver, 1996; McGurk and

MacDonald, 1976).

Since this new framework optimizes an objective function over both the audio and

visual signals, it can probably remove the above special requirements, such as the neces-

sity of a microphone array. That is to say, with the novel framework, we can process the

audiovisual data that are captured by the set of one camera and one microphone. This

relaxed condition can be satisfied by the data taken by any off-the-shelf video camera,

which implies a wide application foreground of this new framework.

Our research interests focus on this new framework by trying to answer two ques-

tions: how to perform and where to apply this audiovisual analysis with synchrony eval-

uation. It is my hope that this work will be one of endeavors to gain interests on the

synchrony-based audiovisual analysis.

1.2 Overview

We begin this thesis by reviewing related works in this field in Chapter 2. Following

this review, we also classify and make an experimental comparison on the methods to

analyze the audiovisual correlation. The results of this comparison answer the question

on how to analyze the audiovisual correlation by supplying objective evidence. Based on

these results, we design our methods to analyze the audiovisual correlation.

Chapter 3, Chapter 4, and Chapter 5 answer the question on where to apply this

audiovisual correlation analysis. Three different problems are solved in the three chapters

by analyzing the audiovisual correlation. All of them used to require special devices

or dedicated human effort. The effective solution to these problems demonstrates the

usability of this audiovisual correlation analysis by synchrony evaluation.

Face region segmentation of a stationary speaker in a video is introduced in Chap-

ter 3. For us human beings, speaker is a most important class of sound sources. The ne-

cessity to localize a speaker happens frequently in our daily communications. However,
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previous solutions either require special devices like microphone array or supply only

highly fragmental results. Assuming that speaker is stationary within an analysis time

window, we introduce a novel method to find this region robustly against the changes of

view, scale, and background. The main thrust of our technique is to integrate audiovisual

correlation analysis into a video segmentation framework. We analyze the audiovisual

correlation locally by computing quadratic mutual information between our audiovisual

features. The computation of quadratic mutual information is based on the probability

density functions estimated by kernel density estimation with adaptive kernel bandwidth.

The results of this audiovisual correlation analysis are incorporated into graph cut-based

video segmentation to resolve a globally optimum extraction of the speaker’s face re-

gion. The setting of any heuristic threshold in this segmentation is avoided by learning

the correlation distributions of speaker and background by expectation maximization.

Experimental results demonstrate that our method can detect the speaker’s face region

accurately and robustly for different views, scales, and backgrounds.

The localization of a non-stationary sound source is introduced in Chapter 4. Sound

source here indicates visual objects that emit or induce sound, such as a walker, a hand

playing a piano, and certainly a speaker. The motion pattern of sound source may be more

complex than that of a speaker. Additionally, a sound source is usually not stationary, i.e.,

it moves its position while emitting sound (for instance, a hand that plays a piano). Con-

sequently the localization of a non-stationary sound source is much more difficult than

that of a stationary speaker. We develop a method to achieve this goal. This method can

also be adopted to localized a stationary speaker, except that, being general, this method

requires more complex computation than the one introduced in Chapter 3. The localiza-

tion problem is formulated as independently finding the optimal visual trajectories that

best represent the movement of the sound source over the pixels in a spatio-temporal

volume. Using a beam search, we search these optimal visual trajectories by maximiz-

ing the correlation between the newly introduced audiovisual features of inconsistency.

An incremental correlation evaluation with mutual information is developed here, which

significantly reduces the computational cost. We would like to mention that this incre-

mentally computation is in fact general and can be applied to other applications to speed
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up the computation of mutual information at stages. The correlations computed along

the optimal trajectories are finally incorporated into a segmentation technique to localize

a sound source region in the beginning visual frame. The experimental results demon-

strated that our method could localize different types of non-stationary sound sources.

A new way to recover audio-to-video synchronization by using audiovisual correla-

tion analysis is proposed Chapter 5. This recovery used to require a human to elaborately

adjust audiovisual data by using a special device. Based on audiovisual correlation anal-

ysis, we develop a method of recovering drifted AV-sync in a video clip with only minor

human interactions. Users just need to specify the time window for a stationary speaker.

We search the optimum drift within this time window that maximizes the average audio-

visual correlation inside the speaker region by shifting audio and computing the correla-

tion for different drift hypotheses, and then recover the state of synchronization based on

the refined optimum drift. The audiovisual correlation is analyzed by quadratic mutual

information with kernel density estimation, which is not only robust against audiovisual

changes in scale, but also independent of the language. The experimental results demon-

strate that our method could effectively recover audio-to-video synchronization.

Finally, the conclusions and discussions of this thesis are presented in Chapter 6.
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Chapter 2

Preliminaries

2.1 Related works

Motivated by the neuroscience discovery that synchrony is a key for human beings

to integrate audiovisual information (Bertelson et al., 1994; Driver, 1996; McGurk and

MacDonald, 1976), Hershey and Movellan first developed a method to computation-

ally analyze the audiovisual correlation by evaluating the degree of synchrony (Hershey

and Movellan, 1999). This evaluation was performed by computing mutual informa-

tion (Shannon, 1951) between the temporal samples of pixel intensity and audio energy.

Generally, the computation of mutual information requires the estimation of probability

density function. To avoid this estimation, they assumed that pixel intensity and audio

energy obey a joint normal distribution. With this, mutual information can be computed

directly from the Pearson correlation coefficient as

MI(a; v) = −1

2
log(1 − ρ2(a, v)), (2.1)

where a and v represent the audio energy and pixel intensity, respectively. ρ(a, v) is the

Pearson correlation coefficient. Given the temporal samples of a and v as ai and vi, i =

1, · · · , N , Pearson correlation coefficient ρ(a, v) is given by (Rodgers and Nicewander,

1988)

ρ(a, v) =

∑
i(ai − ā)(vi − v̄)√∑

i(ai − ā)2
∑

i(vi − v̄)2
, (2.2)
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Figure 2.1. The audiovisual correlation analyzed by (Hershey and Movellan, 1999).

where ā = 1
N

∑
i ai, and v̄ = 1

N

∑
i vi. They computed this audiovisual correlation by

Equation (2.1) for all the pixels. The result was regarded as the degree how much that

pixel belonged to sound source. The analyzed audiovisual correlation of their experi-

mental results is demonstrated in Figure 2.1.

Following this seminal work, many methods were developed to analyze the audiovi-

sual correlation more effectively and apply this analysis to solve problems. We briefly

introduce several representative ones of them below.

In 2003, Smaragdis and Casey (Smaragdis and Casey, 2003) avoided the explicit

analysis of the audiovisual correlation by using principal component analysis and inde-

pendent component analysis to localize the sound source. Pixel intensities of a visual

frame were aligned into a vector. The spectrum of the audio signal that corresponds to

this visual frame was also aligned into another vector. They then combined these two

vectors into a large one and applied principal component analysis to the temporal sam-

ples of this large vector such that they could find a linear transform to convert these

vectors into low dimensional ones. Finally, they applied independent component anal-

ysis to the converted low dimensional vectors. The detected independent components

were regarded as different sound sources. By projecting them back to the large vector,

they could find the positions of these sound sources in the visual image and their spectral

elements. Their detected sound sources are shown in Figure 2.2 (a).
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Instead of analyzing the value of audiovisual correlation, Fisher and Darrell (Fisher

and Darrell, 2002, 2004) localized speaker by taking the audiovisual correlation as an

objective function to maximize. Like (Smaragdis and Casey, 2003), they also aligned

pixel intensities and audio spectrum into two vectors. They showed that inequality

MI(hT
a Xa; h

T
v Xv) ≤ MI(Xa; Xv) (2.3)

holds true for any projection vectors ha and hv. Xa and Xv are the audio and visual

vectors, respectively. Since hT
a Xa and hT

v Xv result in two low dimensional vectors,

the computation of MI(hT
a Xa; h

T
v Xv) is much easier than MI(Xa; Xv). The value of

mutual information was computed by using the temporal samples of Xa and Xv. Note

that ha and hv were assumed to be same for the temporal samples of Xa and Xv. They

maximized this MI(hT
a Xa; h

T
v Xv) with respect to ha and hv. This maximization of

MI(hT
a Xa; h

T
v Xv) was regarded as the maximization of the lower bound of MI(Xa; Xv).

Since hv was a weighting vector whose dimension was the same as that of Xv, the found

optimum hv were regarded as a spatial distribution that indicated the likelihoods how

much a pixel belonged to speaker. Their computed likelihoods are shown in Figure 2.2

(b).

Similarly, Kidron and Schechner (Kidron et al., 2005, 2007) also localized sound

source by searching a projection vector that can maximize their objective function. At

the first step, visual image was converted into wavelet coefficients, and audio energy at

the time of each visual frame was computed. Using the temporal samples of the audio and

visual features, they initially planned to analyze the audiovisual correlation by canonical

correlation analysis. However, they found that, for a short time window, say, several

seconds, the correlation analyzed by canonical correlation analysis always reached its

maximum. Hence they instead took it as a constraint that the correlation is maximized,

and optimized the norm of the projection vector. By comparing L0-, L1-, and L2-norms,

they claimed that L1-norm is the best since the found optimum projection vector can

be spatially sparse. That is to say, the number of the detected positions belonging to

sound source can be as small as possible. Based on these considerations, their objective
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function was designed as  arg minw ||w||1
Vw = A

, (2.4)

where V = (V1, · · · ,VN)T was the packed visual features of N frames. A =

(a1, · · · , aN)T was the vector of audio energies of N frames. w was the projection

vector. The computed optimum w was projected back to the image by the wavelet trans-

formation to give out the positions of sound source. Their localization results are shown

in Figure 2.2 (c).

All the approaches introduced above based the visual feature on the change of the

appearance of photographed visual objects. However, in (Monaci et al., 2005; Monaci

and Vandergheynst, 2006), Monaci et al. claimed that the movement of photographed

sound source conveys better correlation with auditory information than the change of

their visual appearance. Consequently, they first detected local visual objects in the first

video frame and then tracked the movements of all these visual objects, including scale

change, translation, and rotation. Both the detection of visual objects and their tracking

were computed by using matching pursuit algorithm, which decomposes an image into

two-dimensional anisotropic atoms (Vandergheynst and Frossard, 2001). The audiovi-

sual correlation was analyzed independently for all these visual objects by computing

Pearson correlation coefficient (Rodgers and Nicewander, 1988) between the change of

the parameters of visual movements and the change of audio energy. The visual objects

whose audiovisual correlations were higher than a pre-defined threshold were regarded

as sound source, which are shown in Figure 2.2 (d).

Based on the localization result of sound source, Casanovas furthermore tried to sep-

arate the sound from different sources (Casanovas, 2006). He first used the same match-

ing pursuit algorithm to decompose audio signal into Gabor atoms. He also binarized

the movements of each visual object into whether or not there was a visual event, which

was based on the magnitude of the displacement of the visual movement. If an audio

atom happened simultaneously with a visual event, they were linked. The audiovisual

correlation of this visual object was also incremented. After this process was finished,

visual objects whose audiovisual correlations were beyond a pre-defined threshold were
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(a)

(b)

(c)

(d)

Figure 2.2. Experimental results of localized sound sources. Figures (a), (b), (c), and (d)
show the localization results of a sound source of (Smaragdis and Casey, 2003), (Fisher
and Darrell, 2004), (Kidron et al., 2007), and (Monaci et al., 2005), respectively.
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regarded as sound source and clustered according to their spatial positions. The number

of the clusters was taken as the number of sound sources. In the next step, all the au-

dio atoms that were linked to the visual objects that belonged to the same sound source

were considered to be the ones resulted by the sound of that sound source. Using inverse

matching pursuit algorithm, the sound from that source was reconstructed with these au-

dio atoms. The reconstructed sounds of a man and a woman who uttered simultaneously

are shown in Figure 2.3 (a). However, this method required an important assumption that

each audio atom corresponded to only one sound source, which was difficult to satisfy

in usual cases. That is why he only tried to separate the mixed sounds from a man and a

woman. Generally speaking, woman’s voice covers high frequencies, while man’s voice

covers low frequencies. Their mixed sound has small overlaps in the frequency domain.

Hence each audio atom can be regarded as belonging to only one sound source.

Barzelay and Schechner (Barzelay and Schechner, 2007) also developed a method to

separate sounds from different sources. Compared to the extracted visual objects used

in (Casanovas, 2006), they tracked the movements of several featured points, which was

extracted by the method in (Shi and Tomasi, 1994). The accelerations of the movements

of these featured points were computed and binarized by a pre-defined threshold. The

binarized values at different frames formed a vector v. On the other hand, audio signal

was transformed into frequency domain. For each frequency, they verified whether or not

there was an audio onset at the time of each visual frame. The binary flag of this existence

formed a vector a also. The audiovisual correlation between v and a was analyzed by

C = 2aTv − 1Tv, (2.5)

where 1 was a vector with all its elements to be 1. They then developed a framework

to optimize this audiovisual correlation with respect to the number of sound sources and

the separation of sounds in an iterative procedure. Note that, differing from (Casanovas,

2006), they did not clustering the featured points, but only selected a representative one

for a sound source to perform sound separation. Unfortunately, their method still required

the similar assumption as (Casanovas, 2006) that the sounds from different sources cover

different frequencies without any overlap. The separation result is shown in Figure 2.3

(b).
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(a)

(b)

Figure 2.3. Experimental results of sound separation. Figures (a) and (b) show the exper-
imental results of sound separation in (Casanovas, 2006) and (Barzelay and Schechner,
2007), respectively. In both figures, separation results are shown in spectrograms, whose
horizontal and vertical axes represent time and frequency, respectively.
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2.2 Classification of audiovisual correlation analysis

Based on the previous review of the existing techniques, we give a classification on

the methods that analyze the audiovisual correlation. To make this classification com-

plete, we include the techniques developed by us, which will be introduced in details in

the following chapters. Here we include them by citing our published papers, which is

the same as the references to the works of other persons.

This classification is divided into the classification of “feature” and the one of “mea-

sure”. Generally speaking, feature and measure drive audiovisual correlation analysis.

As mentioned before, audiovisual correlation analysis is based on the neuroscience dis-

coveries that synchrony is the key for human beings to jointly perceive audiovisual infor-

mation. However, it remains unknown between which and how we should evaluate this

synchrony. Hence, we have to answer these two questions first in order to be able to com-

putationally analyze the audiovisual correlation. The development of feature gives the

author’s answer to the first question, and the development of measure gives the answer

to the second question.

2.2.1 Different features

We classify visual and audio features on two axes. One axis is the physical meaning

which a feature represents. Another axis is the order of temporal differential which a

feature belongs to. At the axis of physical meaning, visual and audio features are inde-

pendently classified because they usually have different forms even when they describe

a same physical meaning. The reason of this lies in the substantial difference between

visual and audio signals. On the contrary, the classification at the axis of differential or-

der is same for both visual and audio features. Although audio signal has a much higher

sampling frequency than visual signal, audio samples are usually divided into frames for

the sake of feature extraction. The frame duration is set to be the same as the duration of

a visual frame. Audio feature is extracted from the samples inside each frame. Therefore
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audio feature is aligned with visual feature in temporal domain and can have the same

classification as the visual feature at the axis of differential order.

In the sense of physical meaning, visual features can be classified into appearance-

related and motion-related. Appearance-related visual features describe the change of

visual appearance observed in the camera, such as pixel intensity (Hershey and Movel-

lan, 1999; Smaragdis and Casey, 2003; Fisher and Darrell, 2004) and wavelets (Kidron

et al., 2005). While motion-related visual features describe the motion of taken visual

objects, which cannot be got directly from visual signal but has to be analyzed by other

algorithms, such as optical flow (Liu and Sato, 2008), tracking (Barzelay and Schechner,

2007), and matching pursuit (Monaci et al., 2005). Motion-related visual features include

visual translation (Monaci et al., 2005), optical flow (Liu and Sato, 2008), acceleration

(Barzelay and Schechner, 2007), and visual inconsistency (Liu and Sato, 2008).

Compared to visual features, all the audio features have the same physical meaning.

They all try to describe the temporal change of the magnitude of audio signal. How-

ever, according to whether or not this magnitude is computed individually for different

frequencies, audio features can be classified into spectrum-related and energy-related.

Spectrum-related audio features describe the change of the magnitude with respect to

not only time but also frequency. They are usually multi-dimensional vectors for each

frame, with each dimension represents the magnitude of energy at different frequen-

cies. Spectrum-related audio features include spectrum itself (Fisher and Darrell, 2004;

Smaragdis and Casey, 2003), pursuits (Casanovas, 2006), and audio onset (Barzelay and

Schechner, 2007). Energy-related audio features describe the magnitude of audio energy

inside a frame. They usually have only one dimension and are computed by summing the

energy of audio samples in a frame, although methods have difference in the division of

frames and weights for different samples. Energy-related audio features include energy

(Hershey and Movellan, 1999; Kidron et al., 2005), differential energy (Liu and Sato,

2008) and audio inconsistency (Liu and Sato, 2008).

In the sense of the differential order, both audio and visual features can be classi-

fied into zero-, first-, and second-order differential ones. Zero-order differential features

represent their states at current time, which can be extracted with only one-frame audio-



CHAPTER 2. PRELIMINARIES 16

Table 2.1. Feature classification.

Visual feature Audio feature

Value Motion Spectrum Energy

Zero-order
Pixel intensity,

Translation
Spectrum,

Energy
Wavelets Pursuit

First-order - Optical flow - Differential energy

Second-order -
Acceleration,

Onset Inconsistency
Inconsistency

visual data. Zero-order differential features include visual features like pixel intensity

(Hershey and Movellan, 1999) and audio features like spectrum (Smaragdis and Casey,

2003). First-order differential features represent the velocity of the change of their states

at current time, whose extraction requires at least two-frame audiovisual data. First-

order differential features include visual features like optical flow (Liu and Sato, 2008)

and audio features like differential energy (Liu and Sato, 2008). Second-order differen-

tial features represent the acceleration of the change of their states at current time, whose

extraction requires at least three-frame audiovisual data. Second-order differential fea-

tures include visual features like visual acceleration (Barzelay and Schechner, 2007) and

audio features like onset (Barzelay and Schechner, 2007).

Taking physical meaning and the order of temporal differential as two axes, we sum-

marize a table of this feature classification, which is listed in Table 2.1. The place where

no feature has been developed is denoted as “-”.

2.2.2 Different measures

Compared to features, the classification of measures is simple, which has only two

classes: linear and nonlinear measures. Linear measures include Pearson correlation co-

efficient (Casanovas, 2006; Monaci et al., 2005), canonical correlation analysis (Kidron

et al., 2005), linear approximation of mutual information (Fisher and Darrell, 2004),
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and inner product (Barzelay and Schechner, 2007). Nonlinear measures include mutual

information (Hershey and Movellan, 1999; Liu and Sato, 2008) and quadratic mutual

information (Liu and Sato, 2008). Since nonlinear measures can evaluate higher order

correlation between two random variables, they should have a better performance than

linear ones. However, nonlinear measures require an estimation of probability density

function. The accuracy and stability of this estimation significantly affects the correla-

tion analysis by the nonlinear measures.

2.3 Evaluation of features and measures

We first compared the performance of different measures because this comparison

can be done by using generated random numbers. In contrast to measures, the perfor-

mance of features cannot be evaluated without a measure. We selected the measure that

has the best performance in the comparison to evaluate the performance of features.

2.3.1 Evaluation of measures

Among all the linear correlation measures, we selected Pearson correlation coeffi-

cient as a representative one to evaluate the performance because Pearson correlation

coefficient is the best measure if the two random variables are linearly correlated under

a same coordinate system.

We evaluated the performance of all the two non-linear correlation measures —

mutual information and quadratic mutual information. Both the former and the latter one

can be adopted to indicate the correlation between either discrete or continuous random

variables. However, when evaluating the correlation for continuous random variables,

the former one requires integration over the probability density function, which usually

cannot be computed analytically. This in fact restricts the usage of the former one in

continuous situations. In most cases, random variables need to be first quantized to com-

pute their mutual information in a discrete form. On the contrary, the latter one can be

computed analytically for continuous random variables also. Therefore we evaluate them
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both. The details on quadratic mutual information and its computation can be referred to

Chapter 3 of this thesis.

The comparison experiments were performed by using random numbers that are uni-

form distributed between 0 and 1. The random numbers are generated by Mersenne

twister algorithm (Matsumoto and Nishimura, 1998). Mersenne twister provides for fast

generation of very high-quality pseudorandom numbers, having been designed specifi-

cally to rectify many of the flaws found in older algorithms.

In the first experiment, we compared different measures by evaluating the correla-

tion between two random variables x and y which have deterministic relationship. We

generated 100 uniformed distributed numbers for random variable x, and computed the

samples of random variable y with a deterministic mapping function. The mapping func-

tions include linear and nonlinear maps. The generated 100 samples of x and y are

illustrated in Figure 2.4.

The computation of Pearson correlation coefficient from the samples of x and y is

straightforward following the definition (Rodgers and Nicewander, 1988). While the

computation of mutual information and quadratic mutual information is not direct. Us-

ing the method introduced in Chapter 3, we first estimate an appropriate bandwidth to

analyze the probability density function of the random variables x and y. The bandwidths

are independently estimated for x and y. This bandwidth is then used as the bin size to

quantize the samples of x and y and compute their mutual information in a discrete form,

or used as the kernel bandwidth to compute quadratic mutual information directly from

the samples of x and y.

The evaluation results of the three measures are listed in Table 2.2. For linear maps

like y = x and y = 2x + 3, all measures demonstrated an invariance against the change

of map by giving the same evaluated correlations. For nonlinear maps, this invariance

is broken for all the measures. The measure whose evaluated correlation changed most

is Pearson correlation coefficient. This is reasonable because its invariance is only guar-

anteed for linear maps. The second one is mutual information. Although mutual infor-

mation is theoretically invariant to both linear and non-linear deterministic one-to-one
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Figure 2.4. An illustration of the generated samples with different mapping functions.
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Table 2.2. A comparison on measures with deterministic maps.

Pearson Mutual Quadratic

coefficient information mutual information

y = x 1.0 0.90 0.0044

y = 2x + 3 1.0 0.90 0.0044

y = x2 0.96 0.41 0.0041

y = 1/(1 + x) -0.98 0.52 0.0042

maps, the requirement of quantization degrades this invariance significantly in our ex-

periments. Among the three measures, quadratic mutual information demonstrated best

invariance to both linear and nonlinear maps.

In the second experiment, we tested the performance of measures by evaluating the

correlation between two random variables x and y whose relationship were partly de-

terministic. “Partly” here means that y is related to not only x but also an additive or

multiplicative random noise. The noise n was assumed to be Gaussian with µ = 0 and

σ = 1. The generated samples of x and y are illustrated in Figure 2.5.

The evaluation results of three measures are listed in Table 2.3. Again, quadratic

mutual information demonstrated best invariance against noise. Interestingly, we found

that all measures were more robust against multiplicative noise than additive noise. This

follows the intuitive observation on the data samples illustrated in Figure 2.5.

2.3.2 Evaluation of features

Strictly speaking, the performance of a feature is not only determined by the feature

itself, but also by the measure used. That is to say, a feature may work better with one

measure. However, the number of the combinations of features and measures are so large

that it is difficult to make a thorough experimental comparison for all of them. Therefore,

we use quadratic mutual information as the only measure to evaluate all the features since

it has been shown to be most robust among the three representative measures.



CHAPTER 2. PRELIMINARIES 21

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

-0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

-1

- 0 .5

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

y= x y = x + 0 .2 n

y = x+ 0 .4 n y = (1 + 0 .2 n )x

y = ( (1 + 0 .2 n )x ) ^ 2

y= (1 + 0 .4 n )x y = (x + 0 .2 n )^ 2

y = 1 /(1 + x + 0 .2 n )

y= 1 /(1 + (1 + 0 .2 n )x )

Figure 2.5. An illustration of the generated samples with different noise and mapping
functions.
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Table 2.3. A comparison on measures with noise.

Pearson Mutual Quadratic

coefficient information mutual information

y = x 1 0.90 0.0044

y = x + 0.2n 0.86 0.32 0.0032

y = x + 0.4n 0.66 0.11 0.0019

y = (1 + 0.2n)x 0.93 0.38 0.0037

y = (1 + 0.4n)x 0.81 0.28 0.0027

y = (x + 0.2n)2 0.77 0.19 0.0024

y = ((1 + 0.2n)x)2 0.83 0.26 0.0028

y = 1/(1 + x + 0.2n) -0.84 0.24 0.0030

y = 1/(1 + (1 + 0.2n)x) -0.95 0.54 0.0039

The comparison experiments were performed with both simulation and real data.

The simulated and real audiovisual data are demonstrated in Figure 2.6 and Figure 2.7,

respectively.

The simulation data simulated an ideal situation where both audio and video were

modulated by a same signal. The modulating function is a multiplication of two sine

functions with a long and a short period to simulate a sound emission action. The coeffi-

cient of this modulation was given at each time t by

c(t) = max{0.4 + 0.6 sin(2πf1t) sin(2πf2t), 0}, (2.6)

where f1 = 3 s, f2 = 0.3 s. Visual signal was synthesized by vertically shaking a random

dot image (320×240) following the modulation coefficients computed by Equation (2.6).

While audio was synthesized by sampling a modulated 2 KHz sine wave at 44.1 KHz.

The modulation coefficients were the same as the visual ones.

The real data included two video clips. One photographed a stationary speaker who

uttered English numbers from zero to ten in front of a green background. The other pho-

tographed a scene where a hand was playing a piano. Both visual data were monochromic
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Figure 2.6. Audiovisual simulation data.

at a resolution of 240×160, and audio data were recorded at 44.1 KHz with stereo. We

adopted its left channel only to compute the audio features.

Using these data, we performed experiments to compare the performance of features.

Since there are too many combinations of audio and visual features, as listed in Table 2.1,

we tested a subset of the combinations based on two rules. The first rule is that audio

and visual feature should be at the same differential order, i.e., n-order audio feature

is combined with n-order visual feature. This is reasonable since audiovisual feature

should describe a same physical phenomenon such that the synchrony between them can

be evaluated. The second rule is that we ignore the audio features that are based on

the spectrum. Generally speaking, audio spectrum supplies a more intricate description

on audio energy, i.e., it gives the magnitude of audio energy at each frequency. Thus

methods with audio spectral feature often used this property to analyze the audiovisual

correlation in a more subtle degree such that they can separate the sound individually for

different frequencies. Yet, to analyze the audiovisual correlation subtly also degrades its

robustness. If there is no noise in audio signal, we believe that using audio energy would

be the best choice.
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(a) (b)

(c) (d)

Figure 2.7. Audiovisual real data. Figures (a) and (b) respectively show the visual and
audio data of the speaker video, and figures (c) and (d) show the data of the piano video.
Red rectangles show the region where the audiovisual correlations are analyzed and av-
eraged.
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Table 2.4. A comparison on the magnitude of audiovisual features.

Intensity Translation Velocity Acceleration Inconsistency

(×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

Simulation 1200 290 150 67 2300

Speaker 630 300 150 39 170

Piano 230 190 88 29 100

Based on the above two rules, we got five combinations of audiovisual features. The

experimental results of their performance comparison with simulation and real data are

listed in Table 2.4 and Table 2.5.

In the lists, intensity represents value-related feature, and the others represent motion-

related ones. Translation, velocity, acceleration, and inconsistency respectively represent

the zero-, first-, second-, and transformed second-differential features. As a more de-

tailed description, intensity, translation, velocity, acceleration, and inconsistency respec-

tively correspond to the combination of pixel intensity and audio energy, the combination

of visual translation and audio energy, the combination of optical flow and differential

audio energy, the combination of visual acceleration and second-order differential of au-

dio energy, and the combination of visual inconsistency and audio energy inconsistency.

A problem is that visual features like translation, velocity, and acceleration are two-

dimensional vectors, and need to be converted into a scalar value to analyze the au-

diovisual correlation. Some works adopted the magnitude of this vector (for instance,

(Barzelay and Schechner, 2007; Monaci et al., 2005)). While in (Liu and Sato, 2008), it

was found that vertical element of this vector conveys higher correlation with audio than

magnitude or horizontal element. Therefore, to make this comparison fair, we divide

the comparison into the two lists. The Table 2.4 adopts the magnitude of all the visual

features, and the Table 2.4 adopts the vertical element of all the visual features. Since

visual intensity and inconsistency features have magnitude only, they were not included

in the Table 2.4.
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Table 2.5. A comparison on the vertical element of audiovisual features.

Translation Velocity Acceleration

(×10−6) (×10−6) (×10−6)

Simulation 1300 840 53

Speaker 450 950 61

Piano 230 190 220

By comparing the experimental results of the two lists, it can be observed that the

vertical element demonstrate a much higher correlation than that of the magnitude. This

fact strongly supported the conclusions of (Liu and Sato, 2008) that the vertical element

of the two-dimensional motion vector conveys higher correlation with audio than the

others.

In the comparison, all features gave better performances on simulation data. Among

them, inconsistency feature demonstrated an astonishing performance. Yet the perfor-

mance degraded largely on real data. We believe that the reason of this lies in the visual

motion discontinuity. Although visual inconsistency feature is designed to describe the

visual acceleration of a visual motion, if it is extracted at the border of the areas with

different visual motions, it demonstrates a high inconsistency. Visual simulation data do

not have visual motion discontinuities. While such situations happen frequently in real

data when we extract visual inconsistency features at a fixed position. That is why Liu

and Sato adopted a visual path optimization to trace the changing positions of pixels by

using inconsistency feature.

For speaker, taking the vertical element of optical flow gave the best performance.

We believe that the reason of this lies in not only that speaking actions happen mainly

vertically, but also the simplicity to compute the first-order differential feature. Com-

pared to it, the computation of the zero-order differential feature requires a tracking of

the positions of pixels for all the visual frames, and the computation of the second-order

differential feature requires this tracking for at least three frames.
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An interesting discovery in these two lists is about the intensity feature. After Monaci

et al. (Monaci et al., 2005) claimed that the movement of photographed sound source

conveys better correlation with auditory information than the change of their visual ap-

pearance, most works have changed to base their visual feature on the motion. However,

our comparison data demonstrated that intensity feature can give comparative perfor-

mance as well. Considering the easiness to extract an intensity feature, we believe that

it is worthy of researching in the future. In face the same phenomenon has been ad-

dressed in facial expression recognition. Although most researches in this field try to

analyze facial expression based on shape deformation, a comparative performance was

demonstrated by using the change of intensity of facial pixels in (Kumano et al., 2007).
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Chapter 3

Face region segmentation of a

stationary speaker

3.1 Introduction

The ability to detect the position of a speaker is useful for various applications, such

as video processing and content analysis. For example, a video-teleconferencing system

may need to focus on a speaker, or a video analysis system may have to associate uttered

words to a speaker. Being able to identify the speaker’s face region is furthermore pre-

ferred because this makes various effects possible, such as to automatically emphasize

a speaker by blurring all other persons and background, or, on the contrary, to impose

mosaic over an interviewee to protect privacy. An example is shown in Figure 3.1 based

on the results of our method.

However, regardless of the great progresses made in face and human detection (e.g.,

(Viola and Jones, 2004) and (Dala and Triggs, 2005) respectively) in recent years,

speaker detection is still under development. As the purpose is to distinguish a per-

son from others, either face detection or human detection fails in this area. One solution

(Luettin et al., 1996) is to detect the face, locate the mouth, and check its movement. The

weakness of this method is the requirement of a frontal view. View dependency is also a
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(a)

(b) (c)

(d) Emphasis (e) Mosaic

Figure 3.1. Special effects given the speaker’s face region. Figure (a) shows the original
image, figures (b) and (c) show the speaker face region localized by our method, and
figures (d) and (e) show the special effects imposed based on our estimation.

challenging problem for face and human detections (Huang et al., 2005). Additionally, it

is prone to be disturbed by unconscious movements from other persons.

In this work, we develop a novel technique to find the speaker’s face region for dif-

ferent time windows, which is robust against the changes of view, scale, and background.

This technique is based on the recent developments in sound source localization by au-

diovisual correlation analysis and an segmentation technique of multiple video frames.

To localize an audio source by audiovisual correlation analysis is a relatively new

research topic and has drawn much attention in recent years. Based on neuroscience

discoveries (Bertelson et al., 1994; Driver, 1996; McGurk and MacDonald, 1976), many

approaches have been developed to analyze the audiovisual correlation (for instance,

(Fisher and Darrell, 2004; Hershey and Movellan, 1999; Kidron et al., 2005; Monaci et

al., 2005)), which have been reviewed in Chapter 2.

Unfortunately, all existing localization methods suffer a common problem: the esti-

mated mask of sound source is highly fragmental. Therefore, they experience difficulties

in designating a correct speaker position, much less identifying a reliable speaker region.
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Most of them only detect pixels that are supposed to be the sound source, except that

Casanovas (Casanovas, 2006) clustered the detected pixels and adopted the cluster cen-

ter as the speaker position. Yet clustering may be vulnerable to the outliers that appear

often (Fisher and Darrell, 2004; Kidron et al., 2005; Monaci et al., 2005).

To be able to detect a reliable speaker region, we consider a novel technique, whose

key idea is to integrate audiovisual correlation analysis into a video segmentation frame-

work. In contrast to sound source localization, image segmentation has been researched

for decades (for instance, (Kass et al., 1988; Zhu and Yuille, 1996)). Recently, Boykov

and Funka-Lea made an important progress step (Boykov and Funka-Lea, 2006), in

which a globally optimum segmentation, which balances pixel likelihood and image re-

gion information, is found efficiently using graph cut. The method works for not only

a single image, but also for multiple video frames with inter-frame continuity consid-

ered (Boykov and Funka-Lea, 2006). A weakness of graph cut is the requirement of a

manual operation to designate seeds of foreground and background. Fortunately, our in-

corporation of audiovisual correlation analysis not only takes advantage of the effective

optimization of graph cut, but also removes the necessity of this manual operation.

Other works have also been developed to incorporate information into graph cut-

based segmentation to enhance the performance and remove the manual operation. Kol-

mogorov et al. (Kolmogorov et al., 2005) adopted stereo depth information to segment

foreground. Yu et al. (Yu et al., 2007) based their method on face detection to segment

people. Schoenemann and Cremers (Schoenemann and Cremers, 2008) took advantage

of motion information to divide motion layers. However, their incorporated information

is still based on visual signal and cannot supply the cues beyond the visual signal. For

example, if both people move their mouths, without audio, one can hardly tell who the

real speaker is. Fusing audio not only resolves this ambiguity, but also improves the

robustness compared to the usage of visual signal only. To the best knowledge of the

authors, this is the first trial to fuse other modality information into the Graph Cut-based

segmentation.

We analyze the audiovisual correlation by computing quadratic mutual information

between our audio and visual features. We extract visual features locally, whose locality
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helps our method to be robust to the change of view, and compute quadratic mutual in-

formation to analyze the audiovisual correlation. We also estimate the kernel bandwidth

from data when computing quadratic mutual information, which makes our method adap-

tive to the changes of visual scale and audio gain. The audiovisual correlation analyzed

locally is incorporated into a global optimization framework to extract the speaker’s face

region, which is based on video segmentation by graph cut. To avoid a heuristic decision

of a segmentation threshold, we learn the distributions of the audiovisual correlation of

speaker and background by using expectation maximization. The likelihoods of each

pixel to these two distributions are combined with image smoothness constraints to form

the energy function in the graph cut segmentation.

Our system requires that the speaker must stay nearly at the same position in the

estimation time window for the sake of audiovisual correlation analysis, as was assumed

in previous methods (Fisher and Darrell, 2004; Hershey and Movellan, 1999; Kidron et

al., 2005). The time window is generally within 2–4 seconds.

We detect the speaker’s face region but not the mouth region because, when speaking,

many unconscious movements happen also on face parts, which are as highly correlated

with the audio as mouth movements. Consequently, in most cases our method can detect

the whole face region. However, as discussed in Section 3.4, if the speaker intentionally

restrains these unconscious movements, only the mouth region of this speaker can be

detected. If the speaker position only is needed, this will not be a problem as the mouth

region center can be adopted. If the whole face region is needed, a manual extension of

the segmentation mask is necessary in such cases.

The main contribution of this work can be summarized as follows: 1) to find the

speaker’s face region by incorporating audiovisual correlation analysis into video seg-

mentation, including the method to locally analyze the audiovisual correlation and the

learning of correlation distributions, and 2) to adopt audio information to eliminate the

manual operations in Graph Cut-based segmentation and improve its robustness against

complex backgrounds.

The rest of this work is organized as follows. In Section 3.2, we introduce the au-
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(a) (b) (c)

(d) (e) (f)

Figure 3.2. Analyzed audiovisual correlation for different video sequence. Correlation
in (d–f) are normalized independently. The whiter a pixel, the higher its correlation.

diovisual feature and the correlation computation using quadratic mutual information. In

Section 3.3, we explain how we find the speaker’s face region by performing video seg-

mentation based on the audiovisual correlation. In Section 3.4, we present and discuss

our experimental results. In Section 3.5 we present our conclusions.

3.2 Audiovisual correlation analysis

Within a time window, we extract the visual feature at each local position (x, y) and

each time t, and the audio feature at each time t. The correlation between the temporal

changes of the visual feature at (x, y) and the audio feature is analyzed by using quadratic

mutual information. After the analysis, we can get a table C(x, y) which shows the

audiovisual correlation of each image position (x, y) in the current time window. An

example of the audiovisual correlation table is shown in Figure 3.2.

Below we first introduce our audiovisual feature and then explain the correlation

analysis by using quadratic mutual information. Note that our audiovisual correlation
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analysis is based on the prerequisite that the audio and visual signals are recorded syn-

chronously. Asynchronous data may degrade the accuracy of this analysis.

3.2.1 Our audiovisual feature

Both our audio and visual features describe the differential between two continuous

frames. However, because of the substantial difference between the audio and visual

signals, their extraction methods differ significantly.

Audio feature

Since audio is usually sampled at a much higher frequency than video, we first divide

audio samples into frames to compute the audio feature. The frame duration, Ta, is set to

be the same as the visual frame duration, Tv. In order to keep a temporal continuity, it is

set such that each pair of two successive frames have an overlap of the duration of Ta/2.

Additionally, to reduce the boundary effect, a Hamming window is multiplied (Rabiner

and Juang, 1993), whose coefficients are computed by

w(i) = 0.54 − 0.46 cos(
πi

M
), i = 1, · · · ,M (3.1)

where M is the number of the audio samples in a 2Ta duration. The audio energy e(t) of

frame t is computed by

e(t) = log

(
1

M

M∑
i=1

(w(i)s(t, i))2

)
, (3.2)

where s(t, i) refers to the processed audio sample i in frame t and the two sourrounding

overlaps of frame t. This process is demonstrated in Figure 3.3.

The audio feature is defined as the differential energy between the current and next

frames, which is given by

at = e(t + 1) − e(t). (3.3)

Since in silence durations the absence of audio information makes it impossible to an-

alyze the audiovisual correlation, we ensure there is speech in all frames. This is done by
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Frame tFrame t-1 Frame t+1

t

Frame duration Frame overlap

Figure 3.3. Division of audio frames.

checking whether or not audio energy e(t) is larger than a pre-defined threshold. Frames

failing this test are regarded as silent and dropped, together with their corresponding vi-

sual frames. Only frames passing this test are buffered till the frame number reached a

pre-defined value. If we discuss N audiovisual frames in this chapter, it refers to frames

that are buffered.

Visual feature

The same as (Monaci et al., 2005), we believe that there is an audiovisual correlation

mainly between the movements of visual objects and the change of audio. Therefore,

optical flow is used as the visual feature in our method. In particular, we only take the

vertical element of optical flow considering that most speaking actions move vertically.

We have compared three methods to get a scalar visual feature from the 2D optical flow

vector: horizontal element, vertical element, and amplitude. The results of analyzed

audiovisual correlation are shown in Figure 3.4. The vertical element obviously has

much higher correlation with the audio feature.

Visual feature vt(x, y) is defined as the vertical optical flow extracted at (x, y) be-

tween frames t and t + 1, which is computed by the Lucas-Kanade method (Lucas and

Kanade, 1981). Since optical flow cannot be estimated stably in areas with less texture,
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(a) (b)

(c) (d)

Figure 3.4. Audiovisual correlation with different optical flow elements. Figure (a)
shows an original video frame, and figures (b), (c) and (d) show the analyzed audiovisual
correlation by using horizontal element, vertical element, and amplitude, respectively.
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we verify the variation of pixel intensities inside each window where we compute optical

flow. If these are below a threshold, we set the flow value to be zero.

Adopting optical flow as the visual feature has three advantages for our system. First,

it helps our system to be background robust. For a static background, movement is inde-

pendent to its complexity. For a moving background, as its movements usually correlate

marginally with audio, the influence can be suppressed in the subsequent correlation

analysis also. Second, it helps our system to be view robust. No matter how differ-

ent a face looks in different views, the local movements resulted from speaking action

are similar. Optical flow captures this local movement and is thus view robust. Third,

the locality of the optical flow also makes it possible for our method to achieve good

segmentation boundary. Since optical flow describes the movement of each pixel, our

segmentation can achieve an accuracy of every pixel.

3.2.2 Audiovisual correlation by quadratic mutual information

Many works have used mutual information to measure the audiovisual correlation

(Fisher and Darrell, 2004; Hershey and Movellan, 1999). However, to analytically

compute mutual information for continuous random variables, they either computed the

second-order Taylor extension of mutual information (Fisher and Darrell, 2004), or as-

sumed that audio and visual features obey normal distribution (Hershey and Movellan,

1999). The former one can approach only an approximation of mutual information and

requires an iterative computation process. The latter one is arguable since obeying nor-

mal distribution is a strong assumption. We have applied a normality test (Doornik and

Hansen, 1994) to our audio and visual features extracted inside a speaker mouth region.

The results showed that 77.8% of the tests fall into the refusal area [9.49, +∞) with

ρ-value=0.05. That is to say, this assumption should be wrong in a confidence of 95%.

We use quadratic mutual information as a measure to analyze the audiovisual corre-

lation, which can be computed analytically directly from the data without the necessity

of any approximation and assumption. The computation of quadratic mutual information

is based on the probability density functions (pdf) estimated by kernel density estimation
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(Parzen, 1962). The bandwidth of the kernel density estimation is estimated from the

variance of the data, which makes our method robust to the changes of visual scale and

audio gain.

Quadratic mutual information is computed based on the temporal samples of the au-

dio and visual features. This analysis is independently performed for different image po-

sitions by using the visual feature extracted at each image position (x, y). After quadratic

mutual information at all positions (x, y) are computed, we can get the correlation table

C(x, y), which is used to segment out the speaker’s face region in the next stage.

Pdf estimation by kernel density estimation

Kernel density estimation (Parzen, 1962) (also known as Parzen window estimation)

is a method of estimating the arbitrary pdf of a random variable (Parzen, 1962). Given

N data points {zi, i = 1, · · · , N}, in n-dimensional space Rn, the multivariate kernel

density estimation with kernel KH(z) and a symmetric positive definite n×n bandwidth

matrix H, computed in point z is given by

p(z) =
1

N

N∑
i=1

KH(z − zi), (3.4)

where KH(·) is the specified kernel function.

We adopt a Gaussian kernel with a diagonal bandwidth matrix, H =

diag(σ2
1, · · · , σ2

d). Compared to the other kernels, such as a triangle kernel, a Gaus-

sian kernel results in an efficient computation of quadratic mutual information.

The selection of an appropriate bandwidth is important for kernel density estimation

(Turlach, 1993). Small bandwidth values make the estimate look “wiggly” and show

spurious features, whereas too big values will lead to an estimate which is too smooth in

the sense that it is too biased and may not reveal structural features. Therefore, comparing

an empirical decision of this kernel bandwidth, we estimate the bandwidth from data. For

Gaussian kernel, a rule of thumb was proposed to estimate a proper bandwidth from the

data (Turlach, 1993). We adopt this rule of thumb to compute the bandwidth as

σ = 1.06σ̂n− 1
5 , (3.5)
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where σ̂2 is the sample variance.

Correlation analysis by quadratic mutual information

Quadratic mutual information is proposed by Xu et al. (Xu et al., 1998) in 1998,

which has its root in the quadratic form of Renyi entropy.

In 1961, Renyi (Renyi, 1961) showed that entropy of a random variable can be eval-

uated by a group of functions defined as

Hα(x) =
1

1 − α
log

(∫
pα(x)dx

)
, (3.6)

where α > 0, α 6= 1. As α → 1, Hα(x) approaches the Shannon entropy H(x). In

practice, the one most often used is its quadratic form, i.e., α = 2, which can be effi-

ciently computed based on the pdf estimated by kernel density estimation with Gaussian

kernels. Supposing Gaussian kernel is represented as

KΣ(x) = G(x, Σ), (3.7)

it is easy to show that∫
G(x − xi, Σ)G(x − xj, Σ)dx = G(xi − xj, 2Σ). (3.8)

Substituting Equation (3.7) and Equation (3.8) into Equation (3.6) with α = 2, quadratic

Renyi entropy can be analytically computed as

H2(x) = − log
N∑

i=1

N∑
j=1

G(xi − xj, 2Σ). (3.9)

Although Renyi entropy can be analytically computed, it cannot analyze the corre-

lation between two random variables. We need a measure like mutual information but

in Renyi form to analyze this correlation. Such measure left undefined until 1998 when

Xu et al. (Xu et al., 1998) proposed quadratic mutual information. Qudratic mutual in-

formation is extended from the quadratic form of Renyi entropy and thus has the same

character of being able to be computed analytically based on the pdf estimated by kernel

density estimation.
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We use this quadratic mutual information to compute the audiovisual correlation be-

tween the audio and visual features. The same as mutual information, quadratic mutual

information indicates the amount of information that one random variable conveys about

another. At an image position (x, y), quadratic mutual information is computed between

the audio feature a and visual feature v by definition as

QMI(a; v) = log

∫∫
p2(a, v)dadv

∫∫
p2(a)p2(v)dadv

(
∫∫

p(a, v)p(a)p(v)dadv)2
. (3.10)

It can be shown that QMI(a; v) ≥ 0 and the equality hold true if and only if p(a) = p(v)

using Cauchy-Schwartz inequality (Xu et al., 1998).

As mentioned before, quadratic mutual information can be computed analytically

directly from the data. Given the temporal samples of the audio and visual features to

be {(at, vt), t = 1, · · · , N}, it has been shown (Xu et al., 1998) that quadratic mutual

information can be computed as

QMI(a; v|{at, vt}) = log
Vc({at, vt})Vm({at})Vm({vt})

V 2
nc({at, vt})

(3.11)

where Vc({at, vt}), Vm({at}), Vm({vt}), and Vnc({at, vt}) are the terms computed from

the data samples, which are given by

Vc({at, vt}) =
1

N2

N∑
i=1

N∑
j=1

K2σ2
a
(ai − aj)K2σ2

v
(vi − vj), (3.12)

Vm({ai}) =
1

N

N∑
j=1

Vs(aj, {ai}), (3.13)

Vm({vi}) =
1

N

N∑
j=1

Vs(vj, {vi}), (3.14)

Vnc({at, vt}) =
1

N

N∑
j=1

Vs(aj, {ai}Vs(vj, {vi}). (3.15)

Inside them, Vs(aj, {ai}) and Vs(vj, {vi}) are computed as

Vs(aj, {ai}) =
1

N

N∑
i=1

K2σ2
a
(aj − ai), (3.16)
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Vs(vj, {vi}) =
1

N

N∑
i=1

K2σ2
v
(vj − vi). (3.17)

Here Kσ(·) is a one-dimensional Gaussian kernel. σa and σv are the estimated band-

widths of the audio and visual features obtained by using Equation (3.5).

Using Equation (3.11), we can compute quadratic mutual information directly from

the samples without even the necessity to explicitly formulate pdf. Additionally, although

the complexity of quadratic mutual information computation by using the definition in

Equation (3.10) is O(N4), by using Equation (3.11) we can compute it at a complexity

of O(N2) by removing duplicated computation.

As shown in Appendix A, with our bandwidth estimation, this correlation analysis is

invariant to the scale changes of both audio and visual features. This invariance makes

our method robust against the changes of both visual image scale and audio signal gain.

3.3 Segmentation of speaker’s face region

We incorporate the analyzed audiovisual correlation into graph cut-based video seg-

mentation to segment speaker’s face region.

Again using the retrieved N video frames, we build a N-D image as defined in

(Boykov and Funka-Lea, 2006) and perform the video segmentation. To avoid a heuris-

tic threshold for this segmentation, we learn the correlation distributions of speaker and

background. The segmentation is performed based on the likelihood of each pixel to

these two distributions. Note that, since there is only one scalar correlation value at each

image position (x, y), the computed distance is same for all the pixels at (x, y), regardless

of in which frame t they are. On the other hand, as image information, like edge, pixel

similarity and intra-frame continuity, is related to both (x, y) and t, segmentation results

can still be different in each frame and capture the face deformation when speaking.
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3.3.1 Graph Cut-based segmentation

Segmentation of video frames by optimizing a global energy function was proposed

in (Boykov and Funka-Lea, 2006). The global energy function is composed of two im-

portant terms: the sum of data costs of all the pixels, and the sum of the smoothness

penalties between every two neighboring pixels in both temporal and spatial domains,

whose definition is given by

E(l) =
∑

p

Dp(lp) + λ ·
∑

{p,q}∈Ne

Spq(lp, lq), (3.18)

where l represents the segmentation labels of all the pixels in the N-D image. lp = 1

means pixel p is labeled as speaker, while lp = 0 means background. Ne defines

the neighborhood relationship between two pixels, which is discussed in detail in Sec-

tion 3.3.3. λ is a constant that adjusts the balance between the data costs and the smooth-

ness penalties.

It has been shown that the energy function defined in Equation (3.18) can be effi-

ciently optimized by calculating the minimum cut of a graph using a maximum flow

algorithm (Boykov and Kolmogorov, 2004). Moreover, the optimization result is guar-

anteed to be the global minimum solution of the energy function (Boykov et al., 2001).

3.3.2 Data cost by audiovisual correlation

To compute the data costs, we first learn the correlation distributions of speaker and

background by using expectation maximization algorithm. These two distributions are

assumed to be one-dimensional Gaussian, whose parameters are learnt by the process

below. First, the highest and lowest audiovisual correlation values are selected as two

seeds. Then, by iteratively applying expectation maximization algorithm to all correla-

tion values, we can compute an optimum estimation of the parameters of the two Gaus-

sian distributions. The one trained from the seed of the lowest correlation is regarded

as the distribution of background, denoted as G(µ0, σ
2
0). The other is regarded as the

distribution of speaker, denoted as G(µ1, σ
2
1).
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frame t-1 frame t frame t+1

SpatialTemporal Temporal

Figure 3.5. A demonstration of the N-D image and the neighborhood.

We find that the number of iterations performs the role of controlling the degree

of how high an audiovisual correlation should have a higher likelihood to be speaker

than the one to be background. If this number is too high, the background pixels that

have relatively high audiovisual correlation may be wrongly segmented as speaker. We

empirically find that three iterations are enough for this learning process.

The data cost of each pixel in Equation (3.18) is determined by the Mahalanobis

distance to the correlation distributions of speaker and background, which is computed

as

Dp(lp) =

 (C(x, y) − µ1)
2/σ2

1 lp = 1

(C(x, y) − µ0)
2/σ2

0 lp = 0
. (3.19)

3.3.3 Smoothness penalties by image information

Smoothness penalties are forced between every two neighboring pixels in both spatial

and temporal domains. In the N-D image, the spatial and temporal neighborhoods are

defined as shown in Figure 3.5. Each pixel can maximally have 26 neighbors.

The value of smoothness penalty is computed by

Spq(lp, lq) = exp
(
−β(Ip − Iq)

2
)
· (d(p, q))−1 · T [lp 6= lq], (3.20)
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where p and q are two neighboring pixels. Ip and Iq are their intensity values. The

constant β is chosen as in (Boykov and Funka-Lea, 2006) to be

β =
(
2
〈
(Ip − Iq)

2
〉)−1

, (3.21)

where 〈·〉 denotes the expectation over the N-D image sample. This choice of β ensures

that the exponential term in Equation (3.20) switches appropriately between high and low

contrast. d(p, q) calculates Euclidean distance between p and q in the three-dimensional

grid, which may be 1,
√

2 or
√

3 in our neighborhood model. T [·] is a boolean function

returning 1 when the condition inside is true and 0 otherwise.

3.4 Experimental results

We adopted both simulation and real data to test the performance of our method.

All videos of the data were or were supposed to be filmed at 30fps, while the audios

were sampled at 44.1 kHz, since most recent off-the-shelf video cameras supply such

audiovisual data. As for the algorithm parameters, in all our experiments, the balance

constant in Graph Cut is set as λ = 20. The window for optical flow computation is of

the size 9 × 9. The threshold for the texture verification in a window is set as 3. Except

the experiments in Figure 3.7, we adopt 40 audiovisual frames to compute the results.

As for the computation time, it takes about 31 seconds to do segmentation for 40

frames at a resolution of 240× 160 on our laptop, which is equipped with an Intel Core2

1.83 GHz CPU and a 1 GB RAM.

3.4.1 Simulation

To test the performance of our method when visual and audio signals change fol-

lowing an ideal pattern of a speaking action, we simulated a video clip and applied

our method to it. Visual data photographed the movements of a random dot pattern,

which was at a resolution of QVGA, 320 × 240. To include both mouth and back-

ground movements, we divided the dot pattern into two parts: a central rectangle face
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Table 3.1. Segmentation performance on simulation data.

Correct rate (%)

Slow bg 95.9

Fast bg 96.5

region and a background region. The central rectangle region was set to be slightly

lighter than the background, as shown in Figure 3.6 (a). Both parts shook vertically. The

central region moved synchronously with the audio change to simulate speaking move-

ments. It was realized by computing the vertical shift at each time t by the function

c(t) = max{sin(2πff t), 0}, which was also adopted to modulate the magnitude of the

audio. The audio, a 2 kHz modulated sine wave, was shown in Figure 3.6 (b). Alterna-

tively, the vertical shift of the remained region was computed by another sine function

c(t) = max{sin(2πfbt), 0}.

As the central region simulates mouth movement, ff was set as 1/0.7 Hz. For the

remained region, we first chose a low frequency as fb = 1/2.3 Hz to simulate a slow

change background. The computed audiovisual correlation and the segmentation results

are shown in Figure 3.6 (c) and (d), respectively. Furthermore, we chose a high fre-

quency as fb = 1/0.4 Hz to simulate a fast change background. The experimental results

are shown in Figure 3.6 (e) and (f). In both cases, our method detected much higher

audiovisual correlation in the central region and successfully segmented the region out.

The quantitative evaluation results were shown in Table 3.1. For both video clips,

our method achieved high correct rate of the segmentation, which was the percentage of

the number of correctly detected foreground and background pixels in the total number

of the pixels.
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(a)

(b)

(c) (d)

(e) (f)

Figure 3.6. Segmentation results of simulation data. Figures (a) and (b) respectively
show the visual random dot pattern and the audio, figures (c) and (e) show the analyzed
audiovisual correlation, and figures (d) and (f) show the mask of the segmented face
region.
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3.4.2 Real data

For real data, we adopted CUAVE audiovisual database (Patterson et al., 2002),

where 17 females and 19 males uttered English numbers in front of a green background

with frontal, lateral, and moving views. An advantage of CUAVE database was that

we could remove the green background by chroma-key and place other complex back-

grounds to test the performance of our algorithm. Color images were then converted

into gray images and down-sampled from 720 × 480 to 240 × 160 to make it possible to

perform all the experiments in the 1 GB memory of our laptop.

We first investigated the relationship between the length of the time window and the

analyzed audiovisual correlation. The experimental results are shown in Figure 3.7. It

can be observed that a longer length of the time window helps to remove the ambiguity

to determine the current speaker from Figure 3.7 (c) to Figure 3.7 (d). However, a longer

time window causes our assumption more possible to be broken, as we assume that the

speaker remains stationary in the processing time window. That is the reason we adopt

40 frames, which seems to be a good tradeoff.

We tested the segmentation performance with different backgrounds. The results are

shown in Figure 3.8 (a–c), inside which only three of the 40 frames are shown. The

segmented face region changed marginally under different backgrounds. To perform a

comparison, we implemented the method in (Boykov and Funka-Lea, 2006). The manual

seed we designated and the segmentation results over the same 40 frames are shown in

Figure 3.8 (d–g). The segmented face region changed largely for different backgrounds.

Note that this does not mean a comparison of performance, as the results by (Boykov

and Funka-Lea, 2006) can be improved iteratively by adding seeds. However, the results

here demonstrate that, through fusing audio information, our method can achieve better

robustness to the change of background.

We tried to detect the speaker’s face region with both frontal and lateral views. The

results are shown in Figure 3.9. Since frontal and lateral views are two extreme cases

of the view change, the success of our method to process them elegantly in the same

framework demonstrated its robustness against different views.
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(a) (b)

(c) (d)

Figure 3.7. Statistical audiovisual correlation using different frame numbers. Figure (a)
shows a video frame, and figures (b), (c), and (d) demonstrate the analyzed correlation
using 20, 40 and 80 frames. Correlation values are normalized independently for a better
visualization.
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(a) (b) (c)

(e) (f) (g)(d)

Figure 3.8. Estimated results by the method in (Boykov and Funka-Lea, 2006) and ours.
The areas blended with blue represent the region of estimated background. The pixels
located at the boundary between speaker and background are colored as white. Figures
(a), (b) and (c) show the segmentation results of our method with different non-stationary
backgrounds, figure (d) shows our designated segmentation seeds, and figures (e), (f) and
(g) show the segmentation results by the method in (Boykov and Funka-Lea, 2006).

(b) (c) (d)(a)

Figure 3.9. Segmentations for different views. Figures (a) and (c) show the segmented
face region for a frontal view, and figures (b) and (d) show the results for a lateral view.
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We tested our method when visual scale and audio gain were changed. The results

are shown in Figure 3.10. As our method is adaptive to the scale or gain change, uniform

segmentation results were achieved.

We also applied our method to other video clips in CUAVE database, where single or

multiple persons were photographed. The backgrounds of some clips were intentionally

replaced into complex ones to increase the difficulty of face region detection. Addition-

ally, in the case of multiple persons, we applied to our method to different time windows

within which different person was talking. The experimental results are shown in Fig-

ure 3.11. In most situations, our method successfully found out the speaker’s face region

within the time window when it was applied, except Figure 3.11 (c), where our method

only segmented out the speaker’s mouth region. The reason lies in that the man in (c)

intentionally restrained the movements of all his face parts other than his mouth when

he was speaking. His speaking manner thus looked a little unnatural, which may come

from the tension of being before a camera. As discussed in Section 3.1, our method can

localize the speaker’s mouth region in such cases.

To give a quantitative evaluation of our detection result, we have manually labeled

the face regions for the first frame of four video sequences. The ground truth and the

detection rate of our method were shown in Figure 3.12. In most cases, our method can

extract the face region with high correct rate.

3.5 Conclusions and future works

In this work, we have developed a method to find out the speaker’s face region within

time windows, which is robust against the changes of view, scale, and background. The

main thrust of our idea was to integrate audiovisual correlation analysis into graph cut-

based video segmentation. We have shown that our method is capable of finding less

fragmented face regions than previous methods for both single and multiple persons

under different conditions.

Our current evaluation of audiovisual correlation is sensitive to the noise. Visual
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(a)

(b)

(c)

Figure 3.10. Segmentation for different visual scales and audio gains. Figure (a) shows
the results with visual resolution 240x160 and original audio data, and figure (b) shows
the results when the visual resolution was increased to 360x240, i.e., visual scale was
changed to 1.5 times. Figure (c) shows the results when original audio was gained by
3.5dB, i.e., audio magnitude was increased by 1.5 times.
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(a )

(b )

(d )

(e )

(c )

( f)

Figure 3.11. The experimental results for other persons. Figures (a), (b) and (c) show
the results for a single person, and figures (d), (e) and (f) show the results for multiple
persons within different time windows.
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95.7% 88.3% 93.6% 82.5%

Ground
truth

Detected
result

Correct 
rate

Figure 3.12. Ground truth and the detection rate of our method. The ground truth in the
first row shows the manually labeled face region superimposed over the original image.

noise may yield incorrect optical flow in untextured regions. While Audio noise may

disturb the frame energy estimation and make the audiovisual correlation inaccurate. We

plan to try other reliable methods to compute optical flow and test other robust audio

features, especially the audio features in frequency domain. Additionally, our method in

this chapter requires the speaker to stay at relatively the same position in the statistical

time span. The localization of a non-stationary speaker is discussed in Chapter 4.
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Chapter 4

Visual localization of a non-stationary

sound source

4.1 Introduction

The ability to visually localize sound sources captured by a camera is useful for

various applications. For instance, the pan-tilt camera used with a video conferencing

system can be controlled to follow a speaker. An interviewee could be automatically

overlaid with mosaics to protect privacy. Other applications of sound source localization

include surveillance, video analysis, and audio-to-video synchronization adjustment.

Microphone arrays are commonly used for sound source localization. However, the

use of such special devices severely limits the applicability of techniques based on this

approach. For this reason, much attention has been put on techniques that are based on

the audiovisual correlation analysis (Barzelay and Schechner, 2007; Fisher and Darrell,

2004; Hershey and Movellan, 1999; Kidron et al., 2005; Liu and Sato, 2008; Monaci and

Vandergheynst, 2006), because the localization can be achieved using only one micro-

phone.

Originating from the discovery that audiovisual correlation lies in synchrony (Driver,

1996), previous works in this field have concentrated on methods for computation-
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ally analyzing audiovisual correlation, where different audiovisual features (Barzelay

and Schechner, 2007; Fisher and Darrell, 2004; Liu and Sato, 2008; Monaci and Van-

dergheynst, 2006) and correlation measures (Barzelay and Schechner, 2007; Fisher and

Darrell, 2004; Hershey and Movellan, 1999; Kidron et al., 2005; Liu and Sato, 2008;

Monaci and Vandergheynst, 2006) have been developed or introduced.

However, all of the existing techniques share a common limitation in that they cannot

be used for non-stationary sound sources. When a sound source moves, visual features

computed at a fixed position in different frames no longer correspond to the same sound

source. The existing techniques choose to ignore this problem by assuming that a sound

source is stationary within a given time window.

In this work, we develop a method to correctly analyze the audiovisual correlation

for non-stationary sound sources. Within each time window, optimal visual trajectories

starting from the pixels in the first frame are independently searched by maximizing the

audiovisual correlation between the features extracted from local patches. The visual

trajectory that is found in this search is regarded as the best possible motion of that

pixel following the movement of the non-stationary sound source. The correlations of

the pixels analyzed following their optimal visual trajectories are incorporated into a

segmentation technique as (Liu and Sato, 2008) to localize the sound source region in

the first visual frame. By shifting the time window, the sound source region in other

frames can also be localized.

Two aspects drive our technique. First, we developed a method to efficiently search

for optimal visual trajectory by using a beam search with an incremental analysis of the

audiovisual correlation. Second, we introduce the inconsistency as an audiovisual feature

to robustly analyze the magnitude of acceleration in a local patch.

The rest of this paper is organized as follows. In Section 4.2, we give an overview

of our method. In Section 4.3, we introduce the audiovisual feature of the inconsistency.

In Section 4.4, we explain the incremental analysis of correlation. In Section 4.5, we

demonstrate and discuss the experimental results, and we present our conclusions in

Section 4.6.
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4.2 Outline of our method

First, we compute the visual feature, which evaluates the inconsistency of visual mo-

tion in a local Spatio-Temporal patch (ST-patch), and the audio feature, which evaluates

the inconsistency of audio energy change in a local Temporal patch (T-patch). The visual

and audio features are explained in detail in Section 4.3. Examples of an ST-patch and a

T-patch are illustrated in Figure 4.1 (b).

Second, we search for the visual trajectory that maximizes the correlation between

the visual and audio features by using a beam search. Given the number of beams L and

the search range of a pixel between two consecutive frames d, the beam search orders the

correlation of the L(2d + 1)2 possible visual trajectories in every frame and retains only

the L best ones to begin from in the next frame as illustrated in Figure 4.1 (b). All the

pixels in the first frame are regarded as starting points and are independently searched.

The search continues till the last frame. An example of some search results is shown in

Figure 4.1 (c).

Special care needs to be taken for silent frames since the absence of auditory infor-

mation makes the audiovisual correlation analysis uninformative. Silent intervals can be

detected using the method in (Liu and Sato, 2008). In this interval, we stop beam search

and connect the path candidates from the last sound frame to the correspondent start pix-

els in the next sound frame based on a pixel correspondence map; as shown in Figure 4.1

(b). Note that the audiovisual feature is not extracted in the silent intervals. These frames

are also not included in the audiovisual correlation analysis.

The correspondence map is computed by accumulating inter-frame optical flow com-

puted by the method in (Lucas and Kanade, 1981). Since optical flow may have errors,

the computed correspondence map has errors also. However, as we use this correspon-

dence map to connect path candidates, our method is more robust to the errors in optical

flow than the methods that directly use optical flow to track the movement of pixels.

One problem in the flow accumulation is the continuity problem as mentioned in

(Chen and Tang, 2007), which addresses the confliction that optical flow computation
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� c � c

(a) (b)

(c)

(d)

SilenceST-patch

T-patch

Figure 4.1. Audiovisual correlation maximization. (a) shows original audiovisual data,
(b) demonstrates search of visual trajectory, (c) figures optimal visual trajectories starting
from different pixels (differently colored), and (d) audio (red) and visual (blue) features
following one of the optimal visual trajectories.
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(a) (b)

(e)

(c)

(d) (f)

Figure 4.2. Accumulated optical flow. Figures (a) and (d) show the begin frames of two
silent intervals, figures (b) and (e) show the end frames, and figures (c) and (f) show the
accmulated optical flow of these two silent intervals, which become the correspondence
maps.

must starts from pixel centers, regardless of the fact that previous pixels may move to

sub-pixel positions. We solve this problem by accumulating optical flow in a recursive

way. For each pixel (x, y), the flow is accumulated as

~O(t+1)(x, y) = ~O(t)(x, y) + ~o(t)(x + ~O(t)
x (x, y), y + ~O(t)

y (x, y)), (4.1)

where ~o(t) and ~O(t) are the computed optical flow between frame t and t + 1 and the

accumulated flow at frame t, respectively. The initial value of ~O(1) is set to be zero. If

(x + ~O
(t)
x (x, y), y + ~O

(t)
y (x, y)) results in a sub-pixel position, we interpolate ~o(t) with

bilinear interpolation.

Finally, we detect the sound source region in the first visual frame using the tech-

nique developed in (Liu and Sato, 2008), which evaluates the likelihood of each pixel as

the sound source based on the analyzed audiovisual correlation and segments the sound

source region out by graph cut.
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4.3 Audiovisual feature

Differential features, like velocity and acceleration, have recently attracted a lot of

interest (Barzelay and Schechner, 2007; Liu and Sato, 2008; Monaci and Vandergheynst,

2006). We believe that audiovisual correlation should be analyzed between the accel-

eration of the visual motion and that of the audio energy change. For instance, when a

human beats a drum, sound is generated when a hand hits the drum. There are sudden

changes in both the velocity of the hand and the energy of the sound, which implies the

existence of acceleration. Playing pianos, walking, and so on also follow this pattern.

Speaking is similar as well. Although the way that a human voice is generated is far

more complex than beating a drum, it can still be regarded as a sound jointly modulated

by the throat, tongue, teeth, and lips (Rabiner and Juang, 1993). When lip movements

are accelerated, the energy of the modulated sound changes simultaneously.

Therefore, we base the audiovisual feature on the evaluation of the magnitude of

acceleration, which is determined using the concept of motion inconsistency. As demon-

strated in Figure 4.1 (d), high synchrony can be observed with our feature for a hand

playing a piano.

4.3.1 Visual inconsistency

The usual way to compute the acceleration of visual motion (Barzelay and Schech-

ner, 2007) is to use visual tracking (Lucas and Kanade, 1981) to estimate the visual

translation first and then compute the acceleration. However, visual tracking is not stable

in low textured areas and usually can be applied to only the featured points (Barzelay

and Schechner, 2007).

For this reason, our method base the visual feature on the concept of motion incon-

sistency computed in a local ST-patch. Motion inconsistency was first introduced by

Shechtman and Irani in (Shechtman and Irani, 2007), which measures the degree of the

moving direction change in a local ST-patch. The consistent and inconsistent visual mo-

tions are demonstrated in Figure 4.3 (a) and (b), respectively. The size of a ST-patch
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Figure 4.3. Audio and visual inconsistency. Figures (a) and (b) respectively show the
consistent and inconsistent visual motions, and figures (c) and (d) respectively show the
consistent and inconsistent changes of audio energy.
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was recommended to be 7×7×3. The degree of motion inconsistency can be robustly

evaluated by looking at the eigen-values of a gradient matrix M defined as

M =


∑

I2
x

∑
IxIy

∑
IxIt∑

IyIx

∑
I2
y

∑
IyIt∑

ItIx

∑
ItIy

∑
I2
t

 , (4.2)

where Ix, Iy, and It respectively denote the partial derivative ∂I/∂x, ∂I/∂y, and ∂I/∂t

of the intensity at each pixel. The motion inconsistency is then computed by

∆r =
λ2 · λ3

λ♦
1 · λ♦

2

, (4.3)

where λ2 and λ3 are the second and the third eigenvalue of M. λ♦
1 and λ♦

2 are the first

and the second eigenvalue of the top left 2 × 2 submatrix M♦ of M. The computation

can be speeded up as

∆r̂ =
det(M)

det(M♦) · ||M||F
, (4.4)

where ||M||F =
√∑

M(i, j)2 is the Frobenius norm of the matrix M.

It is important to note that motion inconsistency is closely related to the magnitude

of acceleration of an object. If the direction of movement is altered in a ST-patch, an

inconsistent motion will be detected. The more the direction of movement is altered, the

higher the degree of inconsistency. Accordingly, motion inconsistency can be used for

measuring the magnitude of acceleration.

Therefore, we define the visual feature v(x, y, t) as the degree of motion inconsis-

tency computed in a ST-patch centered at (x, y, t). The computation of motion inconsis-

tency is the same as that of the motion consistency in (Shechtman and Irani, 2007).

Note that, as also mentioned in (Shechtman and Irani, 2007), there is another pos-

sibility that leads to inconsistent motion. When an ST-patch is located at the boundary

of two different motion fields, it has inconsistent motion. Shechtman and Irani claimed

that this is negligible considering the number of total pixels (Shechtman and Irani, 2007).

Furthermore, it casts fewer effects on our system as the boundaries always demonstrate

a high inconsistency and are less correlated with the audio. We also disregard this point

just as (Shechtman and Irani, 2007).
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In implementation, we first smooth visual images by a 5 × 5 Gaussian filter whose

σ is 0.8. Visual inconsistency is then analyzed with ST-patches whose size is 7 × 7 × 3.

Note that M is computed not as Equation (4.2), but by a weighted form, where weights

are Gaussian with σspace = 1.5 and σtime = 0.8. Suppose that this Gaussian weight is gi,

which is determined by both spatial and temporal distance from the current pixel to the

center of the current ST-patch. M will be computed as

M =


∑

i g
2
i I

2
xi

∑
i g

2
i IxiIyi

∑
i g

2
i IxiIti∑
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∑
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2
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 (4.5)

4.3.2 Audio inconsistency

Similarly to the visual feature, the audio feature is defined based on the inconsistency

of audio signals in a local T-patch. The consistent and inconsistent changes of audio

energy are demonstrated in Figure 4.3 (c) and (d), respectively.

First, we compute the audio energy e(t) at each frame t. As audio usually has a much

higher sampling frequency than video, we divide audio samples into frames. The frame

duration Ta is set to be the same as the Tv of each visual frame. Audio energy e(t) in

each frame is computed using the method introduced in Chapter 3.

Second, we compute the inconsistency of the audio energy change in a local temporal

patch. As e(t) changes in temporal domain only, we can only compute the temporal

derivative et = de/dt that represents the slope of a tangent line of e(t) at t. Suppose the

slop of the line perpendicular to this tangent line to be w. Following Cartesian geometry

we have

1 + wet = 0. (4.6)

If e(t) changes in a same tendency in the local temporal patch, w should be the same; as

demonstrated in Figure 4.3 (c).
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Packing Equation (4.6) for the derivatives in the temporal patch results in

P

 1

w

 = 0, (4.7)

where P is defined as

P =


1 et1

1 et2

...
...

1 etn

 . (4.8)

Multiplying both sides of Equation (4.7) by PT yields the condition that consistent

change of audio energy must satisfy, which is

Q

 1

w

 = 0, (4.9)

where Q satisfies that

Q =

 ∑
1

∑
et∑

et

∑
e2

t

 . (4.10)

As analyzed in (Shechtman and Irani, 2007), the condition that e(t) changes consistently

is that Q is a rank deficient matrix. Consequently, the more Q becomes a rank full matrix,

the higher the inconsistency of the change of audio energy in this T-patch. The degree of

inconsistency in the local temporal patch can be evaluated based on the eigenvalues of Q

(Shechtman and Irani, 2007).

The audio feature a(t), which is defined as the degree of inconsistency, can thus be

computed by

a(t) =
λ2

λ♦
1

(4.11)

where λ2 is the second eigenvalue of the M. λ♦
1 is the top left element of Q.

Similarly as the visual feature, Q is computed not by Equation (4.10), but by a

weighted form in the implementation. The weights are Gaussian with σ = 0.8 for the

T-patch whose size is three. Suppose that this weight is gi, which is determined by the
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temporal distance from the current frame to the center of the current T-patch. Q will be

computed as

Q =

 ∑
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4.3.3 Feature quantization

In order to analyze the audiovisual correlation, the audio and visual features intro-

duced above are furthermore quantized. We explain this quantization process here.

We first show that the audio and visual features are normalized. As for the visual

feature, inequalities 0 ≤ ∆r ≤ 1 and 0 ≤ ∆r ≤ 1 have been shown in (Shechtman and

Irani, 2007). Based on them, we can get 0 ≤ v(x, y, t) = ∆r̂ ≤ 1, i.e., the visual feature

is normalized. As for the audio feature, since Q is a symmetric definite matrix, from

linear algebra we know that 0 ≤ λ2 ≤ λ♦
1 ≤ λ1. Substituting Equation (4.11) into this

inequality, we have 0 ≤ a(t) ≤ 1, i.e., the audio feature is normalized.

For the normalized values of the audio and visual features, we quantize them uni-

formly in their range that is between zero and one. The number of quantization stages

is denoted as C, which is fixed to be 20 in this work. We have tried other C values but

observed only minor changes when analyzing audiovisual correlation.

4.4 Incremental analysis of audiovisual correlation

It is possible to compute mutual information using its definition (Shannon, 1951) as

MI(a; v) =
1

N

∑
i

∑
j

hav(i, j) log
Nhav(i, j)

ha(i)hv(j)
, (4.13)

where hav is the joint histogram of the quantized audio and visual feature. ha and hv are

their marginal histograms, respectively. N is the number of the samples. Although this

computation just requires a sum over the histograms, it still calls for a lot of computation

time in our case, since the correlation is evaluated millions of times in the maximization

process.
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In this work, we develop a method to compute mutual information incrementally in

a beam search, which significantly speeds up the process. We would like to mention that

this incremental computation is general and can be used in other situations where mutual

information needs to be computed in multiple stages.

We explain the incremental computation of mutual information using entropy. Since

mutual information can be divided into the sum of entropies following

MI(a; v) = H(a) + H(v) − H(av), (4.14)

conclusions here can be easily applied to mutual information.

The entropy of a discrete random variable z can be computed based on its histogram

h(z) by definition (Shannon, 1951) as

H(z) = − 1

N

∑
i

hz(i) log
hz(i)

N
. (4.15)

Suppose that we have the entropy computed in frame k as H(k)(z). In frame k + 1,

a new sample is added to histogram h
(k)
z , which results in a new entropy H(k+1)(z). Fol-

lowing the equation deductions, we can represent H(k+1)(z) based on the known H(k)(z)

as

H(k+1)(z) =
1

k + 1

(
kH(k)(z) − log

(1 + n)1+n

nn

)
+ C(k), (4.16)

where n = h
(k)
z (i(k+1)) is the number of the samples in the bin i(k+1) of h

(k)
z , i(k+1) is the

index of the sample added in frame k+1, and C(k) = k
k+1

log k− log k
k+1

is a coefficient

decided by k. The correctness of Equation (4.16) is shonw in Appendix B.

We can thus adopt Equation (4.16) to incrementally compute entropy. The computa-

tion H(k+1)(z) by using Equation (4.16) is significantly faster than the computation by

definition in Equation (4.15) because, based on the value of H(k)(z), the computation of

incremental quantity log (1+n)1+n

nn requires the access of only one histogram bin. How-

ever, the computation of Equation (4.15) have to access all the histogram bins. As the

histogram has 400 bins in our work, this speed-up is 400 times.

There is an undefined problem in the computation of Equation (4.16). When n = 0,

the incremental quantity is undefined. However, if n is a continuous variable, the limit
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exists when n approaches zero. Since we have

lim
n→0

(1 + n)1+n

nn
= 1, (4.17)

whose correctness is shown in Appendix C, we can adopt this limit to define the value

when n = 0 as log 1 = 0.

We can substitue Equation (4.16) into Equation (4.14) to obtain the equation to in-

crementally compute mutual information. However, we have a simpler way to achieve

this goal. Since H(a) is invariant to the search of visual trajectories, minimizing

H(v|a) = H(av) − H(v) (4.18)

is equal to maximizing MI(a; v). Substituting Equation (4.16) into Equation (4.18), we

can obtain the equation to incrementally compute H(v|a) as

H(k+1)(v|a) =
1

k + 1

(
kH(k)(v|a) + log

(1+n)1+n

nn

(1+m)1+m

mm

)
, (4.19)

where n = h
(k)
v (i(k+1)), and m = h

(k)
av (i(k+1), j(k+1)). j(k+1) is the index of the quantized

audio feature in stage t + 1. The coefficient C(k) in Equation (4.16) is cancelled in the

subtraction. As the computation of H(v|a) is simpler than the one of MI(a; v), we in

fact minimize H(v|a) in the beam search instead of maximizing MI(a; v).

The undefined problem exists also in Equation (4.19) when n = 0 and m = 0. We

again use the limit in Equation (4.17) to define their values.

4.5 Experimental results

In this section we present the experimental results from using our method. We used

the same parameters for all the experiments. The length of the time window was three

seconds. The search range and candidate number in the beam search were d = 1 and

L = 10, respectively. The video was sampled at 30 fps and converted to monochrome at

a resolution of 240 × 160, while the audio was sampled at 44.1 KHz.
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The localization results of non-stationary sound sources were demonstrated in Fig-

ure 4.4. The two clips in Figure 4.4 captured both a sound source (a hand or a walking

man) and an ambiguous moving object (a rotating cover or a man riding a bicycle). Both

sound sources were successfully localized. Interestingly, the positions that corresponded

to the obscure reflections of the hand also demonstrated fragmentally high audiovisual

correlation in Figure 4.4 (b). This is reasonable since both movements were synchronous

with the audio change. Similar phenomenon was also discussed in (Kidron et al., 2005).

A speaker is an important class of sound sources. We used a CUAVE database (Pat-

terson et al., 2002) to test the performance of our method for speaker localization.

The localization results of non-stationary speakers were demonstrated in Figure 4.5.

Our method successfully found the facial region of the speaker. As a comparison, we

compared this method with the one we developed in Chapter 3, which was designed

to localize stationary speakers. The results are shown in Figure 4.5 (c) and (e), where

we can observe how the analysis of audiovisual correlation failed for a non-stationary

speaker and had the wrong localization.

We can detect the sound source at different times by applying our method to different

time windows. The speaker localization results from multiple persons were demonstrated

in Figure 4.6. Our method localized the current speaker.

Our method has to make a tradeoff between the tolerable moving speed determined

by the search range and the computation time. To accommodate for fast movement, we

need to set a large d and L. When d = 1 and L = 10, our method failed to detect

a fast moving sound source shown in Figure 4.7 (b). The detection was improved by

increasing d and L; as shown in Figure 4.7 (c). Yet, the computation time rises when d

and especially L are increased. If we have many sound frames that need to be searched

by the beam search, the rising speed is fast. For example, Figure 4.4 (a) has 69 sound

frames in the 90-frame time window, which is the largest number in all the experimental

data. The computation on our desktop, which has an Intel Core2 2.6 G CPU and a 3 G

memory, took 87 seconds when d = 1 and L = 10, 195 seconds when d = 2 and L = 10,

and 457 seconds when d = 2 and L = 20.
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(b) (c)(a)

(f) (g)(e)

(d)

(h)

Figure 4.4. Localizations of non-stationary sound sources. Figures (a) and (d) show the
original data. Figures (b) and (e) visualize the analyzed audiovisual correlation with jet
color map. The redder a pixel, the higher its correlation. Figures (c) and (f) show the
sound source region localized.
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(b)

(c)(a)

(e)

(f)(d)

Figure 4.5. Localization of non-stationary speaker. Figure (a) shows the original audiovi-
sual data. Figures (b) and (d) show the analyzed audiovisual correlation and localization
results of our method, respectively. Figures (c) and (e) show the results when using the
method in Chapter 3.

4.6 Conclusion and future work

We have developed a method to visually localize non-stationary sound sources by

searching for the movements that maximize the audiovisual correlation. The search is

efficiently conducted by using a beam search with the incremental analysis of the au-

diovisual correlation. We have also introduced inconsistency as an audiovisual feature.

Our method is capable of localizing different kinds of sound sources for different time

windows.

There is a tradeoff in our current method between the computation time and the

tolerable motion speed, as discussed in Section 4.5. We are considering using an image

pyramid and a coarse-to-fine policy to resolve this problem.
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(a) (b)

(c) (d)

Figure 4.6. Speaker localization of different time windows. Figures (a) and (c) show the
analyzed audiovisual correlation, and (b) and (d) show the localization results.
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(b) (c)(a)

Figure 4.7. Localization of a fast moving sound source. Figure (a) shows the original
data, figure (b) shows the result when d = 1 and L = 10, and figure (c) shows the result
when d = 3 and L = 20.
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Chapter 5

Recovery of audio-to-video

synchronization

5.1 Introduction

Audio-to-video synchronization (AV-sync) is important for human sensing of AV

perceptual cues. Reeves and Voelker discovered that, if AV-sync drifts, humans evaluate

video content much more negatively (Reeves and Voelker, 1993). When audio preceded

video by five video frames, satisfaction by viewers degraded about 84% (Reeves and

Voelker, 1993). Television standards specify that audio should never be ahead of video

by more than 15 ms, and should never lag behind video by more than 45 ms (ATSC

group, 2003).

However, AV-sync may drift in real situations for many reasons, such as different

processing times between video and audio, inconsistent network-transfer delays, and

drift accumulating in concatenated processing stages. Previous efforts have mainly con-

centrated on avoiding drift by creating specifications for both hardware and software to

maintain AV-sync (ATSC group, 2003). For example, video cameras record timecodes to

maintain AV-sync for read out. MPEG-2 codecs print Presentation Time Stamps (PTS)

into the data.
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Few attempts have been made to recover AV-sync when drift has occurred. As video

processing often includes several stages, a lack of capability for recovery means that all

stages must be carefully designed to maintain AV-sync. Even though each stage only

causes minor drift, drift can still accumulate into a form that is more obvious. Conse-

quently, high-quality videos like commercial films always include a final stage for ad-

justing AV-sync, where producers employ a special device called an audio synchronizer

to enable AV-sync to be recovered through dedicated efforts.

We developed a method of recovering AV-sync that had drifted in video clips that

only required minor human interactions. Our method is not only robust against changes

in the audiovisual scale, where changes in the audio scale mean that the audio signal is

transformed by different gains, but it is also independent of language. The main thrust

of our method was to detect the state of AV-sync by analyzing the cross-modality corre-

lations between audio and video.

Our method utilizes audiovisual correlation analysis in a different way to detection

of speakers. We assumed that the speaker was known. As synchrony is used to evaluate

audiovisual correlation (Driver, 1996; Hershey and Movellan, 1999), our method finds

the offset between audio and visual channels based on the assumption that the audiovisual

correlation inside the speaker region reaches its maximum at the state of AV-sync. Our

method works as follows. Given a video clip to recover AV-sync, we first ask a user

to specify a rough time window during which a person is speaking. The speaker is

supposed to be stationary in the time window, as has been required in all previous work

(Fisher and Darrell, 2004; Hershey and Movellan, 1999; Kidron et al., 2005; Smaragdis

and Casey, 2003). We then shift audio to make different drift hypotheses and analyze the

average audiovisual correlation inside the speaker region identified by a face detection

technique (Viola and Jones, 2004). Surrounding the optimum drift that maximizes the

average correlation, we furthermore refine drift based on the correlation value to sub-

frame accuracy and adopt this value to recover AV-sync.

The ability to analyze audiovisual correlation accurately is of great importance to

precisely recover AV-sync. We developed a novel method of analytically computing this

correlation making no assumptions on the distribution, which is robust against changes
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Figure 5.1. Process to detect drift.

in the audiovisual scale. The key to our method is using kernel density estimation with

adaptive bandwidth and quadratic mutual information.

5.2 AV-sync recovery by analysis of audiovisual correla-

tions

The first thing in recovering drifted AV-sync is to find how much it has drifted. We

assumed that this drift value would be constant in video clips in recovering AV-sync. Tak-

ing into consideration the reasons for drift, we found that this assumption held for most

situations. For cases where this assumption did not hold, such as where drift was caused

by sudden network-transfer delays, they were considered to be piecewise constants. The

assumption still held if we divided these video clips into segments and processed them

separately.

The process for finding drift is given in Figure 5.1. We first ask a user to specify

the time window where there is a stationary speaker. The speaker’s face must be pho-

tographed in the video with his or her speech recorded in the audio. Only the data within

this time window are used.
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We then detect the speaker region using a face detection technique (Viola and Jones,

2004). To concentrate on mouth movements, we take the lower half of the detected

face as the speaker region. When multiple faces are detected, we select the one that has

the highest audiovisual correlation. If face detection fails, we ask the user to manually

specify the speaker region. As the speaker is supposed to be stationary, the speaker region

is determined using only the first image frame in the time window.

We search the optimum drift based on analysis of audiovisual correlation. First, we

quantize the drift value into integral multiples of the video frame duration Tv, i.e., d =

{−L, · · · , −1, 0, 1, · · · M}. [−L,M ] represents a pre-defined search range. Positive

drift values mean how much the audio lags behind the video. Negative ones indicate

how much the audio precedes the video. For each d, we shift the audio data temporally

by −d and compute the average audiovisual correlation inside the speaker region. The

optimum value, d∗, which has the maximum average correlation is regarded as the coarse

drift found, i.e.,

d∗ = arg min
d

C(d) (5.1)

where C(·) represents the average audiovisual correlation analyzed with respect to d.

Second, we refine d∗ to sub-frame accuracy. We fit a parabola to the analyzed cor-

relation values around d∗ and take its peak as the final detected audiovisual drift, d∗
av,

which is computed by

d∗
av = Tv · (d∗ +

0.5 · (C(d∗ − 1) − C(d∗ + 1))

C(d∗ − 1) − 2C(d∗) + C(d∗ + 1)
. (5.2)

Since we assumed the drift would be constant in the current video clip, temporally

shifting the audio by −d∗
av will set the clip back to the state of AV-sync.

5.3 Analysis of audiovisual correlations

This section describes the computation of C(d) in detail. We shift audio by −d and

extract audio feature at and visual feature vt(x, y) from the N -frame audiovisual data.

Note that visual feature v also changes spatially for different (x, y). The number of
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frames N should not exceed the maximum possible number of frames within the time

window specified by the user. Based on at and vt(x, y), we compute the audiovisual cor-

relations at all positions (x, y) in the speaker region using quadratic mutual information

with kernel density estimation. Finally C(d) is computed by averaging the computed

correlation inside the speaker region. Below, we first introduce the audiovisual features

and then correlation analyses.

5.3.1 Audiovisual feature

We adopt the same method as introduced in Chapter 3 to extract the audio and visual

feature. To make this chapter self-containable, we briefly explain the extraction of audio

and visual features below.

Audio features. As audio is usually sampled at much higher frequencies than video,

we first divided the audio samples into frames. The frame duration, Ta, is set to be the

same as the visual frame duration, Tv. An overlap of duration of Ta/2 between each pair

of two successive frames is set. We also multiply a Hamming window to the audio signal

in each frame to reduce side effects.

The audio feature is defined to be the differential energy between the current and next

frames, i.e., at = e(t + 1) − e(t). The energy, e(t), of all audio frames is computed by

e(t) = log

(
1

M

M∑
m=1

(w(m)s(t,m))2

)
, (5.3)

where s(t, m) represents the audio samples in frame t and the two overlapping compo-

nents from the neighboring frames. w(m) is the weight of the Hamming window. M is

the number of audio samples in the duration of 2Ta.

We ensure there is speech in all frames. This is done by checking whether or not

audio energy e(t) is larger than a pre-defined threshold. Frames failing this test are

regarded as silent and dropped, together with their corresponding visual frames. Only

frames passing this test are buffered till the frame number reached a pre-defined value.

If we discuss N audiovisual frames in this work, it refers to frames that are buffered.
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Visual features. Optical flow is used as the visual feature in our method. In partic-

ular, we only take the vertical element of optical flow, considering that most speaking

actions moved vertically. Visual feature vt(x, y) is thus the vertical optical flow extracted

at (x, y) between frames t and t + 1, which is computed by the Lucas-Kanade method

in (Lucas and Kanade, 1981). Since optical flows cannot be estimated stably in areas

with less texture, we verify the variation of pixel intensities inside each window where

we compute optical flows. If these are below a threshold, we set the flow value to zero.

5.3.2 Computation of correlations

Correlations is computed independently at all image coordinates (x, y) inside the

speaker region. We first estimate the joint probability density function (pdf) between

audio and visual features using kernel density estimation, and compute audiovisual cor-

relation using quadratic mutual information. Yet, the two steps are merged in the imple-

mentation, i.e., the correlation is computed directly from the audiovisual-feature samples,

because the computation can be done analytically. The method we use to analyze the au-

diovisual correlation is in fact same as the one we introduced in Chapter 3. Below we

briefly introduce this analysis process.

We adopt quadratic mutual information to compute their correlations, which was first

proposed in (Xu et al., 1998). The same as MI, quadratic mutual information indicates

the amount of information that one random variable conveys about another. For audio

feature a and visual feature v at each position (x, y), quadratic mutual information is

computed by definition as

QMI(a; v) = log

∫∫
p2(a, v)dadv

∫∫
p2(a)p2(v)dadv

(
∫∫

p(a, v)p(a)p(v)dadv)2
. (5.4)

Probability density function p(z) of a n-dimensional random variable z is estimated

by kernel density estimation (Parzen, 1962). Given N data points zi i = 1, · · · , N of z,

p(z) is given as

p(z) =
1

N

N∑
i=1

KH(z − zi), (5.5)
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where KH(·) is the specified kernel function. H is a symmetric positive definite n × n

bandwidth matrix. We adopt a Gaussian kernel with a diagonal bandwidth matrix, i.e.,

H = diag(σ2
1, · · · , σ2

d).

The bandwidth is estimated from the variance of the samples by using the method

proposed in (Turlach, 1993), which is computed as

σ = 1.06σ̂N− 1
5 , (5.6)

where σ̂2 is the variance in N samples.

Substituting Equation (3.4) and Equation (3.5) into Equation (3.10) and integrating

out the integrals, quadratic mutual information QMI(a; v) between the audio and visual

feature can be analytically computed as

QMI(a; v|{at, vt}) = log Vc({at,vt})Vm({at})Vm({vt})
V 2

nc({at,vt})

Vc({at, vt}) = 1
N2

∑N
i=1

∑N
j=1 K2σ2

a
(ai − aj)K2σ2

v
(vi − vj)

Vs(aj, {ai}) = 1
N

∑N
i=1 K2σ2

a
(aj − ai)

Vs(vj, {vi}) = 1
N

∑N
i=1 K2σ2

v
(vj − vi)

Vm({ai}) = 1
N

∑N
j=1 Vs(aj, {ai})

Vm({vi}) = 1
N

∑N
j=1 Vs(vj, {vi})

Vnc({at, vt}) = 1
N

∑N
j=1 Vs(aj, {ai}Vs(vj, {vi}),

(5.7)

where σa and σv are the estimated bandwidths of the audio and visual features.

As shown in Appendix A, this correlation analysis is invariant to the change of the

scale of both the audio and visual features. The invariance of analysis of correlations to

changes in scale makes our method robust against audiovisual changes in scale.

Finally, the average audiovisual correlation inside the speaker region is computed as

C(d) =
1

D

∑
x

∑
y

QMI(a(d); v(x, y)), (5.8)

where D is the number of pixels inside the speaker region. a(d) means the audio shifted

by −d for drift hypothesis d.
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Table 5.1. Detected drift vs. ground truth

Ground truth (ms) d∗
av (ms)

-540 -538

-170 -170

230 230

5.4 Experiments

As most off-the-shelf video cameras supply video data at 30 fps, we adopted these

kinds of data in our experiments. The search range was set to [−1, 1] s, i.e., L = M = 30.

The window size to compute optical flow was 9×9 in all our experiments. We also

assumed that the user specified the time span to be 0–5 s, within which we adopted 60

video frames to compute audiovisual correlation, i.e., N = 60.

To test the accuracy of our method, we synthesized a ground truth video that sim-

ulated a speaking action by vertically shaking a random dot image (320×240). The

movement was computed by multiplying two sine functions with a long (3s) and a short

(0.3s) period. Audio was synthesized by modulating a 2 KHz sine wave with the same

movement curve. Audiovisual data are shown in Figure 5.2. We first applied our method

to the data in the state of AV-sync. The detected d∗
av was 1 ms, which was very close to

the real value 0 ms. We also produced ground truth data whose AV-sync had drifted and

applied these to our method. The drift values were selected so that they were not integral

multiples of Tv to test the accuracy of detecting sub-frames. The results are listed in

Table 5.1. Our method successfully detected drifts with a maximum error below 2 ms.

Experiments with the ground truth demonstrated that our method could correctly detect

the drift in AV-sync.

We applied our method to real data using the CUAVE database (Patterson et al.,

2002), in which people spoke English numbers in front of a green background individu-

ally or in groups. We converted images into gray in the experiments and downsampled

the resolution from 720×480 to 240×160. The experimental results for the three CUAVE
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Figure 5.2. Experimental results for ground truth data. Both visual data (dotted pattern
and its temporal movements) and audio data are shown, where white rectangles indicate
assumed speaker regions. Bottom figure plots change in C(d), with d∗

av shown at top left.

clips are shown in Figure 5.3. Our method detected minor drifts for all three clips. Since

all the drifts were below 45 ms that humans can perceive as has been suggested in (ATSC

group, 2003), we could not establish their accuracy. However, the results conformed to

our perception that the clips were in a state of AV-sync. Additionally, for clip (c) where

there were multiple people, our method successfully located the speaker based on a com-

parison of audiovisual correlations as demonstrated in Figure 5.3 (c).

To test the accuracy of our method when drift occurred, we intentionally added the

same drifts as the ones in Table 5.1 to the three clips in Figure 5.3. The experimental

results are listed in Table 5.2. Our method successfully detected the added drifts.

As mentioned in Section 5.3, our method is robust against different visual scales and
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Figure 5.3. Experimental results on real data. (a), (b), and (c) are experimental results
corresponding to woman, man, and two persons including only one speaker. First column
shows video images and detected speaker regions. Second column shows change in C(d),
with d∗

av shown at top left.

audio gains. Using clip (a) in Figure 5.3, we changed the visual scales and audio gains

by 1.5 and 2 times and applied them to our method. The detected drifts are listed in

Table 5.3. The visual scale was changed by increasing the downsampling rate from 1/3

to 1/2 and 2/3. The audio gain was changed by multiplying audio-sample magnitudes

with gains of 1.5 and 2. Considering a face detection classifier can only tolerate changes

in the visual scale of 1.1–1.2 times (Viola and Jones, 2004), we applied rather large

scale changes to the data. However, our method detected similar drifts for the data with

audiovisual-scale changes, whose error was within 10 ms. The results in Table 5.3 also

demonstrate that audio gain changes had more influence on our method because spatially
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Table 5.2. Added drifts vs. computed values.

Drift added (ms) d∗
av of (a)(ms) d∗

av of (b)(ms) d∗
av of (c)(ms)

-540 -537 -514 -526

-170 -166 -155 -156

230 234 251 242

Table 5.3. Detection results with audiovisual-scale changes.

Original
Visual scale Audio gain Audiovisual

1.5 2 1.5 2 1.5 2

Drift (ms) 2.8 2.0 0.5 2.2 6.7 4.6 12.9

averaging audiovisual correlation improved the robustness of our method against changes

in the visual scale.

We used two clips to test our method for languages other than English. The results

for video frames and detection are shown in Figure 5.4. Clip (a) was of a native speaker

who was reading Chinese news. Clip (b) was of a native speaker reading Japanese news.

As we used a cheap video camera, our method detected larger drifts compared to the

CUAVE data. Yet, the drifts were still below 45 s and fitted our perceptions.

The computation time with our method depends on the size of the face region and the

number of frames N adopted. It generally took about 190 s to do the computations for

the experiments discussed in this section on our desktop, which had an Intel Core2 Quad

2.6 Ghz CPU, 3Gb of memory, and a Windows XP OS. Only one core was used for the

computation. The code was written in C++ without any special optimization.
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Figure 5.4. Experimental results for different languages. (a) photograph of native speak-
ers of Chinese and (b) that of Japanese. First column shows video images. Second
column shows change in C(d), with d∗

av shown at top left.

5.5 Conclusions

We have developed a method of recovering drifted AV-sync by analyzing audiovisual

correlations. Users only need to specify the time window within which there is a sta-

tionary speaker. Our method could detect drift and recover AV-sync based on analysis

of audiovisual correlations by using quadratic mutual information with kernel density

estimation. Our method was not only robust against audiovisual changes in scale but was

also independent of different languages.

Our current system did not take into consideration solutions against noise. Conse-

quently, our method may break down when presented with low quality visual data or

speech with background noise. In future work, we intend to investigate other audiovi-

sual features that are robust. Although our current method requires the speaker to be

stationary within a time window, we are planning to relax this constraint.
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Chapter 6

Conclusions

This thesis has presented a framework to analyze auditory and visual information

based on the evaluation of synchrony. We have given our answers to the two questions of

this framework: How to and where to apply this synchrony-based audiovisual analysis.

In Chapter 2, we have reviewed all the existing techniques to analyze the audiovi-

sual correlation. We then classified all the existing techniques to analyze the audiovisual

correlation according to the feature and measure which they adopted. An experimen-

tal comparison for these features and measures has been performed to supply objective

evidence on designing methods to analyze the audiovisual correlation.

In Chapter 3, we developed a method to segment the face region of a stationary

speaker. To overcome the fragmental problem in the existing techniques, we initially

incorporated audiovisual correlation analysis into an image segmentation framework to

compute the speaker’s face region by a global optimization with the similarity between

pixels considered. We also developed a new method to analyze the audiovisual correla-

tion, including the development of our feature and our measure. This correlation analysis

has an advantage of being invariant to the change of both visual scale and audio gain.

In Chapter 4, we extended the ability of localization to non-stationary sound sources.

To correctly analyze the audiovisual correlation for a moving sound source, we searched

its movement with an optimization framework whose objective function was set as the
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maximization of the correlation between locally extracted audio and visual features. The

feature was developed by us and named as inconsistency, which describes the accel-

eration in the change of audio and visual signals. We also introduced the incremental

computation of mutual information to speed up the search.

In Chapter 5, we developed a method with audiovisual correlation analysis to solve

an old problem that used to be a human effort intensive work — the recovery of drifted

audio-to-video synchronization. We analyzed the average audiovisual correlation in a

speaker region for different drift hypotheses and took the one that maximized the average

correlation to recover synchronization. The developed method is also invariance to the

change of both visual scale and audio gain.

Contributions

• Initially supplied a classification and an experimental comparison on the existing

techniques to analyze the audiovisual correlation, which not only helped the re-

search of this thesis, but also contribute to this community for future researches.

• Introduced expectation maximization learning and image segmentation framework

to solve the problems of classification threshold and fragmental localization.

• Introduced the framework of audiovisual correlation maximization to correctly an-

alyze the audiovisual correlation for non-stationary sound source, which used to

be impossible.

• Used audiovisual correlation analysis to solve the old problem —recovery of the

drifted audio-to-video synchronization, which used to require both special device

and dedicated human effort.

• Developed new features like optical flow and inconsistency, and new measures like

quadratic mutual information and incremental mutual information to analyze the

audiovisual correlation.
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Directions for future work

Sound separation

A challenging problem of analyzing the audiovisual correlation is the possible im-

pureness of audio signal. Since microphone is omni-directional and sums the audio

signals from all directions, audio signal may be a mixture of the sounds from multi-

ple sources. In such a situation, analyzing the audiovisual correlation becomes much

more difficult.

However, according to the characteristics of the mixed sound sources, the difficulty

to analyze the audiovisual correlation is different. We classify all the possibilities into

three situations.

First, all the sound sources emit a same sound. An example of this situation is a

chorus in which all the persons are singing a same song. This situation brings marginal

difficulty to the current frameworks of analyzing the audiovisual correlation since the

mixed audio is equivalent to an amplified single sound. The spatial distribution of the

analyzed audiovisual correlation should have multiple peaks that correspond to the posi-

tions of the sound sources. This situation in fact has been addressed in Chapter 4 of this

thesis and (Kidron et al., 2007).

Second, sound sources emit different sounds, but all of them are visible to the camera.

An example is an orchestra, where different instruments are played to form a symphony.

Analyzing this audiovisual correlation becomes much more difficult in this case because,

before we can analyze the degree of synchrony, we have to first know whether or not a

set of audio events belongs to a same sound source. To first separate the audio into the

sounds from different sources seems to be a solution. Yet this separation by only one

audio channel is theoretically impossible. Therefore the solution of this problem relies

on a joint optimization of the audiovisual correlation and the sound separation. Some

works have tried to address this problem, such as (Barzelay and Schechner, 2007) and

(Casanovas, 2006). However, they require a strong constraint on the combination of

the sound sources, which is that the sounds from different sources cannot have overlaps
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in the frequency domain. This constraint considerably limits the applicability of these

techniques. The general solution of this problem is still under development.

Third, sound sources emit different sounds, and some of them are not visible. Ex-

amples include a singer with background music, or a speaker in a noisy party. This is

a common case in our daily lives, but also the most difficult situation for analyzing the

audiovisual correlation. Currently no technique has tried to address this problem.

Being difficult, it is attractive to solve the problems belonging to the second and third

situations. With this ability, we can extract the sound emitted by a designated visual

sound source, and can thus clearly hear what we want to hear in any noisy environment,

such as a party, a factory, and so on. With the progresses in this field, we do hope that

this can come true in the future.

Other audiovisual applications

In this thesis, we have focused on answering the two questions: how to perform and

where to apply this audiovisual analysis with synchrony evaluation. However, we believe

that the answers to the second question are far more than the ones we have developed.

On one hand, many old problems in computer vision and audio processing can be better

solved with the integration of auditory and visual information by this framework, such as

surveillance, authentication, video-teleconferencing, expression recognition, and so on.

On the other hand, the problems that used to be solved by other ways may be solved by

using this new framework. An example is the method we developed to recover audio-to-

video synchronization, which has been introduced in Chapter 5. The method to separate

the sounds from different sources is another example. We do hope that more novel ap-

plications like these two examples can be discovered to make machines more intelligent

and helpful to our lives.



87

Appendix A

Scale invariance of our audiovisual

correlation analysis

In this appendix, we show that our method to analyze the audiovisual correlation is

invariant to the change of scale.

First, we show that the change of the scale of a one-dimensional random variable

z leads to the multiplication of a coefficient to the original pdf only. Suppose that z is

multiplied by a scale coefficient of s, i.e., zs = sz. The new bandwidth σs estimated by

Equation (3.5) becomes

σs = 1.06sσ̂n− 1
5 = sσ. (A.1)

Subsituting Equation (A.1) into Equation (3.4), p(sz) can be represented by p(z) as

p(sz) =
1

N

N∑
i=1

Kσs ((sz − szi))

=
1

N

N∑
i=1

1√
2πsσ

exp

(
−s2(z − zi)

2

2s2σ2

)
=

1

s
p(z). (A.2)

This conclusion can be easily extended to the n-dimensional case. Since the band-
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width matrix H is supposed to be diagonal, i.e., H = diag(σ1, · · · , σn), we have

p(sz) =
1

N

N∑
i=1

n∏
j=1

Kσsj
(sjz − sjzij)

=
1

N

N∑
i=1

(
n∏

j=1

1

sj

)
KH(z − zi)

=

(
n∏

j=1

1

sj

)
p(z), (A.3)

where s is a diagonal scale matrix, s = diag(s1, · · · , sn).

Then, we show that quadratic mutual information is invariant to the change of the

scale of audiovisual features. Suppose that the scale of the audio feature a is sa, and the

scale of the visual feature v is sv. Substituting Equation (A.2) into Equation (3.10), we

have

QMI(saa; svv)

= log

∫∫
1

s2
as2

v
p2(a, v)dadv

∫∫
1

s2
as2

v
p2(a)p2(v)dadv

(
∫∫

1
s2
as2

v
p(a, v)p(a)p(v)dadv)2

= QMI(a; v). (A.4)

Consequently, our method to analyze the audiovisual correlation is invariant to the

change of scale.
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Appendix B

Incremental computation of entropy

Here we show the correctness of Equation (4.16) such that entropy can be computed

incrementally. In frame k + 1, entropy can be computed by definition as

H(k+1)(z) = −
∑

i

n
(k+1)
i

k + 1
log

n
(k+1)
i

k + 1
, (B.1)

where n
(k+1)
i is the number of the samples in the histogram bin i. Suppose that the index

of the sample that comes in frame k + 1 is c. Since only one sample is added, we have

n
(k+1)
i =

 n
(k)
i i 6= c

n
(k)
i + 1 i = c

. (B.2)
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Based on this consideration, the computation of H(k+1)(z) can be extended as

H(k+1)(z) = −
∑

i

n
(k+1)
i

k + 1
(log

n
(k+1)
i

k
+ log

k

k + 1
)

= −
∑

i

n
(k+1)
i

k + 1
log

n
(k+1)
i

k + 1
−

∑
i

n
(k+1)
i

k + 1
log

k

k + 1

= −
∑
i,i6=c

n
(k+1)
i

k + 1
log

n
(k+1)
i

k + 1
− n

(k+1)
c

k + 1
log

n
(k+1)
c

k
− log

k

k + 1

= −
∑
i,i6=c

n
(k)
i

k + 1
log

n
(k)
i

k + 1
− n

(k)
c + 1

k + 1
log

n
(k)
c + 1

k
− log

k

k + 1

= − k

k + 1

∑
i

n
(k)
i

k
log

n
(k)
i

k
+

n
(k)
c

k + 1
log

n
(k)
c

k
− n

(k)
c + 1

k + 1
log

n
(k)+1
c

k
− log

k

k + 1

=
k

k + 1
H(k)(z) +

1

k + 1

(
n(k)

c log
n

(k)
c

k
− (n(k)

c + 1) log
n

(k)
c + 1

k

)
− log

k

k + 1

=
1

k + 1

kH(k)(z) − log
(1 + n

(k)
c )1+n

(k)
c

n
(k)
c

n
(k)
c

 +
k

k + 1
log k − log

k

k + 1
. (B.3)

Setting that n = n
(k)
c , and C(k) = k

k+1
log k − log k

k+1
, we have Equation (4.16).
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Appendix C

Limit of Equation (4.17)

In this part, we show the limit in Equation (4.17). Given that n is a continuous

variable and approaching zero, Equation (4.17) can be extended as

lim
n→0

(1 + n)1+n

nn
= lim

n→0
(1 + n)(1 +

1

n
)n

= lim
n→0

(1 + n) lim
n→0

(1 +
1

n
)n

= lim
n→0

en ln(1+ 1
n

)

= elimn→0 n ln(1+ 1
n

). (C.1)

Below we show the limit of the exponent in Equation (C.1) by L’Hospital’s rule.

lim
n→0

n ln(1 +
1

n
) = lim

n→0

ln(1 + 1
n
)

1
n

= lim
n→0

1
1+ 1

n

−1
n2

−1
n2

= 0. (C.2)

Substituting Equation (C.2) into Equation (C.1), we have

lim
n→0

(1 + n)1+n

nn
= e0 = 1. (C.3)
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