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§1 Introduction

Since the pioneering work of Heisenberg on ferromagnetism,l)
magnetism of transition metals has been one 6f the central problems
of solid state physics in the past half century and will also
continue to be the one in.future. Recently, our understanding of
itinerant electron magnetism seems to have made a significant
progress beyond the conventional Hartree-Fock treatments: The
fundamental concept underlying the recent developments is that the
thermodynamical properties of itinerant magnets are dominated by
the spin fluctuations. This concept manifesté that electron
correlation or mény body effects are essentially important for

the exclited states.

The main purpose of the present article is to discuss physical
properties of itinerant antiferromagnets, with particular emphasis
on NMR relaxation raée, electrical resistivity and magnetic excita-
tions. As our treatments of the subjects are in line with the
above-mentioned recent developments, their review forms another
essential part of the present article. 1In view of the theoretical
nature of the present article we donot intend to survey experimental
results systematically but should like to refér to some relevant
ones from our theoretical point of view.

The composition of the present article is as follows.

In section 1 we review the historical developments of the theory
of magnetism and call attention to the importance of the spin
fluctuations. The importancé becomes evident also by examining
experimental results. These discussions play a role of detailed
introduction to the later sections. Section 2 is devoted to a

review of the self-consistent renormalization theory of spin



fluctuations developed by Moriya and Kawabataz)(hereafter abbre-
viated to MK) for ferromagnetism and Hasegawa and Moriya3)(HM)

for antiferromagnetism. Section 3 is the main part of the present
paper. We discuss several physical quantities which are closely
related to the spin fluctﬁations; NMR relaxation rate, specific
heat, spectrum of magnetic excitations and electrical resistivity.
Finally in section 4 we briefly summarize the results and comment

on important problems still to be solved.



§§1.1. Electron Correlation in a Narrow Band

From the very early stage of the theory there have been two
streams of the theoretical consideration of magnetism of transition
metals. bne is the localized model initiated by Heisenberg.l)
His original theory was based on the Heitler and London method,
each electron being localized on a particular atom and coupled with
each other through ferromagnetic direct exchange. Anothér is the

itinerant model initilated by Blochu) and then developed by Slater5’6)

and Stoner.7)
Bloch studied an electron gas with the Coulomb interaction
and discussed possibility of ferromagnetism by using the Hartree=
Fock approximation (HFA) and concluded that a low density electron
gas was ferromagnetic. 1In a more rigorous treatment than HFA the
electrons keep away from each other owing to the Coulomb repulsion.
This effect (correlation) is far more effective for an electron
pair of different spins than for a pair of the same spin where
Pauli's exclusion principle already prevents the electrons to come
across. So the correlation effect acts favoring paramagnetism and
Wigner concluded that electron gas could nevér be ferromagnétic at
all metalic densities.B)
Taking the d-character of the electrons into consideration;
Slater obtained a model hamiltonian and discussed the condition for
ferromagnetism within the HFA. A simplified version of the hamiltonian
which neglects the d-orbital degeneracy is now generally known as
the Hubbard hamiltonian:
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where U=NOI is the intra atomic Coulomb repulsion and the notations
are standard; the first l;ne is in the Wannier representatidn and
the second line in the Bloch representation. Subsequently, Stoner
calculated thermodynamical properties of the hamiltonian within the
HFA.

The correlation effect in the ground state of hamiltonian (1.1)
has been investigated by several authors by various methods; |

decoupling of two-time Green's function by Hubbard,g’lo)

11)

variational

method by Gutzwiller 12)

and Brueckner's t-matrix method by Kanamori.
The essential conclusions about the condition for ferromagnetic
instability are the same for all the treatments. The condition of

HFA
Upy(ep) > 1, (1.2)

where pa(eF) is the density of states per atom at the Fermi energy

is replaced by

UoprPy(ep) > 1, | ' - (1.3)

where Ueff is the effective interaction whose magnitude is reduced
to the order of the band width in the narrow band case.  The
physical meaning of the reduction to the effective interaction is
as follows. When the intra atomic Coulomb repulsion is large

the electrons will avoid sharing the same atomic orbital at the
expense of the one electron energy of the order of the band width.

As [pa(eF)]“l is of the order of the band width, the condition
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(1.3) is fulfilled when the Ferml energy lies at the peak of the
density of states and this situation is what happens in Ni.

As for more detailed discussion on the correlation we refer to
Herring's excellent review.l3)
Before the appearance of the above-mentioned treatments of

the correlation Mott presented an important concept.lu) He

stated that the Heisenberg.method and the band theoretical treatment
were not regarded as compatible approximations to the same electronic
state. Alternatively, crystalline solids, which in the ordinary
band model have incompletely filled Brillouin zones, fall into

two classes according to the strength of the Coulomb repulsion:
those for which the Heisenberg treatment is appropriate (insulater)
and those for which the other is appropriate (metal). If one

varies the band width or the strength of the Coulomb repulsion,

a transition between -the two states will occur at some critical
value of t/U. The critical value is expected to be of the order

of unity. He considered that this metal-insulator transition

(Mott transition) is sharp due to the mutual screening effect

of the electrons. Actually Hubbard has shown that his decoupling
formalism for the two time Green's function can lead to a qualita-

10)

tive description of the transition. Brinkman and Rice have

pointed out that the Gutzwillerﬁs solution also contains the
15)

transition.

Magnetic property of the Mott insulator has been iﬁvestigated
16)

earlier by Anderson, although the expréssion of the exchange

constant stated below have already been obtained by Slater in

6)

connection with spin waves. He has shown among many other things

that the hamiltonian (1.1) in the half-filled case is reduced to
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a spin hamiltonian of the Heisenberg type
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when U is much greater than the band width. This interaction,
which he calls kinetic exchange, is antiferromagnetic. Relative
strength of the kinetic exchange and direct exchange which is
ferromagnetic determines the magnetic property: antiferro- or
ferromagnetism. Insulating magnetic compounds are considered to

be the Mott insulators and the major part of them are antiferromagnetic.



§§1.2. Itinerant Electron Antiferromagnetism

In the preceding subsection we made a sketch of our understand-
ing of magnetism especially referring to the hamiltonian (1.1).
We saw there that the insulating limit of hamiltonian (1.1) describes
antiferromagnetism of the.Heisenberg type. Now we investigate
the metallic side of the hamiltonian (1.1). Slaterl7) pointed
out that HFA can describé not only para- and ferromagnetism but
also antiferromagnetism. Let us assume that the effect of correla-
tion of Kanamori type may bé taken account of by replacing the
intra atomic Coulomb repulsion by the effective one (hereafter

we abbreviate Ueff(I ) to U (I)), and then we study by the

eff

HFA what kind of instability may occur from paramagnetic side.

This problem can be treated by using a linear response theory.
The most general transversal dynamical susceptibility (wave

vector and frequency.dependent susceptibility) is defined by

-+
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are the spin density operators and <A> denotes the thermal average
of operator A. For diagonal components (q' = -q) we abbreviate
x_+(q,—q;w) to x—+(q,w) as usual. Izuyama, Kim and Kubols)

investigated x-+(q,w) by using random phase approximation (RPA);

X" (a,0) = xo T (@0 (1 - IxgTHq,w)17h, (1.7)
with
f(e,) - fe,, )
X (qow) = 3 —X K4, (1.8)
k €k+q - Ep - W

where x0—+(q,m) is the dynamical susceptibility of non-interacting
systerm and f(€e) is the Fermi distribution function. The approxi-
mation (RPA) may be considered to be an extension of the HFA

to the dynamical problem (dynamical HFA). The static limit of
x_+(q,w) is the wave vector dependent susceptibility and coincides
with one obtained by the HFA. Its divergence denotes an instability
toward a spin density wave (SDW) state whose wave vector is Q.

From eq.(1.7) the condition is given by

1=1Ix, (Q,0). | (1.9)

When Q is zero, SDW reduces to ferromagnetism and to intrinsic
antiferromagnetism, when Q is half the reciprocal lattice vector.
Originally the concept of SDW is proposed by Overhauser.lg’zo)
He showed firstly that one dimensional system was unstable toward
SDW with Q=2kF, where kF was the Fermi wave vector, and then showed

that three dimensional electron gas with long range Coulomb inter-

action was also unstable in the HFA. However the instability of
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the latter disappears when screening effect is taken into

21) 22) that electron

account. On the basis of Lomer's indication
and hole pockets near T and H points stabilize the antiferro-
magnetic structure of Cr, several authors investigated SDW by
using idealized models fof the band structure and short range
electron-electron interaction. As is seen from eq.(1.9) what
is necessary to discuss the instability is the wave vector dependent
susceptibility of the non—interactingAsystem. Fedders and Martin2l)
introduced spherical electron and hole Fermi surfaces of the
same radius (perfect nesting), Shibatani, Motizuki and Nagamiya23)
two octahedral Fermi surfaces of nearly the same size and Ricezu)
two spherical surfaces with different radii.

Although theories of this type, which assume electron
and hole pockets of nearly the same size and may be called a
nesting type, have suéh an advantage that the models are easily
tractable mathematically, they are considered to be special ones.
First of all, the nesting condition is considered to bé satisfied
only accidentally. Secondly, in the pérfect nesting case,
xo-+(q,0) at T=0 shows a logarithmic divergence at q=Q, Q béing
the wave vector spanning the electron and hole Fermi surfaces.
In general the condition for antiferromagnitism is given by the
inequality: the right hand side of eq.(1.9) is larger than the left
hand side. Thirdly, in the ordered phase; the momént arises
only from the electronic statés which locate néar the electron
and hole Fermi surfaces in the nesting model. Even for Cr which
is known to be the best candidate for the model td be applicablé,

electronic states in a much wider region in the k space contribute

to the moment.



25) 26)

Tachiki and Nagamiya and Alexander and Horwitz have
investigated an electron gas modelbwith Umklapp processes.

This model can describe intrinsic antiferromagnetism, where

Q is half the reciprocal lattice vector. The model is considered
to belong to a more genefal class than the nesting model in

view of the above discussions. We use it for numerical calcula-

tions in the following sections.



§81.3. Physical Properties at Finite Temperatures
The band calculations have successfully reproduced the
Fermi surfaces of 34 transition metals (Ni, Fe, Cr etc.) in their

27-30) As the band calculation is considered to

ordered phase.
be a kind of HFA the aboﬁe mentioned facts indicate that the

HFA with the use of an effective interaction in plaée of the
bare Coulomb repulsion is at least qualitatively a good épproki-
mation at zero temperature. However, as Asano have pointed out
for Cr,29)if we adjust the parameters so as to reproduce the
observed magnitude of magnetic moment at T=0, we obtain a too

high Néel tempefature T.. in HFA. Another drawback of the HFA

N

appears in the temperature dependence of magnetization. It is

well known that at low temperatures the deviation of the magnetiza-

tion of ferromagnets is proportional to T3/2

due to the spin
wave excitations. df course RPA includes spin waves in the excita-
tion spectrum, but the equilibrium state itself is nothing but

the one obtained by HFA and does not contain the renormalization

effect due to the spin waves. In the paramagnetic phase the defect

of the HFA 1is typically seen by the temperature variation of

susceptibility: it cannot explain the Curie-Weiss behaviors as

observed not only in Fe, Co and Ni but in metals with small moments

and low TC such as Zan2, which has been considered to be the
best candidate for HFA to be applicable.
With respect to the Curie-Weiss type susceptibilities, it

is seen that experimental data of itinerant ferromagnets are

sometimes analyzed in a framework of the localized model. However,

there are considerable differnces between the Curie-Weiss laws

obtained by assuming the localized model and those observed in

- 11 -



some itinerant ferromagnets. In the localized model the magnetic
moment per atom deduced from saturation magnetization Py and
the one deduced from the paramagnetic Curie constant P, are the

same irrespective of TC. Fig. 1 shows pc/pS versus T, for

c
31)

various ferromagnetic materials. We see that pc/pS is much

larger than 1 for itinerant ferromagnets with low TC’

In Table 1 we collect experimental data of specific heat

and electrical resistivity: vy is the coefficient of linear

specific heat C=yT and R2 is the coefficient of T2 term of the
O+R2T2. It is seen that y and R2 of materials

with low TC or TN are generally greater than those of typical

resistivity R=R

ferromagnetic metals, Fe, Co and Ni. As will be seen in later
sections these quantities (especially electrical resistivity)

are enhanced by the spin fluctuations. We may set up an operative
category of weakly ferro— and antiferromagnetic metals which are
defined as metals with low TC(TN) and small moments.

From the theoretical point of view weakly ferro- and anti-
ferromagnetic metals are located at the opposite limit of the local
moment case, where the intra atomic Coulomb interaction U dominates.
In the latter case the degrees of freedom are only those of
spin fluctuations and can be described by a spin hamiltonian. For
weakly ferro- and antiferromagnetic metals, too, the spin fluctuations
is expected to play a vital role to determine their thermodynamical
properties and the above mentioned shortcomings of the HFA may
be overcome by incorporating the effect of the spin fluctuations.

Of course, characters of the spin fluctuations of the two limiting
cases are different from each other. Then we may say that at

finite temperatures the problem of magnetism, including a paramagnetic

- 12 -



case lying near the ferromagnetic or aptiferromagnetic instability
(nearly ferro- or antiferromagnetic case), is a problem of the

spin fluctuations. In view of the electron correlation, the
interaction term of the hamiltonian (1.1) may be rewritten in
several ways. Among theée,‘it can be expreséed in terms of spin
density operators [see eq.(2.5) belowl. For magnetism, the problem
of the electron correlation we may best grasp as the oné of the
spin fluctuations. To clarify the characters of the spin fluctua-
tions in each case is a central problem of magnetism. In later
sections we want to investigate the character in the weakly

and nearly antiferromagnetic cases as far as possible.
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§2. The Self-Consistent Renormalization Theory of Spin Fluctuations
Theories which took account of the effect of spin fluctuations

into magnetic properties were first given by Murata and Doniach32)

2)

and Moriya and Kawabata, independently. By using functional
integral method, the former authors treated the spin fluctuations

as a classical field. Since théir treatment is classical its
validity is limited to a considerable high temperature region

and it generally overestimates the effect of the spin flﬁétuations.
Furthermore, their theory predicts the first order phase transition.
On the other hand thé MK theory is a quantum mechanical one and

its simplest approximation at high temperatures reduces to the
Murata-Doniach theory. In this section we review first the MK
theory and then its extension to antiferromagnetism dévelopedk

3)

by Hasegawa and Moriya. In the following sections we use the

Hubbard hamiltonian [eq.(1.1)].

\
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§§2.1. MK theory
Let us define free energy as a function of magnetization M

and temperature T by
F(M,T) = TP[PMe"H/kBT] , | | (2.1)

where PM is the projection operator to a subspace with constant M.
Magnetization M is measured in a unit of QB and given by M=N+-N+,
where No is the number of electrons with'spin o. Thé equilibrium

value of magnetization is obtained by

2 p(M,m) =0, (2.2)
M

and the paramagnetic susceptibility in a unit of ug is given by

32
= [_a;,;z— F(M,T)]M=0 . (2'3)

>x 1+

The Curie temperature is defined as the temperature where the

susceptibility diverges;

3%

[ F(M,Te)]ly,_n = 0. ' (2.4)
2 c’In=0

By rewriting the interaction term in terms of spin density

operators,
+ +
H'(I) =TI a a a, ,.,a
kk'q k+q+ k'-g¥ k'¥ kt
= Ivu - f1zgs (@), s_(-q)] (2.5)
2 2q+Q’_Q+3 .
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a part of the free energy due to the interaction term is given by

I
- 1 g
Fp(M,T) = JodI£<H (D> 1 (2.6)
= 1111 (N2 - M%) + AF(M,T),
1 I
AF(M,T) = - 5 E [ aI{<Ils, (q),s_(-a)1 >y
a ‘o ?
(2.7)

- <[S+(Q)’S-('Q)]+>M,o} .
Here AF(M,T) is the correction to the Hartree-Fock free energy

_ n(0) 1 2 2
Fyp(M,T) = F* 7 (M,T) + EI (N® - M9) (2.8)

and <tec>y 1 means the statistical average under fixed values of
>
M and I. Eq.(2.7) may be expressed in terms of the dynamical

susceptibility by using a fluctuation dissipation theorem;

o I
S 1 w —+ —
AF(M,T) = - o7 I_mdw coth(2k T)Im [ aI Z[XM,I(q’m) - XM,O(q’w)]
B 0 q
= - k,TIZ IdI[’J'( iw ) —F (,iw )] (2.9)
= B nalo XM,I Q1w /) - XM,O Q1w /1, .

where xﬁ+1(q,w) is the dynamical susceptivility under given M
, :

and I and W is the Matsubara frequency of boson type;

wn = 2nnkBT.
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The dynamical susceptibility is formally exactly expressed
in terms of irreducible susceptibility i&jl(q’iwn) which is defined
by a set Qf bubble diagrams, each of which cannot be separated
into two pieces, each having an external vertex, by removing

an interaction vertex:
-+ ~et . ~—dt T, * :
xy,1(@sie) = xy (a3 )/ 11 - Ixy r(a,ie)] . (2.10)

-+ ~—t -
If one uses XM,O(q’imn) for xM,I(q,iwn), the RPA dynamical sus-
ceptibility is obtained.
~—t . -+ ..
The deviation of XM,I(q’lwn) from XM,O(q,lwn) which consists
of second and higher order terms in I is to be incorporated

in the following form
~t —+ .
Xy, 1(@>30,) = xy gla,iw))/T1 + Ay r(a,de )T, (2.11)
and then the dynamical susceptibility is
-+ X -+ X A -+ .
XM’I(q)lwn) = XM,O(q’lwn)/[l + AM,I(q,lwn) - IXM,O(q,lwn)J »
(2.12)

It should be noticed that this functional form is compatible with

the spin conservation 1aw33) [x&jl(o,m)ﬁol. Owing to the isotropic
nature of the hamiltonian [eq.(1.1)], we have the following important
requirements. For T<TC, the transversal static Suscéptibility

should diverge:

, . |
1+ AM,I(O,O) - IxM,O(o,o) =0 (2.13)

- 17 -



For T>TC the static 1limit of eq.(2.12) should coincide with the

static susceptibility calculated from the free energy:

-4+ 0
1+ X £(0,0) = Ixg (0,0) = x"/x (2.13")
where x and xozisthe static susceptibility with and without the
interaction I.
To proceed further wé make some approximations. First we
9 . -+, . .
neglect —~AMI(q,1wn) compared with XMO(q,imn) in a calculation of

oI .
eq.(2.9) with a use of eq.(2.12). Then we have

_ . I .
AF(M,I) kBTié{logll + AM,I(q,lwn) IXM,O(Q>1wn)1;

+ Ix&to(q,iwn)} ) (2.14)

Secondly, we neglect g- and w-dependences of AM’I(q,iwn) and further
neglect AM’I(q,iwn) and its derivatives with respect to M comparing
with Ixﬁjo(q,iwn) and corresponding derivatives. However it is
crucial to retain AMI(q,iwn) in comparison with 1 - Ix&g(q,iwn)

for the reasons that the latter is very small in weakly and nearly
ferromagnetic case and that without AM’I(q,iwn) the requirements of
egs.(2.13) and (2.13')cannot be fulfilled. By using the approxi-
mations just mentioned the following equations are obtained.

For T<TC the equiliblium value of magnetization is given by

- 18 -



0 =20 (mm - Lm- kg TEK (10)

oM 2 n n

© (V]
= Ji'F(O)(M,T) _ lIM-——l—I dw coth(2k T)ImK(u)),
IM 2 271 4~ B
-+
- Xy o(d>iw )

K(in ) = T2 x7t (a,10 )] M,0 2’ m . (2.15)

n q om M0 ket (0,00 - xoto(a,iw )]

M,0" 0> M,0'9>1%,
For T>T, the static susceptibility is given by
1.1 1+ -2t (0,001=2- 31 -k TEG(iw ),
) 0,0 2 B n
X X Xq n
=+ _ 17 _ 2—1— J dw coth(z—wE)ImG(w)
XO 2 ™ —00 kB
2 Xo o (a,iw )
- 5
ein) = PR Xyt o(asie,) ]y 20—
q oM > 1+ A - Iy (g,iw_)
0,0 n
5 -+ : 2 1
+ [—— XM,O(q,lwn)]M':O }

oM 1+ x - Ix5+0(q,iwn)]2
5

(2.16)

with

A= AMI(O,O).
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Since these equations are expressed in terms.of the dynamical

susceptibility of the non-interacting system, they can be calculated

in principle for any band structure.*)
Several authors have previously invéstigated the effect of

spin fluctuations on the ‘free energy by using RPA [neglect A

in eq.(2.14)1 and discussed specific heat and sﬁsceptibility3u-38).

However these treatments aré not self-consistent. Above'TC,

static 1limit of the dynamical suscéptibility which is used to calcu-

late the free energy differs from the one calculated from the

resultant free energy. This inconsistency is easily séen if oné

drops A in eq.(2.16). Below TC, the magnetization used in RPA

dynamical susceptibility to calculate K(iw ) in eq.(2.15) is

the HFA value which naturally disagrées with the one calculatéd

from the renormalized free energy. So the validity of the above

mentioned RPA calculations is limited to low temperatures only.

On the other hand egs.(2.15) and (2.16) are consistent and may

be used continuously over the whole temperature range through TC'

Generally spaking, above mentioned inconsistency originates from

the fact that RPA neglects couplings between different fluctuation

modes. So RPA generally overestimates spin fluctuations. This

—— v et e — — —— —————— — T~ ————

¥) In eqgs.(2.15) and (2.16) the contribution of the fluctuations

may be devided into two parts by using an identity
-1

coth(%?) = sgnw + 2 sgnwn(|w|), n(w) being the Bose factor [eBY _ 1]
The first term gives a temperature independent contribution which
may be considered as a rénormalization of thé interaction constant.
We neglect the first térm and discuss thé temperature dependent

term explicitly.
- 20 -



is illustrated by the fact that if one uses RPA in renormalizing
the free energy the critical exponént of the spicific heat 1in

the vicinity of the fictitious TC is too large?a) The self=
consistent procedure to determine M in eq.(2.15) or A in eq.(2.16)
is regarded as an inclusion of couplings bétween uniform mode

and modes with finite gq. We may expéct this mode-mode coupling
leads to a suppression of the fluctuations themselves.

MK have solved self-consistent egs.(2.15) and (2.16) by
using an electron gas-like band. Their main conclusions are
abridged as follows.

1) TC 1s generally lowered from that calculated by HFA.

2) Paramagnetic susceptibility above T, can obey the Curie-Weiss

C
law. The Curie constant deducéd from paramagnetic susceptibility
is determined by the band structure and does not vary if one
changes interaction constant I. So pc/pS definéd in §81.3
of weakly ferromagnetic metals are large in contrast to the
local moment case. This fact gives a qualitative explanation
of Fig.1. |

3) For paramagnetic metals, if they lie near the ferromagnetic
instability, their susceptibilities can show the Curie-Weiss
behavior.

) At low temperatures the deviation of magnetization 1s proportional

as is well known from the spin wave theory. However
the temperature range where the above statement holds is narrow
in weakly ferromagnetic metals. Near TC a relation

M(T)m[TCu/3 - TL‘/BJJ”/2 holds in a considerably wide temperature

range.

- 21 -



5) The amplitude of the spin fluctuations themselves are signifi-

cantly supressed owing to the interaction among them..

These conélusions show that the MK theory qualitatively improves
the insufficiencies of HFA and RPA and that ekcitations which
dominate thermodynamical properties of magnetic metals are not
the single-particle excitations as in HFA but the collecfive spin

fluctuation modes as many body excitations.
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§§2.2. HM Theory

[11 Although the staggered magnetization My = —2<SZ(Q)>,_Q

being the antiferromagnetic wave vector, is not a constant of

motion, We may define the free energy as a function of the macroscopic

variable MQ [see Appendix A of ref. 3)}:

F(MQ,T) = FHF(MQ,T) + AF(MQ,T) . : (2.17)
Here AF(MQ,T) is the correction to the Hartree Fock free energy
- p(0) 1,02 a2
FHF(MQ,T) F (MQ,T) + uI(N MQ) . (2.18)

The equilibrium value of the magnetization is thainéd by

9 =

‘and the paramagnetic staggered susceptibility Xq is given by

Lo 2 pm,mm (2.20)
Q> Mg=o - | ’

XQ BMS

The Néel temperature is defined as the temperature wherekxQ

diverges;

2
?
[ F(M,,T )1y g = O - . (2.21)
am2 - Q7N M =0

The free energy is calculable in the same manner as that
in ferromagnetic case. The correction term of the free energy

is expressed in terms of the dynamical susceptibility under fixed
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values of MQ and I;

I
AF(M.,T) = -k TZZI dIlx,, (q,iw ) - X'+ (q,iw_ )]
Q B na’ g MQ,I n Mg, 0 n

il

I _
-k TZZ‘{dI[ (q,lw ) + (q+Q im )
XMQ I XMQ I

B g X
- xF (g iw ) - x"+ (q+Q,iw_)] (2.22)
XMQO >*"n MQ,O it ¢ S

Here ¥ and ' stand for the summations in the first Brillouin
q a
zones of chemical and magnetic reciprocal lattice spaces, respec-

tively. By introducing a matrix notation,

-+
XM I(Q,lw ) s XMQ,I(Q’—q_Q:iwn)

XMQ (ate) =| & ,  (2.23)

-+ . —+ .
XMQ,I(Q+Q’"Q'lwn)’ XMQ,I(Q+Q'1wn);

we may rewrite eq.(2.22) as

I
AF(MQ,T) = -k ng TrfodI{xMQ,I(q,lw ) - MMQ’O(q,lw )1,

(2.24)

The dynamical susceptibility is formally exactly éxpressed

in terms of irreducible susceptibility ZM I(q,iwn);
Q)
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+ . _ - R -1= .
,I(Q,lwn) = [1 - IMQ,I(q’lwn)] XM I(Q:lwn)

Xm XMy

. -+ -1 -+ '
1+ AMQ’I(Q,lwn) - IKMQ,O(q,iwn)] ‘KMQ,O(q,iwn),

(2.25)

where AMQ’I(q,iwn) defined by

~ . . -1 -+ )

XMQ,I(q’i“n) = [1 + &MQ,I(q’lwn)] .KMQ,O(q’lwn) s (2.26)

denotes the deviation of I(q,iw ) from X_+ (qa,iw_), consisting
. > n M.,0 n

XM XMy,

Q
of second and higher order terms in I.

Now we proceed further by making approximations appropriate

for weakly and nearly antiferromagnetic metals.

AF(M,T) = k

-1
gTZZ {log det[l + AMQ,O(Q,lwn)

nq

+
Q

+

- Ix
AM
Q

,O(q,iwn)] + I Tr 5& ,O(q,iwn)} s (2.27)

2 aF(M,T) = - kpTI?2s Tr{ (-2 X o(@>iw )]
BMQ nq BMQ Q2

i gt i
,0(d>1w )] KMQ,O(Q’lwn)’ (2.28)

+

+ [1 + A (a,iw_) - Ix,
MQ,I n wMQ

32 2.0 32
~5 AF(Mg,T) = -kgTI“E Tr{[—=> Xy o210 )]
oM nq SMQ’w Q’ n

o

1l -+

, —+ o ya=l-
+ [1 4+ AMQ,O(q’lwn) - IKMQ,O(Q’lwn)] KMQ

’O(q,iwn)

d -+ . . -+ . -1
+ [— XM ,O(Q’lwn)] [1 + AM ,O('q’lwn) - I,\),(, ,O(q’lwn)]

oMy - Q Q

BMQ Q

+
Q .
- 25 - | (2.29)

’O(q,iwn)]—l}.

,oldsin D111 + &MQ,o(q’i‘*’n) - Ixy



Owing to the isotropic nature of the hamiltonian [eq.(1.1)],
we have important requirements. Below TN’ the transversal staggered

susceptibility should diverge:

L+ Ay (2,00 - Ix;,I;,O(Q,m = 0. C(2.30)

Above TN, the static 1limit of the staggered dynamical susceptibility

should coincide with the susceptibility calculated by eq.(2.20):
1+ A, -(Q,0) - Ix:T:(Q,0) = xV/ : (2.31)
O,I ] 0,0 > Q XQ’ e

where XQ and xg is the static staggered susceptibility with and

without the interaction. &MQ,I(q,iwn) is considered to be generally
small and important only for the staggeredcomponentsAMQ’I(q+Q,iwn)
with small g and w. - We may approximate,AMQ’I(q,iwn) by scalar
function AMQ’I(q+Q,iQn) and further neglect gq- and w-dependences.
Then we have the following self-consistent equations. For T<TN

the equilibrium value of the staggered magnetization is given by

1

_ 3 (0) .
0 = o F (MQ,T) - EIMQ - kBTZKQ(lwn)
Q n
3 (0) 1 1 (% ‘ w
= — F (M., T) - =IM, - = I dw coth( YImK (w) ,
M e 27 e 2T . oxT @
Q B
: 2.0 .3 -+ -+
K (iw_) = I°C Tr{[— ¥ (a,iw )1 [Ix (Q,0)
Q' *%n . aMQ‘“MQ=° n Mg 0
- Igﬁ;’o(q,iwn)]"15&;’0(q,iwn)] . (2.32)
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For T>TN, the static susceptibility is given by

1 _ 1 -+ _ 1 1 I
== 5 1+ AQ - IXO’O(Q,O)] =5 - 5I - kBTiGQ(lwn)
Xq - Xgq Xq
= 36 - i1 _ JL-I' dw coth(—2—)ImG.(w) ,
X 2 271 J o 2k T Q
Q B

G (iw. ) = Izz'Tr{[jﬁi =¥ (q,iw )]

Q 1%y . amé'“MQ’o n’My=0

—+ : -1 -+ .
x [1 + AQ - Ilo,o(q,lwn)] lo,o(q’lwn)

-+ -+ : -1

aMy TQ? Q
9 =t qld -+ . -1

x [ Xu_,0l@io)ly gl + Ay - Ixg g(asie)177},  (2.33)
Mg T Q

with
AQ = AO,I(Q,O).

These equations are self-consistent, eq.(2.32) is a self-consistent
equation for MQ and eq.(2.33) for AQ, and the approximation

is one step beyond HFA and RPA. As egs.(2.32) and (2.33) contain
the dynamical susceptibilities of the non-interacting system

only, they are calculable in principle, although the calculation

of‘l&+,o(q,iwn) in the ordered phase is a laborious task.

Q
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[2] To carry out the program of solving the self-consistent
equations (2.32) and (2.33), the dynamical susceptibility under

a fixed value of MQ is necessary. Instead of taking the conditional
statisticél average, we take unconditional statistical average

under a fictitious staggered magnetic field B which generates

Q
MQ. The staggered magnetic field BQ reduces the firét Brillouin
zone into the half (magnetic first Brillouin zone) and reéults
in a splitting of the electron band into two bands. The energy
dispersions of the new bands can be calculated with a cahonical

transformation:

H(O)(BQ) = gi {ekakcako + €k+Qa;+QUak+Qc
*.oB (ak+Qc ko a;oak+Qc)}
i gi'(elkazkcalkﬁ T ek ‘a2k0a2ka) > ‘ (2.34)
with
A kg = cosekako - osinekak+Q0
a2kO = csinekako + cosek K+Qo (2.35)
tan2e, = “ktq ” Pk
2B
and
:};}: Llepro * &) 3 [%(EMQ S e EEL (5.36)
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BQ is related to MQ by

B
' Q
M. = 2% [(f(e.,) - f(e, )] (2.37)
Q . 1 2 2.% 1k 2k 4

where f(e) i1s the Fermi distribution function.
By using the canonical transformation the dynamical suscepti-

bilities are given by

xi;’o(q+Q,w) = ﬁ'{[r2l(k,q,w) + 112(k,q,w)]cos2(6k - ek+q)
+ [ty (k,q,0) + 122(k,q,w)]sin2(6k - 9k+q)}’
(2.38)
— ' 2
XM;,O(q’w) = l,z{: {[T21(k:Q>w) + 112(k,q,w)]cos (ek + ek+q)
+ [Tll(k,q,w) + T22(k,q,w)]sin2(ek + 6k+q)}’
(2.39)
X]Tq;’o(q’_q_Q:w) = lz{:'{[TZ:L(k!q’w) - Tle(k,q,w)]COS(ek—ek_'_q)COS(ek"’ek_'_q)

+ [Tll(k,q,w) - ng(k,q,w)]sin(ek - 6k+q)sin(ek + ek+q)}’
(2.40)

with

By using symmetry relations, eq.(2.33) may be rewritten in

a somewhat simpler form:
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2

L) -+
z'{lgﬁg Mg
4 Q

-+
2 XO,O(q’iwn)

_— .
1+ g - IXO,O(q,lwn)
p) ~+ (q+Q,10. )

XO,O arl, n

3 -+ .
+ [—— x (q,iw )1, _
aMé Mg 50 n’My=0

—F .
1L+ g - Ixo,o(q+Q,1wn)

+ [_é_ X&+

3MQ Q

.3 2 :
ao(q’-q—Q'lwn)]MQ=0 1_+
1+ g - Ixo,o(q,iwn)

x 1 }. (2.42)

- .
1 + >\Q - IXO,O(Q+Q’lmn)

Now we neglect the temperature independent part of the contribution

of the spin fluctuations, which may be considered as a renormalization
of the interaction constant, i.e., we replace coth(Bw/2) by

2 sgnw n(|w|) in eqs.(2.32) and (2.33).2’3) In other words,

we take the Hartree-Fock ground state as a true ground state

and focus our attention on the temperature dependence of the

system. The temperature dependent part of the spin fluctuation
contribution is dominated by low frequency modes. As

[—3— X_+ (q,-9-Q:w)],, _, is proportional to w we may discard
M.,0 M.=0

oM
theast term in eq.(2.42). Further, in weakly and nearly anti-
ferromagnetic case, the fluctuation modes have large amplitudes
in a small region near Q in g-space. We may also discard the

first term in eq.(2.42) and employ the following expansion form:

-+
) 2 2 2 2,
== 1 - A a3 - Ayyqy - A, 4, - Bu® + i Chw + o], (2.43)
2
2% -+
[ x (a+Q,w)ly _n = - F + +oo
BMé MQ,O 4 MQ—O ?
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The expansion coefficients Aii(i = X,¥,%2,), B, C and F are calculated
from a given band structure. Actually HM have used the electron

gas model with Umklapp processes described in §81.3,
_ 1 2
s fpaq T an (K - Q) (2.44)

and determined the coefficients. Then they have solved eq.(2.33)
and discussed magnetic properties of itinerént antiferromagnets.
Now we survey the conclusions obtained by HM.
1) The leading term of the spin fluctuation spectrum GQ(w) is
proportional to w% at T = TN. By integrating with respect
to w, AQ at T = TN is shown to be proportional to TN3/2.
Therefore the fluctuations dominate over the contribution

of the thermal single-particle excitations which is proportional

to T2. Thus the Néel temperature, when it 1s small, is given by
2/3
Ty © (aQ - 1) . (2.45)
where aQ = % ng is the dimensionless coupling constant.

This 1s generally small compared with the Hartree Fock value

HF _ %
N (ag - D (2.46)

T
2) The staggered susceptibility XQ shows a Curie-Weiss behavior
for weakly and nearly antiferromagnetic metals. Instead,
the uniform susceptibility has only weak temperature dependence.
Recently, Usami and Moriya have investigated the case where
both the uniform and staggered fluctuation components [the

first and the second terms in eq.(2.42)] are important and
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3)

4)

shown that the uniform susceptibility in this case can show

a Curie-Weiss behavior.39)
Slightly below TN’ where MQ is small and the free energy may

be expanded for M the fluctuation is still characterized

Q’
by the T3/2 behavior. Then the staggered magnetization is
obtained as

Mg [‘I‘N3/2 - p3/2y1/2 (2.47)

instead of the Hartree-Fock value

HF

MQ HF)2 _ T2 1/2 (2.48)

o [(TN .

Finally, as AQ i1s positive, the spin fluctuations themselves

are significantly -suppressed from the RPA values.
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§3. Physical Properties Related to the Spin Fluctuations

As is stated in §81.3, physical properties such as relaxation
rate of nuclear magnetic resonance, specific heat and electrical
resistivity etc. are closely related to the spin fluctuations.
These are relatively weli studied in ferromagnetic cases and the
fact is known as the exchange enhancement. However for antiferro-
magnetism these quantities have hardly been well investigated SO
far even in the framework of RPA. In §2 we have seen that the
self-consistent renormalization theory of sﬁin fluctuations have
qualitativély improved the conventional HFA and RPA. So our purpose
of the present section is two fold. The first is to clarify the
relation between the physical quantities and the spin fluctuations,
especially for antiferromagnets. We note that RPA is valid in the
low temperature limit. Secondly, we study the above mentioned
renormalization effect which becomes important as temperature is
‘'raised. We expect to obtain qualitatively different temperature
dependences of various quantities from those obtained by using
RPA. To proceed our discussion let us bear in mind the corre-
sponding results in the ferromagnetic case.

The most direct method observing the spin fluctuations is
inelastic neutron scattering. As our approximation neglects g-
and w-dependences of XMQ’I(q,w), g- and w-dependences of x—+(q,w)
is essentially the same as those of RPA. However, even within
RPA, there are several interesting points concerning with the
spin wave spectrum; for an example the spin waves of the itinerant
antiferromagnet decay into electron-hole pair excitations and have
an intrinsic damping. We will also study the intensity of magnetic

excitations at T=0 by using RPA.
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§§3.1. NMR Relaxation Rate 0>%1)

The self-consistent renormalization theory of spin fluctuations
is best applied to weakly and nearly ferro- and antiferromagnetic
metals. In these substances the spin fluctuations provides a
predominant relaxation ﬁechanism of the nucléar magnetic resonance.
As a resonance frequency of NMR is much smaller than the charac-
teristic frequencies concerning electrons, Tl is one of'the best
physical quantities for us to detect the nature of low frequencyr‘
components of the spin fluctuations which have been shown to play
a vital role to the thermodynamical propertiés.

For brevity, let us consider only the Fermi contact type
interaction between a nuclear spin f and an electron spin'gz

A

hfI'S’ . (3.1)

where Ahf is the hyperfine coupling constant and is assumed to be
constant for all the electronic states concerned. Then the nuclear

spin-lattice relaxation rate is given byuz)

2 -+
/T = A e kg TImx . (wo)/wo , (3.2)

where wg is the nuclear magnetic resonance frequency and xzzc(w)
the transversal local dynamical susceptibility defined by

-+ _ 75 et

X1pcl®w) = 1| dte™" "< [s_(r,t),s,(r)]>, (3.3)

0

r being the position of a nucleus under consideration. If there
is a translational symmetry of the lattice (para- or ferromagnetic
phase) the relaxation rate is given by the wave vector dependent

dynamical susceptibility:
- 34 -



2 —
1/T) = ALk T2 Im X (q,04)/u - | | (3.4)

a
For weakly and nearly ferromagnetic metals, by using eq.(2.12)
and an expansion form of xﬁ+o(q,w) for small q and w, we obtain
. 2

the relaxation rate is given as

the following results. Above TC’

T107/T1 = (X/Xg) , ' (3.5)

where 1/T,, = ﬂAif[p(EF)]2kBT is the Korringa relaxation rate for

the non-interacting electron system. Below TC, we obtain

| -2
TlO/Tl « [M(T)] “. (3.6)

At T = OK, as xo/x is proportional to 1-o and M(T) to (o - 1)1/2,

we see that the relaxation rate is enhanced by the factor |a - 11’1
near the critical boundary of ferromagnetism. For T>TC, we see
from eq.(3.5) that 1/T, is proportional to Tx and when yx obeys the

Curie-Weiss law, as was shown in 8§8§2.1, we have
/Ty = T/(T - T,) . ' | (3.7)

It is well known that relaxation rate due to localized spins tends
to a constant as temperature increases. The present result shows
that the temperature independent Tl does not necessarily mean the
existence of localized moments. Actually, Kontani, Hiéki and

Masuda confirmed that the present results, including the external

magnhetic field dependence also,u3) hold experimentally for Zan244)
and sc3In.u5>“6) On the other hand, HFA-RPA gives
1/ e 178 - Té) . (3.8)
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Let us turn to the antiferromagnetic metals.
[1] For antiferromagnetism, the fluctuations with wave vectors
around antiferromagnetic wave vector Q, or equivalently staggered

component of eq.(2.25) are important. Above T we have

N’

-+
Xg,0(a+Qw)

Xg 1(a*Q,w) = : | (3.9)

-+
1+ g —Ixo’o(q+Q,w)

By using the expansion form eq.(2.43), the relaxation rate in the

paramagnetic phase is given by

_ a2 0 -1/2 0,1/2
1/T, = Ahf1%3T(XQCO/H)(GQAxxAyyAzz) (xQ/xQ) . (3.10)
. . 1/2 _ .
l/T1 is proportional to TXQ . At T = 0, as XQ is proportional to
(1 - aQ)_l for nearly antiferromagnetic metals, the relaxation rate

-1/2
Q)

-is enhanced by the factor (1 - o . When the staggered suscep-

tibility obeys the Curie-Weiss law as was shown in §882.2, we expect

1/2
/Ty « T/(T - Ty . (3.11)

In this case the relaxation rate does not tend to a constant as

1/2

temperature goes up but increases as T in contrast with ferro-
magnetic case and with the localized moment case. On the other
hand, RPA gives

RPA

2 2,1/2
1« T/(T° - TN) . (3.12)

/T

Now we show some numerical examples based on the electron gas

model with Umklapp processes:
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x+Q = (k - Q)°. (3.13)

Here and in what follows we use reduced units, which measure energy
and momeﬁtum by Q and eQ = kB TQ = Q2/2m, respectively. For
simplicity we take Q = (0,0,Q) = (n/a)(0,0,1). PFig.2 and Fig.3
show the temperature dependence of the relaxation rates for anti-
ferromagnetic metals (aQ>l) and for nearly antiferromaghetic metals
(anl). Solid lines represent the present results and dashed lines
RPA results. In Fig. 2 we plot (Tlo/Tl)(T/TN) against (T/TN)

N
(T/TQ) for various values of aQ(represented as a in the figure).

for various values of T,,. In Fig.3 we plot (TlO/Tl)(T/TQ) against

[2] Below TN, there exists a finite staggered magnetization MQ,

which gives rise to the non-diagonal part of the dynamical suscep-

tibility xﬁ+ I(q,—q;Q:w) and the formula (3.3) for T; reduces to
Q’

-+

2 k. Tr' L Imiy
Mg

1/T, = A
1 hf “B " ug

I(qswo) + X&;,I(Q+Q’w0)

+ X;I;,I(q,_q_q:wo) * X&;’I(q+Q,—q:wo)] : (3.14)

+ +

Q Q

is shown to be of the order wg and may be neglected in discussing Tl

of NMR. Further, with an exception that the substance locates

From a symmetry consideration Im[xﬁ I(q,—q—Q:wO) + X& ,I(q+Q,—q:w0)]
>

not only near antiferromagnetic instability but also ferromagnetic

one, we may discard the uniform component. By using eq.(2.25)

and (2.30) and noticing that [X&+ 0(q,—q—Q:wO)]2 is of the order
Q)

wg, the following expression for T, is obtained:

1



X&+’O(Q+st0)
/Ty = Ao kg T2’ 2 In——p 9 — . (3.15)

For small reduced staggered magnetization cQ = MQ/N, we may use .

the following expansion form for the real part of the dynamical

susceptibility:
X2
-+ - 2Q 2 2 2 2 v
RexMQ,O(q+Q,w) = 5+ 0(zg) - Ay,ay - Aygay - A 9, * 1

- (3.16)

where the expansion coefficients agree with those of eq.(2.43)
up to the leading order of CQ and the deviation is of the order cé.
On therother hand, the imaginary part suffers a serious modification

by an appearance of~a finite staggered magnetization. The imaginary

part generally has the following expansion form:u7)
XO
-+
In g 04+ Q,0) = le(@u + dl@’ + +--1 . (3.17)

where the coefficient c¢(q) is given by line integrals in the k-space.
To evaluate Tl we only need the first term whose calculation is
performed in Appendix.

The relaxation rate is now calculated by inserting egs.(3.16)
and (3.17) with (A.11) into eq.(3.15). After a straightforward
calculation we find a logarithmic divergence of the coefficient
of T/MQ in the expression for l/Tl. This arises from the intraband
contribution of the dynamical susceptibility [111 and Too in eq.
(2.38)]1 whose long wave and low frequency components survive to

a certain extent in contrast with the cut off's at small wave vectors
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as found inAthe interband contribution [112 and Toy in eq.(2.38)]
and in ferromagnetic case.

The long wave and low freguency intraband contributions which
lead to the divergence of l/Tl may be easily suppressed by magnetic
anisotropy which generally exists in the ordered phase. Though
the anisotropy is usually small, it is sufficient to overcome the
divergence since the divergence is very weak (logarithmic). Here
we take account of the effect phenomenologically. Dealing with
metals, we may fairly generally assume cubic symmetry. In weakly
antiferromagnetic metals we may expand the free energy due to the

anisotropy:

(0af + o

ai + aiai), (3.18)

where Gy ay and az.are the directional cosines of the staggered
magnetization vector with respect to the crystallographic axes.

The static transversal staggered susceptibility is given by

= 1/KM (3.19)

2
XQ Q"

The dynamical susceptibility xﬁ+ I(q+Q,w) in the presence of the
Q’
anisotropy should have the value in its static 1limit. We modify

the dynamical susceptibility so that the above mentioned requirement

is fulfilled:

le&;,0<Q,o> - x&;,o(q+Q,w)]
—+ 1 0, o2 -+
-> I[XMQ,O(Q’O) + 5 XQAOBQ - XMQ,O(q+Q’w)] (3-20)k

- 39 -



with

+

AO = K [2XMQ3

3
0(Q,0)1°/ay . (3.21)

After a straightforward but rather lengthy calculation,

the relaxation rate is given by

2 _+
1 = Apr kg Tlxy

Q

1/T ,0(R,0)C0/(2m)3Tlgtag 1My ()™, (3.22)
where g[AO] i1s a function depending bn the anisotropy constant K

or Ay [the expression of gl[A,] is given by eq.(5.9) in Ref.41)].

As the dependenée of g[AO]On'the magnetization is very weak,

we may consider that g[AO] is T-independent. g[AO] diverges
logarithmically as AO becomes zero. Though the effect of anisotropy
is important theoretically, the dependence of the relaxation rate

on it is very weak. From eq.(3.22) we see
1/T) = T/Mo(T) (3.23)

in contrast to the ferromagnetic case [eq.(3.6)]. At T

0K, as

1
MQ(T) o« (aQ - 1)%, the relaxation rate is enhanced by the factor

=X :
 at both sides of the antiferromagnetic instability.

IO‘Q - ll ) 5
Near T, , where M(T) « (T, - T)? hold, we obtain 1/T, « T./(T, - T)?
N N 1 N N
which shows a divergence of the same type as that above TN.

In Fig.2, we also plot the relaxation rates below TN’ obtained
by using egs.(3.22) and (2.47).
Recently, Katayama , Akimoto and Asayama investigated the relaxa-

48)

tion rates of B Mn metal and its alloys. Their results are shown

1
in Fig.4. They observed the T* behavior and concluded that pure
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B Mn is a nearly antiferromagnetic metal which lies very close to

the antiferromagnetic instability.

- 41 -



§8§3.2. Specific Heat
Specific Heat is calculated from the free energy F(¥,T) where
¥ is an order parameter:
d2

c(T) = - T S Fey(T),T) . (3.23)

aT?

The suffix ¥ stands for the thermal equilibrium value defined by

2 py*,m) = 0. (3.204)
Y *

Eq.(3.23) is rewritten by using eq.(3.24) as

2 2 ¥ *
c(r) = - T[&— F(y*,m) + LEQLT) d¥

1. (3.25)
N sy*aT AT

For ferromagnetism [antiferromagnetism], by taking M[MQ] as ¥ and
using the free energy of eq.(2.6) [(2.17)] with eq.(2.14) [(2.24)]
and reinterpreting M [MQ] as the equilibrium value determined by
the self-consistent equation, we obtain the specific heat. This

calculation is straightforward, although rather complicated.

34)

Izuyama and Kubo investigated the critical anomaly of the

specific heat near TC in the paramagnetic side and obtained the

critical exponent 1/2, rather too large result. Berk and Schrieffer35)

and Doniach and Engelsberg36)

studied the specific heats of nearly
ferromagnetic metals at low temperatures. They showed that the
linear specific heat is enhanced by the factor -log(l-a).

37)

Subsequently Brinkman and Engelsberg studied low temperature
specific heats of weakly ferromagnetic metals and showed that

the linear term is enhanced by the factor -log(a-1). These
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treatments are based on RPA. The free energy used for the calculation

of the specific heat is a function of temperature only:
“(w¥
Frpa(YER(T),T) , (3.26)

where W;F(T) is the equilibrium value obtained from the Hartree-

Fock free energy

— P (¥,T) = 0 - (3.27)
MWy

Appareantly, W;F(T) is not the equilibrium value of the free
energy of eq.(3.26). Thus this type of theory shows an apparent
inconsistency to perform the calculation through the transition
point. The Curie point Izuyama and Kubo used is considered to be
a fictitious one ané_the other authors' treatments are only valid
at low temperatures. To discuss the specific heat due to fluctua-
tions through the transition point the renormalization procedure
discussed in §2. is indispensable.

The self-consistent calculations of the specific heats of
nearly and weakly ferromagnetic metals are performed‘by Makoshi

and Moriyaug)

in the framework of the MK theory. Their results
may be abridged as follows.
1) Low temperature specific heat is enhanced by thé factor -logla—ll.
However, the temperature range where thé linear specific heat
is obtained becomes narrower as the ferromagnetic instability
is approached. This trend is much more strong compared with
RPA results.
2) The anomaly around the Curie point is rather small in contrast

with the RPA results. Yet the self-consistent renormalization
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theory gives an unphysical small dip Jjust above TC. This shows
that the MK theory is still insufficient to describe critical

phenomena.

For nearly antiferrbmagnetic metals Moriya have shown that
the enhancement factor tends to a constant value ét the anti-
ferromagnetic instability.u7) This originates from the fact that
the imaginary part of the staggered dynamical susceptibility of
the non-interacting system is proportional to w instead of the fact
that the imaginary part of the uniform component is proportional

to w/q. Hasegawaso)

investigated the specific heats of both weakly
and nearly antiferromagnetic metals in the framework of the HM
theory. His conclusions may be abridged as follows.

1) The coefficient of the linear specific heat due tovspin fluctua-

tions (Ay) is enhanced by the factor
1
Ay (1) - aylag) « lag - 172, | (3.28)

where Ay(l) is the constant value obtained by Moriya for the

antiferromagnetic instability (aQ = 1). Combining the relation

between ag - 1 and Ty [éq.(2.45)] with éq.(3.28) he g0t
l

TN3/ ,

Ay (1) - Ay(aQ) o (3.29)

and showed that the experiments on (Vl_xCrx)B2 by Castaing et al.
actually satisfied the relation. Recent expériments on Crl_xMoX

by Mamiya and Masudasz)

also support the relation.
2) As the temperature increases the enhancement factor decreases

rapidly. This trend is generally strong when the substance
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lies near the instability and is stronger in the self-consistent

theory than in RPA.

- 45 —



§§3.3. Magnetic Excitation353)

[1] The most direct method of observing the spin fluctuations is
an inelastic neutron scattering experiment, which essentially
measures the imaginary part of the dynamical susceptibility.
As our approximation schéme neglects the g- and w-dependences of
AMQ,I(q,w),cy-and w-dependences of the dynamical suscept;bility
1s the same as those of the RPA dynamical susceptibility. Never-
theless, the excitation spectrum includes some interesting points
compared with those of ferromagnetic case. In this subsection,
we willstudy the magnetic excitations in thé antiferromagnetic phase,
especially spin waves, in some detail.

To discuss the spin waves of an itinerant antiferromagnet
some authors introduced, implicitly or explicitly; nesting type
band.?125%"57)  They obtained well defined spin waves with a high
velocity determined'by the Fermi vélocity. It should be mentioned
‘here that the nesting model is a rather special one in the following
sense. The ordered state of the model is insulating, i.e. thére
is no Fermi surface. In this connection wé commént on two points.
First, in the nesting model, l/Tl has no diréct process if anisotropy
or external field 1ifts up the spin wavé'spéctrum. Second, in thé
model there is no linear specific heat in the ordered phase.
Fisher investigated also the case where thé Fermi level is not
located within the gap and concludéd that the velocity of the spin

waves had no imaginary part even in this casé.57)

Howevér, as

Gillan has correctly indicated,SB) Fisher's conclusion is based
on an erroneous assumption that the dynamical susceptibility of
the non-interacting system is analytic in the long wave and low

frequency region. Taking care of this point Gillan calculated
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the velocity as a complex number and obtained a damping proportional
to q. Very recently, Cade and Young calculated numerically the
transversal magnetic susceptibility by using the band structure of
Y-Mn.sg) Although, they'also have obtained a considerable damping,
we cannot distinguish whether the damping originates from many

band effects or an intrinsic nature of antiferromagnetism.

It is instructive to compare the situation with that of a
ferromagnetic metal. In the ferromagnet electrons suffer a uniform'
exchange field and the size of the Fermi surfacés are different
for up and down spin electron bands. As a result there is a
Stoner gap in tﬁe particle-hole pair excitation spectrum and we
have undamped spin waves below the Stoner gap. In an antiferromagnet
whose wave vector is Q and the staggered magnetization is along
the z-axis, electrons suffer a staggered exchange field and an
electron with momentum k couples with thé electrons of the same
‘spin and momentum k*Q. We have two bands with a splitting in the
reduced Brillouin zone for each spin component. Therefore thére
are spin flip excitations with zero fréquéncy in the long wave
region so far as the antiferromagnetic state is metallic. So the
damping of the spin waves into electron—holé pairs may be expected
in the single band model and this is a uniqﬁe feature of itinerant

antiferromagnets.

[2] The dynamical susceptibility in RPA isvgivén by eq.(2.25)

and (2.30) with neglecting A, (d,u). The explicit form is
g,
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x“*(q,w) N

{1 - Ix, (a+Q,w)lxs (@,w)
Ad,w) Ba Bq

+ I[XBQ(q,—q—Q:m)]z} . (3.30)

X-+(q+Q’w) =‘ |

{1 - Ixg (q@,w)] xn (@+Q,w)
A(q,0) Ba Bq

+ I[xBQ(q,~Q-Q:w)12} , (3.31)

with

Alq,w) = [1 - Ixg (qw)]lIxg (Q,0) - Ixy (q+Q,w)]
Q Q Q

- 12[XBQ(q,—q—Q:w)12 . (3.32)

XHere we suppressed the under suffix,MQ,I gnd denoted X&;’I(p,p':w)
as XBQ(p;p':w). The dynamical susceptibility of the non-
interacting system XBQ(q+Q,w), XBQ(q,w) and XBQ(q,~q—Q:w), are given
in eqgs.(2.38), (2.39) and (2.40), respectively. The components
x_+(q,w) and x-+(q+Q,w) express the magnetic excitations around
the chemical and magnetic reciprocal lattice points,‘respectively.
As the intensity of the former is small we investigate the latter
[note that the numerator of eq.(3.30) is zero for g=0 and w=0].

If the low lying elementary excitations are exhausted by the
spin wavés they can be treated phenomenologically. An equation of
motion of the magnetization density under an external field varying

in space and time, ﬁ(q,m), is given by
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1 — — = -
F=3 ——M+:M_+ -+ -—M +H(q, ]
o oy Wy Flauw) (3.33)
p
F 1 . -
(p) = 2F - Ly + ... _F 5 (3.34)
eff P BM—p Xp p (a,0) pP,q’
aN¥ -z x H ..(p") . (3.35)
dt 1Y p| p_p' eff

By linearizing the torque equation we obtain the dynamical suscep-

tibilities.so) We get for ferromagnets
M (w)
-+ -1 -1 -1
X" (q,w)l = —>—— = [(x_©~ - X5) - (w/M)17", (3.36)
sw H™ (q,0) q 0
and
M, ()
" (arQ,w) ] = =3
H (q+Q,w)
_ -1 -1 -1 _ -1 -1 _ -1y _ 2
= Ixg - xg VUGG - xg D) Oghg - xg ) - (/M) (3.37)

for antiferromagnets. The spin wave dispersion is given by

_ -1 -1
Wy = M(Xq - Xo ) ' (3.38)

for ferromagnets and for antiferromagnets

2 2, .1 -1,,. -1 -1
wg = MQ(xq - Xg )(xq+Q - Xq ) . (3.39)

It is noteworthy here that if one replaces xq by J(gq), the Fourier
g-component of the inter atomic exchange Jij’ egs.(3.36)-(3.39)

give correct results for the localized model.
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For ferromagnetic metals the microscopic result based on RPA,

x&+o(q,w)
2 > (3.40)

-+
[Xy 1(a,w)] = -
.1 RPA  Ting 0(0,0) = xy' o(a,0)]

is easily shown to coincide with the phenomenological one by

using an expansion

X&jo(q’“) = xﬁjo(Q,O) +'§§ x&t (0,0) , (3.41)

where B is the exchange field which produce the magnetization M.

The same is not true for antiferromagnetic metals. In order
to compare the microscopic results with the phenomenological ones
we tentatively assume that we may expand the susceptibilities

of the non-interacting system for small (w/BQ) and (q/BQ);

' 2 T
Yo (@+Q,0) = xg (a+Q,0) + (=2)°%."(0,0) + <o+
Bq Bq 2Bg" "Bq
s = + M = _‘ .._0:)__ I 0’0 + oo 5 .L‘2
xBQ(q atQ:w) (2B )xBQ( ) (3 )

Q

with

I II
Xn (Dw) = x5 (pyw) + x5 ~(p,w)
Bq By Bq

where the suffix I represents the part of the interband contribution
and II that of the intraband contribution [see egs.(2.38) and

(2.39) and (2.40)]. Then we have
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X-+(q+Q>w)

n

-1
I M xn (Q,0) = xn (2,0)1xs (a+Q,0) Ixs (Q,0) - yn (a+Q,0)]
"B Bg By Ba Ba

X

(g (:0) = xp (4,001 - (w/23Q>2xB;(o,o)[XBQ(Q,O) - XQZ?0,0)1}”1-

(3.43)

Equation (3.43) coincides with eq.(3.37) if the intraband contri-
butions vanish. The nesting model just belongs to this case and
by expanding‘xB (q+Q,0) for small q/BQ we obtain the well known

Q .

dispersion relation

Fq’ (30“'}'")

where GF is theAgeo@etric mean of the Fermi velocities of the
electron and hole bands.

| In a general case where the Ferml surfaces exist, eqs.(3;37)
and (3.43) do not agree because of the non-vanishing intraband

contribution. As will be seen in the later paragraphs, wé_generally

have the intraband particle-hole pair excitations with small momentum

transfer whenever the Fermi surfaces exist; In this case the
expansion for (w/BQ) and (q/BQ) [eq.(3.42)] is not valid and
ngkq+Q,w) etc. depend on (q/w). In other words ngkq+Q;w) ete.
arg not analytic functions of g and w evén in the rggion of small
(q/BQ) and (w/BQ). The physical meaning of the above mentioned
discrepancy is considered to be as follows. Thé phénomenological
equation of motion which is a classical torque équation of the
macroscopic magnetization density takes no account of thé incohérent

particle-hole pair excitations.
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[3] To investigate the magnetic excitations in more detail we
introduce a specific model, the electron gas model with Umklapp
processes, in the same manner as the other sections. In this
subsection we use reducgd units which measure energy and momentum
by the Fermi energy and Fermi moméntum in thé paramagnetic phase,
respectively. We take Q = (0,0,Q). . |

The static properties XBQ(Q,O), XBQ(o,o), XB;(O,O), the
normalized staggered magnetization ;Q = MQ/N and the radius of the
Fermi surface in the Q direction of the upper band q, are plotted
in Fig.5 as functions of the staggered exchange field BQ. We take

kF = 0.8 Q in this figure and in the following numerical calcula-

tions. The staggered magnetization is related to XB (Q,0) by
Q

=gB
3

© I

xg (Q,0) , , | (3.45)

z
Q Q

Q

where p is the density of states in the paramagnetic phase.
XBI(O,O) is given by
Q
XBI(O,O) = §§9 [tan;ljii + tan—lgglﬂ t e ; (3.46)
Q Q 2By Ba

for small BQ. It is seen from eq.(3.43) that the deviation from ‘

the phenomenological theory is largé for weakly antiférromagnetic

metals (BQ small). In the following we consider the case BQ = 0.1.
Imaginary part of XBQ(q+Q;w) is shown in Fig.6 as.a function

of q [q = (0,0,q)] and w. Dashed lines I, II, III are the

boundaries separating the regions wheré the excitations betweén

the bands 1 and 1, 2 and 2, and 1 and 2, réspéctivély, exist.

For small g these lines are given by
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w = aI(BQ)q (I)>
w = ary(Bylg (11),
w = 2By + aryp(By)a’ (I1D). | (3.47)

The coefficients in the small BQ limit are

_ _ _ A2
aI(BQ) = Q, aII(Bq) b 29 aIII(BQ) - Q /2BQ . (3:“8)

Line II tends to the boundary in the paramagnetic phase continuously
as BQ becomes O{ Lines I and III are characteristic of the anti-
ferromagnetic state and the imaginary part diverges as Iw - m*l;é
when w approaches the line (w¥) for a fixed g. In the low frequency
region below the line I, the imaginary part is proportional to
wgleq.(3.17)]. Thellarge imaginary part suggests that the exchange=
enhanced dissipative modes of spin fluctuations are expected to be
‘dominant in this region.

Real parts of XBQ(q,m) and XBQ(q+Q,w) are illustrated in
Fig.7 by solid lines as a function of the w for a fixed g (q/BQ=O.5).
The dashed line is xo(q,w) in the paramagnetic phase. The arrows
indicate the position of the boundaries I, II, III. We can see
characteristic structures associated with thé new boundaries I and
ITT in addition to the one associated with II which also exists in
the paramagnetic phase. In our model; the singularities at the
boundaries I and III are rather strong and the realypart has finite
discontinuities. These strong singularities as well as those of the
imaginary part result from the fact that thé enérgy denominator
of eq.(2.41) in our case becomes zero on a 1iné, instead of a point,

on the Fermi surface as w approaches the boundary value w¥.
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The magnetic excitations [Im x—+(q+Q,w)] are shown in Fig.8
as a function of g and w. In the low frequency region we have two
structures. The lower frequency peak is due to diffusive electron=
hole pair excitations and the higher one is due to spin wave like
modes. This assignment is confirmed by considering an anisotropy
[see also Fig.9]. The spin waves decay into electron—holé pairs
and have an intrinsic gq-dependent width. The intrinsic width 1is
a unique feature of the itinerant antiferromagnets in contrast
with the ferromagnetic and local moment cases.

Now we consider the effect of anisotropy in a phenoménological
way [eqs.(3.18);(3.21)]. Figure 9 shows the magnetic excitations
in the presence of the anisotropy [a case of a fairly strong
anisotropy A(X8/2p) = 1.0]. The effect of the anisotropy is two
fold. Firstly, the'dissipative low frequency modes are suppréssed
by the effect. We see that thé low fréquéncy peak in Fig.8 disappéars
:in Fig.9. Secondly, the spin wave modes aré lifted up and in thé
long wave limit become good modes which do not decay into éléctron=
hole pairs. The spin wavé frequency dispérsion has a finite gap
wg. By using eq.(3.46) in éq.(3.43) with the above mentioned

modification [eq.(3.20)], we get

4AQ 1y (Q,0) - xg (0,00111/%B,3/2, (3.49)

={___._
“a P Q Q Q

for small BQ.

We have seen unique features of the spin waves of itinerant
antiferromagnets: intrinsic damping and importance of the anisotropy.
The excitations of electron-hole pair type have also large amplitude

especially in the case without anisotropy and contribute considerably
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to the physical properties such as specific heat, NMR relaxation
rate and resistivity, as discussed in the othér subsections.

Because of rather academic nature of our model for the numerical
calculations, detailed comparison with experiments is beyond our scope.
However, we may gain a better understanding of the neutron scattering
experiments in the light of our results. The alloy’system vy-FeMn
is known to be an antiferromagnetic metal system where the band
30)

nesting plays a minor role in contrast with Cr. Tajima, Ishikawa,

Endoh and Noda have studied the magnetic excitations of the system

61)

by neutron scattering. Their results show that the spin waves

have a significant damping which is almost proportional to q.

Sato and Maki investigatéd the excitations théoretically.62)

To explain the noncollinéar spin structure of y—FéMn system,63)
they considered several Fermi surfaces near ' and X points and '
concluded that the multi spin density wave staté is the most stable
one. Then they studied the excitation and obtained the damping
proportional to q2 in contrast with the expefiment. Tajima et. al.
have also obtained the enérgy gap wg proportional to 3/2 power

of the magnetization; in accordance with eq.(3;M9). Sato and

Maki have also studiéd the gap by considering‘the dipole spin
interaction and obtained the résult that the gap is proportional

to BQ. These facts suggest that the neutron scattering éxperiment
on y-FeMn exhibits the genéral characters of magnétic excitations

of standard antiferromagnetic metals and not those of a rathér

special antiferromagnet of the nésting typé.
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§§3.4. Electrical Resistivity6h)

[1] As has been seen in Table 1 in §81.3, electrical resistivity

of magnetic metals is characterized by a large term proportional

to T2 at low temperatures. This resistivity is considered to be

due to thescatteringsby.spin fluctuations. This last subsection

is devoted to a study of the resistivity. After Mills and Ledérer65)
let us introduce a simple model consisting of s- and d—bénd electrons.
Only the s-electrons contribute to the conductivity and the d=
electrons play a role of scatterers, i.e. the conduction electrons

are scattered by the spin fluctuations of the d-band électrons |

via an s-d exchénge interaction. The model hamiltonian of the

system is

H=H,+Hy +H_ 4, (3.50)
H =1 g el e (3.51)
s K,o k~¥ko~“ko ?

H,_ 4 =72 [ck+q¢ck+s—(Q) * eyyqyCisS+ (@)
qk

+ +
*(epiqaCiy T CrbqiCie Sz (DT (3.52)

where cko is the annihilation operator of the s-electron of momentum
k and spin o, J the coupling constant of the s-d interaction and
sa(Q) [o = +, -, z] the spin density operator for the d-band

defined by eq.(1.6).
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¥
When the antiferromagnetic ordering, whose wave vector is Q, )
sets in, s-electrons suffer a periodic exchange field via the

s-d exchange interaction:

B, = J:sZ(Q)> = Jksz(—Q)> . (3.53)

The periodic field reduces the first Brillouin zoné into the half
and results in a splitting of the conduction band. Thé canonical
transformation to describe the new bands is the same as eqgs.(2.34)-

(2.36):

E1k

1, . _ 1 ) 2.y
521{}— ‘2‘(€k+Q + Ek) + [H(Ek‘l'Q - gk) + BS] 3 (3-5“)
tan2y = (gk+Q - gk)/zss. (3.55)

By the transformation, the distortion of the Fermi surface of the
conduction band is taken account of. By using Born approximation,

transition probabilities due to the s-d interaction can be calcﬁlated:
wy_g(1ko » 1kt+qo)

= (2/‘h)J2 [n(“’lk,lk+q) + 11 cosz(xpk ) Im x?

Z
™ Vktq (5095104

. 2z .
- 20 cos(y, - ¢k+q)31n(wk + wk+q).bnx (q’_q—Q'wlk,lk+q)

+ sinz(wk + wk+q)-D"XZZ(Q+Q’w1k,1k+q)} etc, (3.56)

*¥) For brevity let us consider the single Q antiferromagnet as the
same manner in the other subsections. We take the z-axis along Q

and consider the case where the current flows parallel to Q.
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where Wy e 5k is the energy change of the scattered electron and
>
n(w) the Bose function.
As we deal with the anisotropic and inelastic scattering,

66)

we have‘recourse to variational principle. We choose Vgik

as a trial function. The actual distribution of thé.electrons
deviates from the one déscribed by the trial function owing to

the anisotropic nature of the s-d scattering. Althdﬁgh.an estimation
of the deviation 1s practically impossible, wé may consider the
deviation is not so serious from the following reasons. Firstly,

in the actual substance, impurity scattering and phonon scattering
which are isotropic have a tendency to reduce the deviation.
Especially, at low temperatures the s-d scattering is dominated

over by the impurity scattering and it can be shown that the trial
function is exact up to the first order of Bs in this casé [see
Appendix I of Ref. 64)]. Secondly; the contribution of the deviation
.to the resistivity is proportional to the square of thé deviation
[eq.(A.5) in Ref;6u)]. Above Ty our procéduré is équivalent

to introducing a relaxation time averaged ovér the conduction electrons.
Below TN we can take account of the effect of the gap of thé con-
duction bands resulting from the ordering of the d-band. Therefore
we may expect that our trial function describes well qualitativé
features of the resistivity dué to the spin flﬁctuations; although
it generally overestimates thé resistivity to some extent.

After straightforward calculations the following éxpréssion

for the electrical resistivity is obtained:
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1

kBT

R = [hJ/ne(1l - gBS)]2 Z'Jdn)n(w)[n(w) + 1]
q

[2T%%(q,0) Im x2%(q,0) + TT7(q,0) Im{ x " (q,w) + x T (q,u0)}
+ 2T 2%(q+Q,w) Im x%%(q+Q,u) + I (q+Q,w)

m{x 7 (q+Q,0) + x t(a+Q,u) 1, (3.57)

with g = 3ﬂQ/Mﬁ;£;; ﬁ;(g;) being Fermi momentum.(energy) of the
s-band. As the resistivity is expressed in terms of the dynamical
susceptibilities, the expression is applicable for both itinerant
and localized models for the d-electrons. Fas(q,w) takes care

of the dependence on thé nature of the s-band, particularly its

splitting in the ordered phase. Their explicit forms are

r?2(q,w) = ' [sin®(¥, - ¥, M n.,(k,q,0) + n.q(k,q,0)}
1 k k+q’" M12 21

r22(q+Q,w) = ' [sin(y, + ¥, M n..(k,q,0) + n.-(k,q,0)}
kT Yig?t M2 21

k

+ COSZ(wk + wk+q){n11(k;q,w) + n22(k;q,w)}],

" (q,0) = ﬁ'[°°S2(¢k T s ngo(ka,w) + npy(kiq,w)}

+ sin2(¢k * b ingpkease) 4 n22(k;q,w)}],

r*7(a+Q,0) = 2'leos® (b - Uy, N, (k,a,0) + Ny (,a,0))
k
+ sing(wk - wk+q){nll(k,q;w) + nys(k,q,0) 1],

(3.58)
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with
ﬂij (k:Q>w) = {f(g,}'k'*-q) - f(eik)] ) (Eik - gjk-’-q - hw)

1 i, | i, 2
x la, + E‘Q{(wl) 31n2wk+q - (-1) 51n2¢k}] .

(3.59)

In the paramagnetic phase TaB(q,w) is proportional to the dynamical

susceptibility of the conduction band x%i)(q,w)
raB(q,w) = !5q2Im xaB(q,w) (paramagnetic phase). (3.60)

The factor 1-gB_ in eq.(3.57) denotes a change of effective carrier
number or effective mass resulting from the gap of the conduction
band and is the origin of the hump in the resistivity observed

‘just below TN. Miwa67) and Elliott and Wedgwood68) investigated

the distortion of the Fermi surface of the conduction band in
consequence of the screw-type ordering of 1océlized Hf—electrons.
Using the relaxation time obtained by the molecular field approxima-
tion they gave an explanation of strong anomalies obsérved in heavy
rare earth metals at the temperature wheré‘the magnetic ordering
changed. The factor is consistent with their result.

To discuss the resistivity of antiferromagnets, we may dis-
regard the contribution of the uniform componénts of the spin
fluctuations [first two terms of the last brace in eg.(3.57)]
because (1) PaB(q,w) represénts small angle scéttering compared
with Pae(q+Q,w) and (2) JszaB (d+Q,w) has a 1argér amplitude

than.bnxas(q,w) in antiferromagnets. Further simplification may
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be possible because a, in eq.(3.59) gives only a weak dependence
of I'OtB(C1+Q,w) on q. Neglecting this term and making the following

expansion for small w

r8(q+q,0) = o (e2)Q? [(/Q) (hu/ep)y®B(@) + ++-1,  (3.61)

n

¥
where pc(eF) is the density of states of the conduction band,

we obtain

9¢
=_m_~°Q 42 *v 0 AR |
R ~ 7 Tm J pc(eF)xQ(g) R(T) , (3.62)
_ _ r
R(T) = 1 1 J q2dq[dw w n(w) [n(w) + 11F(q,w) , (3.63)
o :

2 T
(1 - gBS)

—2_
0

[2v2%(q) Im x%% (q+Q,0)
3XQ

F(q,w) =
+ vy i (@, e) + x T, 1, (3.64)

where m is the effective mass and n the electron number of the
conduction band. The cut off parameter r is indicative of the‘
extent around Q in the g-space where the spin fluctuations are
effective on the resistivity and therefore dépends on the band
structure. The function Yas(q) denotes the influénce of the

- gap BS on s-d scattering and is normalized to unity in thé para-
magnetic state. The explicit form of yae(q) is given in Appendix.
ﬁ(T) which is a dimensionless quantity represents the T dependence
of the resistivity. In eqs.(3.63) and (3.64) and in what follows
reduced units which measure enérgy and momentum by €Q and Q are

again used unless otherwise stated.
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[2] The expression of resistivity of ferromagnetic metals is given
by neglecting Bs’ keeping uniform components only and taking the
summation on q over the wholebfirst Brillouin zone in eq.(3.57)-69)
As for Pas(q,w) we may use eq.(3.60). Of course in the ferromagnetic
state, conduction electréns suffer a uniform exchange field but

the field does not play any essential role. | |

65) introduced the s-d model and,calculated

Mills and Lederer
the resistivity due to RPA spin waves in itinerant ferromagnets.
Subsequently the same model as applied to nearly ferromagnetic
metals has béen studied by employing RPA for the spin fluctuations;
Schindler and Rice70) investigated the resistivity with'thé‘
use of a simple model function for the RPA dynamical suscéptibiiity.
Their result shows that the resistivity of nearly ferromagnetic
metals at low temperatures is proportional to T2 and its coefficient
diverges at the critical boundary of ferromagnetism. 1In the

71)

extreme vicinity of and at the critical boundary Mathon showéd
that the resistivity at low temperaturés was proportional to T5/3.
Mills72) discussed the resistivity of nearly fefromagnetic metals
in a whole temperature range of interest using an expansion form
of the RPA dynamical susceptibility. His calculation shows that
the resistivity varies as T2 at low temperatures and is proportional
to T at sufficiently high temperaturés;

The resistivity was invéstigated on the basis of the MK

69) The calculation is

theory by Moriya and the presént author.
performed in the whole'témperaturé range of interést for both
weakly and néarly ferromagnetic metals. Thé main results of the

calculation are summarized as follows.
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1) At low temperatures the electrical resistivity is proportional
to T2 for both ferromagnetic and paramagnetic metals. The
coefficient of the term is large and diverges at the critical
boundary as |a - 1|_%.

2) In the vicinity of thé boundary the T2 behavior holds only in
narrow temperature range and TS/3 behavior takés over as the
temperature is raised. This trend is stronger in the self=
consistent calculation than in RPA. In a substance lying Jjust
at the critical boundary the low temperature resistivity
behaves as T5/3.

3) The temperature derivative of the resistivity is discontinuous

at TC. The change of slope at TC is proportional to thé square

of the magnetization at T = 0K and is small for weak ferromagnets.

) The resistivity is generally suppressed from that calculated
with the use of the RPA spin fluctuations. This effect can
be seen typically by saturation tendency of the resistivity

at high temperatures.

These characteristics are consistent with experiments on typical

73,74) g, 1,46)

weakly ferromagnetic metals Zanz, 3 and a typical

75)

o Recent experiment on Ni3Al
76)

nearly ferromagnetic metal HfZn

by Sato also supports the results.
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[3] In the paramagnetic phase, B, = 0 and Yae(q) = 1 hold and
the three dynamical susceptibilities are connected with each
other by the rotational invariance. By using the dynamical sus-
ceptibility discussed in §82.2 and the expansion form eq.(2.43),
the resistivity is obtaiﬁed. At low temperatures the resistivity
does not depend on the cut off parametér r. Performing-the q=

integral in eq.(3.63) we get

g(&,w) = {q2<k1F(q,w)
T CA(1+8)w -
-0 - 18+ /67 ¥ (G, (3.65)
aQ[2AXXAyyAZZ]
with § = xo/a X
Q" QMQ”
There are two limiting cases:
- 1TCO(l+5) T2
R(T) = — y= Z(2) (6> T), (3.66)
%
2aQ[AXXAyyAZZ] $
- m C,H(1+6)
R(T) = 0 73/27(2) (8 « T) (3.67)
;é .
GQ[2AXXAyyAZZ]
where
2(n) = [ QW n(e)n(e) + 1] = M(n+D(n) . | (3.68)

0

At high temperatures expanding the Bose factor as

n(w)[n(w) + 11 = (1211 - )%+ «vv 7, (3.69)
’ w 12T '
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and performing w-integral first in eq.(3.63), we get

R (1) = Q) T ppapte o K, (3.70)
20 A3/2 /g 1+k
Q
with k = r/A/§. 1In eq.(3.70) we have assumed A« ='Ayy = A, =A

for simplicity.

It should be noted that the imaginary part of Xﬁ;,o(q+Q’w) is
generally small (xw) compared with that of the ferromagnet G:%).
Equation (3.67) corresponds to the T5/3 law at the critical
boundary of ferromagnetism. Because of thé above mentioned nature
of the antiferromagnetic fluctuations eq.(3.67) is applicable in
a small temperature range and at highér temperatures the resistivity
is suppressed from this value significantly. Another consequence
is that ﬁ(ﬁ,w) has é long tail in the region of large w. As a
result, the situation where eq.(3.70) is applicable is hafdly
‘realized in the temperature region of our intérest.

Now we show some numérical examplés based on an electron
gas model with Umklapp procésses for the d—band; whose Fermi
wave vector kF is 0.8 Q. Figures 10, 11 and 12 show ﬁ(T) vérsus
T in the paramagnetic state for some values of the cut off parameter

r, 0.6, 1.2 and 1.8, respectively. Solid lines show the calcu-

or T,,. For

lation based on the HM theory for several values of aQ N
comparison RPA results are shown by dashed lines. '

From these analytical and numerical résults we may draw the
following conclusions.
(A) Nearly antiferromagnetic metals _
(1) The resistivity at low temperatures is proportional to T2//§6.

As XQ is proportional to 1l-a, at T = 0 K, the coefficiént

Q
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(2)

(3)

(4)

(B)

=%
of the term divdrges as (l—aQ) ? when the critical boundary
of antiferromagnetism is approached. Recent experiments
on the temperature and pressure dependences of the resistivity

of 7 at % Co doped NiSQ77) show that the coefficient divérges

-1/2
o)

as (p-P , where P, is the critical pressuré. This is

0
consistent with our theory.

If the substance lies very near the critical boundafy, the

2

T law of the resistivity holds only in a small temperature

range and the T3/2 law takes over as thé témpérature is slightly
raised. Especially, just at the critical boﬁndary R at low

temperatures is proportional to T3/2.

73/2

However, the temperature region where law holds is also

very narrow and R becomes almost T-linear. This is due to

the smallness of the imaginary part of X&+V0(q+Q,w). Ogawa78)

Q’
observed linear T dependence in B-Mn at low temperatures.

As B-Mn is considered to lie very near thé critical boundaryus)
this linear T dependence may be attributed to this mechanism.
At high temperatures the resistivity is strongly suppressed
from the RPA value and show a tendency of saturation.

Antiferromagnetic metals in the paramagnetic state

At TN the resistivity 1s expressed by éq.(3.67), but it déviates

from the value exprésséd by eq.(3.67) immédiatély above Ty- As
a result R becomes almost T-linear (Fig.11l and 12) or even make a
dip for small r (Fig;lo). At high températurés the resistivity
of the antiferromagnetic metal has a common feature with that of

the nearly antiférromagnetic métal.
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[41 Now we consider the resistivity in the antiferromagnetic

phase. Below TN we confine oursélves to low temperatures (T«:TN).

In this temperature region the spin fluctuations may be divided

into two groups. One group consists of collective spin wavesb

and the other paramagnon'type spin fluctuation modes. Lét us

study the characteristics of the résistivity due to both of these

types of spin fluctuations by examining the transvérsal componénts.
The resistivity dué to the paramagnon typé’modes is pro-

portional to T2. This term is easily calculated by using the

expansion forms:

3 —sr 2x&;,O(Q,O)COA 72

5 Ry " (T) = [ XO N ]Z(2)h(BQ/BS)g~ . (3.71)

Q R Q

The factor h(BQ/BS); whose explicit form is given by eq.(4.8)

in Ref.64), denotes.the effect of the gap of the conduction band.
’h(BQ/BS) shows logarithmic divergence as B, » 0 in the same manner
as(g[Aol in the expression for Tl. The resistivity is proportional
to T2/BQ. Because BQ2 is proportional to ag - 1 at T = 0K,

the coefficient of 72 is large and diverges as (aQ - 1)'1/2 when

the critical boundary of antifefromagnetism is approached from

the antiferromagnetic side.

The resistivity due to the spin waves havé been investigatéd
by several authors by using the localized moment mode1{79’80)
Unfortunately, their results contradict with each other. We have
investigated the spin waves in §§3.3 and seen that the spin Waves
of itinerant antiferromagnéts have an intrinsic width and the

phenomenological treatments is insufficient for the itinerant

case. Howéver, thé contribution of thé spin waves to the resistivity

- 67 -



is considered to be small in the itinerant case and important
for the local moment case. So we study the resistivity by using
the phenomenological theory for the spin waves. By using eq.(3.37)

the resistivity due to the spin waves is given by

2Ry, = 2 [a%aafds o n) inw) + 1177 (@
2
o B -
(1-29 19 5 -u). (3.72)
XQ Wq <

we may fairly generally assume that 8555 B In the temperature

Q
region where T is greater than the gap energy of the conduction

band (T >» BS), y+_(q) may be replaced by unity and we have

2

xn B
3 .m0 - X0y PQ 2 ,
2 R(T) = q(l - —) —= T° Z(2) (B €« T « B.) .
where v is the velocity of the spin wave w_ = v_, which is assumed

q q
to be isotropic. The resistivity is proportional to T2 similarly

to the contribution of the paramagnon type modes. At low tempera-
tures where T «:'BS holds the effect of the gap of the s-band

is important. The resistivity at low temperatures is proportional
to T5 owing to the extra factor (qz/Bs)3 [eq.(A.12)] which origi-‘
nates from the fact that the scattering around Q 1is supprésséd

by the gap. To see this gap effect and the continuous changé

of the resistivity through the regionAT..Bs, let us show the results
of eq.(3.72) in Fig.1l3. The figure shows ﬁ(T)Sw/ﬁ(T)gw(m ﬁ(T)Sw/TZ)

versus T/BQ. The efféct of the gap is indicated by the paraméﬁer

V = 2V(BS/BQ).
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The curves show how the resistivity changes its behavior from

the T5 dependence to the T2 dependence.
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§4., Summary and Discussions

In the preceding sections wé have investigated the propérties
of the itinerant antiferromagnets. For weakly and nearly anti-
ferromagﬁetic metals; which have been the méin objects of our
study; thé spin flﬁctﬁations whosé wavé véctors aré néar the
antiferromagnetic wave véctor play a prédominant role. The sélf=
consistént renormalization theory of oﬁr schemé treats ﬁroperly

the spin fluctuations which have a local character in g-space.

In the present article we havé seén that the theory qualitativély

improves the conventional HFA-RPA theory and that the physical
properties closely rélated to the spin flﬁctﬁations aré Wéll
understood by the framework of the theory; Many éxperiménts
also support the results. Further systematic experiments aré
highly desired. This type of theory may be extended to the'casés
of more general magﬁetic structures, for example helical spin

60,81) and coexistence of ferro- and antiferromagnétism.

‘structures
Through our study we have used the electron gas model with

Umklapp processes as a model for the non-interacting system.

This is bécause that the nesting-type models aré considered to

be rather special ones as we have séen in thé precéding sections.

However, in the band type model; where all the portions of the

band is responsible for the antiferromagnétism, the calculation

of the dynamical susceptibility is a laborious task and we have

confined ourselvés to low températures in the antiférromagnétic

phase. To set up a band typé model; which is easily tractable

mathematically in thé ordéréd phasé, is an important problem

awailting solution.
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The self-consistent theory we have reviewed is a theory suitable
for weak magnetism. To acquire a unified understanding of magnetism,
it is indispensable to proceed to the theory of strong magnetism.
This impiies to treat the case with 1argé amplitude of magnetization
and/or the spin fluctuations in a wider region in q—space; From |
the point of view of the electron correlation, our theory havé made
some approximations suitable for relatively wéak électron—électron
interaction. The theory of strong magnetism naturally includesrthe
problem of stronger correlation.

Experiments on NiS«g_xSéX show that the system exhibits the
metal-insulator (Mott) transition and that the metallic side of the

83) To discuss the Mott

transition is also antiferromagnétic.
transition, too; the theory of antiferromagnetism with large ampli-
tude is important. We may gain a clearer conception of the transition
in terms of charge fluctuations. It is noteworthy here that
,conductivity is related to the dielectric constant. In this case
we should grasp the eléctron correlation as the problem of not only
the spin fluctuations but also of the charge fluctuations and
should clarify the connection between the two.

In the case of the strong electron corrélation; our Hartrée=
Fock ground state with a use of the effective electron-electron
interaction may encountér a serious criticism, although no définite
experimental fact against the Hartrée-FockAground states of the
transition metals has beén réported so far. In any caéé, it will
be a matter of great significance to describe not only the excited
states but also the ground state moré accurately.

These problems; we believe, are fundaméntal and fascinating
ones still to be solved in the théory of magnetism and also in
many body problems.
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Appendix
The expansion coefficients c(q) and Y+—(q) of the p linear
terms of x&+ O(q+Q,w) and F+—(q+Q,w), respectively, are expressed
KMy

by the line integrals in the k—space.ul’6u)

c(@) = cqyq(a@) + cy5(Q) + cyy(q) + cyq(a)d, : (A.1)
Y@ = i@ + ya5(@) + yya(a) + ypr(@), (.2)
_ 1 2 2 2 2.-%
cij(q) = —wg —~g J dk{leik| lvejk+ql - (Veik'vgjk+q) }
2XQ 8w L
sin® (6, - ek+q) (1 =3)
cos2(9k - ek+q) (1 % j), (A.3)
+- 1 ' 2 2 2. -%
{sinu(wk = Uiaq) €082 (hy + Uyl (1 =)
cosu(wk = Vyiqg) cosz(wk * Vygg) (1 ¥ j). (A.M)

The integral contour L is given by the line of intersection of

* .
the surfaces defined by Eix T € and Sjk+q = e O gik = eg and

*
gjk+q F°
two groups:

= g The terms in egs.(A.l1) and (A.2) may be divided into

Cingra(®) = e12(a) + epp(a),

Cinter(d) = cppla) + 021(Q); | (A.5)
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- +-
Yintra(q) = Yll(Q) + ¥55(a),

Y15(a) + va7(a). N (A.6)

Here we call them intra and interband contributions, respectively.
In the paramagnetic state eqs.(A.3) and (A.4) givetassentially
the same results, although c(g) is referred to the d-band and

Y+—(q) to the s-band:

Cintrald) = CI(Q)
= ¢, (2/ﬁ)sin_l(qz/2roqL) (qz/qLSETO)
1 (a,/q,>2ry), (A.T)
Cinter(d) = e (q) = o ~ CI(Q): (A.8)
Y;;tra(q) = YI(Q)
-1 *
= (2/7)sin (qz/2r0qL) (qz/qjszro)
1 (a,/a >2r5), (A.9)
Y;;ter(Q) = YII(q)_= 1 - YI(q), | (A.10)

where q, = (qi + qf{)!‘é is the wave vector perpendicular to Q,
ry = [kg - 1/1111'\§ is the radius of the circle of interséction of
the Fermi surface and the magnetic zone boundary plane and r; that
of the s-band.

In the ordered phase the gap BQ or BS has different influence

on intra- and interband contributions. For the interband contribution
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the most important effect is a limitation of the region in the

g-space where the contribution exists.

bution of the matrix elements [sinz(e

x = %%+q

For the intraband contri-

) ete.] are the

most important. Performing the line integral by taking account

of the above mentioned facts, we obtain

¢inpra(® = cT(@)la,/Yas + Byl,
Cinter(®) = ¢T1(a) 8(a, - ap),

i a(@ = Y@ e, /a2 + 213,
Yimtop(@) -y - Bs/qJ_Jf*;)e(q~L

where 6(x) is the step function and qi =

;‘f‘ (B, /r + (a,/2rg )2,
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- q:), (A.12)

(BQ/I'O)2 + (qz/2r0)2 and
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T (Ty) Y R,

Sc3In (F) n~ o6 - 11.5 | 0.048
Zrzn, (F) N 25 30.4 ~ 37.4 0.025

Fe  (F) 1043 5 1.3 x 1072
Co  (F) 1388 5 1.3 x 1072
Ni  (F) 627 7.3 1.6 x 1072
HfZn, (P) — 15.8 0.002

CrB, (AF) ~n 85 13.6 0.0015
a-Mn (AF) 95 11.8 0.15

Table 1. Transition temperatures, coefficients of linear
specific heat y (mJ/mole K2) and coefficients of T2 term
of resistivity R, (uQcm/K2) of various materials. F, P
and AF stand for ferromagnet, paramagnet and antiferro-

magnet, respectively.
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Fig. 7. Real parts of xg (qg,w) and Xg (g+Q,w). For comparison
Q Q

Re x,(gq,w) in the paramagnetic phase is shown by dashed line.
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Fig. 8. Mangetic excitations around thé magnétic reciprocal
lattice point. The vertical axés denote dimensionless quéntity

I Im x '(q+Q,w). We take By = 0.1 in this figure and Fig. 9.
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Fig. 9. Magnetic excitations in the presencé of the ahisotropy.

The notations are the same as those of Fig. 8.
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Fig. 10. The electrical resistivity of weakly and nearly anti~
ferromagnetic metals for the cut off parameter r = 0.6Q. The
RPA results are shown by dashed lines for the same valués of TN

or ag (denoted as a in the figure).
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Fig. 11. R(T) versus T for r = 1.2Q. Other notations are the

same as in Fig. 10.
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Fig. 12. R(T) versus T for r = 1.8Q. Other notations are the

same as in Fig. 10.
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Fig. 13. The electrical resistivity due to spin waves. The vértical
. o = . . 5 2 " R

axis [RSW(T)/RSW(T)] is proportional to RSW(T)/T . This figure

shows the effect of the gap of the conduction band on the resistivity.

The effect is characterized by the paraméter~§ = ZV(BS/BQ).



