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Chapter 1. Introduction

Section 1.1. Motivation

Solid state physics has a wide spectrum both in the systems considered and
in methods employed. Versatile phenomena and models to explore fundamental
physics have stimulated each other: discovery of physical phenomena often
brings forth new methodology to tackle the new problem, and vice versa in
many cases. Development of computational physics in recent years, which is
complementary to both experimental and theoretical physics, is thus adding new
pages to the long history of science.

The computational physics arises from the need to study the problems
which are analytically impossible to solve without unfounded and empirical
approximations. Instead of employing such approximations, we directly simulate
physical (often many-body) systems with use of large computers. The method
and difficulty in the practical computational process depends on whether the
system is classical or quantum-mechanical, or whether the model is
quantitatively realistic or simplified for qualitative discussion.

The computational physics is in some cases said to achieve more reliable
results than experiments by the following reason. All the experimental
techniques inherently have various uncertainty that we cannot control. Even
though the physical phenomena may be reproducible under certain conditions in
experiments, the interpretation of the experimental results can be ambiguous,
partly because the experimental condition itself may sometimes deviate from, or
contain something else from, what we have intended to impose. Moreover we
cannot obtain all the physical properties we want from experiments especially
under extreme conditions beyond present experimental techniques. Then we often
turn to the natural phenomena themselves, e.g., cosmic rays, rocks, planets and
the universe, or else we can perform computer simulations nowadays.

For meaningful computer simulations, first-principles approaches are

especially desirable. Non-empirical approaches using computer simulations not



only provide sound basis for our conjecture but can also lead to conclusions
beyond our intuition. Thus the computational physics can provide guiding

principles complementing the theoretical and experimental physics.

Design and prediction of properties of materials is one of the most
challenging problems in the computational physics. Given the crystal structure,
recent developments in many-body calculations for condensed-matter physics give
promise to the reliable description of electronic states of materials. The
formalisms for calculation includes: the Hartree-Fock self-consistent-field (HF-
SCF) method, in which the many-body problem of electrons in atoms and
molecules is reduced to the one-body problem by the Hartree-Fock mean field
approximation; the configuration interaction (CI) method to treat the electron
correlation; the local-density-functional (LDF) method for systems including
crystals, and the variational or diffusion Monte Carlo method developed very
recently to take account of the electron correlation in more rigor. However, we
can carry out these electronic-structure calculations only when we know the
atomic configuration of materials. |

Although the electronic structure and the atomic configuration is mutually
related and have to be elucidated for complete understanding and prediction of
the physical properties of materials, the atomic configuration has obviously the
top priority since we have to start from the structure. In fact, a number of
interesting phenomena in the field of solid state physics arise from peculiar and
characteristic structures of materials. This is why so-called ”material design” is
becoming a subject of intense study in both solid state physics and industrial
research in these days. The computational physic is thus expected to play an

essential role in the research of material structures.

The first attempt to understand crystalline structures microscopically was
made by Victor Moritz Goldschmidt and a little later by Linus Pauling before

1930’s. They introduced a notion of the ionic radius (or crystal radius), which is



nowadays still very useful for understanding and roughly predicts the structure
of ionic crystals. It is obvious, however, that only one parameter per one atom is
insufficient to describe a variety of materials and their properties such as the
elastic properties. Interatomic potentials were introduced from this viewpoint.

The idea that the structure of materials is determined by the interatomic
potentials is still a highly simplified picture if compared with the full problem of
solving the Schroedinger equations containing both nuclei and electrons.
However, the interatomic potential is definitely an important starting point of
microscopic treatment of material structures.

There are some levels of simplification for the interatomic potentials. The
most simplified version is so-called pairwise potentials (or pair potentials), which
are made to depend only on the interatomic distance between two atoms. Many
simple ionic crystals are known to be simulated rather well with the pair
potentials (Tosi, 1964). The parameters contained in the potential functions are
usually determined empirically so that experimental results are reproduced
(Fig.1-1(a)). An obvious extension is to employ three-body potentials which
depend on the bond angles among three atoms. This type of interaction is
needed to simulate covalent materials such as pure silicon (Stillinger and Weber,
1985; Biswas and Hamann, 1987). If we further want to reproduce the phonon
dispersion very precisely, the shell-model potentials are known to be necessary,
which take account of the distortion of electron distribution by floating ionic
shells (Catlow, Dixon and Mackrodt, 1982). In this way, as the level of
sophistication increases, the degree of freedom (the number of potential
parameters) to specify the interatomic potentials is doomed to increase, so that
we cannot expect from the interatomic potentials much ability to predict
unknown properties of materials as far as we stick to empirical determination of
potential parameters. Such inefficiency of interatomic potentials is partly due to
the difficulty in deriving them from macroscopic information obtained by
experiments.

That being the case, is it possible to study the structure of materials using
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Fig.1-1 Three different procedures for the simulation of material structures.



non-empirical electronic structure calculations? (Fig.1-1(b)) There exist a well-
known example of such an approach by M.L. Cohen and his colleagues (Yin and
Cohen, 1980; Cohen, 1989 and see references therein). Using the LDF method,
they successfully obtained the most stable structure of crystalline silicon. In
these studies, a certain atomic configuration is first assumed, the electronic
structure is calculated non-empirically, the forces working on each atom at the
position are derived, and we then let the atoms move to obtain the optimum
configuration. The simulated annealing method (the ab initio molecular dynamics
method) developed very recently by Car and Parrinello (1985) would give a more
efficient approach along this line.

Although such a non-empirical approach would in principle be more
desirable, there are many difficulties left as future problems. The most serious
one is the huge amount of computational time and memories required for the
calculation, which limit the number of atoms and electrons in the unit cell of the
crystal. Thermal effects are also difficult to include. Such limitations are serious
even for the simulation of such a common material as silica (SiO,) which we are

going to discuss in the present thesis.

We have mentioned two approaches to the simulation of atomic
configurations; the simulation using empirical interatomic potentials and the
simulation by non-empirical calculations of electronic structures. Although the
latter has more predictability, so far it is not feasible in many cases. The former
approach has also been favored in using several kinds of simulation techniques
such as the lattice dynamics or the molecular dynamics where empirical
potentials are fed. However, it is evidently more desirable to first derive the non-
empirical potentials which are then fed into the molecular dynamics.

From this point of view, in the preseﬁt thesis, we have combined these two
approaches to investigate the structural properties of complex crystals, that is,
we have derived interatomic potentials from the first-principles electronic-

structure calculation and applied them to the molecular dynamics (MD)



simulation of crystals (Fig.1-1(c)). There have been some attempts of this kind to
derive the intermolecular potentials of H,O (Carravetta and Clementi, 1984;
Yoon, Morokuma and Davidson, 1985) or alcohol {(Nakanishi, Ikari, Okazaki and
Touhara, 1984) from cluster calculations with the HF-SCF method, or those for
ionic crystals by the modified-electron-gas (MEG) method (Gordon and Kim,
1972). However, in the former calculations, the molecules are treated as rigid
bodies, which is not true, and the latter method is not applicable to materials
with substantial covalency. Thus we have to develop a different method for

wider applications.

The material we have chosen as a target of our structural simulation is
silica (Si0,), which has physical, geophysical and mineralogical significances as
follows:

(1) Silica is a geophysically important material in the Earth. The cosmic
abundance of nonvolatile elements is shown in Table 1-1 (Anders and Ebihara,
1982). If one assumes that the Earth accreted from a nebula of solar
composition and takes the core composition to be roughly Fe,O, one can estimate
the composition of the terrestrial mantle from these cosmic abundances as shown
in Table 1-2. Since MgO easily reacts with SiO,, dominant components of the
crust of the Earth are magnesium silicate such as MgSiO, or Mg,SiO,. However,
considering that silica (8i0,) is a basis for the silicates, we may say that silica is
the most significant mineral of the Earth. Thus it becomes important for the
simulation to predict the behavior of silica under extremely high pressure. In the
present study, such a high-pressure regime is thus regarded as an important test-
bed.

(2) Silica has, in spite of its simple chemical composition, various polymorphs
and shows complicated phase transitions when temperature or pressure are
changed (see section 1.3). Some of the polymorphs are known to exist stably at
room temperature and normal pressure. These polymorphs show a variety of

densities (2.3 — 4.3 g/cm?) and bulk moduli (18 — 296GPa). It is an interesting



Table 1-1 Cosmic abundance of nonvolatile elements (relative to 1000 atoms
of Si) (Anders and Ebihara, 1982).

Mg 1075
Al 84.9
Si 1000
Ca 61.1
Ti 2.4
Fe 900

Table 1-2 Constitution of the model Earth (wt. %).

Mantle
MgO 27.0%
Si0, 375 %
Core
FeO 355 %




problem to confirm whether these various polymorphs are reproduced with
common interatomic potentials.

(3) The features in the structural properties of silica is attributed to the
framework structure of the corner-linked SiO, tetrahedra. Silica, a prototype of
framework materials, can also become glass easily.

(4) Silica has both covalency and ionicity. There have not been reported pairwise
interatomic potentials that can well reproduce the structural properties of the
polymorphs of silica. Nevertheless vitreous silica and silicate are shown to be
simulated quite well by pairwise interatomic potentials (for the reasons given in
Section 1.2). The validity of the pairwise potentials should be checked using more

microscopic and non-empirical approaches.

In the structural study, we have used the MD method to fulfill the following
requirements:
(1) We discuss the dynamical stability of the polymorphs, that is, the stability
against thermal fluctuation of the system. We note that empirical total-energy
calculations optimize the system by varying some parameter that preserves the
symmetry of the crystal. This procedure, however, can be quite inadequate, since
in some cases the crystal disintegrates upon removing symmetry restrictions.
Any symmetry restriction for the crystal structures is absent in the MD, so that
the dynamical stability is far more crucial a test.
(2) We simulate the thermally induced phase transitions, for which static
simulations are inadequate.
(3) We treat the structural transformation accompanied by the rearrangement of
the framework structure of silica. Atomic motions of a large scale such as

diffusion process must be also discussed.

The present thesis addresses these points on the structural simulation of
silica starting from the derivation of the interatomic potential to its application,

aiming eventually material design.



Section 1.2. Historical survey of the simulation of silica and silicate

Interatomic potentials of silica applicable to MD simulations were derived
and used for the first time by Woodcock, Angell and Cheeseman (1976). The
functional form employed is

Uy(r)=QuQy/r +(1+Qy/n,+Qy/n )b exp [(a, +a;-1)/ 07 ,
where r is the interatomic distance between the i-th and the j-th atoms, Q, is the
ionic charge, n; is the number of outer shell electrons, and b and p are
constants. Using the empirical value of p for BeF, and formal charges Qg=+4e
and Q,=-2¢, they optimized b and a;, by trial and error so that the radial
distribution function (RDF) of vitreous SiO, is reproduced by the constant-
volume MD simulation. Though their potentials are pairwise, they can reproduce
the four-fold Si-O coordinations and principal features of the RDF. This was
surprising because it had been believed that many-body potentials with bond-
angle force constants, such as the Keating potential (BeH and Dean, 1972;
Gaskell and Tarrant, 1980), was needed for the simulation of the structure of
Si0,, which was the obstacle to MD simulations by computers.

Since this pioneering and illuminative work was reported, many papers
appeared concerning the MD simulation of vitreous or liquid SiO,-related
materials with several kinds of empirical pair potentials (see, for example,
Matsui and Kawamura, 1980, 1984, 1987; Soules and Busbey, 1981; Soules, 1982;
Matsui, Kawamura and Syono, 1982). It is quite difficult, however, to evaluate
the validity of the potentials only by comparing the simulated RDF or X-ray
interference functions with experimental results. In fact, some of the empirical
potentials of silicate cannot preserve crystalline structures without symmetry
restriction in MD. There is a tendency to regard that the simulation, even if
empirical, should be valuable for vitreous and liquid states, for which the real

experiments with high temperatures are difficult. However, we have to be very



careful in evaluating the simulation, because the MD results are usually sensitive
to slight differences of potentials.

The simulations of crystalline silicate are useful for deriving the interatomic
potentials, for much more experimental data to be compared with the simulation
are reported on the crystals of important minerals. The early simulations were
done by static energy-minimization method (Catlow and Norgett, 1976): each
atom is first put at ideal position of a crystal observed in the experiments, and
then the structure is relaxed until the internal lattice energy of the crystal is
minimized. Empirical interatomic potentials are tested and modified so as to
reproduce the observed crystal structures. We can modify the procedure, in
which the atoms are fixed at the ideal positions and potential parameters are
optimized to minimize the lattice energy (Busing, 1981; Miyamoto and Takeda,
1080; Parker, 1982, 1983). The method was sophisticated by including the
hydrostatic pressure or external strain field in the optimization process (Busing
and Matsui, 1984; Matsui and Busing, 1984; Price and Parker, 1984; Matsui,
Akaogi and Matsumoto, 1987). Since silicates usually have several metastable
polymorphs, the empirical potentials obtained from some of the polymorphs can
be checked if they can reproduce other polymorphs.

As far as magnesium silicates (MgSiO,, Mg,SiO,) are concerned, empirical
pair potentials have been shown to reproduce the structure and the elastic
constants of most of the polymorphs rather well. The success may be attributed
to the fact that the structures of the silicates are very close to the close —packed
rather than framework system. On the other hand, the polymorphs of pure SiO,,
which are far from close —packed and show wide variation of densities and bulk
moduli as seen in the previous section, should be much more difficult to simulate
by pair potentials as unsuccessful attempts indicate (Parker, 1982; Catlow,
Thomas, Parker and Jefferson, 1982; Erickson and Hostetler, 1987) except for
the densest polymorph, stishovite (Matsui and Kawamura, 1987). It should be
noticed here that the MD simulation of SiO, by Woodcock et al. (1976)

apparently worked because they concentrated on vitreous states only. We have
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tested their pair potentials for crystals, and the MD result shows that initial low-
quartz and low-cristobalite structures transform, respectively, into higher-
symmetry states, that the bulk modulus of quartz is significantly larger than the
experimental values, and that the Si-O interatomic distance is not reproduced
unless a constant-volume (unphysical) condition is used: Their potentials are
much too simple for crystal simulation.

It is understandable, then, that more and more complicated interatomic
potentials had to be introduced to empirically simulate SiO,. The most successful
one is so-called shell model with a Keating-type bond-bending term (Catlow,
Freeman and Royle, 1985). The shell model was first introduced to reproduce the
phonon dispersions of ionic crystals (Cochran, 1961; Catlow, Dixon and
Mackrodt, 1982). In the model, the charge of each ion is divided into two parts;
the core charge and the shell charge. The shell charge, which is coupled to the
ionic core with a harmonic potential, represents the distortion of the charge
distribution against the atomic displacement. Interaction between the cores are
described by the ordinary pair potentials and the bond-bending term for the O-
Si-O bending is added. The potential parameters are determined empirically so
that structural, elastic, dielectric and lattice dynamics properties are reproduced.
The agreement between the theory and experiments on all the polymorphs of
Si0, except for stishovite is good. It is very difficult, however, to apply the
potential to the MD simulation, and high-pressure resea,;'ch is not reported yet
because the potential parameters are unlikely to be applicable at high pressure.
This potential cannot be applied to stishovite either because it has six-fold Si-O
coordination instead of usual four-fold coordination. The potential of this type is
also used for silicate (Wall and Price, 1988). Another many-body potential, which
does not use the shell model but also empirical, is reported recently by Stixrude
and Bukowinski (1988). The potential can reproduce the structures and the bulk
moduli of low-quartz and coesite, and the enthalpy difference between them,
although, again, the potential cannot be applied to stishovite.

There are several non-empirical approaches to the study of the interatomic

- 11 -



potentials of silica. Apart from the approaches by semi-empirical extended
Hiickel theory (EHT) and CNDO (complete neglect of differential overlap)
theory, the first ab initio calculation was done on the geometry optimization of
H,SiO, and HSi,0, clusters (Newton and Gibbs, 1980; Gibbs, 1982). They used
the Hartree-Fock Self-Consistent-Field (HF-SCF) method and showed that the Si-
O bond length and the bond angles in silicates are reproduced well by the
cluster calculation despite the small size and excess hydrogens in the cluster.
Lasaga and Gibbs (1987) derived interatomic potentials of such cluster
calculations and applied them to the static simulation of crystalline silicates and
silica. They found that, as far as they limit themselves to a narrow parameter
range, pair potentials could not reproduce low-quartz and that three-body
potentials were needed. They moved on to reproduce the structure and bulk
modulus of low-quartz using covalent three-body potentials, although the
calculated elasticity exhibits anisotropy opposite to the experimental results: C,
is much larger than C,, in the simulation.

Other first-ﬁrinciples approaches are based on bulk calculations. Since the
unit cell of silica and silicates are usually very large, it is very hard to employ
the ab initio Local Density Functional (LDF) method. In the early works,
therefore, the Modified Electron Gas (MEG) method (Gordon and Kim, 1972)
was used for the geometry optimization of silicates (Hemley, Dickson and
Gordon, 1987; Wolf and Bukowinski, 1987) and silica (Jackson, 1986). This
method is combined with lattice dynamics calculation. In the MEG method,
charge distribution of the crystal is approximated by the sum of the charge
distribution of isolated closed-shell atoms or ions. Therefore, it is difficult in
principle to apply the method to any oxide because isolated O~ ion is never
stable. Quantitative agreement of the calculations with experiments is, in fact,
not so good.

The LDF method can be used if the unit cell is small enough. It was
employed in a calculation of SiO, with the fluorite structure, which has only one

Si0, unit in a primitive cell and was once regarded as a candidate for a high-
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pressure phase of silica, though they were shown to be unstable at pressure
below 170 GPa (Carlsson, Ashcroft and Williams, 1984; Bukowinski and Wolf,
1986). Recently, the geometry optimization of low-cristobalite was done by Allan
and Teter (1987) using the simulated annealing method by Car and Parrinello
(1985). They optimized five structural parameters under the restriction of space-
group symmetry and obtained quantitatively good agreement with the
experiment at very low temperature and normal pressure. Very recently Park,
Terakura and Matsui (1988) calculated the total energy of stishovite, fluorite-
structure SiO, and SiO, with the Pa3 structure (see section 3.2) as a function of
molar volume by the Full-potential Linear Augmented Plane Wave (FLAPW)
method, which is reliable even at high pressure. Pa3 silica is suggested to be a
possible high-density phase of silica by a previous MD study (Matsui and
Matsui, 1988). Park et al. have predicted that Pa3 silica phase is stabler than

stishovite at pressure above 60 GPa.

As we have mentioned above, many empirical approaches have been
reported as regards the structural simulations of silica and silicates. They might
be powerful means of understanding experimentally observed properties of the
minerals. Such empirical approaches are nevertheless insufficient to predict
unknown structures and their properties: we should note there is a large gap
between predicting structural properties of materials and simulating well-known
structures with use of the knowledge of the structure itself. For design and
prediction of structures of materials, non-empirical approaches are desirable,
although those reported so far have only succeeded in obtaining restricted
geometries after huge calculations of electronic structures of bulk crystals.

From this point of view, in the present thesis, we show for the first time
that we can derive interatomic potentials for silica from non-empirical and tractable
cluster calculations. Once the interatomic potentials are obtained, they can be fed
into dynamical simulations of complicated bulk structures using the MD method.

It is also reported for the first time that a pairwise interatomic potential can

- 13-



reproduce most of structural properties of crystalline silica with framework

structures.

Section 1.3. Polymorphs of silica

In this section, we briefly introduce the known polymorphs of silica. The
densities, bulk moduli, number of SiO, units in a unit cell and the space group
of the polymorphs are summarized in Table 1-3 together with the phase diagram
in Fig.1-2 (Hemley et al., 1988). All the polymorphs except for stishovite have
framework structures of corner-linked SiO, tetrahedra. High-quartz, high-
cristobalite and high-tridymite are the high-temperature phases of low-quartz,
low-cristobalite and low-tridymite, respectively, and have the same connectivity
of the SiO, tetrahedra as those in the low-temperature phases. The high-
temperature phases are distinguished from the corresponding low-temperature
phases by their higher symmetry and larger Si-O-Si angles.

The most stable phase at room temperature and normal pressure is low-
quartz (or a-quartz), whose stereoscopic view is shown in Fig.1-3(a). It is
characterized by three-fold screw axes, and coexisting four-membered and six-
membered (-Si-O-) rings in the network structure. It is well known that low-
quartz transforms into high-quartz (g8-quartz) with six-fold screw axes above
846K, though recently an incommensurate phase was observed within a narrow
temperature range (~2K) between the o and B phases (Gouhara, Li and Kato,
1983; Dolino, 1988).

High-cristobalite (B-cristobalite) is obtained by heating low-quartz and is
quenched to low-cristobalite (a-cristobalite) (Fig.1-3(b)) below 491K. The
framework of the Si-O-Si bonds in cristobalite has the diamond structure and
contains only six-membered rings. High-tridymite is similar to high-cristobalite
but in this case the framework assumes the hexagonal diamond structure. Low-

tridymite is not fully established as a pure polymorph of silica (Hohﬁquist,
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Temperature (K)

Table 1-3 Polymorphs of silica.

Density Bulk modulus Si0, Space group
(g/cm®) (GPa) (unit/cell)
low-quartz 2.65 38 3 P3,21(P3,21)
high-quartz 2.35 3 P6,22(P6,22)
low-cristobalite 2.34 18 4 P41212(P43212)
high-cristobalite 2.17 8 Fd3m
coesite 2.92 96 16 C2/c
low-tridymite
high-tridymite 2.22 4 P63 /mmc
stishovite 4.29 296 2 P4,/mnm
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1
= .
Q Liquid j
@)
< bocd - Cd -
3000 — ';@1 //—\\ ’/"
~ _ -
. 7 Y -
s /
= / /
= |/ ! /
>
g S 3 . :
= & & Stishovite
=
o
<& O
1000
0 1 1
0 10 20 30

Pressure (GPa)

Fig.1-2 Phase diagram of silica (Hemley et al., 1988).
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Fig.1-3 Stereoscopic views of polymorphs of silica: (a) - low-quartz, (b) low-
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1961), although several low-temperature phases are reported with extremely low-
symmetry of space group Cc¢ including large number of atoms.

Coesite has a monoclinic unit cell of rather low symmetry (Fig.1-3(c)). Four-
membered rings and linear Si-O-Si configuration at some oxygen sites are
characteristic of the structure.

Stishovite, the densest phase of silica ever known, is remarkable in that
silicon atoms are located in the edge-shared octahedra of oxygen atoms (Fig.1-
3(d)). The structure is the same as TiO, rutile and is almost close —packed.
Experimental and theoretical researches for the denser phase of silica are still
under way (Park, Terakura and Matsui, 1988; Tsuchida and Yagi, 1989).

These are the natural polymorphs of silica so far known. Vitreous silica is
also known to have a network structure of corner-linked SiO, tetrahedra at least

at low pressures.

Section 1.4. Organization of the present thesis

In Chapter II, an interatomic potential of silica is derived from the first-
principles cluster calculations. The possibility and limit of the pairwise
interatomic potentials are examined.

The formalism of the MD simulation is briefly depicted in Chapter III. The
pairwise interatomic potential is then applied to the MD simulation of
polymorphs of silica at normal and high pressure condition in this chapter. It is
shown for the first time that the pairwise potential can reproduce the structural
properties of virtuaily all the known polymorphs of silica.

Thermally induced structural phase transition of quartz, which is
successfully reproduced by the MD, is described in Chapter IV. The dynamical
character of the phase transition is elucidated there.

New pressure-induced structural transformations of crystalline silica at room

temperature are reported in Chapter V. Two novel structures of silica are
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obtained, which comprise silicon atoms of both four-fold and six-fold
coordinations. The mechanism of compression, that is, diffusionless coordination
changes under pressure is confirmed.

In Chapter VI, a preliminary application of our cluster approach to silicate
is reported. Potential parameters for magnesium are derived from cluster
calculations and are applied to four polymorphs of magnesium silicate.

Chapter VII is devoted to concluding remarks. A conjecture respecting an
anomalous diffusion property of silicate melt is presented with a preliminary
simulation of silica melt. A summary of the present thesis is given at the end of

the chapter.
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Chapter II. Interatomic Potentials of Silica
Section 2.1. Method of the cluster calculation

In this thesis, we start from a non-empirical cluster calculation method to
obtain interatomic potentials in the SiO, system. The cluster method has
advantage over the bulk method since computational time required is not
gigantic in obtaining the ftotal energy and the potential energy surfaces for
deformations, provided that the cluster is not too large. The other advantage is
that, since the potential energy surfaces of a small cluster do not contain long-
range parts of interatomic potentials from distant atoms, we can separate the
short-range parts, which relieves the difficulty in extracting each two-body or, if
necessary, three-body interatomic potentials from the total energy of the system.
The long-range part in Si0,, a good insulator, is considered as a Coulomb
interaction between ionized atoms.

The cluster method has, of course, an intrinsic flaw originating from its non-
periodicity: the electronic structure near the surface of the cluster may be
somewhat different from that in the bulk. In the case of an iﬁsulator, however,
the electrons are comparatively localized, so that the short-range interatomic
potentials in a cluster are expected to be similar to those in a bulk. This is
supported by the fact that the Si-O interatomic distance is almost the same both
in the HSiO, cluster and in crystalline silica or silicate (Gibbs, 1982). We should
note thaf, when we treat a metallic system, it is dangerous to use the
information from a cluster calculation, since the interaction of ionic cores with
confined electrons is quite different from that with free electrons. Even in this
case, however, the short-range interaction between the ionic cores of each atoms
may be derived from cluster calculations.

The most conspicuous feature of the structure of silica except for stishovite
is, as mentioned in chapter I, the framework of corner-linked SiO, tetrahedra. If
we want to reproduce the structures of all the polymorphs and the glass or melt

with common interatomic potentials, the SiO, tetrahedra must be first preserved
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in the simulation with the model potentials. Thus we start from the total energy
calculation of a tetrahedral SiO, cluster deforming its shape and then best fit
the parameters in the potential-functions so that the obtained potential-energy
surfaces are reproduced by the summation of the interatomic potentials. The
validity of pair-potential approximation could be checked by the reproducibility
of the potential-energy surfaces.

In the total-energy calculation, an Si044_ ionic cluster rather than a neutral
SiO, is used, because Si readily gives up electronic charge to oxygen atoms. We
regard the cluster as embedded in a crystal, so that we add four point charges,
et, of unit charge as shown in the inset of Fig.2-1, which guarantee the charge
neutrality and also mimic the Madelung potential arising from the rest of the
crystal. The distance between an oxygen atom and the nearest point charge is
set equal to usual Si-O distance in silicates (1.652). |

The total energy of the cluster is then calculated using the ab initio Hartree-
Fock self-consistent-field (HF-SCF) method. Since the SiO*” cluster has closed-
shell electronic state as seen from the formal charge of Si** and 0?7, the cluster
has no dangling bonds. This is convenient for the HF-SCF calculation. The
gaussian basis functions employed are (12s8p)/ [5s3p] (McLean and Chandler,
1980) with two d functions (with the exponent, o =0.118, 0.424) (Huzinaga et al.,
1984) for silicon and (9s5p)/ [3s2p] with p functions (with 2=0.059) (Dunning
and Hay, 1977) for negative ion state of oxygen. The importance of d-orbitals
has already been noted by Newton and Gibbs (1980). We assume no electron
orbitals around the point charges so that the charge-transfer to the point
charges does not occur. Although an isolated SiO,*" cluster is unstable as known
from the positive one-electron energies, it is stabilized by the ligand field of the
positive charges. In the previous cluster calculations by Newton and Gibbs
(1980), Gibbs (1982), and Lasaga and Gibbs (1987), hydrogen atoms are put
around the cluster for charge neutrality. We do not prefer their method since it
is difficult to evaluate the interaction between the hydrogen atoms and the other

atoms.
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Fig.2-1 Total energy and the Mulliken charge on an oxygen atom for three
deformation modes of a SiO,* -4e™ cluster shown in the insets: (a) T, mode, (b)
C,, mode and (c) D,y mode. The full circles are the cluster calculation, solid
lines are the fitted potentials, and the broken curve is a guide to the eye. O-e*
distances are set equal to 1.65A. In (b), the Mulliken charge shown by the
dashed curve is. for the moved oxygen, while that shown by the dotted curve is
for the fixed oxygens.

Table 2-1 Potential parameters obtained in this study (Set-ID: TNM).

Q/e a(A) b(A) ¢ (kcal?A3mol~1/?)
O —-1.200 2.0474 0.17566 70.37
Si 4+2.400 0.8688 0.03285 23.18
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Section 2.2. Potential energy surfaces and pairwise interatomic potentials

The potential-energy surfaces (total energy of the cluster as a function of
the atomic configuration) are obtained by changing the Si-O distances or O-Si-O
angles with three different modes. One potential-energy surface is depicted in
Fig.2-1(a), in which we stretch all the Si-O bonds keeping the T, symmetry of
the cluster. The result is shown with full circles. The distance between the point
charges and the nearest oxygen atom is always kept constant. The equilibrium
Si-O distance at the potential minimum is 1.61;&, which is very close to the
experimental value in the tetrahedrally coordinated silica (1.60—1.61:&). If d-
functions for polarization are not included in the basis set of the HF-SCF
calculation, the equilibrium Si-O distance is elongated to 1.64A. As we shall see
(Section 3.2), even this difference of 0.03A is substantial enough to destroy the
tetrahedral coordination in some polymorph.

We have also obtained the results for C, mode (Fig.2-1(b)), in which only
one Si-O distance is changed, and D,; mode (Fig.2-1(c)), in which O-Si-O angle is
varied with constant Si-O distance (1.635&). In the D,; mode, the point charges
are put on the extended line of Si-O bonds at each angle, where 6=180° and
6=0° correspond to planar and linear configurations, respectively, and the
equilibrium angle of 6=109.5° is close to the tetrahedral angle.

In spite of the covalent character of the bonds, it turned out that all of
these three potential energy surfaces can be fitted well by a sum of pairwise
interatomic potentials. We have employed the functional form,

oulom a'i+a~'“r ¢,C,
Uij(r) = UijC ! b(r) + fo(bi+bj)eXP( ‘bi""ij ) — 1, (2.1)

which consists of Coulomb interaction with some corrections discussed below,

Born-Mayer-type repulsion and an additional, power-law interaction. Here r is

-93-



the distance between atoms and a; (b,) is the effective radius (softness
parameter) of the i-th atom with the standard force f, = TkcalA 'mol 1. We
also include Coulomb interactions with the point charges. Although the third
term has a 1/r® form, this does not stand for the van der Waals interaction due
to a virtual deformation of the wavefunctions (which is not included in the HF-
SCF method) but represents a correction to the core-repulsion term. Thus it is
possible to employ the other functional form. The inclusion of the correction
term has turned out to be quite efficient for reproducing the potential-energy
surfaces.

A caution must be made in evaluating Coulomb interaction in the cluster,
because the effective charge in the bulk, Q,, is different from that in a SiO:—
cluster, 61 in terms of the fractional charge, An, transferred from a Si atom to
an O atom per Si-O bond, we have Q,=—2Ane and Qy=4Ane in the bulk, while
we have §O=—(1+ An)e and 65i=4Ane in the cluster. Here e is the elementary
charge. We express the Coulomb interaction in the cluster as a sum of long-

range and short-range parts as

Uijcoulombzaidj [1—-g;(r)] /v + QQsg;(r)/r,
gsso(r) = (1+¢r)exp(—2¢T),
8oo(r) = [1+11(¢r)/8+ 3(¢r)’/4+(¢ 1)’ /6] exp(—2¢T). (2:2)

The correction, g;,(r), in the long-range part (the first term) involving a reflects
the distribution of the excess charge of oxygen, for which we assume a
hydrogen-like orbital with a radius 1/¢ here. The radius should be of the order
of the ionic radius of O, so that we employ 1/¢ —14A following Pauling (1960).
Since the remaining short-range part is expected to be insensitive to the
environment, we use the bulk Q, there. Once the parameters a, b, c, are
optimized from the cluster calculation, we switch 6 back into Q (i.e., UijC°“l°“‘b =

Q;Q;/r) in the bulk simulation. Thus the final pair potential, eq.(2.1), has the
same functional form as suggested by Gilbert (1968) and Ida (1976).
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From the cluster calculation, the charge obtained by the Mulliken analysis,
which is ao ~ —1.7e (i.e., An ~ 0.7) for the equilibrium bond length, is shown
to be a function of the Si-O distance (broken lines in Fig.2-1). The feature that
the atomic charge varies with the bond length clearly indicates a many-body
character of interatomic forces in systems with nonzero covalency. The physical
mechanism will be discussed in more detail in Section 2.3. To concentrate on the
pair-potential approach, however, we have used constant Q, (6}) as a first step.
Since small cluster results are insufficient to determine the long-range Coulomb
interaction, and because the absolute value of Mulliken charge itself depends on
the choice of the basis functions, we have not included An in the fitting
procedure. Instead we tried several fixed values of An around the Mulliken
charge. Among the trial values studied here, the fitted parameters with An =
0.6 reproduce the best crystal parameters.

Since the fitting procedure for a;, b;, ¢, is nonlinear, more than one set of
parameters are obtained. We have chosen the one (Table 2-1) which optimizes
the structure (density) and compressibility of low-quartz (Levien, Prewitt and
Weidner, 1980) in a static simulation by the program WMIN (Busing, 1981;
Busing and Matsui, 1984). The potential-energy surfaces best fitted by the pair
potentials are shown with solid lines in Fig.2-1. It should be mentioned that the
best-fit potential reproduces the potential surface in a wide range of Si-O or O-O
distances, which correspond to large deformations. In particular, this guarantees
the reliability of the pair potentials even at high pressure, in which small
interatomic distances occur.

Although both covalent and ionic characters should be present in silica, one
would consider that tetrahedral units indicate dominant covalent bonding. The
present result shows that, at least in the minimal local unit, the potential-energy
surfaces can nevertheless be reproduced by summation of pairwise potentials.
The validity of the pairwise interatomic potentials are further tested in the MD

simulation of the polymorphs in the next chapter.
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Section 2.3. Effect of the environment potential

Before turning to the MD study, we examine in this section the effect of the
environment potential, that is, the role of the positive charges put around the
cluster.

In the previous section, the distance between an oxygen atom and the point
charge, which we write d(O-e*) hereafter, is fixed at 1.65A, for which the
equilibrium Si-O distance (1.61;&) is very close to that in crystalline silica
(1.60—1,61)1). If we set d(O-e') 3.3;&, however, the equilibrium distance for Td
deformation is elongated to 1.66A as shown in Fig.2-2.

By subtracting the interaction between the point charges and the rest of the
cluster, we can obtain the net potential-energy surface of the SiO&4~ cluster.
Since we have assigned no electron orbitals around the positive point charges,
they do not accompany electron clouds, so that the interaction with the rest of
the cluster can be evaluated as pure Coulomb interaction. If we use effective

charge Q for Si and O described in Section 2.2, it is written as

Ue(Q)=2 (v ez/ruu + 24 62’ie/riu (23)

where r,,, is the distance between the x-th and »-th positive charges, and r,, is

v
that between the x-th positive charge and the i-th ion. In calculating the nearest
O-et interactions, we neglect the effect of the electron distribution of oxygen ion
or its deformation due to the positive charge. However, the distance is fixed in
each of the potential-energy surfaces, so that the inclusion of the electron
distribution or the bonding effect causes a constant shift of U,. The effect of the
environmental change can be clarified by comparing the net potential-energy
surfaces with d(O-e*)=1.65A and d(O-e*)=3.3A shown in Fig.2-3(a). In estimating

U,, we set 65i=2.86 and 60=—1.7e, though the result is insensitive to the choice

of the effective atomic charge around these values. In addition to a constant
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shift mentioned above, a quantitative difference is observed between the two net-
potential-energy surfaces: for example, the Si-O distances of the potential
minima are 0.03A larger in the case of d(O-e+)=3.31;. However, for a doubled
d(O-e*), which is an inconceivably large deformation in crystals, the difference
of 0.03A is considered to be slight.

As shown in Fig.2-1, the atomic charges of silicon and oxygen atoms vary
with the deformation of the cluster, which is not considered in the above analysis
for U. To take account of the effect, we can evaluate the point-charge

interaction as,
U (0)=% (o €/t + 2, L/, + 3, Xdre,o(r)/!r-ru Iy (2.4)

where Z, is the atomic number or charge of nuclei, and p(r) is the electron-
density distribution obtained by the HF-SCF calculation for each configuration.
The net potential-energy surfaces for Td deformation thus obtained by
subtracting U (p) from the total energy are shown in Fig.2-3(b) for the two
values of d(O-et) together with the energy difference between them.
Remarkably, the energy difference is almost completely independent of the Si-O
distance. The same result was obtained for C, deformation, and so it should be
not accidental but an inherent characteristic of Si044' cluster.

The present result is very helpful for understanding the interatomic
potential of SiO,. The potential consists of two parts: the short-range part which
depends only on the local structure of the nearest-neighbor atoms and the
Coulomb interaction extending beyond the nearest neighbor atoms. The former
is insensitive to the environment, while the latter depends on the electron-
distribution, which varies according to the deformation of the local SiO,
structure. This is a many-body character of the interatomic potentials of SiO,,
which cannot be handled even if we use bond-angle-dependent three-body
potentials. To make matters complicated, the charge of an oxygen atom is

determined not only by the Si-O distance but also by the configuration of the
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other oxygen atoms. For example, the oxygen charge decreases as the Si-O bond
is elongated in Td deformation (Fig.2-1(a)), whereas it increases in C,,
deformation (Fig.2-1(c)). Owing to the charge re-distribution, long-range Coulomb
interaction changes, which may not be accommodated in the three-body
potentials.

One way to take account of this many-body character is the shell model,
which has already achieved a great deal of success in static simulation of silica
(Catlow, Freeman and Royle, 1985) and silicate (Wall and Price, 1988) with
empirical potential-parameters. In the shell model, the valence-electron-shell of
an oxygen atom is bound to the ionic core with a harmonic potential, so that the
charge re-distribution can be handled to some extent. It is quite understandable
that such a flexible model is necessary in the reproduction of such properties as
an accurate phonon dispersion. Completely non-empirical determination of the
potential parameters are desired in future, although it would finally require bulk
calculations.

Nevertheless, in this thesis, we employ a pairwise, rigid-ion potentials, which
can more easily be applied to a variety of simulation techniques such as MD,
since, as we have seen, the consequence of the above-mentioned many-body
character is quantitatively not so large. The level of approximation should
depend on how much accuracy we demand in the simulation. We can reproduce
the structural properties of silica including phonon dispersions rather well within

this pair-potential approximation as we shall see later.
Section 2.4. Larger clusters

If we do not demand the reproducibility for such extreme conditions as
corresponding to doubled O-e* distance, the interatomic potentials with the fixed

effective charge (Q,) should be quite adequate as evidenced by the deformation

potential of the SiO, cluster reproduced by pairwise potentials (Section 2.2). Thus
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the pairwise potential fulfills a necessary condition of reproducing crystal
structures that the SiO, local units are maintained. It should be mentioned,
however, that this is not the sufficient condition, for the detailed structure of the
polymorphs of silica is characterized not only by the networking topology but
also by the Si-O-Si bond-angles: low-temperature phases of quartz, cristobalite
and tridymite are distinguished from the corresponding high-temperature phases
by larger deviations of their Si-O-Si angle from 180° .

Since our interatomic potential is pairwise, the directional interaction by the
p-orbitals of oxygen atoms, which causes the H-O-H bending in water molecules,
is not included. However, the result of the MD simulation with the pairwise
potentials shows that, in some polymorphs, Si-O-Si angles do deviate from 180°
to 140° —150° (Chapter III). This is achieved by the long-range interaction
beyond the first-neighbor atoms. In this section we thus show the importance of
the long-range interaction in the Si-O-Si bending first for the Si,0, cluster.

As in the case of Si044—, 8i,0,°" cluster with six positive charges is
considered. All the Si-O distances and d(O-et) are kept 1.635A and 165A
respectively, and the total energy is calculated changing the bridging Si-O-Si
angle, 6. The potential-energy-surface is shown in Fig.2-4(a) with full circles. No
potential minima appear at 6~143° (or 6~360° — 143° = 217° ), which is the
mean Si-O-Si angle in low-quartz. According to Gibbs (1982), the potential-
energy-surface of H¢Si,O, cluster, too, has only a shallow (<0.01 Hartree)
potential minimum at 6=142° , in which the depth depends on the Si-O distance.
Here we have not optimized either the Si-O distances nor the position of the
positive charges, which may explain the absence of a shallow potential
minimum.

The result that the potential for the bending of the Si-O-Si angle (6) is flat
over a wide range of 6 is physically very important. If we separate the
Coulomb interactions to look at the short-range interaction part, E, ,,-U (o), for
the same deformation in Fig.2-4(b), the potential surface has a broad minimum

at §=180° in a sharp contrast. This implies that, although Si2077—, a negatively
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charged cluster, tends to stretch (6 ~180° ), the neutral cluster, which should
mimic the real situation in the bulk, has almost ¢-independent energy for a wide
range of 0, because interactions among original and neutralizing charges tend to
cancel. This is why the angle of adjacent SiO, tetrahedra can deviate from
collinear with subtle energy differences in various polymorphs as we see in the
following chapters. Since d(O-e*) and the Si-O distance are fixed here, this
means the interaction between the positive charges and the third-neighbor
oxygen atoms are very important for the Si-O-Si bending potential energy
surface. Thus the potential energy surface by the present best-fit pairwise
interatomic potentials (the solid line in Fig.2-4(a)) are also very flat even though
the agreement with the HF-SCF data is not so good as in Fig.2-1, and this is
why they can reproduce the Si-O-Si angle in all the polymorphs with
considerable accuracy as shown later.

Finally, we investigate an octahedral SiO, cluster to check the applicability
of our pairwise potential to stishovite, the densest known polymorph of silica,
with six-fold Si-O coordination. In the total-energy-calculation, six point charges
of (8/6)e are put around the regular octahedron of SiO;*~ with d(0-e*)=1.65A.
The potential-energy-surface of a -deformation keeping O, symmetry is shown in
Fig.2-5 (full circles) as compared with the best-fit pairwise potential result (a
solid line) where 63i=2.4e (Qg=2.4¢) and ao=—(65i+8e)/6 (Qo=—1.2¢) are used
to ensure charge neutrality. Although the equilibrium Si-O distance in the best-
fit potential is about 0.061; larger than that in the cluster calculation, the
curvature is very similar in these two results. In fact, if we set 68i=3.2e in the
long-range term in eq.(2.2), the best-fit potential energy surface (a dotted line in
Fig.2-5) can well reproduce the calculated one. Thus our pairwise potential,
which is determined for the four-fold coordination, is shown to reproduce the six-
fold coordination surprisingly well. As we shall see, the potential indeed

reproduces the structure and bulk modulus of six-fold coordinated stishovite.
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Section 2.5. Summary and discussion

We have shown that the potential-energy-surfaces for three deformation
modes of the cluster, including the O-Si-O bond-angle deformation, can be
reproduced using only pairwise interatomic potentials. Although this does not
imply that silica is a fully ionic material without covalent character, it is
expected that the structural properties of silica can also be reproduced by the
pairwise potentials.

Since the cluster method is a finite-size calculation, there are naturally
several empirical factors in the approach. The most obvious one is the
employment of the SiO, cluster with neutralizing charges. It is an empirical fact
that the SiO, tetrahedron is a basic unit in silica, and the position of additional
charges has also some ambiguity. We could have also employed other functional
form for the potential than the Gilbert-Ida form (eq.(2.1)). In this form, a 1/r
term appears, which could be replaced with, say, a screened Coulomb form, or
deleted altogether in place of some three-body interaction. There are also some
technical details of the many-body calculation. Rigorously speaking, for instance,
the potential energy surface changes for different choice of gaussian basis
functions. As for the best-fit procedure, the non-linear least-square method gives
several candidates for the best-fit parameters. As mentioned, we have selected
the one which reproduces the low-quartz in the static simulation, which is also
an empirical factor.

Aside from these factors, however, the present method is basically non-
empirical. What we want to stress here is that we have proposed a new
algorithm for obtaining, or predicting, the structure of materials: pair potentials
are derived from small-cluster calculations to be fed into the MD calculation.

We have not included the potential energy surface of $i,0, in the potential-
parameter optimization because this would make the determination process too
complicated. The smallest possible cluster, SiO,, will turn out to be good enough

in the case of silica in the next chapter.
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Finally it must be mentioned that, as the determination of the potential
concentrates on the curvature of the potential-energy-surfaces, the cohesive
energy of each polymorph is not necessarily reproduced accurately. This is a
flaw of the cluster method and is a bottleneck in applying the potential to the
simulation of melt system or structural transformation. This problem will be

discussed in Chapter IV.
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Chapter III. Molecular Dynamics Simulation
— Normal and High Pressure Condition

Section 3.1. Introduction: molecular dynamic simulation

In the last chapter, we extracted interatomic potentials of silica from the
first-principles cluster calculation. In this chapter, we turn to the MD study of
polymorphs of silica at room temperature using these interatomic potentials. The
ability of these potentials to reproduce the dynamical stability of pélymorphs is
tested by the MD simulation. The simulated polymorphs are, mainly, low-quartz,
low-cristobalite, coesite and stishovite, that 1is, virtually all the natural
polymorphs of silica so far known (see Section 1.3 as for tridymite): these
polymorphs correspond to different pressure-temperature regimes but can also
exist at normal pressure and temperature as metastable states. Our aim is to
answer the questions: (1)whether the interatomic potential derived from the
cluster calculation is applicable to the bulk crystals, (2)whether various physical
properties of the polymorphs are reproduced by the same interatomic potentials,
and (3)whether pair-potential approximation is valid for silica, which has some
degree of covalency. The test will also serve to check some empirical factors
involved in the determined potential (Section 2.5).

Before reporting the MD results, we will briefly introduce the MD method

in this section.

In its most primitive version, the MD method is simply a numerical
integration of Newton’s equations of motion in 3N dimension, where N is the
number of particles in the system. The equations of motion are derived from the
classical Hamiltonian,

H = =,(1/2m,) p,> + O(r ,....ry), (3.1)

where r;, (p,) is the position (momentum) of the i-th particle and @® is the
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potential energy of the system which is expressed by the summation of

interatomic potentials between all the particle-pairs as =% i ®s; within pair-
potential approximation. Periodic boundary condition is usually imposed on the
finite system (basic cell) in the simulation of bulk system. The temperature of
the system is determined by the averaged kinetic energy of the particles by the
relation <p.*> /(2m,)=3kT/2, where k is the Boltzmann constant. The pressure

is given by the virial theorem as

P = N,(T/V — (1/3V)E; r, - (30 /3r,)
= NkT/V — (1/3V)z_,,, 15 (8 85/91), (3.2)

where V is the volume of the system, r= 1T and the second expression in
the right-hand-side is for pairwise interatomic potentials. The first expression is
written for a system with boundaries: this is seen from the fact that the second
term in the right-hand side vanishes in the equilibrium in the interior of the
system, while the interactions with walls give a nonzero value.

Each particle is then moved in Newtonian dynamics, starting from random
velocities and initial (random or crystalline) positions, until equilibrium is
achieved. The pressure and temperature can be kept equal to the specified
values by scaling the size of the basic cell and the kinetic energy, respectively.
This corresponds to the micro-canonical enserﬁble when the scaling is not
performed.

Since the pressure as defined above in a crystalline system can be highly
anisotropic, it is inappropriate to use only the hydrostatic pressure defined by
eq.(3.2) in a simulation of a crystal. In this case, the basic cell has to be
anisotropically scale_d so as to make Px=Py=Pz, where P is the p-th diagonal

component of the stress. Here

P, = NKT,/V — (1/V)S,; 1;.(0 6,/ 7)., (3.3)
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where T stands for the the x-component of temperature (temperature obtained
from x-component of particle velocities), and r;;, means the x-component of Ty
This scaling corresponds to the transformation of the basic cell with the
orthorhombic symmetry preserved (Matsui and Kawamura, 1987).

The orthorhombic symmetry may often be too strong a restriction. The
constant-pressure algorithm due to Parrinello and Rahman (1981) allows the unit
cell angles to change, so that not only monoclinic or triclinic crystals can be
treated but also structural phase transitions can be simulated in this method.
The equations of motion in this approach are derived from the following

Hamiltonian:

H = 3.(1/2m) p,G" p, + @(hq)
+(1/2M)Tr(*p,py) + P, 101,

q’; = hq;,

p; = ‘b’ p,

G = ‘h h,

|h| = det(h) =V, (3.4)

where h is a matrix whose columns are, in order, the component of basic cell
vector a, b and ¢ that span the edges of the basic cell, p, is a momentum
conjugate to h, P, is the external hydrostatic pressure, and q; and p, are related
with real positional and momentum column-vectors (q’, p’;) through the scaling
maftrix h. The basic-cell volume V is explicitly included as a dynamical variable
and the corresponding kinetic energy is introduced with a fictitious mass M. In
equilibrium at temperature T, 9kT/2 is contributed by these degrees of freedom
and 3NkT/2 by the original kinetic terms. Therefore the constant of motion H is
nothing but the enthalpy to an accuracy of 3/N. The canonical variables are g,
p;; h, and p,, which satisfy the canonical equations derived from the

Hamiltonian. As the final equations of motion for q; and h, we get
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q = - (l/mi)zj (l/rij)(6¢ij/arij)(qi—qj) - G‘IG“lp
Mh=(z —P, )%tV
Vr = =my(hq)(hgy) — 2, (1/r;)( 2 8,5/ 9 13)(hay;) (hayy). (3.5)

As seen from the second and the third equations, the shape of the basic cell
changes so that the internal stress balances with the external pressure. The
ensemble obtained with this algorithm is called (P,H,N) ensemble, which stands
for the constant P_, H (enthalpy) and particle number.

The constant temperature algorithm to obtain canonical ensemble was
derived by Hoover et al. (1982), Evans (1983), and later refined by Nosé (1984).
Nosé’s method, or the revised version by Hoover (1985), introduces some
fictitious variable to scale the time and is called the extended system method.

The Hamiltonian is postulated to have the form

H = 3,(1/2m,) Pi2/52 + @(q)
+ p,’/(2Q) +gkTlog s, (3.6a)

where Q is another fictitious mass for the kinetic energy of the time-scaling

variable s. Canonical variables, q,, p;,, s, p, and t are related with the real

variables (primed variables) as

s
t

Sdt/s _ (3.6b)

The equations of motion for real variables obtained from the Hamiltonian are

iii, = - (l/mi) B(D/aqi’ - [(.li,a
41 = (I/Q) [Eimi(.li’z — gkT] (3.7)
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where ¢ introduced by Hoover (1985) is related with s as
s’fs’ = ¢. (3.8)

If g (the factor appearing with kTlog s in eq.(3.6a)) is set equal to 3N, it can be

easily shown that p.’ and q,’ follows the canonical ensemble (Nos€, 1984; Hoover,

1985).

In the present study, we have used Parrinello and Rahmann’s constant
pressure algorithm combined with the constant temperature algorithm by Nose.
Numerical integration was performed using Verlet’s algorithm (Verlet, 1967)
with the time step of 2fsec. The mass (M) for the volume term in eq.(3.5) is set
equal to 50 g/mol and that for the temperature term in eq.(3.7) (Q) to
2kJ /mol - (psec)’. The Ewald sum method is used for evaluating the long-range
Coulomb interactions. The 1/r® term is calculated by direct summation within a
certain cut-off length (~7A), while the interaction beyond the cutoff length was
integrated by continuum approximation.

As we want to check the dynamical stability of crystal structures, all the
atoms are given random velocities starting from the ideal positions of a crystal
structure determined by experiments: the crystallization to each polymorph from
random atomic positions cannot be expected within a short time period of the
simulation. If the interatomic potentials employed are inappropriate, the initial
crystal configuration disintegrates immediately or after retaining the structure
with thermal fluctuations for some period in some cases. We have tried several
sizes of ‘basic cells, in which the largest number of atoms in the basic cell of
each polymorphs is 576 (containing 64 unit cells), 576(48), 768(16) and 576(96)

for low-quartz, low-cristobalite, coesite and stishovite, respectively.
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Section 3.2. Simulated polymorphs of silica

In this section we report the MD results for the polymorphs of silica at
room temperature and normal (ambient) pressure. The MD results for high-
pressure compression of each polymorphs are also shown and compared with
experiments.

First of all, the MD results with the pairwise interatomic potentials
obtained in Chapter II show that the four polymorphs (low-quartz, low-
cristobalite, coesite, stishovite) are dynamically stable despite the fact that these
polymorphs have large differences in their topology and density: the result shows
that the time-averaged configuration of each polymorphs preserves its space
group symmetry and that the obtained density agrees with the experimental
result within 10%. The structural parameters are summarized in Table 3-1
together with the atomic configuration in Fig.3-1. More detailed information on
the positional parameters of each phase is listed in Appendix A.

We have also performed MD calculations under high pressure. The volume
of each polymorph normalized by the zero-pressure volume V is shown in Fig.3-
2 as a function of pressure, which agrees with experimental results very well up
to the highest pressure studied in the experiments. As is done in experimental
analysis, we estimate the bulk modulus K, by fitting the pressure-volume results

to a Birch-Murnaghan equation of state (see Ida and Mizutani, 1978):

P=(@/2Ky " -y - @E/A-K)y =1 + (n/2) 5" -1)1
y= V/Vo)
n = (3/4)(K K, +K,?-7K '+143/9). (3.9)

The obtained bulk moduli (Table 3-1) are in good agreement with the
experimental results even for stishovite with six-fold silicon atoms as well as for
other polymorphs. It should be noted that our MD simulation (Tsuneyuki,
Tsukada, Aoki and Matsui, 1988) on the bulk modulus of low-cristobalite
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Table 3-1 Structural parameters obtained here by MD simulations as compared
with experimental results (or results by the FLAPW band calculation) for various
polymorphs of silica. Estimated standard errors in observed (Obs.) data and thermal
fluctuations in MD data are given in parentheses in units of the last decimal place

stated.

low-quartz low-cristobalite coesite
Obs.® This work Obs.? This work Obs.¢ This work
Space Group P3,21 P3,21 P4,2;2 P4,212 C2/c C2/c
Z 3 3 4 4 16 16
2 (X) 4916(1)  5.018(12) 4.979 4.991(17) 7.1356(3) 7.218(25)
b (A) 1.916(1)  5.018(11)  4.979 1.991(17)  12.3692(8) 12.760(27)
¢ (A) 5.4054(4)  5.549(11)  6.950 6.657(31)  7.1736(3) 7.417(25)
o 90° 90.0(2)° 90° 90.0(2)° 90° 90.0(2)°
B 90° 90.0(2)°  90° 90.0(1)°  120.34(2)° 120.6(5)°
¥ 120° 120.0(2)°  90° 90.0(2)°  90° 90.0(2)°
Density (g/cm®)  2.6458(7) 2.474(8)  2.316 2.406(22)  2.9213(3) 2.716(8)
Ko (GPa) 38(3) 33.7(1) 18¢ 17.4(7)  96(3) 108(2)
Ko’ 6.0(2) 505(3)  — 9.5(1.7)  8.4(1.9) 2.6(2.3)
Energy (kcal/mol) —1235.1 —1231.1 —1239.7
S-0 (K) 1.605(1)  1.627 1.605(2) 1.644 1.5945(4) 1.609
1.614(1)  1.640 1.613(2)  1.625 —1.619(1)  — 1.655
Si-0-51 143.73(7)° 147.3° 146.4(1)° 142.7° 180.° 180.0°
137.36(9)° 143.9°
— 149.64(9)° — 155.3°

®Levien et al. (1980). ® Peacor (1973).
“T'suchida et al. (1989). ¢Levien et al. (1981).

stishovite Pa3 silica
Obs.© This work FLAPW?Y9 This work
Space Group P4y/mnm Pd4y/mnm  Pal Pa3
A 2 2 4 4
a (R) 4.1773(1)  4.271(6)  4.47 4.563(6)
b (&) 4.1773(1)  4.271(5) 4.47 4.563(7)
c (A) 2.6655(1)  2.753(4)  4.47 4.563(5)
o 90° 90.0(1)° 90° 90.0(1)°
B 90° 90.0(2)° 90° 90.0(1)°
v 90° 90.0(1)° 90° 90.0(2)°
Density (g/cm®)  4.2902 3.974(8) 4.46 4.201(6)
Ko (GPa) 296(5)f 312(2) 335 328.4(2)
Ko’ 4.0(1.4) 5.4(5) 1.60 4.54(1)
Energy (kcal/mol) -1234.0 ' —1206.9
Si-O (A) 1.7572(1)  1.813 1.827 1.863
1.8087(2)  1.840
Si-0-Si 98.66(1)°  98.8° 119.8° 120.0°
130.67(1)° 130.6°

°Hill et al. (1983). fSato (1977).

9Theoretical result by Park et al. (1988).
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Fig.3-1 Atomic configurations (averaged over time steps) obtained in the MD
study for (a) low-quartz, (b) low-cristobalite, (c) coesite, and (d) stishovite. Note
the elementary (a) three-fold screw axes, (b) six-membered ring, (c) four-

membered ring, and (d) SiO, coordination.
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preceded the experimental measurement. Tsuchida and Yagi measured the bulk
modulus of low-cristobalite very recently (1989) and obtained quantitatively good
agreement with our prediction (Table 3-1).

Anisotropic pressure-dependence of the unit cell dimension also agrees with
the experimental result as shown in Fig.3-3(a)—(d). In contrast with the present
results, the static simulation by Lasaga and Gibbs (1987) with use of the
potential which is covalent (three-body) but extends only to the first-neighbor
atoms results in reverse anisotropy for low-quartz (i.., the c-axis is softer than
the a-axis). This provides another indication that longer-range interactions
beyond the first-neighbor atoms are important. The dependence of the Si-O-Si
bridging angle in low-quartz on pressure or molar volume is shown in Fig.3-4(a)
and (b), respectively. The calculated result (full circles) agrees with experimental
results (open circles), which supports the reliability of our interatomic potentials
including the equilibrium Si-O-Si angle. More specifically, the pressure-
dependence of positional parameters (Appendix A) also agree well with
experimental results.

Using the pairwise interatomic potentials and the structural parameters
obtained by the MD simulation at room temperature, we have calculated the
dynamical matrix of low-quartz to obtain the phonon dispersion as shown in
Fig.3-5(a). Although the pairwise potentials do not include the effect of electron
polarization as we discussed in Section 2.3, the simulated phonon dispersion of
low-quartz agrees rather well with that obtained by experiments (Fig.3-5(b))
(Dorner, Grimm, and Rzany, 1980). Thermal expansion of quartz and the
softening of some phonon modes will be discussed in Chapter IV.

Besides these four polymorphs, which cover virtually all the natural
polymorphs of silica so far known, we have tested the low-tridymite, which has
not been fully established as a polymorph of pure silica (see, e.g., Holmquist,
1961). As a result, we obtained an equilibrium structure that preserves the
exceptionally low symmetry of space group Ce¢, although the structure is

different from that in the latest report (Kato and Nukui, 1976; Baur, 1977).
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Since the unit cell of low-tridymite is reported to be very large (48 SiO, units)
and complicated, further investigation would be necessary for both MD and
experiment.

We also performed the simulation of Pa3 silica (Y. Matsui and M. Matsui,
1988), which is theoretically predicted to be ~6% denser than stishovite at
ambient pressure and thermodynamically more stable above 60GPa (Park,
Terakura and Matsui, 1988). This phase could have great geophysical
implications, because MgSiO,-perovskite, which is widely accepted as the major
constituent within the Earth’s deep interior, may be less stable than the
assemblage of Pa3 silica plus MgO at high pressures if the Pa3 phase really
exists. The simulated Pa3 phase (Fig.3-6 and Table 3-1) is indeed stable at room
temperature and normal pressure. It has a density 5.5% higher than that of
simulated stishovite and the bulk modulus similar to that of simulated stishovite.
These results agree very well with the prediction of a theoretical calculation with
the full-potential linear augmented plane wave (FLAPW) method (Park,
Terakura and Y. Matsui, 1988). As for the total-energy difference between Pa3
and stishovite, Pa3 silica is less stable than stishovite by 10kcal/mol at 0GPa
according to the FLAPW calculation, while the energy difference is about
28kcal/mol with our interatomic potential.

As mentioned in Chapter II, the interatomic potential approach does not
necessarily give accurate total energy differences. The molar energy of the
polymorphs are listed in Table 3-1. The energy difference between low-quartz
and stishovite is smaller than the experimental result by about 9kcal/mol (Holm,
Kleppa and Westrum, 1967), and coesite is more stable than low-quartz in
contrast with the experimental results that coesite is less stable by 0.45kcal/mol
(Holm et al., 1967). Therefore the P-T phase diagram of silica is not reproduced
with our interatomic potentials. Since we have concentrated on considering force
constants (curvature of the deformation potential) but not the binding energy
itself, the pair potential does not necessarily give the correct absolute value for

the total energy. Thus we must be careful in simulating the phase transitions
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Fig.3-6 Atomic configurations (averaged over time steps) obtained in the MD
study for Pa3-silica. The configuration of SiO,; octahedra are illustrated in the
lower panel.
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between topologically different phases, which will be discussed again in chapter

V in the context of pressure-induced phase transitions.

Section 3.3. Summary and discussion

We have performed MD simulations of silica with the pairwise interatomic
potentials derived from the first-principles calculation. The MD results reproduce
the structures and bulk moduli of virtually all the known polymorphs of silica.

Although both covalent and ionic characters should be present in silica, one
would consider that tetrahedral units indicate dominant covalent bonding. The
present result shows that dynamical stability of silica can nevertheless be
reproduced by the pairwise potential which is extracted from a small cluster.
Bro‘adly speaking, the fact that different polymorphs are reproduced may be
attributed to the strong bonds between silicon and the nearest oxygen atoms.
The message here is that, once SiO, or SiO, local units are formed, the crystal
structure and elastic property of the polymorphs of silica is determined by the
space filling of the local units, or rather oxygen atoms. Namely, although silica
assumes open framework structures, we can regard that the manner in which
SiO, units are connected (Si-O-Si angles, etc.) is primarily determined by the
packing of oxygen atoms (geometrical hindrance of nearby oxygens, etc.), as
contrasted to some views like Lasaga et al. (1987) in which some directional
three-body forces are regarded to be essential. Still it is quite remarkable that
several polymorphs are reproduced with the same pairwise potentials, since the
differences in the tilt angles between SiO, (or 8iO,) units are crucial in these
polymorphs. This is precisely why an accurate determination of potentials is
required.

Due to the intrinsic flaw of the cluster calculation, our interatomic
potentials cannot reproduce the correct differences in the total energy of the

phases. Thus the present method, which is quite adequate for the study of
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structural stability, may be coupled to total-energy methods like band
calculations to give a more accurate description of polymorphs including the

thermodynamics of phase transitions.
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Chapter IV. The -8 Structural Phase Transition of Quarts

Section 4.1. Introduction

Thermally induced structural phase transition of crystals is one of the best
playing grounds for the molecular dynamics (MD) simulation, since large
fluctuations in the atomic motion inherent in the critical phenomena can be
treated as compared with the lattice dynamics method. The MD simulation has
been applied by Schneider and Stoll (1974, 1976, 1978) to a simplified model to
investigate order-disorder and displacive phase transitions. Kerr and Bishop
(1986) also studied the dynamics of a phase transition in a two-dimensional
model. In these studies, however, thermal expansion of the system is completely
neglected, whereas the interatomic forces are in fact sensitive to the density of
system. Recently MD simulation was used to determine the structures above and
below the phase transition for Rb,CaCl, with ab initio interatomic potentials by
Billesbach et al. (1988), although the system-size (of 112 atoms) studied is rather
small to obtain a clear picture of the transition, and no experimental results
have been reported on this material either. A similar kind of simulation of
RbCaF, is also reported by Nosé and Klein (1989).

In this chapter, we report an MD study of the structural transition of
quartz using the first-principles interatomic potential obtained in chapter II.
There is a long history of experimental study on the phase transition in quartz
(Young, 1962; Scott, 1968; Axe and Shirane, 1970; Dolino, 1988). At room
temperature, quartz assumes a low-temperature phase of space group P3,21,
which is called low-quartz or a-quartz, while it transforms into a high-
temperature phase of space group P6,22 (high-quartz or B-quartz) when it is
heated above T ,=846K. The soft mode of the phase transition was first detected
by Raman scattering below T, (Scott, 1968) and by inelastic neutron scattering
above T, (Axe and Shirane, 1970). There has been a controversy as to the
structure of B-quartz: the question is whether the atoms in the g-phase vibrate

around the idealized B position (Young, 1962) or fluctuate between the «, and
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a, phases (see below) (Tendeloo, Landuyt and Amelinckx, 1976; Wright and
Lehmann, 1981). The transition is particularly suitable for the MD study, since
(i)this is not a ferroelectric transition, so that we need not take account of the
dielectric polarization of electrons in a first approximation, and (ii)the transition
temperature is much higher than the Debye temperature (470K), so that the
classical dynamics is applicable. To establish the high-temperature phase is also
important for characterizing the incommensurate phase (Dolino, 1988), which is
recently observed to occur in a narrow temperature range (<2K), although we
do not discuss the incommensurate phase here, which would require a study with
larger system-sizes.

We show that the phase transition is successfully reproduced at about 850K
in the MD simulation. The transition is shown to have a peculiar dynamical
character in that, although the probability distribution for atomic positions
mimics displacive shift to the g-structure, and though the softening of phonon
modes is confirmed by the lattice dynamics calculation, each unit cell in fact
hops between the two equivalent o, and «, structures with a temperature-
dependent correlation time. Thus the fransition has characteristics of both

displacive and order-disorder phase transitions.

Section 4.2. Molecular dynamics simulation of heating of quarts

The MD simulation is performed using the same formalism described in
section 3-1. The number of atoms in the system mainly used is 432 (containing
4x4x3=48 unit cells) while we also used 324 (3x4x3) or 576 (4x4x4) particle
systems for comparison. Starting from the ideal crystal configuration of «a-
quartz and random velocities for atomic positions, we have obtained equilibrium
configuration at 300K. Then the temperature of the system is gradually
increased (by 200K at lower temperatures and by 10—50K near the critical
temperature). Physical quantities are averaged over 12 psec (6000 MD steps)
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after at least 4psec run for equilibration at each temperature.

Result for the equilibrium volume against temperature (open squares in
Fig.4-1(a)) shows that, as the temperature is increased, the expansion coefficient
abruptly changes at T,=850—900K and the thermal expansion remains almost
zero above T,. This is a clear-cut evidence for a phase transition and the
behavior agrees with the experimental results (Clark Jr., 1966) also shown in the
figure by a solid line, in which the expansion coefficient shows an abrupt change
at T, = 846K when the system changes into g-quartz. The absolute value for
the equilibrium density of the simulated a-quartz at 300K is 2.47g/cm®, which
agrees within 7% with the experimental value (2.65g/cm®). The anisotropy of the
expansion coefficient is also reproduced as shown in Fig.4-1(b). The phase
transition is experimentally shown to be first-order by the precise measurement
of latent heat, although the volume expansion or heat capacity results are very
similar to those of the second-order transition (Dolino, 1988). No appreciable
hysteresis is observed either in the MD simulation around T.

The temperature dependence of the pair correlation function (PCF) for Si-Si,
Si-O and O-O pairs is shown in Fig.4-2. The first peaks of the Si-O and O-O
PCF’s show thermal broadening, though their positions are almost independent
of temperature. This means that the SiO, tetrahedra are quite rigid, which
would provide some justification for the completely rigid model of Grimm and
Dorner (1975). On the other hand, the other peaks shift to larger distances for
300K < T < T, due to the stretching and/or rotation of the Si-O-Si bonds.

The character of the phase transition can be made clear if we look at the
the order-parameter of the phase transition defined in the following way. The
internal coordinates of atoms in o and B-quartz can be specified by the
symmetry operation of the space group P3,21 on a representative position of
silicon at r=(u, 0, 0) and an oxygen at r=(x, y, z) in the hexagonal unit cell
with three silicon atoms and six oxygen atoms. Given u, x, y, and gz, all the

atomic positions are specified as
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Fig.4-1 (a) The MD result for the thermal expansion of quartz. Open squares
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AV/V . sooxs While full circles the 324-particle system and open circles the 576-
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(Young, 1962).
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Si: (32) (—u, —u, 1/3) ; (u, 0, 0) ; (0, u, 2/3),
O: (6¢) (x,, 2) ; (y—x, —x, 2+1/3) ; (-y, x~y, 2+2/3);

(X_Ya -y, _Z) ) (Y; X, 2/3——2) ) (_X’ Yy —X, 1/3_Z)'

In the low-temperature phase (a-quartz), there are two equivalent phases called
a, and a,, respectively, which are rotated by 180° around the c-axis from each
other. The values of the atomic positions at 300K determined experimentally are
u=0.4705(3) for «, and u=1-0.4705=0.5295 for «,. In the idealized B-quartz, on
the other hand, we have exactly u=1/2, and also y=x/2 and z=1/6, from
symmetry restrictions (Young, 1962). We can thus choose u—1/2 as an order-
parameter of the phase transition, since the other positional parameters of
oxygen are highly correlated with u to preserve SiO, tetrahedra as shown from
the PCF.

In the MD simulation, we have monitored the u parameter averaged for the
three silicon atoms in each unit cell at each time step. We denote the u
parameter averaged over all the unit cells in the system by u (which is a
function of time), while the u parameter averaged over all the cells and all the
time steps is denoted by < u > . The averaged order parameter, <u> —1/2, is
shown in Fig.4-1(c) against temperature. (Temperature dependences of the other
parameters are shown in Appendix A.) Although the simulation starts from the
a, phase at 300K, the a, phase also appears as the temperature is raised.
Above T, which corresponds to the kink in the volume-temperature relation
(Fig.4-1(a)), < u > —1/2 indeed vanishes.

If we look at a short-time average of u, however, it fluctuates substantially
even above this temperature. If we trace the MD history of the atomic
configuration at 850K, the system alternates between the period of
predominantly a«, phase and period of @, phase. When these periods cross over,
there appears a phase boundary between o, and «, in the system, when the
density drops below that for the pure o phase and u averages 1/2. As the

temperature is increased the period (correlation time) during which the system is
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in one of &, or @, becomes shorter. The domain size (correlation length) for «,
and «, phases is also a function of temperature.

To characterize these atomic motions, we calculate the static pair-correlation
function of u defined as

glr) = (I/N)2_, <y u,> — <u>? (4.1)
where r and r’ denote the position of unit cells, u_is the local u-parameter in
the unit cell at r, and N is the number of unit cells contained in the basic cell.

From g(r) we can estimate the distance over which the displacements tend to be

in the same direction. g(r) can be normalized by the thermal fluctuation of u as

gr) =g(r)/ <(u—-<u>)>. (4.2)

Then g(r) is close to unity if the atomic motions in different cells are strongly
correlated, while g(r) ~ 0 when motions are uncorrelated. We show in Fig.4-3
the temperature dependence of g(r) for r=(1, 0, 0), which is seen to be singular
at 850K. Since the correlation length and time vary continuously with T, the
a,/a, phase and B phase cannot be strictly discriminated although the critical
fluctuation becomes small as T departs from T,. Above 900K, the correlation
length becomes smaller than the sample size studied in the simulation here.
Then phase boundaries appear within the system, which expands the system
volume as reflected in the flat (saturated) AV /V behavior in Fig.4-1(a). In this
context we note that, in the case of a smaller, 324-particle system (3x4x3=36
unit cells), the whole system tends to stay in a single a phase even above 900K,
so that the kink in the temperature-dependence of the volume is smeared around
T, as shown by full circles in Fig.4-1(a). This is the origin of the sharper kink in
the volume-expansion relation in larger systems including 576 particles (open
circles in Fig.4-1(a)).

We can further characterize the structure by the distribution function of u
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accumulated for all the cells (Fig.4-4). At lower temperatures, the motion of
each particle is nearly harmonic, so that the distribution function is gaussian. As
the temperature increases, the distribution first becomes asymmetric, and then
symmetric again above T, with the peak shifted to u=1/2, although the
distribution is no longer gaussian. Moreover the distribution is almost
independent of temperature above T, which suggests that the thermal
fluctuation of atoms in the B phase is quite different in nature from that in the
a phase.

The anharmonic motion of atoms in this temperature region is explicitly
shown in the MD by evaluating the non-gaussian parameter, which dominates
the dynamical structure factor. In the three-dimensional isotropic system, the

non-gaussian parameter is written as,
a,=3<r*> [ty -1, (4.3)

where r is the displacement of particles from the equilibrium position and
average is taken over time and particles (Rahman, 1964). In crystals, the
potential energy surface felt by a particle is usually anisotropic, so that we

define the one-dimensional non-gaussian parameter as
@, = <x'>/3<x*> - L (4.4)

It can easily be shown that a,, is zero if the distribution of x is gaussian, that
is, when the atomic motion is harmonic, while it is negative for dumpier
distribution and possibly positive for asymmetric distribution. The temperature
dependence of the non-gaussian parameters for the positional parameters of
silicon and oxygen is shown in Fig.4-5(a) and (b). (Note that x-coordinate of Si
coincides with the u parameter.) The non-gaussian parameters become nonzero
around and above T, only for Si:x, y and O:y, z, which means quite anisotropic

anharmonicity in the atomic motion. These coordinates are indeed those which
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Fig.4-4 The distribution of the u parameter of silicon. The data were
accumulated over 12 psec (full lines) or 4 psec (dashed lines) at different
intervals at 850K. The inset shows a typical trace of the u parameter, averaged
over all the cells, against MD step.
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change drastically after the phase transition (see Appendix A).

On the other hand, the distribution function for u averaged over a period
shorter than the correlation time, which is about 4psec at 850K in the
simulation, is shown in Fig.4-4 by dashed lines. Depending on the interval at
which the average is taken, the distribution exhibits either a, or a, behavior
while, when averaged over a long time, the distribution function at 850K already
exhibits a single peak like that at 900K. When seen locally, a, and «, phases
switch to each other even at 900K (Fig.4-6), at which the system comprises «
and @, domains. Thus; although the atomic distribution averaged over long time
mimics a displacive transition, the B-quartz structure is only realized as an
average of the structure dynamically hopping between «, and «, with a T-
dependent correlation length/time.

The pB-quartz structure is actually shown to be statically unstable. We have
calculated the dynamical matrix within a quasi-harmonic approximation for the
time-averaged atomic configuration with thermal expansion obtained by the MD
at various ftemperatures. We have found that, while the phonon dispersion at
300K shows good agreement with experimental results (see Section 3.2), the
softening of some phonon modes sets in (Fig.4-7) when T is increased past 700K
with the frequency eventually becoming imaginary above 750K. The softened
modes include the one directly connecting « and g at I' point. The phonon
softening is thus consistent with experimental results (Barron, Huang and
Pasternak, 1976). This implies that, although the distribution function is single-
peaked, the fictitious B-quartz position is in fact an unstable point in the
potential locally felt by atoms, which, despite the suppressed barrier due to
thermal expansion, continues to be double well (corresponding to «, and a,
configurations). Even though the softening of phonon modes is observed, the
transition could be thus classified as an order-disorder regime according to the

terminology by Schneider and Stoll (1974).
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Fig.4-6 The trajectory (for every five MD steps over 1 psec) of atomic positions
in a part of the system projected to x-y plane at T=900K. The two frames,
taken at different tfime intervals in the same run, correspond to «, and «,
phases, respectively. Typical SiO, tetrahedra are shown with thick lines and the
ideal positions of @ phase are indicated with crosses and circles.
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Wavevector (47/a)

Fig.4-7 Phonon dispersion at T=300K (full lines) and T=700K (dashed lines)
calculated within a quasi-harmonic approximation. Full (open) circles represent
antisymmetric (symmetric) modes. The softening of a mode that directly
connects o and B structure is indicated by an arrow.
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Section 4.3. Summary and discussion

We have investigated the a-B phase transition of quartz by the MD
simulation and shown that the phase transition is successfully reproduced at
about 850K. The pB-quartz structure is only realized as an spatio-temporal
average of the local structure hopping between o, and a, structure.

Physically, the competing factors are the thermal energy and the potential
barrier separating «, and «, structures in the configurational space. We show
in Fig.4-8 two potential-energy surfaces against the u parameter of silicon: the
solid line and the dashed line are calculated for the unit-cell dimension at 300K
(a phase) and 900K (B phase), respectively. Here the positional parameters for
oxygen atoms are optimized for each value of u. According as the positions of
the potential minima shift inwards with the volume expansion, the curvature of
the potential-energy surface changes resulting in the softening of some phonon
modes (Fig.4-7). The height of the potential barrier also decreases, and finally
the hopping of atoms between «, and a, structures commences when the local
thermal energy surpasses the barrier. Once the phase boundaries of a, and «,
structures begin to appear frequently, the volume expansion is enhanced so that
the whole system realizes the density of 8 phase. This is why the consideration
of the thermal expansion is essential in this problem. It is also seen that the
potential barrier remains to exist even at the density of the 8 phase so that the
B phase is not achieved as a stable structure. Suppose we consider the canonical
distribution of u parameter in a certain unit cell within the mean-field
approximation, putting the other cells at the ideal A positions. Then the
distribution of u parameter is expected to be double-peaked in the B phase, and
in fact local structure stays in the same o phase for some time (Fig.4-6).
However, after the spatio-temporal average, the atomic distribution shows a
single peak in the g phase (Fig.4-4) perhaps because of the thermal fluctuation
with large anharmonicity which can be correlated over several unit cells.

Naturally it is very difficult to discriminate such a dynamical phase transition
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Fig.4-8 Configurational potential energy surfaces of quartz at T=300K (a full
line) and at T=900K (a dashed line). Structures of the «,, a, and B phases are
illustrated below with the SiO, tetrahedra as seen from the c-axis.
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from a displacive one with use of X-ray diffraction (Young 1962), which may
have resulted in a controversy as to the structure of the A-quartz.

In summary, the phase transition of quartz elucidated by the MD simulation
has a peculiar dynamical character. The dynamical structure of the A phase
elucidated here supports the experimental observation by Tendeloo et al. (1976)
and Wright et al. (1981), who have suggested that the structure fluctuates

between o, and a, from electron microscopy, electron diffraction and neutron

diffraction.
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Chapter V. Pressure-Induced Structural Transformations

Section 5.1. Introduction

To study the pressure-induced structural transformations of silica is
interesting for the following reasons:

(1) The crystalline-to-amorphous transformation in the solid state is currently a
subject of intense study. Since the amorphization of H,O ice under pressure was
discovered (Mishima, Calvert and Whalley, 1984), the possible occurrence of the
pressure-induced amorphization in other systems and its mechanism have been
widely investigated. Very recently the pressure-induced amorphization of
crystalline silica at room temperature was confirmed by experiments using
Raman spectroscopy (Hemley, 1987) and X-ray diffraction (Hemley, Jephcoat,
Mao, Ming and Manghnani, 1988). Characterization of the resultant amorphous
structure is required to elucidate the mechanism of the amorphization.
Amorphization experimentally observed can be related to crystal-crystal
transition for the reason stated later in this chapter.

(2) In pressure-induced transitions of silica, the amorphous phases are
experimentally shown to be appreciably denser than the crystalline counterparts,
presumably because of the framework structure just as in the case of water.
Such a pressure-density relation of minerals is important because it is closely
related to the convection of materials deep inside the earth.

(3) The application of high pressures at low (room) temperature may provide
new reaction paths towards new polymorphs which could never be obtained by
high pressures at high temperatures which tend to exclude the phases other than
thermodynamically most stable.

As for the mechanism of compression, it is widely believed that the
compression of amorphous silicate at low pressure occurs due to increased
packing efficiency of corner-linked SiO; tetrahedra with decreased Si-O-Si
bridging angles. At high pressures, on the other hand, it is reported that the

fraction of octahedrally coordinated silicon atoms increases continuously and
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reversibly with increasing pressure from infrared measurements (Williams and
Jeanloz, 1988). Stolper and Ahrens (1987) have proposed a mechanism to explain
such pressure-induced coordination changes in silicate melts and glasses:
according to their model, continuous displacements of silicon atoms in the
distorted SiO, chain result in a closely packed arrangement of oxygen octahedra
(Fig.5-1). We have to check whether such structural transformation could occur
in crystalline silica.

From these points of view, we report in this chapter an MD study for
pressure-induced structural transformations at room temperature for various
polymorphs of silica. We predict novel structural transitions for low-quartz, low-
cristobalite and coesite, where some of the new phases, appearing without
diffusion processes, comprise mixed array of four-fold and six-fold Si-O
coordinations. Stishovite, the densest polymorph of silica ever known, is shown to

hold its identity up to 250GPa with deformation to the CaCl, structure.

Section 5.2. Interatomic potentials

Before turning to the MD study, we first examine the pairwise interatomic
potential of silica in applying to the phase transition accompanied by
coordination changes. The pairwise interatomic potential obtained in Chapter II
has the virtue that they can reproduce both tetrahedrally (four-fold) coordinated
systems (low-quartz, low-cristobalite and coesite) and octahedrally (six-fold)
coordinated systems (stishovite) in contrast to covalent potentials (see, for
example, Lasaga and Gibbs, 1987) which are applicable only to tetrahedrally
coordinated systems. However, as mentioned in Chapter III, a flaw in the cluster
approach for obtaining pairwise potentials is that, since the approach
concentrates on the curvature of potential surfaces, it does not necessarily
reproduce the exact enthalpy difference of each phase. For example, the

observed enthalpy of formation of six-fold coordinated stishovite (Holm, Kleppa
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Fig.5-1 Stolper and Ahrens’ model for the continuous transformation of
tetrahedral SiO, to octahedral SiO. (a)-(c), The reduction of the Si-O-Si bridging
angle from 180° to 140° to 100° . (d), The new octahedral coordination with the
oxygen ions located in the same position as in (c). Oxygen atoms are at the
vertices (numbers show equivalent ions); crosses, silicon atoms. (From Stolper
and Ahrens, 1987).
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and Westrum, 1967) is about 10 kcal/mol higher than that (—217.8kcal/mol) of
four-fold coordinated low-quartz (Wise et al.,, 1962) as compared with the
difference of about 1 kcal/mol as calculated from the potential described in
previous sections. Since we are interested in pressure-induced structural
transformations, which involve change of the Si-O coordination number, we
slightly modify the potential parameters from those obtained in Chapter II to
reproduce the enthalpy difference of stishovite and low-quartz. Only a reduction
of the atomic radius ag by 1% (0.01?&) is sufficient to accomplish this. The final
potential parameters used here are Q,=-1.2 and Qg =+2.4 in units of
elementary charge, a,=2.05, ay=0.86, b,=0.176, and by=0.033 in :&, and
co=70.4 and c;=23.2 in kcalA®mol ! and 1/r® term between two silicon atoms is
neglected. Structural parameters, bulk moduli and cohesive energies of each
polymorph are listed in Table 5-1. The structural features of all the polymorphs
are reproduced again, even better tﬁan the result in Chapter III especially for
low-quartz. It would be desirable if we could incorporate the accuracy of the
total enthalpy in the best-fit procedure for optimizing the pair potential. Such a
procedure would require the first-principles bulk calculations as well as the
cluster calculations.

We should note here that the total energy (or cohesive energy) of each
phase is very sensitive to the potential parameters. Especially regarding the
energy difference between four-fold and six-fold Si-O coordination, the ratio
ag/ag is very important, which is consistent with the classical principle on the
coordination number of anions around cations by Pauling (1929): smaller ag/a,
ratio makes four-fold systems more stable. Since the relative étability within the
tetrahedrally coordinated polymorphs is insensitive to the ag/a, ratio, the
simulated coesite with the new parameters is still too stable compared with
experimental results (Holm et al., 1967) by about 5kcal/mol.

It should also be noted that the relative stability of the phases is also
sensitive to the functional form of the interatomic potentials even within the

pair-potential approximation. For instance, we have tried the traditional Morse
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Table 5-1 Physical properties of silica at room temperature and ambient pressure
obtained by MD simulations using the potential parameters in this chapter. See Table
3-1 for the references of the observed data (Obs.).

low-quartz low-cristobalite coesite stishovite

Obs. MD Obs. MD Obs. MD Obs. MD
Density (g/cm®) 2.65 2.50 2.32 238 2.92 2.80 4.29 4.03
Ko (GPa) 38(3)  38.1(2) 18 15.3(2)  96(3)  98.8(3.3) 296(5)  296(1)
Ko’ 6.0(2) 4.71) —  12.7(4) 8.4(1.9) 5.8(1.2) 4.0(1.4) 6.0(4)
Energy (kcal/mol) —1249.6 —~1245.3 —1254.0 —1238.4

potentials between Si and O in the fitting procedure only to find that the
octahedrally coordinated stishovite is much more stable than the other
polymorphs. When applied to the MD simulation of vitreous or liquid silica,

such potentials give rise to collapsed six-fold glasses.

Section 5.3. Molecular dynamics simulation of high-pressure compression

We apply a hydrostatic pressure to each polymorph of silica in the MD
study with the constant-pressure and constant-temperature algorithm described
in Chapter III. The number of atoms in the system is 576 (containing 48 unit
cells), 576(64), 768(16) and 576(96) for low-cristobalite, low4quéftz, coesite, and
stishovite, respectively, with periodic boundary conditions. The pressure is
increased slowly (by 1 — 5GPa each time the equilibrium is attained).

The obtained equations of state for SiO, in various polymorphs at room
temperature are shown in Fig.5-2 along with the equations of state by real
experiments in the inset (Hemley, Jephcoat, Mao and Manghnani, 1988). The
results for low-quartz, coesite and stishovite, before they undergo structural
transitions, are in good agreement with the experimental results.

The most interesting point is the stability of each polymorph. Low-
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cristobalite shows a structural transition with discontinuous volume-reduction
into a novel polymorph at 16.5GPa, which is reported here for the first time.
The new phase (Fig.5-3 and Table 5-2) has a space group Cmcm. The space
group of low-cristobalite, P42 2, has an orthorhombic subgroup €222, of which
Cmcem is another supergroup. The Cmcm phase is stable until the second phase
transition into stishovite sets in at 23GPa. The space group of stishovite,
P4,/mnm, is in turn 2a supergroup of Cmcm and P4,2,2. The atomic
configuration along the reaction path is illustrated in Fig.5-4 and in Appendix B.
Remarkably, this Cmcm structure includes equal numbers of four- and six-
coordinated silicon atoms. Note that these structural phase transitions occur
continuously without diffusion processes, that 1is, no isolated atoms nor
disordered states appear at the transition point. With decreasing pressure the
Cmcem phase becomes unstable at about 7GPa resulting in an amorphous phase
(Fig.5-5), whose structure and density are similar to those of low-cristobalite,
while once stishovite is formed above 23GPa, it remains stable against
decompression. The reversible transformation between four-fold and six-fold Si-O
coordination is consistent with the mechanism suggested by Stolper and Ahrens
(1987) (Fig.5-1).

Low-quartz also exhibits a novel structural transition at 28—30GPa. One of
the pressure-induced phases is shown in Fig.5-6(a). This is basically the «-PbO,
structure with only six-fold Si-O coordinations, which is slightly denser than
stishovite and has been proposed, but not established, as a high-pressure form of
Si0, (Matsui and Kawamura, 1987) (see Fig.5-6(b) for comparison with

stishovite). The time-development of the transformation is shown in Appendix B.

Interestingly, another pressure-induced phase has been obtained, depending
on the MD run, as shown in Fig.5-7(a) and (b), which is also crystalline but
frustrated in the following sense. The phase contains both four- and six-
coordinated Si atoms as in the Cmcm phase, while the average coordination

number is not (4+6)/2 but 5.3 in this case. The three-fold screw axes of the



Table 5-2 Crystallographic data of the Cmem phase of silica at 15GPa, 300K.

Orthorhombic cell
a=520A4,b="744A,c= 5584

p = 3.70g/cm®

Si(4a) x=0 y=0 2=0
Si(4c) x=0 y=0.357 2=0.25
O(8f) x=0 y=0.223 2=0.029
0(8g) x=0.260 y=0.481 2=0.25

Fig.5-3 The new Cmcm phase involving both four- and six-fold coordinations
predicted by this study as seen from the a-axis, which corresponds to the c-axis
of low-cristobalite and stishovite. Small spheres represent silicon atoms and large
spheres oxygen atoms. The unit cell is shown by dashed lines.
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Fig.5-4 Continual structural transformations induced by compression from (a)
low-cristobalite (at 15GPa) to (b) the Cmcm phase (at 17GPa) to (c) stishovite
(at 25GPa). Small spheres represent silicon atoms and large spheres oxygen
atoms.
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Fig.5-5 Structural transformation induced by decompression from (a) the Cmem
phase to (b) the amorphous phase which contains only tetrahedrally coordinated
silicon atoms (stereoscopic view).
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quartz up to 30 GPa at room temperature. Small spheres represent silicon atoms

and large spheres oxygen atoms. A plane of close-packed oxygen atoms is shown

by hatching. (b) Stereoscopic view of the a-PbO, structure (the upper panel) and

stishovite (the lower panel) (From Matsui, 1979).
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starting low-quartz is destroyed. Conspicuous feature, however, is that, despite
their ordered array, the unusual configuration of the four- and six-fold sites
demands considerable distortion of bond lengths and angles. This appears as a
random distribution of missing bonds of a finite density where we regard Si and
O bonded when they are separated less than 2.163, a chemically acceptable
bound. Frustrated aspect also appears in the corrugated SiO, sheet (SiO bond
angles #90° ) in Fig.5-7(b). Peaks in the radial distribution function are also
shown to be broadened like in a glass. The configuration of these missing bonds
fluctuates in time (of which Fig.5-7 is a snapshot), and the missing bonds are
shown to disappear when the pressure is increased to 50GPa. Reflecting the
equivalent three directions in the quartz, the direction of the crystal assumes one
of the three, depending on the MD run. It is thus conceivable that compression
of a macroscopic sample produces domains of these a-PbO, or frustrated crystal
phases, which may require a careful experimental study to distinguish from
conventional amorphous phase. The mixed coordinations predicted here could be
identified by the infrared measurement. The critical pressures for structural
transitions obtained here are consistent with the recent experimental results by
Hemley et al. (1987) on the amorphization of low-quartz at about 25—30GPa.

These structural transformations of low-quartz are again diffusionless, and
the six-fold Si-O coordinations almost completely return to four-fold after
decompression to normal pressure. This is consistent with the infrared-spectrum
result that the coordination number of amorphous SiO, changes reversibly with
pressure even at room temperature (Williams and Jeanloz, 1988).

Some technical details need to be addressed: although the constant-
temperature algorithm was used here, the heat of reaction produced during the
structural transition is rapidly removed in the present MD, so that metastable
phases are more favoured. Also, if we employ 3x3x3 unit cells instead of
4x4x3=48 for the basic cell of the periodic boundary condition, the Cmcm
phase, which is made of two unit cells of low-cristobalite, is by-passed and low-

cristobalite changes directly into stishovite above 20GPa. Thus the detail of the
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new polymorph may have to be determined for larger system sizes. Yet we
expect that the same kind of transition involving the mixed coordination
numbers will occur in real systems.

The experimental study on the compression of low-cristobalite at room
temperature was carried out by Tsuchida and Yagi very recently (1989) and a
novel crystal-to-crystal transformation was discovered at about 10GPa. The
resultant crystal, however, seems to be different from the Cmecm structure,
although the characterization is not finished yet.

As for the coesite, the basic cell is shown to slightly change from monoclinic
to triclinic at 15—20GPa, which may be associated with the observed change of
Raman spectrum at 22—-25GPa (Hemley, 1987). Coesite, too, undergoes a
structural transition into a six-fold rich phase at 35—40GPa, which is consistent
with the experimentally reported amorphization at 30—34GPa (Hemley et al.,
1988).

Finally, stishovite exhibits no drastic structural change up to 250GPa, the
highest pressure studied here, except that the structure eventually becomes
orthorhombic (with the CaCl, structure). This result suggests that the recently
proposed Pa3 phase (Park, Terakura and Matsui, 1988), which is predicted to be
denser and thermodynamically more stable than stishovite above 60GPa, is
difficult to attain dynamically by simple compression at room temperature
(Tsuchida et al., 1989). This does not necessarily imply, however, that the Pa3
phase is unstable. Even if the Pa3 phase is more stable than stishovite, it is
possible that the potential barrier in the atomic configuration space separating
the two phases would be higher than kyT at room temperature so that a
diffusion process at high temperatures would be necessary for the transition.
This problem could also be tackled by the MD method, which is also applicable

to transitions involving diffusion processes.
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Section 5.4. Summary and discussion

We have performed the MD simulation of pressure-induced structural
transformations of crystalline silica. The simulated equations of state agree very
well with those observed in the real experiments. Pressure-induced structural
transitions of the polymorphs have also been found.

The mechanism of the pressure-induced structural transformation of
tetrahedrally coordinated silica at room temperature is shown to be primarily
the increase of the Si-O coordination number, which occurs locally without
diffusion process. As the pressure increases, the network structure of
tetrahedrally coordinated Si collectively collapses to more close —packed
structures with richer octahedrally coordinated Si, which results in a
discontinuous reduction of volume. In some cases, four-fold silicon atoms partly
remain after the transition, resulting in mixed coordination numbers. The
application of high pressure at room temperature thus provides intriguing
reaction paths towards new polymorphs.

In this chapter, we have focused on the structural transformation of
crystals, though the compression mechanism of silica elucidated here will be
applicable to the vitreous or liquid silica. In disordered phases, different
configurations are realized for different sites in the system, so that a
coordination change (like four-fold cristobalite into four- and six-fold Cmcm
phase) may not occur collectively as in a crystal, but different sites can undergo
the change at different pressures. This will lead to the continuous reduction of
volume. The reversibility of the process is confirmed by the MD result that the
a-PbO, phase with defects, which is obtained by the compression of quartz,
returns almost completely to four-fold structure after decompression to normal
pressure.

Finally we would like to comment on the atomic diffusion. We have
repeatedly mentioned that the structural phase transitions obtained here are

diffusionless. However, this is in a specified meaning of the word, in which a
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diffusive transition is defined as the one accompanied by an appearance of an
amorphous phase or isolated atoms. The diffusionless transition modes in fact
contribute to the mechanism of diffusion in the following sense. If we look at
Figs.5-4 and 5-5, it is seen that, when cristobalite is compressed into the Cmcem
phase followed by a decompression to the normal pressure, the system becomes
an amorphous phase, in which the oxygen coordinations are topologically
deformed from those in the starting cristobalite, although no isolated oxygens
appear in the process. Thus, if we envisage a process in which the compressions
and decompressions are repeated, this could result in a diffusion of atoms in the
disordered phase. Since the local pressure is thought to fluctuate in a silica melt,
we can expect such a diffusion in the liquid phase. Note that the diffusion
considered here does not accompany isolated atoms but is regarded as local
changes of Si-O coordination numbers, which will require much less energy than
that needed for stripping an oxygen atom from a four-fold coordinated silicon

atom. We shall elaborate this problem in the last chapter.
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Chapter VI. Application to Magnesium Silicates

In this chapter, we shall describe our preliminary study on the application
of our approach to magnesium silicates (MgSiO,, Mg,SiO,), the most abundant
rock-forming material in the earth. Since the structure of magnesium silicates is
close —packed as compared with the framework-structured silica, their structural
stability is much less subtle. Thus there have been several empirical attempts
for the interatomic potentials which can reproduce the structures or elasticity of
the polymorphs precisely (Price and Parker, 1984; Matsui and Busing, 1984;
Matsui, Akaogi and Matsumoto, 1987; Wall and Price, 1988). In this problem,
non-empirical approaches so far exhibit rather poor accuracy in reproducing the
structures if the approximations involved are crude. For instance, the modified
electron gas approach, in which the electron density distribution in the crystal is
approximately expressed by the sum of those in isolated ions, fails to reproduce
the density by 20%, presumably because of the difficulty in treating oxygen ions
in the theory (Wolf and Bukowinski, 1987). Here we derive the interatomic
potentials for magnesium silicate from cluster calculations.

In going from SiO, to magnesium silicate, we have first to introduce the
interatomic potential involving magnesium. For this purpose we have considered
a linear (O-Mg-O)*" cluster with two positive point charges for charge
neutrality. d(O-e*) is again set equal to 1.654. The potential energy surface for
the symmetric stretching mode is shown in Fig.6-1 with full circles. The
functional form as that described in Chapter II is employed for the interatomic
potential.

The potential parameters for Si, O and Mg should be determined using the
potential energy surfaces of both Si0,*” and MgO,”” clusters at the same time.
This has to be done for MgSiO; and Mg,Si0,, respectively, for the effective
charge of each a.toin depends on the stoichiometry. As for the charge neutrality,
we assume, as a first approximation, that the SiO, chemical unit is neutral. This

implies that the charge on a magnesium atom is given as QMg = —Q, for both
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calculation and the solid line is the fitted potential.
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MgSiO, and Mg,SiO,. Following the previous chapters, we assume —Q,=1.2e.
We fit the potential surface, and, among several sets of parameters by non-
linear least square fitting procedure, we have chosen the one which best agrees
with the experimentally obtained density of orthoenstatite, a polymorph of
MgSiO,;. The parameters thus determined for Mg are, Q,, =1.2e, aMg=0.7281j§,
b=0.01593}°&, and cMg=11.14kca.ll/ 2A%mol'Y2, Here we employ, as a first
approximation, the same potential parameters for Si and O as obtained for SiO,
in Ch‘a,pter II. The 1/r® terms for Si-Si, Si-Mg and Mg-Mg pairs are neglected.
The potential energy surface reproduced by the pair potential is shown with a
solid line in Fig.6-1: we could not attain good agreement with the cluster
calculation perhaps because the value of QMg tentatively assumed here is not so

appropriate.

Using these potential parameters, we have carried out the MD simulation of
two polymorphs (forsterite (olivine), y-spinel) of Mg,SiO, and three polymorphs
(orthoenstatite (orthopyroxene), ilmenite, perovskite) of MgSiO, (see the phase
diagram in Fig.6-2). The structural parameters and the bulk moduli, K, (see
eq.(3.9)), estimated by the compression simulation at 2.5GPa and 5GPa are
summarized in Table 6-1 together with the trajectories of atomic positions in
each polymorph in Fig.6-3(a)-(e). Detailed crystal data (fractional coordinates)
are shown in Appendix C. In spite of rather rough determination of the potential
parameters, the stability and the structural properties of these polymorphs are
reproduced quite well by the pairwise interatomic potentials.

Although the overall agreement with experimental result is good, some
deviations are seen in K, and K’ for orthoenstatite. The error may in part
come from the small numbers of pressure points used for the estimation of K|
and K. For orthoenstatite, we also notice that the position (y internal
coordinate) of Mg2 at 8c site deviates froin that observed experimentally (see
Appendix C). We expect that a more precise and simultaneous determination of

the potential parameters for Si, O and Mg would result in better agreement with
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experimental results, which would also be useful to predict other structural

properties.
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Fig.6-2 Schematic phase diagram of MgO-SiO, system on the pressure-
composition plane. RS=ROCKSALT, Ol=OLIVINE, MS=MODIFIED SPINEL,
S=SPINEL, Px=PYROXENE, II=ILMENITE, Pv=PEROVSKITE, Q=
QUARTZ, Coe=COESITE, St=STISHOVITE (after Akimoto, 1978).
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Table 6-1 Structural parameters of magnesium silicates obtained by MD simulations
as compared with experimental data. The space group Pbnm of forsterite and per-
ovskite is represented as Pnma in the International Tables for Crystallography using
a different setting of the unit cell axes.

MgQSIO4
forsterite - y-spinel

Obs.® This work  Obs.© This work
Space Group Pbnm Pbnm Fd3m Fd3m
Y/ 4 4 8 8
a (A) 4.75  4.753(4) 8.06  7.952(3)
b (R) 10.19  9.797(14)  8.06  7.952(3)
c (A) 598  5.779(10) 8.06  17.952(3)
Density (g/cm®)  3.227  3.473(7) 3.563  3.718(1)
Ko (GPa) 127 151 1844 222
K¢’ 5.1 4.7 — 6.5
Energy (kcal/mol) —2054.8(3) —2074.1(1)

“Fujino et al. (1981).
baverage of values from Graham et al.(1969) and Kumazawa et al. (1969).
Sasaki, Prewitt et al. (1982). “Weidner et al. (1984).

MgSiOg
orthoenstatite ilmenite perovskite

Obs.®  This work Obs.9 This work Obs.* This work
Space Group Pbca  Pbca R3 R3 Pbnm Pbnm
Z 16 16 6 6 4 4
a () 18.230 18.27(4) 4.7284(4) 4.747(4) 4775 4.715(4)
b (A) 8.817  8.76(3) 4.7284(4)  4.747(4) 4.929 4.945(4)
c (R) 5181  5.21(3) 13.5591(1) 13.307(9)  6.897 6.973(6)
Density (g/cm®) 3.203  3.20(2) 3.8098 3.852(5) 4.108 4.103(6)
Ko (GPa) 107 42 216" 236.1 260(20)7 268
Ko’ 5 29 — 6.26 — 5.0
Energy (kcal/mol) —1646.94(11) —1646.14(8) —1649.6(1)

°Sasaki, Takeuchi et al. (1982). fWeidner et al. (1978). 9Horiuchi et al. (1982).
hWeidner et al. (1985). *Horiuchi et al. (1986). ’Yagi et al. (1982).
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Fig.6-3 The trajectory (over 1 psec) of atomic positions in a unit cell (or a
couple of unit cells in case of hexagonal system) projected to a-b, a-c and b-c
planes for (a) forsterite, (b) 7-spinel, (c) orthoenstatite, (d) ilmenite and (e)
perovskite. The positions of magnesium, silicon and oxygen atoms determined
from experiments are shown with small crosses, large crosses, ‘and large crosses
plus circles, respectively. The projection planes are illustrated in (f).
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Chapter VII. Concluding Remarks
Section 7.1. A conjecture respecting the anomalous diffusion property of silicate

melt

In the discussion of Chapter V, we have briefly mentioned a relationship
between the diffusionless transformation by compression and the atomic
diffusion in silica melt. Before finishing the present thesis, we would like to
discuss this problem in more detail and give a conjecture respecting the
anomalous diffusion property of silicate melt under pressure.

First we summarize experimental results on the diffusion of silicate
(aluminosilicate) melt under pressure. Since the viscosity of silicate is important
as a dominant controlling factor during the passage of magma through the
Earth, the pressure dependence of the viscosity or diffusion constants has been
measured extensively since 1930’s. More than a decade ago, it was found by
Kushiro (1976) that the viscosity of NaAlSi,O, (jadeite) decreases with increasing
pressure contrary to what one might at first expect. A similar pressure
dependence was also confirmed for other silicates of various compositions
(Kushiro, 1980 and references therein). Judging from the fact that such pressure
dependence is not observed for silicates which do not contain the framework
structure of cormer-linked SiO, tetrahedra due to insufficient amount of SiO,
component (Kushiro, 1981), the anomalous pressure dependence can be
considered as the inherent property of the SiO, framework. Thus we examine the
diffusion property of silica melt.

As we mentioned in Chapter V, we expect that the atomic diffusion in silica
melt is caused by the local fluctuation of the coordination number of silicon.
Namely the rearrangement of the framework structure of cormer-linked SiO,
tetrahedra occurs by the transient siz-fold coordination of silicon atoms, which
results in the diffusion of framework-forming atoms. The dominant factor for
the process is thus the activation energy needed for creating octahedrally

coordinated silicon atoms. As seen from the fact that octahedrally coordinated
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silicon atoms are stable in the high-pressure phase of crystalline silica and
silicate, the activation energy should decrease as the pressure increases. More
specifically, the atomic diffusivity is considered to increase up to the boundary
pressure for which the four-fold and six-fold coordinations coexist in the
equilibrium. Above that pressure, activation energy is needed for creating four-
fold coordination, so that the diffusivity should decrease with pressure. Thus the
diffusivity as a function of pressure is expected to have a maximum at the
boundary pressure where four-fold and six-fold coordinations coexist. This is
consistent with the MD results on the atomic diffusivity of NaAlSi,O, by Angell,
Cheeseman and Tamaddon (1982), where the diffusivities of oxygen and silicon
atoms have maxima at the pressure when the average Si-O coordination number
is five.

However, the microscopic mechanism of the pressure dependence of the
diffusivity is not clear in the work by Angell et al, so that we propose a
mechanism here in which the relative energy of four and six coordinations plays
a crucial role, and perform an MD study of diffusion to test the picture in the
following manner. As shown in Chapter V, the relative stability of four-fold and
six-fold systems is sensitive to the atomic-radius ratio, ag;/a,. Thus we purposely
vary this ratio to tune the relative stability to investigate the correlation of the
stability (relative energy of two coordinations) and the diffusion constant of
oxygen atoms. We consider three sets of potential parameters, where a; = 0.87,
0.86 and 0.85;&, and the other parameters are fixed at the values used in
Chapter V. The total energies of low-quartz, coesite and stishovite at room
temperature and normal pressure are shown in Table 7-1 together with the
energy difference of the most stable four-fold system (coesite, in this case) and
the six-fold system (stishovite). To find the pressure at which the two phases
coexist, we have to plot the free energy against volume for each phase to find
the common tangent. To do so, we first approximate the Gibbs free energy,
E—-TS+pV, by the enthalpy, E4+pV, neglecting the entropy differences. Here E is

the total internal energy, which is tabulated in Table 7-1. The curvature of the
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free energy against V around the minimum is calculated from the bulk modulus
of the phase. Since the bulk modulus is rather insensitive to ay, (see Chapter V),
we can roughly estimate the tranmsition (boundary) pressure of coesite and
stishovite at room temperature using the common bulk moduli (about 100GPa
for coesite and 300GPa for stishovite) for all the three values of ag. The
transition pressure thus obtained are roughly p, = 6GPa, 12GPa and >21GPa
for ag; = 0.87, 0.86 and 0.851, respectively.

The diffusivity of oxygen atoms, D, can be determined from the linear time-
dependence of the mean square displacement of the atoms in the MD simulation

using the Einstein’s relation,
<r(t)>> = 6Dt + const,

where < > means the average over particles of the same species. The pressure
dependence of D at 3000K is shown in Fig.7-1 for the three values of a. In this
result, several runs, each of which corresponds to 16psec, have been performed
for each value of pressure and ag. Although the t-linearity of a? s
approximately obeyed, the value of D is seen to fluctuate from one run to
another. However, the overall feature is clear enough: as is expected, D increases
with pressure (the viscosity decreases with pressure) in the lower pressure
regime, while the diffusivity shows a maximum and then decreases above a
critical pressure, which depends on the value of ag.

The critical pressure for each value of ag does indeed coincides with the
boundary pressure, pg, at which the four-coordinated and six-coordinated phases
cross over as estimated above. The pressure for the maximum D(p) is slightly
larger than p, estimated at room temperature, which may come from the fact
that the critical pressure separating the coesite and stishovite is an increasing
function of temperature (Yagi and Akimoto, 1976) as shown in Fig.1-2. Another
possibility is that a four-coordinated amorphous phase may exist at high

temperatures (~3000K) between the two phases considered here, which can take
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Table 7-1 Total energy of each polymorph at 300K for three types of potential parameters.

as; (A) Energy (kcal/mol) Energy difference (kcal/mol)
quartz coesite  stishovite (stishovite)—(coesite)
0.87 —1231.52 —1235.15 —1226.86 8.29
0.86 —1249.64 —1253.97 —1238.40 15.6
0.85 —1270.73 —1273.97 —1250.27 23.7
2.0 . — .
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Fig.7-1 Pressure dependence of the diffusion coefficient of oxygen atoms at
3000K. Three kinds of symbols and lines correspond to three types of potential
parameters: a,=0.87 (0O, ), 0.86 (@,————), and 0.85 (A,--------) in
A. The lines are guides to the eye.

99 -



part in the diffusion process. At any rate, there exists a conspicuous correlation
between the pressure which gives the highest diffusivity and the critical pressure
for the enthalpy crossover which separates four and six coordinations. Although
the average coordination number at the pressure which maximizes D is five in
agreement with the result of Angell et al. (1982), we should, according to our
mechanism, regard this number as an averaged coordination number for the
system with coexisting four and six coordinations.

In conclusion, we have provided and tested a conjecture respecting the
diffusion process -in silica and silicate melts: the atomic diffusion in these
systems arises from the transient increase of the coordination number of silicon
atoms which results in the rearrangement of the framework structure. The
anomalous diffusion property is explained in a natural way by the model. More

quantitative justification of the model is a future problem.

Section 7.2. Summary

Here we briefly summarize the results obtained in the present thesis.

We have determined the interatomic potential of silica from the first-
principles cluster calculations. Despite the covalent character of the bonding in
silica, potential energy surfaces for local deformations of the cluster have been
fitted quite well by the sum of pairwise interatomic potentials. Only empirical
factors in our approach are the configuration of the cluster and the final
selection in the non-linear least-square fitting for the potential parameters with
use of the information of the density and bulk modulus of low-quartz.

The pair potential is then used for the MD simulation of four polymorphs
of silica. It has been shown for the first time that we can reproduce with
common pair potentials virtually all the known polymorphs of silica (low-quartz,
low-cristobalite, coesite and stishovite) in spite of the wide ranges of density (2.3

— 4.2g/cm®) and bulk modulus (18 — 296GPa). This implies that the stability of
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the local units (SiO, tetrahedra) and their space-filling are dominant factors in
the stability of the whole crystalline structures even in the case of non-close —
packed framework silica.

The pair potential is then applied to the simulation of thermally induced
structural phase transition of quartz. The dynamical character of the high-
temperature (B8) phase is elucidated by the simulation: the phase transition has a
peculiar dynamical character reminiscent of order-disorder type although the
atomic distribution function averaged over long time mimics displacive
transition. The thermal expansion is shown to be essential in this phase
transition.

We have then turned to pressure-induced phase transitions of polymorphs at
room temperature, where the pair potential is revised so that the energy
difference between low-quartz and stishovite is reproduced. It is shown that, at
room temperature, compression of crystalline silica results in the increase of the
coordination number of silicon without diffusion process. We have predicted that
there exist new high-pressure crystalline phases compressed from low-quartz and
low-cristobalite which contain both four-fold and six-fold coordinated silicon
atoms, although they cannot be quenched after decompression even at room
temperature. The newly found diffusionless transitions are consistent with the
mechanism suggested by Stolper and Ahrens. The increase of coordination
number under pressure is shown to be related to the diffusion process with
anomalous pressure dependence in silica and silicate melts .

We have also presented preliminary results on the application of our

approach to magnesium silicates.

We have investigated the structural properties of silica in a first-principle
approach. Although the cluster approach has inherent flaws that it does not
necessarily reproduce the cohesive energy and that the determination of the
long-range interaction (effective atomic charge) is subtle, the approach is very

tractable, so that it should be applicable to a wide class of materials for
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deriving interatomic potentials for MD simulations. In the case of silica, we have
found that a pairwise functional form is sufficient to reproduce most properties
of the polymorphs. Rigorously, of course, many-body potentials with three-atom,
four-atom, ..., interactions should be required for the full description. And yet
the promising results reported in this thesis indicate that the MD simulation
supported by the cluster approach will be a powerful method to study or predict
the structural properties of materials, including completely new materials, if they
are carefully used, augmented by other complementary method like the bulk
calculations if necessary. The present thesis constitutes, to the best of our
knowledge, the first report which shows the wvalidity of a first-principles
approach starting from the cluster calculation for crystals other than molecular

crystals.

- 102 -



Appendix A. Crystal data of polymorphs of silica

Table A-1 Detailed structural parameters obtained by MD simulations as compared
with experimental results for various polymorphs of silica. Estimated standard errors
in observed (Obs.) data and thermal fluctuations in MD data are given in parentheses
in units of the last decimal place stated.

(b) low-cristobalite

(a) low-quartz
coordinates of atoms

coordinates of atoms

Obs.® This work Obs.? This work
atom position atom position
Si 32 x 0.4697(1) 0.461(19) Si da  x 0.3002(1) 0.328(15)
y 0 0.000(17) y 0.3002(1) 0.328(14)
z 0 0.000(13) z 0 0.000(12)
0 6c  x 0.4135(3) 0.426(25) 0 8b  x 0.2394(5) 0.234(22)
y 0.2669(2) 0.276(22) y 0.1049(4) 0.136(14)
2 0.1191(2) 0.122(17) z 0.1785(3) 0.189(15)
interatomic distances and bond angles interatomic distances and bond angles
Obs.* This work Obs.® This work
Intra-tetrahedral distances (A) Intra-tetrahedral distances (A)
Si-0 (x2) 1.605(1)  1.627 Si-O (x2)  1.605(2) 1.644
Si-0 (x2) 1.614(1)  1.640 Si-0 (x2)  1.613(2) 1.625
(Si - 0) 1.6092(7) 1.634 (Si — O) 1.609  1.635
0-0 (x2) 2.645(1)  2.645 0-0 (x1)  2.656(4) 2.603
0-0 (x1) 2.631(2) 2.682 - 0-0 (x2) 2.633(3) 2.689
0-0 (x2) 2.6171(7) 2.636 0-0 (x2)  2.600(1) 2.641
0-0 (x1) 2.612(2)  2.754 0-0 (x1)  2.626(4) 2.739
(O —-0) 2.626 2.667 (O —0) 2.624 2.667
Inter-tetrahedral distances (A) Inter-tetrahedral distances (A)
0-0 3.331(2)  3.461 0-0 3.688  3.476
0-0 3.411(1)  3.453
Intra-tetrahedral angles (deg)
Intra-tetrahedral angles (deg) 0-Si-0 (x1) 111.7(2) 104.8
0-5i-0 (x2) 110.52(6) 108.1 0-Si-O (x2) 110.0(1) 110.7
0-Si-0 (x2) 108.81(2) 107.6 0-Si-O (x2) 108.0(1) 107.7
0-5i-0 (x1) 108.93(9) 115.7 0-Si-0 (x1) 109.1(2) 114.8
0-5i-0 (x1) 109.24(8) 109.7 (O—Si—0) 109.7  109.4
(0 —Si— 0) 109.38  109.5
Inter-tetrahedral angles (deg)
Inter-tetrahedral angles (deg) Si-O-Si 146.4(1) 142.7
Si-O-Si 143.73(7) 147.3

bPeacor (1973)

®Levien et al. (1980)
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(c) coesite

coordinates of atoms

Obs.© This work

atom position
Sil 8f x 0.14033(7) 0.131(15)
y 0.10833(3) 0.109(05)
z  0.07227(8) 0.068(11)
Si2 8f x 0.50682(7) 0.501(14)
y 0.15799(4) 0.155(05)
2 0.54077(7) 0.540(10)
01 4a x 0 0.000(18)
y O 0.000(05)
z 0 0.000(13)
02 4e x 0.5 0.500(16)
y 0.1163(1) 0.119(06)
z 0.75 0.750(10)
03 8f x 0.2660(2) 0.274(17)
y 0.1234(1)  0.125(07)
z 0.9401(2) 0.954(14)
04 8f  x 0.3114(2) 0.305(19)
y 0.1038(1) 0.108(07)
z 0.3282(2)  0.321(11)
05 8f  x 0.0172(2)  0.013(20)
y 0.2117(1)  0.216(05)
z 0.4782(2)  0.478(15)

interatomic distances and bond angles

Obs.

This work

Intra-tetrahedral distances (A)

Si1-01 (x1)
Si1-03 (x1)
Si1-04 (x 1)
Si1-05 (x 1)
(Si1 — 0)
01-03 (x1)
01-04 (x1)
01-05 (x1)
03-04 (x1)
03-05 (x1)
04-05 (x1)
(0-0)

1.5945(4)
1.611(1)
1.612(1)
1.619(1)
1.6092(6)
2.634(1)
2.616(1)
2.630(1)
2.646(2)
2.611(2)
2.628(2)
2.628

1.609
1.645
1.647
1.646
1.637
2.696
2.662
2.765
2.632
2.638
2.621
2.669
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Si2-04 (x1) 1.604(1) 1.626

Si2-02 (x1)  1.6109(7) 1.626
Si2-03 (x 1) 1.614(1) 1.643
Si2-05 (x1)  1.619(1) 1.655
(Si2 — O) 1.6118(6) 1.638
0402 (x1)  2.623(1) 2.747
04-03 (x1) 2.617(2) 2.625
0405 (x1)  2.630(2) 2.641
02-03 (x1)  2.637(1) 2.732
02-05 (x1)  2.649(2) 2673
03-05 (x1) 2.637(2)  2.607
(0 — 0) 2.632 2,671
Inter-tetrahedral distances (A)

03-04 2.982 3.177
03-05 3.063 3.251
04-05 3.102 3.193
01-03 3.136 3.315

Intra-tetrahedral angles (deg)

01-5i1-03 (x1) 110.52(6) 111.9
01-Si1-04 (x1) 109.32(5) 109.7
01-Si1-05 (x1) 109.89(5) 116.3
03-Si1-04 (x1) 110.32(7) 106.2
03-Si1-05 (x1) 107.89(7) 106.6
04-Si1-05 (x1) 108.87(7) 105.5
(O —Si1 — 0) 109.47 109.4

04-Si2-02 (x1)
04-Si2-03 (x1)
04-5i2-05 (x1)
02-Si2-03 (x1)
02-5i2-05 (x1)
03-Si2-05 (x1)
(O —Si2 — 0)

109.35(6) 115.3
108.85(7) 106.8
109.38(7) 107.2
109.74(6) 113.4
110.21(8) 109.1
109.30(7) 104.4
109.47 1094

Inter-tetrahedral angles (deg)
Si1-01-Si1 180. 180.0

Si2-02-Si2 142.7(1) 1476
Si2-03-Sil 144.52(9) 151.9
Si1-04-Si2 149.64(9) 1553
Si1-05-Si2 137.36(9) 143.9

“Levien et al. (1981)



(d) stishovite

coordinates of atoms

Obs.? This work
atom position
Si 2a x 0 0.000(11)
y O 0.000(11)
z 0 0.000(13)
0O 4f x 0.30616(4) 0.305(10)
y 0.30616(4) 0.305(10)
z 0 0.000(15)

interatomic distances and bond angles

This work

Obs.?
Intra-octahedral distances (A)
Si-0 (x4)  1.7572(1) 1.813
Si-O (x2)  1.8087(2) 1.840
(Si — 0) 17744 1.822
0-0 (x2)  2.2903(3) 2.360
0-0 (x8)  2.5217(1) 2.583
0-0 (x2)  2.6655(1) 2.753

Inter-octahedral distances (A)
0-0 3.0274 3.091

Intra-octahedral angles (deg)

0-Si-0 (x2) 81.34(1) 81.2
0-Si-0 (x8) 90. 90.0
0-Si-0 (x2) 98.66(1) 98.8
Inter-octahedral angles (deg)

Si-0-Si (x1) 98.66(1) 98.8
Si-O-Si (x2) 130.67(1) 130.6

4Hill et al. (1983)
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(e) PaJ silica
coordinates of atoms

FLAPW<¢ This work
atom position
Si 4a x 0 0.000(11)
y O 0.000(11)
z 0 0.000(11)
0 8¢ x 0.344 0.337(11)
y 0.344 0.337(11)
z 0.344 0.337(11)

" interatomic distances and bond angles

FLAPW¢

This work

Intra-octahedral distances (A)

Si-O (x6)  1.827 1.863
0-0 (x6)  2.388 2.415
0-0 (x6)  2.765 2.838

Inter-octahedral distances (A)
0-0 2.416 2.583

Intra-octahedral angles (deg)
0-5i-0 (x6) 81.6 80.8
0-Si-O (x6) 98.4 99.2

Inter-octahedral angles (deg)
Si-O-Si (x3) 119.8 120.0

*Theoretical result by Park et al. (1988)



Table A-2 Pressure dependence of coordinates of atoms as compared with experi-
mental results for quartz and coesite. Estimated standard errors in observed (Obs.)
data and thermal fluctuations in MD data are given in parentheses in units of the
last decimal place stated.

(a) low-quartz

Obs.® This work
1 atm 4.86 GPa difference | 1 atm 4.86 GPa difference
atom position
Si 3a  x|0.4697(1) 04551(2) -0.0146 |0.461(19) 0.442(19)  -0.019
y|o 0 0 0.000(17) 0.000(18)  0.000
z |0 0 0 0.000(13) 0.000(14)  0.000
0 6c x| 0.4135(3) 0.4061(6) -0.0129 |0.426(25) 0.413(23)  -0.013
y | 0.2669(2) 0.2012(5) 0.0233 |0.276(22) 0.299(21)  0.023
2 [ 0.1191(2) 0.1012(3) -0.0179 |0.122(17) 0.107(16)  -0.016
°Levien et al. (1980)
(b) coesite
Obs.? This work
1 atm 4.60 GPa difference | 1 atm 4.60 GPa difference
atom position
Si1 8f  x|0.14033(7) 0.1370(1) -0.0033 |0.131(15) 0.127(15)  -0.005
y | 0.10833(3) 0.1098(3)  0.0015 |0.109(05) 0.111(04)  0.002
z | 0.07227(8) 0.0704(2) -0.0019 |0.068(11) 0.064(11)  -0.004
Si2 8f  x|050682(7) 0.5085(2) 0.0017 |0.501(14) 0.503(14)  0.002
y | 0.15799(4) 0.1576(3) -0.0004 | 0.155(05) 0.153(05)  -0.001
z | 0.54077(7) 0.5441(2)  0.0033 |0.540(10) 0.544(09)  0.004
01 42 x|0 0 0 0.000(18) 0.000(19)  0.000
y|o 0 0 0.000(05) 0.000(04)  0.000
z |0 0 0 0.000(13) 0.000(13)  0.000
02 4e x| 0.5 0.5 0 . 0.500(16) 0.500(16) 0.000
y | 0.1163(1) 0.1091(8) -0.0072 |0.119(06) 0.113(05)  -0.007
z | 0.75 0.75 0 0.750(10) 0.750(10)  0.000
03 8f X 0.2660(2) 0.2543(4) -0.0117 0.274(17) 0.262(15) -0.012
y|0.1234(1) 0.1291(5) 0.0057 |0.125(07) 0.130(07)  0.005
z | 0.9401(2) 0.9284(4) -0.0031 |0.954(14) 0.941(10)  -0.012
04 8f  x|0.3114(2) 0.3179(4) 0.0065 |0.305(19) 0.310(18)  0.005
y | 0.1038(1)  0.1006(6) -0.0032 |0.108(07) 0.106(07)  -0.002
z | 0.3282(2) 0.3251(4) -0.0031 |0.321(11) 0.319(10)  -0.002
05 8f x | 0.0172(2)  0.0264(5) 0.0092 0.013(20) 0.022(19) 0.009
y | 0.2117(1)  0.2129(6)  0.0012 | 0.216(05) 0.217(05)  0.001
z 0.4782(2) 0.4719(5) -0.0063 0.478(15) 0,474(15) -0.004

*Levien et al. (1981)
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Appendix B. Pressure-induced structural transformations

Here we show the time-sequence of the pressure-induced structural
transformations of silica discussed in Chapter V. The fransformation of low-
cristobalite into the Cmcem phase is shown in Fig.B-1. When the Cmcm phase is
decompressed, it becomes unstable resulting in an amorphous phase as shown in
Fig.B-2. The second transformation observed in the compression experiment of
low-cristobalite, 1., the transformation form the Cmcm phase into stishovite is
shown in Fig.B-3.

The transformation of low-quartz into the «-PbO, structure is shown in
Fig.B-4. When decompressed, the «-PbO, structure including some defects
transforms into an amorphous phase in which almost all the silicon atoms are
tetrahedrally coordinated as shown in Fig.B-5.

In the figures, full circles represent silicon atoms and small points dressed
with large, shaded circles represent oxygen atoms. The bonds between silicon
and oxygen are connected when the interatomic distance is less than 2.16108. The
instantaneous pressure, temperature and density of the system are shown at the
next to the bottom line of each panel. Because of fluctuations, these values do
not necessarily agree with the external pressure and temperature specified. The
number in the bottom line is the MD step, where one MD step corresponds to 2

fsec.
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10 UCTP LT-CRISTOBALITE TEG 300 15 UCTP LT-CRISTOBALITE TEG 300
13.9GPA.  276K. 3.18G/Ch3 13.7GPA.  291k. 3.25G-Cn3
158 750

15 UCTP LT-CRISTOBALITE TEG 300 20 UCTP LT-CRISTOBALITE TEG 3320
15.2GPA. 383K, 3.48G/CH3 17.5GPAR.  279K. 3.44G/CH3
1850 1970

15 UCTP LT-CRISTOBALITE TEG 350 : 1S UCTP LT-CRISTOBRLITE TEG 299
15.?GPR.  33eK. 3.516-CN3 17.4GPA.  186K. 3.71G/Cn3
1ie 1150

Fig.B-1 Compression of low-cristobalite: (a) Low-cristobalite at 10GPa and (b)-(f)
the structural transformation of low-cristobalite into the Cmem structure at
around 17GPa.
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15 UCTP LT-CRISTOBALITE TEG 300 10 UCTP LT7-CRISTOBRLITE TEG 200
12.7GPR.  28¢x. 3.65G/Cn3 11.9GPA.  22¢X. 3.63G-Cn3
1653 1750

10 UCTP LT-CRISTOBALITE TEG 300 S UCTP LT-CRISTOBRLITE TEG 2590

7.6GPA. 29SK. 3.42GsCnR3 4.1GPR. 257«. 2.83GsCn3
185Q 1950

Fig.B-2 Decompression of the Cmcm phase (a)-(d). The system has not reached
an equilibrium state even in the last panel (d), where the top-left side is in the
low-cristobalite phase and some part is still in the Cmcm phase. The final
structure is an amorphous phase in which the connectivity of the SiO, network
has somewhat changed from the original low-cristobalite (see Fig.5-5(b)).
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(b)

UCTP LT-CRISTOBARLITE TEG

24.8GPA. 315K. 3.956sCn3
2850

300 25

UCTP LT-CRISTOBRLITE TEG
23.2GPR. 476K,

2860

4.93G7Cn3

r % QAR D
o &8 \Eg, ,%Zg\hsyﬁdggifx; . ﬂ?},:
§ 2

¢ 3 %ﬁx?/ﬁg3

= ‘:pr/' ..
R fiw/ﬁ’ Ny

235

25

UCTP LT-CRISTOBRLITE TEG
26.8GPR. 7S55K.
2870

750 20 UCTP LT-CRISTOBALITE TEG
4.24G7CN3

22.9GPA. 106K, 4.25G-CnH3
2880

Fig.B-3 Compression of the Cmem phase (a)-(d). The final structure (d) is

exactly stishovite including no defects. The transformation occurs within a very
short period of time.
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S UCTP QUARTZ TTI2TEG (N) 250 30 UCTP QUARTZ TTI2TEG (N) 3060
: 4.6CPR. 245K, 2.81GsCH3 38.16PA.  316K. 3.68G/CN3
25 65@

30 UCTP QUARTZ TTI2TEG (N) 458 30 UCTP QUARTZ TTI2TEG (N) [=121%]
31.8GPA. 442K, 3.79G6-Cn3 29.8GPA. ?7?79K. ¢.03G/Cn3
700 750

N
Y e

&5 =0

7

( w“a

38 UCTP QUARTZ TTI12TEG (N) 300 36 UCTP QURRTZ TTI2TEG (N) 359
31.1GPA.  3@5K. 4.@4G-CN3 39.1GPA. 345K. 4.316/Cn3
see 1000

Fig.B-4 Compression of low-quartz: (a) Low-quartz at 5GPa and (b)-(f) the
structural transformation of low-quartz into the «-PbO, structure with some
defects.
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380

TTI2TEG (N)
3.8167Cn3

384K,

@.3GPR.

UCTP QURRTZ
2700

3508 5]

TTI2TEG (N)
345K. 4.31G/Cn3

UCTP QUARTZ
30.1GPA.

39

1000

@ ES@’& i?

: \ 7 %m%p«
A S 1»ﬁ Gl
VNS !

. =
MN B il B >
) ﬁ%rM Rt ﬁ xy\

9@& &L aﬂg

;ﬁﬁ'ﬁaﬁ

%Sﬁﬁ§,

600

UCTP QUARTZ TTI2TEG (N) 550 7] UCTP QUARTZ TTI2TEG (N)

9

3.18GsCH3

S76K. 3.14G-sCH3

B.1GPR.

S34K,

@.5GPA.

2900

2800

the same structure

)

)-(d) the transformation of

a

5 Decompression of the «

Fig.B

PbO, phase with defects: (

(b

structure into an amorphous phase where almost all the silicon

fferent direction and

i

as Fig.B-

the «

4(f) seen from a d

structure persisted until

2

the external pressure was decreased to normal pressure. Thus the transformation

(b)-

PbO,

atoms are tetrahedrally coordinated. In this simulation, partly because the

simulation time for annealing was too short, the a-PbO

occurred at normal pressure.

)

(d
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Appendix C. Crystal data of polymorphs of magnesium silicate

Table C-1 Fractional coordinates of atoms in polymorphs of magnesium silicate
obtained by MD simulations as compared with experimental results.

(a) forsterite

(b) ~y-spinel

Obs.*

This work

Obs.!  This work

atom position
Mgl 4a

Mg2 4c

Si 4c

01 4c

02 4c

03 8d

N < M ON M N M N M ON MNR K

0

0

0
0.9917
0.2774
0.25
0.4265
0.0940
0.25
0.7659
0.0916
0.25
0.2216
0.4471
0.25
0.2775
0.1631
0.0330

0.000(6)
0.000(4)
0.000(9)
0.982(8)
0.273(5)
0.250(6)
0.434(5)
0.100(3)
0.250(8)
0.770(5)
0.088(3)
0.250(5)
0.215(6)
0.445(3)
0.250(6)
0.273(5)
0.164(3)
0.025(2)

atom position
Mg 16d

Si 8a

O 32e

N K N M N K

0.5 0.500(1)
0.5 0.500(1)
0.5 0.500(2)
0.125  0.125(2)
0.125  0.125(2)
0.125  0.125(2)

0.2434 0.245(1)
0.2434 0.245(1)
0.2434 0.245(1)

bSasaki et al. (1982)

*Fyjino et al. (1981)
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(c) orthoenstatite

Obs.©

This work

atom position

Mgl

Mg2

Sil

Si2

O1A

02A

03A

O1B

O2B

O3B

8¢

8¢

8¢

8c

8¢

8¢

8¢

8¢

8¢

8c

FSES I

KR M N M N M N N M N e M N

t
<

Z

0.3758
0.6538
0.8660
0.3768
0.4870
0.3590
0.2717
0.3416
0.0504
0.4736
0.3373
0.7983
0.1834
0.3400
0.0346
0.3109
0.5023
0.0433
0.3031
0.2226
0.8319
0.5624
0.3404
0.8000
0.4328
0.4831
0.6898
0.4476
0.1950
0.6036

0.376(2)
0.655(4)
0.876(6)
0.377(2)
0.522(4)
0.373(6)
0.275(2)
0.342(2)
0.078(4)
0.470(1)
0.338(2)
0.806(7)
0.187(2)
0.342(3)
0.059(5)
0.312(2)
0.509(2)
0.066(6)
0.304(2)
0.227(4)
0.854(5)
0.560(1)
0.341(3)
0.806(5)
0.431(1)
0.487(3)
0.686(6)
0.448(2)
0.487(3)
0.686(6)

“Sasaki et al. (1982)
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(d) ilmenite

Obs.?  This work
atom position
Mg 6¢ x 0 0.000(3)
y 0 0.000(3)
2 0.3597 0.356(1)
Si 6 x 0 0.000(2)
y 0 0.000(1)
2 0.1577 0.155(1)
0 18f  x 0.3214 0.306(1)
y 0.0361 0.019(2)
z 0.2408 0.241(1)
“Horiuchi et al. (1982)
(e) perovskite
Obs.¢  This work
atom position
Mg 4c  x 0.5141 0.520(6)
y 0.5560 0.555(8)
z 025  0.250(6)
Si 4b x 0.5 0.500(4)
y 0 0.000(5)
z O 0.000(3)
01 4c x 0.1028 0.114(6)
y 0.4660 0.460(5)
z 0.25 0.250(3)
02 8d  x 0.1961 0.197(4)
y 0.2014 0.201(4)
z 0.5531 0.558(2)

*Horiuchi et al. (1986)
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