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1 Introduction

1. In economic analyses dealing with uncertainty, it is generally necessary to use some utility rep-
resentation functions. Probabilistic Decision Theory provides the foundation for such functions.
Ramsey (1926) (32) provided the first attempt at an axiomatization of choice under uncertainty.
His great contribution was to suggest a way of deriving a consistent theory of choice under uncer-
tainty that could isolate beliefs from preferences while still maintaining subjective probabilities.
His purpose was to construct the foundation of the logical inference rather than of the proba-
bilistic one which was developed later by the mainstream proponents of the decision theory. The
most important studies were provided by Neumann and Morgenstern (1947)(29), Savage(1954)
(34), Anscombe and Aumann (1963)(2).

Neumann and Morgenstern(1947) (29) prepared three axioms for a set of functions which
assign probabilistic distribution on prize set and for a preference relation between them. The
first axiom is the one which ensures the weak order of preference relation. The second and key
axiom is called the independence aziom. This axiom is such that if every two functions (say p, q),
make a convex combination between themselves and another function (say 7) respectively (i.e.
make ap + (1 — a)r and ag + (1 — a)r with any a € (0,1) ), the preference relation between p
and g is preserved . This axiom is crucial in many studies of Probabilistic Decision Theory since
this induces additivity or affinity of the probabilistic representation. Such additivity observed in
various representations is the main topic of the present dissertation. The final axiom is the one
which guarantees the continuity of the representation function. Using the above three axioms,
they obtained the representation function in the form of probabilistic expectation of utility of
prizes, which is called exzpected utility representation. An important point to emphasize is the
fact that the probability measure in their framework is exogenous and so should be regarded as
objective.

The formulation appearing in Savage(1954) (34) consists of seven axioms. This axiom set
was epoch-making as it provided the foundation of subjective probability. More precisely, the
probability measure on the given state space and its additivity was induced endogenously. These
properties are due to the additivity of the (Lebesgue) integral operator in the representational
form. In Savage’s framework, additivity of the representation function ( integral operator) is
derived from two axioms. One is the Sure-Thing Principle and the other is the Comparative
Probability. To explain these axioms, we define by [f, E; g, E€] the function which coincides with
f on E and with g on E°. Sure-thing principle is such that for all f, g,h,h’, and all events E,
[f, E; h, E€] = |g, E; h, E°] iff [f, E; h',E°] = [g, E; i, E°]. The preference between two functions
which coincide with each other on off of event E is determined by only the relation on E.
Comparative Probability is that for all constant functions f, g, f',g suchthat f =g, f =g,
and for all events E, F, [f, E;g,E°] = |f, F; g, F°] iff lf',E; g E = |f',F;¢', F°]. This axiom
provides the binary relation between events as “more likely than”. By these axioms, it holds that



if event E; is more likely than event F> and E1NF = E;NF = () then E; U F is more likely than
event FE, U F. This property makes it possible for the probability of any event to be assigned by
the inner measure method, which is the approximation from the inside, and for that probability
to be an additive one.

Although Savage’s framework is good, it is somewhat complicated. Anscombe and Au-
mann(1963) (2) improved this point with an alternative axiom set for subjective inference. They
extended the ideas of Neumann and Morgenstern by preparing a simple act set. The simple act
set consists of all functions that are defined on a state space and which have values originat-
ing from a set of all probabilistic distributions on a prize set with a finite support. In other
words, these functions take their values fromn a set of lotteries where the prizes are also lotteries.
Their axiom set consists of five axioms; AA1(Ordering), AA2(Independence), AA3(Continuity),
AA4(Monotonicity), and AA5(Non-degeneracy). AA1,AA2, AA3 correspond to the three ax-
ioms of Neumann and Morgenstern(1947) (29) respectively and AA4, AA5 are the axioms which
concern the simple acts. This method developed by Anscombe and Aumann(2) has been used
in various studies since it is very tractable, although in comparison to Savage ’ s theory, rather
artificial.

2. A series of studies have thus made it clear that the decision maker’s behavior under
uncertainty can be recognized as maximizing expected utility with respect to the additive prob-
abilistic measure. However, several experimental facts against the expected utility theory have
been found. The most famous one is the experiment reported in Ellsberg(1961) (10), which is
as follows: suppose there are two urns, each one containing 100 balls. The balls may be ei-
ther black or red. Urn A is known to contain 50 black balls and 50 red ones. But there is no
information about the allocation of balls in urn B. The examinee is asked to choose an urn
and a color, and then to draw a ball from the urn which she chose. If the ball she draws is of
the color she has chosen, she will gain 10 dollars. What will be the examinee’s choice? Many
experiments reported that, while most examinees are indifferent with respect to the color they
bet on, they are not indifferent with respect to the urn they choose. They strictly prefer the
urn A, in which the probabilities are known. This fact cannot be explained by any (objec-
tive or subjective) probabilistic decision. It may be assumed that the examinee estimates the
probability of urn A and red; P(Ar), as being larger than that of urn B and red; P(Br), i.e.
P(Ar) > P(Br) since she prefer the bed in urn A to in urn B. Similarly, she also estimates that
P(Ab) > P(Bb). Thus if she thinks her inference rule is additive then she must be sure that
1 = P(Ar U Ab) = P(Ar) + P{Ab) > P(Br) + P(Bb) = P(Br U Bb) = 1. It is contradiction.
More precisely, her preference violates Savage’s sure-thing principle. (see Ellsberg (10) or Gilboa
(12)). This fact is called Ellsberg paradoz. The Ellsberg paradox is an evidence that a decision
maker distinguishes the environment in which the probability is known from the one in which



the probability is unknown. Almost all decision makers prefer the former to the latter. An
explanation for such a difference is concerned with the question of whether decision makers use
an additive or non-additive probability

This nature of decision makers is called the uncertainty aversion, the concept of which comes
originally from F.Knight.(1964) (23). Knight pointed out the difference between the environment
in which the probability is known and the one in which the probability is unknown calling the
former Risk and the latter uncertainty. He stated that most economic phenomena are placed
under uncertainty. Non-additive probability theory is often called Knightian uncertainty.

Recent studies by Schmeidler(1989) (36) and Gilboa(1989) (12) provide an axiomatic char-
acterization for expected utility with non-additive probabilities. Both approaches employ the
Choquet integral of expected utility with respect to non-additive probability or capacity.

Non-additive probability or capacity, v, on state space S is defined by the following three
axioms: (i)v(®) = 0,v(S) = 1, (ii)0 < v(A) < 1 for all A C S, (iii) A C B implies v(A) < v(B).
So, instead of additivity, only monotonicity is imposed. For a random variable a(w) over S,
Choquet integral is defined as follows:

I(a)=/Omv(azoz)domL‘/_0 (v(a > @) — 1)da

Since this is a Riemann integral, additivity of the measure is not necessary for the well-definedness.
Especially, for a finite step function a = )_ a;1g, where o1 > az > -+ > 0k, E,NE; =0 for all
i,7, and 14 is an indicator function, its integral is rewritten as

k i
I(@) = (i — cur)v(|J Ej)
i=1 i=1

In the case of v being additive probability, the Choquet integral coincides with the probabilistic
expectation (i.e, Lebesgue integral). Schmeidler(1989) (36) explained the Ellsberg paradox in
this way; suppose that S = {r,b} is the state space. The non-additive probability assigned by
a decision maker is v(8) = 0,v({r}) = 0.4,v({b}) = 0.4,v({r,b}) = 1. If one bets on red in urn
B, her Choquet expected payoft is 10v({r}) + Ov({r,b}) = 4 dollars. On the other hand, if she
bets on black in urn B, her Choquet expected payoff is 10v({b}) + Ov({r,b}) = 4 dollars. Thus,
whether she bets on red or black in urn B, her expected payoff is less than that of betting on
urn A which is 5 dollars. Hence she prefers urn A to urn B. Using non-additive probability and
Choquet expected utility, Schmeidler succeeded in explaining the Ellsberg paradox as a rational
decision behavior.

The axiom set for Choquet expected utility representaion which Schmeidler provided is al-
most the same as that in Anscombe and Aumann (2). Schmeidler replaced only the axiom
of AA2(Independence) by AA2:omo(comonotonic independence). Comonotonicity is the notion



which characterizes Choquet integral. Two random variables a(w) and b(w) are said to be comono-
tonic when (a(s) — a(t))(b(s) — b(t)) > 0 for all states s,t. Schmeidler (1986)(35) proved that the
following two statements for an operator I are equivalent: (i) I has an expression of Choquet
integral and (ii) I(a+b) = I(a)+ I(b) whenever a and b are comonotonic. The condition of (ii) is
called comonotonic additive. This theorem means that comonotonic additivity characterizes the
Choquet integral. In Schmeidler(1989) (36), the axiom AA2omo(comonotonic independence) for
the preference of the decision maker induces comonotonic additivity in the representation oper-
ator and plays the role in the construction of Choquet expected utility representation as seen in
the following theorem:

Theorem (Schmeidler 1989)

A binary relation = satisfies AAl, AA2.5m0, AA3, AA4, AAS

if and only if there exist a unique finitely nonadditive probability(capacity) v and an affine real
valued function u on Y such that for all f and g,

frge /S u(f(s))dv(s) > /s u(g(s))dv(s)

where the integrals are Choquet integrals.
In the case of Ellsberg’s experiment, let random variable a be such that a(Br) = 10,a(Bb) =0
and b be such that b(Br) = 0,b(Bb) = 10. Then these a and b are not comonotonic. Thus,
expected payoff for a + b does not coincide with the sum of that for a and that for b, which
results in non-additivity of the inference of decision makers.

While Schmeidler(1989) (36) adopts the axiom set of Anscombe and Aumann(1963)(2),
Gilboa(1987) (12) uses the framework of Savage(1954) (34). He replaced the Sure-thing principle
by some weaker axioms which allow for non-additivity of the measure.

3. However, a full framework of Choget expected utility is not necessary to explain the
Ellsberg paradox. With only a little non-additivity, we can induce an Ellsberg decision. For
example, the decision criterion called e-contamination is the decision maker’s preference. It
is expressed mostly with an additive probabilistic expectation but only sometimes with a non-
additive one. The notion of e-contamination is old; it is discussed in the literature of robust
estimation since Huber(1964) (18). Given a random variable a, e-contamination representasion
is expressed as follows:

Ja)y=(1- E)La(s)du(s) + Egéiga(s) (1)

where p is a finitely additive probability on state space S and ¢ is a some small positive constant .
This representation form consists of a large additive part (integral part) but a small non-additive
part (minimum part).



Using e-contamination, we can explain the Elisberg paradox as follows; let random variable
a be such that a(Br) = 10,a(Bb) = 0 and b be such that b(Br) = 0, b(Bb) = 10. Then the
expected payoff with respect to a is J(a) = (1 — &) x 10u(Br) + 0 = 10(1 ~ ¢)u(Br), which is
strictly less than the expected payoff when betting on Ar; 10u(Ar) under the natural estimation
u(Br) = u(Ar) = 0.5. We produce similar conclusion in the case of b.

As seen above, e-contamination has a much simpler expression than the general Choquet inte-
gral expression in explaining the Ellsberg paradox. So, it should be given proper axiomatization.
This study was independently done by Eichberger and Kelsey(1999) (8) and by Nishimura and
Ozaki (2006) (30). Both studies use the axiomatic system of Anscombe and Aumann(1963) (2).
The difference between the two is whether £ in the representation is exogenous or endogenous.
It is endogenous in the former and exogenous in the latter. Eichberger and Kelsey(1999) (8)
developed a more general representation, which contains e-contamination as a special case, for
dealing with the Ellsberg experiment using three kinds of colored balls. Their representation
(called E-capacity) for a given random variable a is as follows:

K

J@) = (1=e) [ als)due) + 3 plBR) min ols) @

k=1

where E;, Es, ..., Ex is a given partition of S.

4. The second chapter, which is based on the paper of Kojima(2004) (24), studies the axiom-
atization of e-contamination. Here, we have the same motivation as Eichberger and Kelsey(1999)
(8) but adopt a different approach from that. While Eichberger and Kelsey(1999) (8) uses the
Anscombe and Aumann (2) method directly, we derive the same property from the more gen-
eral Schmeidler(1989) (36) method which utilizes a weaker independence axiom than Anscombe
and Aumann(1963) (2). We focus attention on the non-additive part in the e-contamination
representation; min,csa(s). We notice that this term has the additivity if restricted within the
random variables having a common minimizer in S. That is, minscs(a(s)+d(s)) = mingesa(s)+
mineesb(s) if argminsega(s) Nmingesb(s) # @. Therefore it is natural to predict that if we in-
troduce the independence axiom only to the simple acts which have a common minimizer on S
then we will obtain the expression of e-contamination. We call two functions cominimum if these
have a common minimizer on S. Our notion of cominimum is a weaker than that of comono-
tonic since comonotonic implies cominimum. We define operator I to be cominimum additive if
I{(a+b) = I(a) + I(b) whenever a and b are cominimum. Cominimum additivity is stronger than
comonotonic additivity since cominimum additive implies comonotonic additive. Using the no-
tion of cominimum additivity, we characterize e-contamination formula by the following lemma:
Lemma
If I is a Choquet Integral with respect to the capacity v on S, then the following four conditions
are equivalent:



(i) EUF #8 , ENF = { implies v(E U F) = v(E) + v(F)

(i1) There exists an additive probability measure p and a real number ¢ such that E # S implies
v(E) = (1 - e)u(E)

(iii) There exists an additive probability measure ; and a real number ¢ such that for any random

variable a
I(a)=(1-¢) / adu(s) + e mina
s s€S

(iv) I is cominimum additive

This lemma shows the equivalence not only between cominimum additivity (iv) and e-contamination
expression (iii) but also between these and the local additivity of the capacity (i)(ii). Moreover,
taking the equivalence between (iii) and (iv) into account, we can expect that a similar theorem
of Schmeidler(1989) (36) will be corroborated . Exchanging Schmeidler’s comonotonic indepen-
dence axiom A Ay, for our cominimum independence axiom AA omi, We succeed in axiomatizing
&-contamination as explained in the following theorem:

Theorem

A binary relation > satisfies AA1, AA2.omi, AA3, AA4, AAS

if and only if there exist a unique finitely additive probability measure 1 on S and an affine

function u and a real number £ such that :

frge (1o [ ulre)dute) + emigu(f () > (1 =) [ ulo(e)du(s) + emipuls(s)

Our cominimum independence axiom AAgom: coincides with the extremal independence axiom
which Eichberger and Kelsey(1999) (8) introduced with the finite state space. The advantages
of our approach are the following: firstly, our approach is constructed on the set of simple acts
which possibly contain infinite states. Secondly, our construction uses the local additivity of
the operation developed by Schmeidler. Finally, since our notion of cominimumity is flexible,
our characterization can be extended to more general near-additive representations. We shall
introduce these results in the third chapter.

5. The third chapter, which is based on the joint paper of Kajii, Kojima, and Ui(2007) (20)
addresses the extension of the notion of cominimumity. In the previous chapter, we considered
the cominimum additivity only on the whole state space S. In this chapter, we extend it to the
collections of the events; the subsets of S. Let £ C 25 be a collection of subsets of S. Two
functions z and y on S are said to be £-cominimum if, for every E € £, the set of minimizers of x
restricted on E and that of y have a common element. An operator [ is said to be £-cominimum
additive if I(z + y) = I(z) + I(y) whenever z and y are £-cominimum. The case in the previous
section is a special case of £ = {S}. The main result of this chapter is a representation theorem

for homogeneous operators satisfying £-cominimum additivity.



We treat v not as a non-additive probability but as a game or non-additive signed measure for
the generality. A set function v : 25 — R with v(@) = 0 is called a game or a non-additive signed
measure, especially in the context of the cooperative game theory. For a subset T C S, let ur be
the unanimity game on T defined by the rule: uz(X) = 1if T C X and ur(X) = 0 otherwise. The
following result is well known as the Mobius inversion in discrete and combinatorial mathematics
(see Shapley(1953) (33)).

Lemma

The collection {ur} is a linear base for the set of all games. The unique collection of coefficients
{Br} satisfying v = Y5 Brur, or equivalently v(E) = > pcpfr for all E C S, is given by
Br = EECT(—l)'Ti—lEIv(E)'

This linear base decomposition by Mébius inversion plays a very important role in obtaining our
result since the following property is suitable for our Choquet integral representation with the
following lemma:

Lemma(Gilboa and Schmeidler 1994(15))

For a function z € RS and a game v = Y, Brur,

/mdv = ZﬂT /xduT = Z,BTm%na:, (3)
T T

This method of using the minimum operator is adequate for treating cominimum functions.

We shall sketch our main result in the following. Notice that since £-cominimum additivity
implies comonotonic additivity, a homogeneous £-cominimum additive operator is represented by
the Choquet integral with respect to a non-additive signed measure v by Schmeidler’s theorem,
a fortiori. Since v can be uniquely written as v = Y pcgBrur, Where ur is the unanimity
game on T, the characterization of the operator can be done in terms of coefficients {Br}rcs-
We say that T is &-complete if, for any two points w,w’ € T, there exists E ¢ £ satisfying
{w,w'} C E C T; that is, any two elements are “connected” within 7" by an element of £. And
£ is said to be complete when & contains all £-complete subsets. The main result shows that
under the assumption of £ being complete, a homogeneous operator is £-cominimum additive if
and only if 87 = 0 for every T & £ That is,

Theorem
Let £ be complete. The following two statements are equivalent;
(i) v = ¥ r Brur is £-cominimum additive, (ii) Jzdv =3 1c¢ frminr .

Moreover we can also show the local additivity of the game which satisfies £-cominimum
additivity as follows: v is modular on a suitably defined collection of pairs of events: v(T3 UT2) +
v(Ty N T2) = v(T1) + v(T2) whenever the pair (T1,7T%2) belongs to the collection. These results
are an extension of our results in the previous chapter.

We can obtain similar properties for comazimum functions easily using the conjugation of the
game. Let us define two functions z and y to be £-comaximum if, for every E € £, the set of



maximizers of z restricted on E and that of y have a common element. An operator I is said to
be £-comaxiimum additive if I(z + y) = I(z) + I(y) whenever z and y are £-comaximum. The
conjugate of v, denoted by v, is defined as v/(E) = v(S) — v(S\E) for all E € 25. Note that
(v') = v and (v+w) = v +w' for any two games v, w. Let uf. be the conjugate of an unanimity
game ur. Then ufr(X) =1if TN X # @ and u7(X) = 0 otherwise. Thus it holds as (3) that

/:cdv’ = ZﬁT/a:du’T = Zﬁ:r maxz. 4)
T T

Hence, by the above similarity in conjugation, we obtain the following theorem with the same
proof:

Theorem

Let £ be complete. The following two statements are equivalent:

(i) v = Y5 Brur is £-comaximum additive, (i) f zdv = Y cs fr maxr z.

Our representation theorem has the possibility to be applied widely. We discuss two appli-
cations for decision models under uncertainty. The first is the E-capacity expected utility model
of Eichberger and Kelsey(1999) (8) which was mentioned in the previous chapter. A collection
of partitions on which they constructed their representation satisfies our completeness. Hence
our theorem can directly be applied to E-capacity. Owing to the success of this extension to
the collection of subsets, our results contain the E-capacity representation as a corollary. The
second is the multi-period decision model of Gilboa(1989) (13). Gilboa(1989)(13) considered the
following type of representation;

n n
S pix (i) + ) bila(i) — z(i — 1)) (5)
=1 =2

where p1,...,pn and 62,...,06, are constants. Interpret S = {1,...,n} as a collection of time

periods, and z(1),...,z(n) as a stream of income. The utility describes the value of the stream of
income as a weighted average > .._; p;z(¢) plus an adjustment factor Y, §;|z(i) —z(i—1)| which
measures the variations of the stream. For this decision model, we also provide an alternative
proof for the axiomatic characterizations using our results directly.

6. The fourth chapter, which is based on the joint paper of Kajii, Kojima, and Ui(2007) (22)
analyzes the operator which has both cominimum additivity and comaximum additivity. Let & be
a collection of subsets of §. Two functions z and y on S are said to be £-coextrema if, for each
E € &, the set of minimizers of z restricted on E and that of y have a common element, and the
set of maximizers of z restricted on E and that of y have a common element as well. An operator
I on the set of functions on S is £-coextrema additive if I(z + y) = I(z) + I(y) whenever z and
y are £-coextrema. The main result shows that a homogeneous coextrema additive operator I

10



can be represented as:

I(z) = Y {Agmaxz () + ppminz (W)} (6)
weE w€EE
Ee€&
where A\g and pg are constants, when the collection £ satisfies a certain regularity condition.
Separating all singleton sets, Fi, from the X term, it is rewritten as:

I($)=/$dp+ Z {\g maxg z + pgming r}. (7)
Ec&E\F

Interpreting S as the set of states describing uncertainty and function x as a random variable
over S. Then the class of operators which can be written as in (7) has a natural interpretation
that the value of  is the sum of its expected value f zdp and a weighted average of the most
optimistic outcome and the most pessimistic outcomes on events. This interpretation admits it to
correspond to Hurwicz criterion for decision making under uncertianty. Alternatively, interpret
S as a collection of individuals (i.e., a society), and z (w) as the wealth allocated to individual w.
Then [ zdp can be seen as the (weighted) average income of the society, and maxg z and ming
correspond to the wealthiest and the poorest in group E, respectively. In particular, when p is
the uniform distribution and Ag = —1 and pg = 1, then the problem of maximizing (7) subject
to [ zdp being held constant means that of reducing the sum of wealth differences in various
groups in &.

As a corollary, our result shows that for the special case where £ consists of singletons and
the whole set S, a homogeneous £-coextrema operator is exactly the Choquet integral of a NEO-
additive capacity, which is axiomatized by Chateaunuff, Eichberger, and Grant(2002) (6). NEO-
additive capacity provides an explanation for the phenomena such as the same individual being
observed to buy insurance against risk and lottery tickets, which is hard to explain by the ordinary
expected utility maximization. Our result provides a natural, and important generalization of
the NEO-additive capacity result. Eichberger, Kelsey, and Schipper(2006)(9) applied a NEO-
additive capacity model to the Bertrand and Cournot competition models to study combined
effects of optimism and pessimism in economic environments.

While in the NEO-additive capacity, optimism and pessimism are about the whole states of
the world, our model can accommodate more delicate combinations of optimism and pessimism
measured in a family of events. Thus our £-coextrema additivity model provides a rich framework
for analyzing effects optimism and pessimism in economic problems.

In the previous chapter, we considered the class of cominimum additive operators, and each
cominimum additive operator is shown to be a weighted sum of minimums. The class of comax-
imum operators is defined and characterized similarly. However, the class of coextrema additive
operators is not the intersection of the two, and the characterization result reported in this
chapter cannot be done by adopting these results. To see this, notice that both {ur} and {wr}

11



constitute linear bases. Hence if the collection of events £ contains a sufficient variety of events,
not only coextrema additive games but also many other games can be expressed as in (24). In
other words, for these expressions to be interesting, it is important to establish the uniqueness.
But the reader will see that the issue of uniqueness in our characterization is far more technically

involved.

7. The fifth chapter, which is based on the joint paper of Kajii, Kojima, and Ui(2006) (21),
applies our method to cooperative game theory. Cooperative game theory considers the problem
of how the outcome of a given N-person game v : 2V — R should be allocated between the N
players in the grand coalition. The Shapley value (see Shapley (33)) is a well known solution.
The Shapley value of v is the vector of payoffs ¢(v) € RN given by the following formula:

¢i(v) = Z (1= 1)!](\‘,1? — lSI)!(Sw(S) for all s € N.
Se2N:ie8 | |'

where §;v(S) is denoted the marginal contribution of player i € S to v(S); that is, §;v(S) = v(S)—
v(S\{i}). In particular, the Shapley value of an unanimity game ur is given by ¢;(ur) = 1/|T] if
t € T, 0 otherwise. Since the Shapley value is linear in games, we have an alternative formula for
the Shapley value of a game expressed in Mdbius inversion form; v = ETE2 ~ Brur, as follows:

$i(v)= ) Bréi(ur) = Y Br/IT!. (8)
Te2N Te2nN HeT
Through this formula, we can apply our theorem in the previous chapter to the Shapley value.

Myerson (1977(27), 1980(28)) augmented a cooperative game by a conference structure. A
conference is defined as a set of two or more players and a collection of conferences is called a
conference structure. Myerson defined another cooperative game where the conference structure
determines which coalitions are feasible. Myerson showed that the Shapley value of the induced
cooperative game can be characterized by two axioms: fairness and component efficiency. This
allocation rule is referred to as the Myerson value in the subsequent literature. In his result, the
feasible coalition is the one in which any pair of players are either directly or indirectly connected
(i.e. path connected) by the conferences contained in the coalition. For example, in a 3-person
game, suppose that a conference structure is {{1, 2}, {2,3}}. Then, in the solution of the Myerson
value, all players are allocated equally v({1,2,3})/3 from the outcome v({1, 2, 3}) since player 1
and player 3 are connected indirectly by the intermediary of player 2.

This chapter proposes a refinement of the Myerson value which distinguishes direct and in-
direct connections. Similar to Myerson(1977(27), 1980(28)), we augment a cooperative game
by a conference structure and define another cooperative game where the conference structure
determines which coalitions are feasible. But different from Myerson(1977(27), 1980(28)), the
feasible coalition is the one in which any pair of players are directly connected by the conferences
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contained in the coalition. In the main result, we show that the Shapley value of the induced
cooperative game can be characterized by three axioms: fairness, complete component efficiency,
and no contribution by unconnected players. The latter two new axioms describe the behavior of
the allocation rule distinguishing direct and indirect connections. Examining the above example,
a conference structure {{1,2}, {2,3}} is not feasible in our cooperative game since player 1 and
player 3 are not connected directly. But both {{1,2},{2,3}{1,2,3}} and {{1,2},{2,3},{1,3}}
are feasible. Thus our solution proposes a different allocation from that of the Myerson value.
Our new value is more sensitive than the Myerson value since the two values coincide under some
adequate manipulation of the conference structure. To establish the main result, we take advan-
tage of the idea of potentials for cooperative games first proposed by Hart and Mas-Colell(1989)
(17).
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2 e-contamination and Comonotonic Independence Axiom

2.1 Introduction

The subjective expected utility theory was explored by Savage(1954) (34). Savage’s framework
which consists of seven axioms is excellent but somewhat complicated. Anscombe and Au-
mann(1963) (2) improved this point with an alternative axiom set for subjective inference. They
extended the ideas of Neumann and Morgenstern(1947) (29) by preparing a simple act set.
Their axiom set consists of five axioms; AA1(Ordering), AA2(Independence), AA3(Continuity),
A A4(Monotonicity), and AA5(Non-degeneracy). AA1,AA2, AA3 correspond to the three ax-
ioms of Neumann and Morgenstern(1947) (29) respectively and AA4, AA5 are the axioms which
concern the simple acts. This method developed by Anscombe and Aumann(1954)(2) has been
used in various studies since it is very tractable, although in comparison to Savage ' s theory,
rather artificial. A series of studies have thus made it clear that the decision maker’s behavior
under uncertainty can be recognized as maximizing expected utility with respect to the additive
probabilistic measure.

However, several experimental facts against the expected utility theory have been found. The
most famous one is the experiment reported in Ellsberg(1961) (10). The Ellsberg paradox is an
evidence that a decision maker distinguishes the environment in which the probability is known
from the one in which the probability is unknown. Almost all decision makers prefer the former
to the latter. An explanation for such a difference is concerned with the question of whether
decision makers use an additive or non-additive probability.

Recent studies by Schmeidler(1989) (36) and Gilboa(1989) (12) provide an axiomatic char-
acterization for expected utility with non-additive probabilities. Both approaches employ the
Choquet integral of expected utility with respect to non-additive probability or capacity.

Non-additive probability or capacity, v, on state space S is defined by the following three
axioms: (i)v(@) =0,v(S) =1, (ii)0 <v(A) <1lforall ACS, (iii) A C B implies v(A) < v(B).
So, instead of additivity, only monotonicity is imposed. For a random variable a(w) over S,

Choquet integral is defined as follows:

oo 0
I(a)=/ v(a > a)da+/ (v(a > a) - 1l)da
0

—00

Since this is a Riemann integral, additivity of the measure is not necessary for the well-definedness.
Especially, for a finite step function a = 3 a;1x, where a1 > as > - > ag , E; N E;= @ for all
1,7, and 14 is an indicator function, its integral is rewritten as

k i
I(a) = Z(ai - Oti+1)U(U E;)
i=1 =1
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In the case of v being additive probability, the Choquet integral coincides with the probabilistic
expectation (i.e, Lebesgue integral). Using non-additive probability and Choquet expected utility,
Schmeidler succeeded in explaining the Ellsberg paradox as a rational decision behavior.

The axiom set for Choquet expected utility representaion which Schmeidler provided is al-
most the same as that in Anscombe and Aumann (2). Schmeidler replaced only the axiom
of AA2(Independence) by AA2;omo(comonotonic independence). Comonotonicity is the notion
which characterizes Choquet integral. Two random variables a(w) and b(w) are said to be comono-
tonic when (a(s) — a(t))(b(s) — b(t)) > 0 for all states s,t. Schmeidler (1986)(35) proved that the
following two statements for an operator I are equivalent: (i) I has an expression of Choquet
integral and (ii) I(a+b) = I(a) + I(b) whenever a and b are comonotonic. The condition of (ii) is
called comonotonic additive. This theorem means that comonotonic additivity characterizes the
Choquet integral. In Schmeidler(1989) (36), the axiom AA2omo(comonotonic independence) for
the preference of the decision maker induces comonotonic additivity in the representation oper-
ator and plays the role in the construction of Choquet expected utility representation as seen in
the following theorem:

Theorem (Schmeidler 1989)

A binary relation > satisfies AAl, AA2.5mo, AA3, AA4, AAS

if and only if there exist a unique finitely nonadditive probability(capacity) v and an affine real
valued function v on Y such that for all f and g,

froe /S u(f(s))du(s) > [5 u(g(s))dv(s)

where the integrals are Choquet integrals.

While Schmeidler(1989) (36) adopts the axiom set of Anscombe and Aumann(1963)(2),
Gilboa(1989) (12) uses the framework of Savage(1954) (34). He replaced the Sure-thing principle
by some weaker axioms which allow for non-additivity of the measure.

However, a full framework of Choget expected utility is not necessary to explain the Ellsberg
paradox. With only a little non-additivity, we can induce an Ellsberg decision. For example,
the decision criterion called ¢-contamination is the decision maker’s preference. It is expressed
mostly with an additive probabilistic expectation but only sometimes with a non-additive one.
The notion of e-contamination is old; it is discussed in the literature of robust estimation since
Huber(1964) (18). Given a random variable a, e-contamination representasion is expressed as
follows:

J(a) = (1—¢) fs a(s)du(s) + e mig a(s) )

where p is a finitely additive probability on state space S and ¢ is a some small positive constant .
This representation form consists of a large additive part (integral part) but a small non-additive
part (minimum part).

15



e-contamination has a much simpler expression than the general Choquet integral expression
in explaining the Ellsberg paradox. So, it should be given proper axiomatization. This study
was independently done by Eichberger and Kelsey(1999) (8) and by Nishimura and Ozaki (2006)
(30). Both studies use the axiomatic system of Anscombe and Aumann(1963) (2). The difference
between the two is whether ¢ in the representation is exogenous or endogenous. It is endogenous
in the former and exogenous in the latter. Eichberger and Kelsey(1999) (8) developed a more
general representation, which contains e-contamination as a special case, for dealing with the
Ellsberg experiment using three kinds of colored balls. Their representation (called F-capacity)
for a given random variable a is as follows:

K
J@)=(1-¢) /S a(s)du(s) + EZp(Ek) ggg}‘ a(s) (10)
k=1

where E1, F», ..., Ex is a given partition of S.

This paper studies the axiomatization of e-contamination. Here, we have the same motivation
as Eichberger and Kelsey(1999) (8) but adopt a different approach from that. While Eichberger
and Kelsey(1999) (8) uses the Anscombe and Aumann(1963) (2) method directly, we derive the
same property from the more general Schmeidler(1989) (36) method which utilizes a weaker
independence axiom than Anscombe and Aumann(1963) (2). We focus attention on the non-
additive part in the e-contamination representation; minscga(s). We notice that this term has
the additivity if restricted within the random variables having a common minimizer in S. That is,
minses(a(s) + b(s)) = minsega(s) + mingegb(s) if argminscsa(s) Nmingcsb(s) # @. Therefore
it is natural to predict that if we introduce the independence axiom only to the simple acts which
have a common minimizer on S then we will obtain the expression of e-contamination. We call
two functions cominimum if these have a common minimizer on S. Our notion of cominimum is a
weaker than that of comonotonic since comonotonic implies cominimum. We define operator I to
be cominimum additive if I(a + b) = I(a) + I(b) whenever a and b are cominimum. Cominimum
additivity is stronger than comonotonic additivity since cominimum additive implies comonotonic
additive. Using the notion of cominimum additivity, we characterize e-contamination formula by
the following lemma:

Lemma

If I is a Choquet Integral with respect to the capacity v on S, then the following four conditions
are equivalent:

() EUF#S,ENF =0 implies v(EUF) = v(E) + v(F)

(ii) There exists an additive probability measure p and a real number ¢ such that E # S implies
v(E) = (1 - €)u(E)

(iii) There exists an additive probability measure x and a real number & such that for any random
variable a

I{a) = (1 - S)Ladu(s) +8rsnei§1a
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(iv) I is cominimum additive

This lemma shows the equivalence not only between cominimum additivity (iv) and e-contamination
expression (iii) but also between these and the local additivity of the capacity (i)(ii). Moreover,
taking the equivalence between (iii) and (iv) into account, we can expect that a similar theorem
of Schmeidler(1989) (36) will be corroborated . Exchanging Schmeidler’s comonotonic indepen-
dence axiom A A omo for our cominimum independence axiom AA omi, We succeed in axiomatizing
e-contamination as explained in the following theorem:

Theorem

A binary relation > satisfies AA1, AA2.om:, AA3, AA4, AAS

if and only if there exist a unique finitely additive probability measure y on S and an affine
function u and a real number € such that :

froe (-0 [ulfe)iu) +eminu(s() 2 (1) [ u(o(e)du(s) +emigu(s(s)

Our cominimum independence axiom AAc,m; coincides with the extremal independence axiom
which Eichberger and Kelsey(1999) (8) introduced with the finite state space. The advantages
of our approach are the following: firstly, our approach is constructed on the set of simple acts
which possibly contain infinite states. Secondly, our construction uses the local additivity of the
operation developed by Schmeidler. Finally, since our notion of cominimumity is flexible, our
characterization can be extended to more general near-additive representations. This extension
has already accomplished in Kajii, Kojima, and Ui(2007) (22).

The organization of this paper is as follows. Section 2 quotes the notion of Cominimum
additivity. Section 3 provides the main results.

2.2 Comonotonic additivity and Cominimum additivity

In this scction, we preparc a notion for the measurable function which is crucial for our paper.
Let ¥ denote a nonempty algebra of subsets of a set S, let F be the set of functions from S to
R which is constant on each element in some finite measurable partition of S, i.e. the set of all
finite step functions from S to R. Especially for A € I, 14 denote the indicator function in F.
I denote a set function or an operator from F to R.

Definition 1 (i) Two functions a and b in F are said to be comonotonic if (a(s) — a(t))(b(s) —
b(t)) >0 for all s andt in S

(it) Two functions a and b in F are said to be cominumum if argminsesa(t)Nargmingesb(t) # U]
(i.e. the set of minimizers of a and that of b have a common element .)
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A set C(C F) is said to be comonotonic set if every two functions a,b € C' are comonotonic.
Denote by como{F) the collection of all comonotonic sets. Similarly, a set C(C F) is said to be
cominimum. set if every two functions a,b € C are cominimum. Denote by comi(F) the collection

of all cominimum sets.

Definition 2 (i) I is said to be comonotonic additive if {a,b} € como(F) implies I(a + b) =
I(a) + I(b)
(it) I is said to be cominimum additive if {a,b} € comi(F) implies I(a + b) = I(a) + I(b)

The notion of comonotonic additive was introduced by Schmeidler (35) to construct Choquet ex-
pected utility representation. Our definition of cominimum additive is an extension of comono-
tonic additive, though stronger. The following lemma gives the relation between cominimum
additivity and comonotonic additivity.

Lemma 1 (i) {a,b} € como(F) implies {a,b} € comi(F)

(ii) If I is cominimum additive then I is also comonotonic additive.

(#43) For any a € F and any constant function Alg, {a,A1s} € como(F) thus {a,Als} € comi(F)
(iw) For all a € (0,1); {a,b} € como(F) implies {a,b,aa + (1 — a)b} € como(F)

(v) For all @ € (0,1); {a,b} € comi(F) implies {a,b,xa + (1 — )b} € comi(F)

Proof. (i) Notice that any finite step function has a minimizer on S. Suppose that {a,b} €
como(F). Let s be a minimizer of a. Then a(t) > a(s) for all t € S. Thus b(t) > b(s) for all
t € S since a and b are comonotonic. So, s is also a minimizer of b. Hence {a,b} € comi(F).
(ii) Suppose that {a,b} € como(F). By (i), {a,b} € comi(F). Thus I(a + b) = I(a) + I(b)
since I is cominimum additive. Hence the function I must be comonotonic additive. (iii) Any
constant function Alg satisfies both Alg(s) > Alg(t) and Alg(t) > Alg(s) for every s,t € S.
Thus {a,A\1s} € como(F). So, {a,A1g} € comi(F) by (i). (iv) and (v) hold since a(t) > a(s)
and b(t) > b(s) imply aa(t) + (1 — @)b(t) > ca(s) + (1 — a)b(s) for all a € (0,1). =

Schmeidler(1986) (35) provided a sufficient condition for comonotonic additive as (i) of the
following lemma. We shall extend this for cominimum additive as (ii) of the following lemma. The
proof by Schmeidler depends on the comonotonicity between a constant function and any other
function with Lemma 1(iii)(iv). Therefore we can easily apply this to the proof for cominimum
additive easily using Lemma 1(iii)(v). Let us simultaneously prove for comonotonic additive and

for cominimum additive.

Lemma 2 Suppose that I(\1g) = A

(i) If for all {a,b,c} € como(B) and all a € (0,1) ; I(a) > I(b) implies I{aa + (1 — a)c) >
I{ab+ (1 — a)c), then I is comonotonic additive.

(i) If for all {a,b,c} € comi(B) and all « € (0,1) ;I(a) > I(b) implies I{(aa + (1 — a)c) >
I(ab+ (1 — a)c), then I is cominimum additive.
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Proof. To prove (i) and (ii) simultaneously, we use the common notation ¢(F) both for como(F)
and for comi(F). Suppose that for all {a,b,c} € ¢(F) and all « € (0,1); I(a) > I(b) implies
I(ca+ (1 —a)c) > I(ab+ (1 — a)c). First, let us prove the following claim; for all {z,y} € c(F)
and all a € (0,1); I(az + (1 — @)y) = ol(z) + (1 — a)I(y). Indeed, pick any € > 0. Then
(I(z) +¢)lg € F satisfies I((I(z) +¢)1s) > I(z) and (I(y) +¢€)ls € F satisfies I((I(y) +¢)lg) >
I(y) by the assumption I(Alg) = A. Hence, al(z) + (1 — &)I(y) + ¢ = I(a(l(z) + €)ls +
(1 - a)(I(y) +€)ls) > I(ex + (1 — a)(I(y) + €)1s) > I{az + (1 — a)y). First inequality
holds since {(I(z) + &)1s,x, (I(y) + €)1s} € c¢(F) by Lemma 1 and second inequality holds
since {(I(y) + €)1s,y,x} € ¢(F) by Lemma 1. Since ¢ is any positive number, we obtain that
al(z) + (1 — a)I(y) > I(az + (1 — a)y). Furthermore, using similar argument for ¢ < 0, we can
show the contrary inequality. Therefore it is proved thatI(az + (1 — a)y) = al(z) + (1 — a)I(y).
Then we conclude our claim. Next let us use this claim twice. First, let a = %,z = 2a,y = 0 for
{a,0} € c(F), then I(2a) = 2I(a) for all a € F. Second, let & = § = 3, {z,y} = {2a,2b} € c(F),
then I(a + b) = 3I(2a) + 11(2b) = I(a) + I(b). Now we can obtain the conclusion. ®

Let v denote a monotonic real valued function on & with v(@) = 0,v(S) = 1. Monotonicity means
that for any E and F in &, E C F implies v(E) < v(F). v is said to be non-additive probability
measure or capacity . For the given capacity v and measurable function a, Choquet integral is
defined as follows:

o0 0
I(a) = /0 v(a > a)da + /_ (v(a > a) — 1)da

For finite step function a = Y o;lg, ;04 > a2 > -+ > o, EsNE; = 9, for all 7, ,Choquet
integral I(a) is represented as follows:

& i
I(a) = E(ai - az’+1)v(U Ej)
i=1 Jj=1

Schmeidler proved the following theorem which characterizes the Choquet integral.

Theorem 1 (Schmeidler 1986(35) )

Let an operator I : F — R satisfying I(1s) = 1 be given. Suppose also that the function I
satisfies

(i) comonotonic additive (i) Monotonicity i.e. a > b on S implies I (a) = I(b).

then, defining v(E) = I(1g) on £, v(E) is a capacity and we have for all a in F

I(a):/ooov(aZa)da—{-/_O (v(a > a) — 1)da

Proof. See Schmeidler 1986 (35) m

19



This theorem means that comonotonic additivity characterizes the Choquet integral. Con-
sidering the analogy between comonotonic additivity and cominimum additivity, we can predict
that cominimum additivity may also characterize some integral representation. The following
lemma provides an answer to our question. Moreover this lemma plays a crucial role in our main
result and gives the different characterization from Eichberger and Kelsey(1999) (8).

Lemma 3 Suppose I : F — R be Chiquet Integral with respect to the capacity v on X, the
following four conditions are equivalent:

(i) EUF #8 , ENF ={ implies v(EU F) = v(E) + v(F)

(ii) There exists an additive probability measure p and a real number € such that E # S implies
v(E) = (1 - &)u(E)

(iii) There exists an additive probability measure p and a real number € such that for anya € F

IHa)=(1 —e)/sadu(s) +51‘}1€iga

(iv) I is cominimum additive

Proof. (i) — (ii)

Fix two distinct nonempty sets S, S, arbitrarily such that S; U Sz = S, 51 N S2 =0 and denote
€ = 1 — (v(S1) + v(S2)). First we assume ¢ # 1. We define p as follows: u(E) = 1 for
E =S, uE) = -l—i—gv(E) for E # S. Here we claim that p is additive probability measure.
Indeed, suppose that ANB = @. If AUB # S then u(AU B) = t:-v(AU B) = 1 (v(4) +
v(B)) = u(A) + p(B) by assumption(i). For the case of AUB = S, if A = S,B =@ or
B =_S8,A=0then u(A)+ pu(B) =1 = p(AU B) . Otherwise use the decomposition with Sy, Ss.
p(A) + p(B) = v((AN S U (AN S)) +v((BNS1)U (BN S2)) = 2z (v(ANS1) + (AN
S3) + (BN S1) + v(BN S2)) = 12 (v(S1) + v(S2)) =1 = p(S). So, our claim holds. Next,
suppose € = 1, i.e. v(S51) + v(S2) = 0. Since v is non-negative, v(S1) = v(S2) = 0. Thus since
for every E # S, v(E) = v((EN S1) U (E N S2)) = v(ENS;) +v(ENS2) by assumption (i)
and v(E N S1) < v(S1),v(E N S2) < v(S2) by monotonicity, it holds that v(E) = 0. Hence
v(E) = (1 — €)u(F) with every additive measure u(E).

(ii) — (i)

Suppose that a = Y a;lp, ;a1 > a2 > >, E;NE;j =0, forall 4,5 .

In the case k > 2, by assumption (ii), I(a) =

S5 (i — ey 1)0(Uiny By) + anv(8) = 0 (i — i) (1 — ) (Ui, Bj) + (1 —€)ek + ek =
S (i —aip1)(1—¢) iy p(B))+ (1—e)ar oy w(Ey) +ean = (1-6) Tiy cup( EBi) +eap =
(1-¢) [gady + & ming a(s)

In the case k = 1, i.e. a = constant function Alg, I(a) = I(Alg) = A = (1-¢) fs adp+e ming a(s)
(i) — (iv)
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Note that for all {a,b} € comi(B); minses(a(s) + b(s)) = minses a(s) + mingeg b(s). Therefore
I(a+b) = (1—¢) [4(a+b)du+e minges(a(s)+b(s)) = (1—¢) fgadu+(1—¢) [sbdu+minses a(s)+
mingeg B(s) = I(a) + I(b)

(iv) = ()

Suppose that EUF # S, ENF = §. Let a = 1g,b = 1p. Then a(s) = b(s) = 0 for some
s € E°NF° = (EUF)°, so {a,b} € comi(B). Therefore, v(EUF) = I(a+b) = I(a) + I(b) =
v(E)+v(F) =m

Remark 1 The following two conditions are equivalent: (i) v is convex (#)e > 0.

Indeed, If A# S,B # S,AUB = S then v(AUB)+v(ANB)—v(A)—v(B) = 14+ (1—€)u(ANB) —
(1-&)((A)+u(B)) = e+ (1-e)(1+u(ANB) — (u(4) +u(B))) =¢. f A#S5,B# S,AUB# §
then v(AU B) + v(AN B) —v(A) — v(B) = (1 — &)(u(AU B) + u(AN B) — u(A) — u(B)) = 0.
And if A= S then v(AU B) + v(AN B) — v(A) — v(B) = v(S) + v(B) — v(S) —v(B) = 0.

2.3 Main Result

In this section, we apply the results obtained in the previous section to the representation theory
of preference for a simple lottery act . Let X be a set and Y be the set of distributions over X with
finite supports, i.e.; Y = {y : X — [0, 1]|y(z) # O for finitely many z’s in X and }__.y y(z) = 1}
We can identify X with the subset {y € Y|y(z) = 1 for some z in X} of Y. Denote by Lo the
set of all E-measurable function from S to Y which is constant on each element in some finite
measurable partition of S, i.e. the set of all finite step functions. Denote by L. the constant
functions in Lg. Let L be a convex subset of Y which includes L.. We call an element of Lg
a simple lottery act, or more simply, an act. Then, ¥ will be a mixture space. Given y,y’ € Y
and A € [0,1], we denote by Ay + (1 — A)y’ the compound lottery. Note that every f € Lo has
minimizers on S since it is a step function.

In the neo-bayesian nomenclature, elements of X are (deterministic) outcomes, elements of Y are
random outcomes or (roulette) lotteries, and elements of L are acts(or horse lotteries). Elements
of S are states (of nature) and elements of ¥ are events. Let us introduce the notion of cominimum
to a simple lottery act in the same manner as Schmeidler for comonotonic.

Definition 3 (i)Two acts f and g in Y° are said to be comonotonic provided for any s,t € S if
f(s) = f(t) then g(s) = g(t).

(1) Two acts f and g in Y are said to be cominimum if {s|Vt; f(t) = f(s)}N{s|Vt; g(t) > g(s)} #
0

We define como(L) and comi(L) corresponding to como(B) and comi(B) respectively; we then
obtain the following lemma similar to Lemma 1. To construct the Chogeut representation for
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the preference on a simple lottery, Schmeidler (36) provided the following five axioms.

Al (Weak Order):

(a)forall fandgin L: f > gor g> f.

(b) For all f,gand hin L: If f > g and g = h, then f = h.

The relation > on L induces a relation also denoted by > on Y: y > z iff y$ > 25 where y°
denotes the constant function y on S.

A2.omo (Comonotonic Independence):

{f,g,h} € como(L) and & € (0,1) : f > g implies af + (1 — a)h = ag + (1 — a)h.
A3 (Continuity):

For all f,g,and hin L : if f = g and g = h, then there are @ and g8 € (0,1)

such that af + (1 —a)h > g and g = Bf + (1 — B)h.

A4 (Monotonicity):

For all f and g in L : If f(s) > g(s) on S then f > g.

A5 (Nondegeneracy):

Not for all f and gin L, f > g.

Under above five axioms, Schmeidler (36) proved the following theorem.

Theorem 2 (Schmeidler (36)) A binary relation = defined on Lo satisfies Al, A2como, A3, A4, A5
if and only if there exist a unique finitely nonadditive probability(capacity) v on ¥ and an affine
real valued function u on'Y such that for all f and g in Lg

frge /S u(f(s))du(s) > /S u(g(s))du(s)

Taking the similarity between comonotonicity and cominimumity into account, we can expect
that a similar theorem will hold by exchanging comonotonicity for cominimumity. Now let us

introduce a new axiom A2.om; instead of A2.omo.

A2.omi (Cominimum Independence):
For {f,g,h} € comi(L) and a € (0,1) : f = g implies af + (1 — a)h = ag + (1 — a)h.

This axiom coincides with the one which Eichberger and Kelsey (8) introduced with finite state

space. Our main result, which gives a representation for e-contamination, is the following.

Theorem 3 (Main Theorem) A binary relation > defined on Lg satisfies Al, A2.0mi, A3, A4, A5
if and only if there exist a unique finitely additive probability measure p on (S,X) and an affine

function u and a real number € such that :
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froe (1= [ulf)du(s) +emigu(f(s) 2 (1 -9) /. woteduts) + e mipu(o(s)

Our proof for this theorem is obtained by tracing over that of Schmeidler {(36)

Proof. ( if part). We give the proof only A2comi, A4. Denote J(f) = (1 —¢) Jsu(f(s))du(s) +
e minges u(f(s)). Suppose {f,g,h} € comi(L) and f = g ie. J(f) > J(g). Then, by affinity of
u() and by additivity of integral and by additivity of minimum operator on the set contained by
comi(B),

J(af + (1 — a)h) — J(ag+ (1 — a)h)

= (1 -¢) [gu(af + (1 = @)h)du(s) + e minges u(af + (1 - a)h)

- (1 —¢) [gulag + (1 — @)h)du(s) — e minges u(ag + (1-a)h)

= (1-¢) [gu(af)dp + emin,es u(af) — (1 —¢) [su(ag)dp — e minges u{ag)

=a(J(f)-J(g)) 20

Thus A2.0m: holds. Moreover suppose that f(s) > g(s) for all s € S. Then u(f(s)) > u(g(s)) for
all s € S. Thus fgu(f(s))du(s) > Js u(f(s))du(s) and minses u(f(s)) > minses u(g(s)). Hence
A4 holds.

(only if part) Restricting to L., A2com: means the independence axiom of von Neumann-Morgenstern
since L, € comi(L). Therefore there exists a function u :L. — R that represents the preference
on L( by von Neumann-Morgenstern theorem). By A5, there exist y* > y, and set u(y*) =1
and u(y,) = —1 without loss of generality(This u is unique). For an arbitrary f € Lg denote
My = {af + (1 — @)y®|ly € Y,a € [0,1]}. Then, since My € comi(L) , there exists a function
Js : My — R that represents the preference on My and coincide with u on L.. For f € Lg define
J(f) by J(f) = Js(f). J(f) is well-defined and represents the preference on Ly.

Let B denote the set of £-measurable finite step functions on S. Let U : Ly — B be defined by
U(f)(s) = u(f(s)) for sin S and f in Lo. U is onto and well-defined. We now define a real valued
function I on B . Given a € B, let f € Lo be such that U(f) = a. Then define I(a) = J(f).
Let us check four properties as follows:

(1) I is well-defined

Indeed, suppose U(f) = U(g), then u(f(s)) = u(g(s)) for all s € §. Therefore f ~ g, so
IU(f) = J(f) = J(g) = I(U(9))-

(2) I is monotonic i.e. @ > b implies I(a) > I(b)

this is clear because U(f)(s) > U(g)(s) for all s implies f = g by A4

(3) I(M\1s) = A

because U(\y*) = Alg and J(Ay*) = u(Ay*) = Au(y*) = A

(4) I is cominimum additive.

To prove this, it is sufficient to show that the condition of lemma 2 (ii) holds. Suppose {f,g,h} €

23



comi(L) and let a = U(f),b = U(g),c = U(h), then {a,b,c} € comi(B). The following two con-
dition are equivalent ;(i) f = g implies af + (1 — a)h = ag+ (1 — a)h (ii) J(f) = J(g) implies
J(af + (1 — a)h) > J(ag + (1 — @)h). This means that I(a) > I(b) implies I(ca + (1 — a)c) 2
I{ab + (1 — @)c). Thus we obtain the conclusion.

Now, by (4) and lemma 1(ii), I is comonotonic additive. Thus, adding (2) and (3), by Theorem
1, there exists Choquet Integral representation of I with respect to the capacity v(E) = I(1g)
as I(a) = [ adv(s). Here, under (4), let us use Lemma 3. Therefore I can be expressed as (iii)

of Lemma 3, i.e.,

Ia)=(1-¢) /Sad,u(s) +61;1€i§1a

Replace a by U(f) and I(a) by J(f) then the desired expression is obtained. The proof is
complete. ®
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3 Cominimum Additive Operators

3.1 Introduction

Consider an operator I on the set of real valued functions on a finite set Q. It is well known that
an operator [ is homogeneous (i.e. I(Az) = M (z) for a function z on 2 and A > 0) and additive
(ie. I(z +y) = I(z) + I(y) for functions z and y on Q) if and only if it is represented as the
integral with respect to a signed measure v on €; that is, I(z) = [ zdv for a function z on Q.

In his seminal paper,Schmeidler 1986 (35) considered a homogeneous operator that is additive
on comonotonic functions. Two functions x and y on Q are said to be comonotonic if (z(w) —
z(w))(y(w) — y(w')) > 0 for all w, w’ € Q. He showed that an operator I is homogeneous and
additive on comonotonic functions (i.e. I(x+y) = I(z)+I(y) whenever z and y are comonotonic)
if and only if it is represented as the Choquet integral with respect to a non-additive signed
measure v on §; that is, I(z) = [zdv for a function z on  with the understanding that the
integral is the Choquet integral. In the decision theory under uncertainty, the utility function
representable as a Choquet integral now constitutes one of the important benchmarks.

In this paper, we propose a class of weak additivity concepts for an operator on the set of real
valued functions, which include both additivity and comonotonic additivity as extreme cases. To
be precise, let £ C 22 be a collection of subsets of 2. Two functions z and y on Q are said to be
E-cominimum if, for every E € £, the set of minimizers of z restricted on E and that of y have
a common element. An operator I is said to be £-cominimum additive if I(z +y) = I(x) + I(y)
whenever r and y are £-cominimum.

For example, if £ is empty or contains only singletons, then any two functions are trivially
£-cominimum. In this case, £-cominimum additivity coincides with additivity. If £ consists of
all subsets of ©, then any two comonotonic functions are £-cominimum and conversely any two
£-cominimum functions are comonotonic. In this case, £-cominimum additivity coincides with
comonotonic additivity. Thus, in general, £-cominimumn additivity is stronger than comonotonic
additivity but weaker than additivity.

The main result of this paper is a representation theorem for homogeneous operators satisfying
E-cominimum additivity, which we shall sketch in the following. Notice that since £-cominimum
additivity implies comonotonic additivity, a homogeneous £-cominimum additive operator is rep-
resented by the Choquet integral with respect to a non-additive signed measure v by Schmeidler’s
theorem, a fortiori. Since v can be uniquely written as v = Y 1.~ BruT, where ur is the so called
unanimity game on 7' C 2, the characterization of the operat:)r can be done in terms of coeffi-
cients {8r}rcq. We say that T C Q is £-complete if, for any two points w,w’ € T, there exists
E € & satisfying {w,w'} C E C T; that is, any two elements are “connected” within T by an
element of £. The main result shows that a homogeneous operator is £-cominimum additive if
and only if 87 = 0 for every T which is not £-complete. It also shows that this condition is
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equivalent to the condition that v is modular on a suitably defined collection of pairs of events:
v(Ty UTe) + v(Ty NT2) = v(Ty) + v(T2) whenever the pair (T1,T2) belongs to the collection.

We shall supply two applications to decision models under uncertainty. The first is the E-
capacity expected utility model of Eichberger and Kelsey (8). The E-capacities include the so
called e-contamination as a special case. The second is the multi-period decision model of Gilboa
(13). For both decision models, we provide alternative proofs for the axiomatic characterizations
using our results directly.

The organization of this paper is as follows. Section 4.2 quotes some known results about
the Choquet integrals and Schmeidler’s theorem. Section 3.3 introduces £-cominimum functions
and studies properties of £-complete events. Section 3.4 provides the main results and Section
3.5 discusses applications.

3.2 The Choquet integrals and Schmeidler’s theorem

Let & = {1,...,n} be a finite set of states of the world. A subset £ C Q is called an event.
Denote by F the collection of all non-empty subsets of 2, and by Fi the collection of subsets
with & elements.

A set function v : 22 — R with v() = 0 is called a game or a non-additive signed measure.
Since each game is identified with a point in R¥, we denote by R” the set of all games. For a
game v € R”, we use the following definitions:

e v is non-negative if v(E) > 0 for all E € 2%

e v is monotone if E C F implies v(E) < u(F) for all E,F € 2. A monotone game is

non-negative.

e v is additive if y(EUF) = v(E)+v(F) for all E, F € 22 with ENF = §, which is equivalent
to v(E) + v(F) = vw(EUF) +v(ENF) for all E, F € 2.

e v is convez (or supermodular) if v(E) + v(F) < v(EUF) +v(ENF) for all E, F € 2.
e v is normalized if v(Q) = 1.

e v is a non-additive measure if it is monotone. A normalized non-additive measure is called
a capacity.

e v is a measure if it is monotone and additive. A normalized measure is called a probability

measure.

e The conjugate of v, denoted by v/, is defined as v'(E) = v(Q) — v(Q\E) for all E € 2°.
Note that (v')’ = v and (v + w)’ = v’ + w’ for v,w € R”.
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For T € F, let ur € R” be the unanimity game on T defined by the rule: ur(S) =1ifT C S
and u7(S) = 0 otherwise. Let u/. be the conjugate of an unanimity gameur. Then up(S)=1if
TNS # 0 and ufp(S) = 0 otherwise. The following result is well known as the Mobius inversion

in discrete and combinatorial mathematics (cf. 33).

Lemma 4 The collection {ur}rer is a linear base for R¥. The unique collection of coefficients
{Br}rer satisfying v =3 pcr Brur, or equivalently v(E) = ZTQE Br for all E € F, is given
by Br = EEQT(—1)|T|—|E|U(E)'

The collection of coefficients {87 }rer is referred to as the Mobius transform of v. If v =
Y rer Brur, then the conjugate v is given by v' = 3, Brup.

Denote by R® = {z|z : & — R} the set of all real valued functions on Q. Let 1z € R?
be the indicator function of an event E € F. We write ming z = minyer z(w), argming z =
arg mingc g r(w), Maxg £ = mMaX,cg £(w), argMaXp T = arg MaXuek z(w) for E € Fand z €
R

Definition 4 For z € R? and v € R¥, the Choquet integral of z with respect to v is defined as

/xdv = /: v(x > a)da + zv(Q2), (11)

where Z = maxgq z(w), £ = ming z(w), and v(z > a) = v({w € Q| z(w) > a}).

For example, the Choquet integral of an indicator function is [1gdv = fol v(lg = a)da =
v(E); the Choquet integral with respect to unanimity games and their conjugates are

T
= > Q) = [ i —mi ] 1 — i
/zduT /£ ur(z > a)da + zur(2) minz — minz +m&n:r min z,
T
/a:du'T = / ulp(z > a)da + zup(Q) = [ma.xa: - minx] + minz = maxz
- T Q Q T
because up(r > a) = 1 if minyz > o and ur(z > a) = 0 otherwise, and up(z > o) =1 if

maxr T > a and ufr(z > a) = 0 otherwise.
It is straightforward to see that the Choquet integral is linear in games:

/md(sv+tw)=s/zdv+t/xdw for all z € R®, v,w € R, and s,t € R.

An important implication of the linearity is the following additive representation of the Choquet
integral (cf. 15).
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Lemma 5 Forz € R® and v =Y rcxfrur € R7,

/mdv: Z ,BT/:rduT = Z ﬂTmTin:r, (12)

Ter TeF
/mdv' = Z ﬂT/:vdu'T = Z ﬂTm:,q.x:t:. (13)
TeF TeF

Lemma 5 says that the Choquet integral of z with respect to v can be represented as a
weighted sum of all minima of z with respect to some possibly negative weights.

Two functions z,y € R®? are said to be comonotonic if (z(w) — z(w'))(y(w) — y(w')) > 0 for
all w,w’ € Q. Observe that two functions x,y € R? are comonotonic if and only if argming z N
argmingy # @ for all E € F. Symmetrically, two functions z,y € R® are comonotonic if and
only if argmaxg x Nargmaxgy # @ for all E € F.

If z and y are comonotonic then ming(z + y) = minr x + ming y for all T € F. Thus, the
Choquet integral is additive on comonotonic functions by Lemma 5:

/(:c +y)dv = q;,@:r rréiwn(x +y) = qg:ﬁTm%nz + TéﬁT n}}ny = /:vdv + /ydv.

We say that an operator I : R® — R satisfies comonotonic additivity provided it is additive on
comonotonic functions, i.e., I(z + y) = I(z) + I(y) whenever z and y are comonotonic. Thus,
the Choquet integral satisfies comonotonic additivity. We say that an operator I : R®? - R is
homogeneous (more precisely, positively homogeneous of degree one) provided I(\z) = M (z)
for all A > 0. It is easy to see that the Choquet integral is homogeneous. Schmeidler 1986(35)
showed that a homogeneous operator which satisfies comonotonic additivity must be the Choquet
integral. The following is a slightly different version of Schmeidler’s theorem.!

Theorem 4 An operator I : R® — R is homogeneous and satisfies comonotonic additivity if and
only if I(z) = [zdv for all z € R where v € R7 is defined by the rule v(E) = I(1g).

Proof. This can be shown by just a minor modification of Schmeidler’s proof. m

3.3 Cominimum functions

We will study homogeneous operators satisfying a property stronger than comonotonic additivity
and weaker than additivity. For this purpose, we generalize the notion of comonotonic functions.

1Schmeidler 1986(35) assumed monotonicity instead of homogeneity. But this can be readily shown adopting
his proof. In fact, since homogeneity is a consequence of monotonicity in his proof, our statement is less elegant.
But with monotonicity, the resulting game is necessarily a non-additive measure, which is inconvenient for us
since we want to work with general games.
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Remember that two functions z,y € R are comonotonic if and only if arg min g zNarg ming y #
@ for all E € F. By replacing F with a collection of events £ C F, we have a weaker notion of

comonotonic functions.?

Definition 5 Let £ C F be a collection of events. Two functions z,y € R% are said to be
£ -cominimum, provided arg ming z Nargming y # § for all E € £. Two functions z,y € R$? are
said to be &-comazimum, provided argmaxg r Nargmaxgy # @ for all E € €.

Note that = and y are £-cominimum if and only if —z and —y are £-comaximum. So in
fact any result about £-cominimum functions can be translated for £-comaximum functions in a
straightforward manner.

The following properties are immediate consequences of the definition:

e If two functions are £-cominimum (resp. comaximum) then they are £-cominimum (resp.
comaximum) for any £’ C £.

e If two functions are both £-cominimum (resp. comaximum) and £’-cominimum (resp. co-

maximum) then they are £ U £'-cominimum (resp. comaximum).

Any two functions are F)-cominimum (comaximum) where F1 = {{w} |w € Q}.

Two functions are £-cominimum (resp. comaximum) if and only if they are £ U F1-cominimum
(resp. comaximum).

The following statements are equivalent.

Two functions are comonotonic.

Two functions are F-cominimum (comaximum) where 7 = {{w,w'} |w,w’ € O}.

Two functions are F-cominimum (comaximum).

— Two functions are £-cominimum (comaximum) for all £ C F.

The last item above implies that even if £ # £’, the collection of £-cominimum pairs of func-
tions may coincide with that of £’-cominimum pairs. Among collections of events which induce
the same pairs of cominimum functions, there is a special collection, the complete collection,
which will play an important role in the main result of this paper.

Definition 6 Let £ C F be a collection of events. An event T € F is £-complete provided,
for any two distinct points w; and we in T, there is E € £ such that {wi,w2} € E CT. The
collection of all £-complete events is called the £-complete collection and denoted by T(£). A
collection £ is said to be complete if £ = T ().

2Kojima (24) was the first to consider a weaker notion of comonotonic functions in this direction. He introduced

the notion of cominimum functions, which are {2}-cominimum functions in this paper.
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We adopt the term “complete” from an analogy to a complete graph.® For T € F, consider
an undirected graph with a vertex set 7 where {w,w'} C T is an edge if there is E € £ satisfying
{wi,ws} C E C T. This is a complete graph if and only if T is £-complete.*

As an operator, T is monotone in the sense that Y(£) C Y(£’) whenever £ C £'. Note
that any E € £ is £E-complete, i.e., £ C T(€), and any singleton is £-complete trivially, i.e.,
Fi € Y(£). The following results show that Y(£) itself is complete and it serves as a canonical
collection among collections which induce the same pairs of cominimum functions.

Lemma 6 For any £ C F, Y(£) is complete, i.e., T(E) = T(T(E)).

Proof. Since Y(£) € Y(Y(£)) by the monotonicity of T, it is enough to show that T(£) 2
Y(Y(£)). Let T € F be T(£)-complete, ie., T € Y(Y(E)). Then, for any wy,wz € T, there is
E € Y(€) such that {w,ws} C E C T. Since E € T(£) is £-complete, there is E’ € £ such that
{wi,ws} € E' C E C T. This implies that T is £-complete and thus T' € T(€), which completes
the proof. =

Lemma 7 Two functions are £-cominimum if and only if they are Y(E)-cominimum.

Proof. Since £ C Y(£), Y(£)-cominimum functions are £-cominimum. Conversely, let two
functions x; and z2 be £-cominimum. Seeking a contradiction, suppose that these are not Y(£)-
cominimum; that is, there is an £-complete event T € F such that arg min z; Narg miny 2 = 0.
Pick w; € argminyz; and wy € argmingz2. Since T is £-complete, there is E € £ with
{w1,w2} € E C T. Since z; and z2 are £-cominimum, there is w* € argming z; N arg ming z».
But then z;(w*) < zi(w;) for i = 1,2, and thus w* € argminr 1 N arg miny 2, which is a
contradiction. ®

If two functions are indicator functions, the £-cominimum relation naturally induces a relation
on a pair of events. We shall pursue this idea in the following.

Definition 7 Let £ C F be a collection of events. A pair of events (T1,T2) € F x F with
T, € T, and T, € Ty are said to be an E-decomposition pair for T € F, provided T} UT; = T
and, for any E € £, E C T implies E C T} or E C T3 (or both). Denote by W(E) the collection
of all the £-decomposition pairs for some events:

W(g) = {(Tl,TQ) e Fx f‘Tl @ T2 and T2 g Tl,
ECTiUT, impliess ECTior ECT; forall E € £}.

3We can also regard (§2, £) as a hypergraph. The theory of hypergraph has the concept of completeness, which

is different from that in this paper.
41 addition to the two applications we discuss in Section 3.5, the notion of £-completeness has an interesting

application in cooperative game theory. See 7 ).
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An event T € F is £-decomposable if there exists an £-decomposition pair for T, i.e., T =T1 UT>
for some (T1,T2) € W(E).

The idea of £-decomposition is exactly the £-cominimum relation restricted to indicator

functions, as is shown next.

Lemma 8 Let T),T> € F be such that Ty € T> and T € Ti. Indicator functions 1y, and 1q,
are £-cominimum if and only if (T1,T2) € W(E).

Proof. Suppose that (T},T3) € W(€). Pickany F€ . f ECTiUT,, then ECTyor ECTo
and thus argming 17, = E or argmingly, = E must hold. In both cases, argming 15, N
argming 17, # O holds. If E € Ti U Ty, then argming 1y Nargming 1y, = E\T1 N E\T; =
E\(T1 UTy) # 0. Therefore, 17, and 17, are £-cominimum.

Conversely, assume that 11, and 17, are £-cominimum. Seeking a contradiction, suppose
that (T1,T2) &€ W(E). Then, there is E € £ with E C T UT; but E € T1 and E € T5. Thus,
argming 17, = E\Ty C (71 UT2)\T1 and argming 1y, = E\T2 C (T1 U T3)\T2, which implies
argming 1, Nargming 1y, = @, contrary to the assumption. Therefore, such an event E € £
cannot exist and so (T1,T;) € W(). =

As is then easily expected, £-decomposability of an event is closely related to £-completeness.
Note that any singleton is not £-decomposable trivially, and that any E € £ is not £-decomposable.
The latter implies that any £-complete event, which is necessarily an element of Y(£) by def-
inition, is not Y(£)-decomposable. In fact, £-decomposability and Y (£)-decomposability are

equivalent as the following lemma shows.
Lemma 9 For any £ C F, W(E) = W(Y(£)).

Proof. Since £ C Y(£), W(E) 2 W(Y(E)). We show W(E) € W(Y(£)). Suppose that
(Ty, Tz) € W(E) and (T3, T2) & W(Y(E)). The former implies that 71  T5 and T € T3, and the
latter implies that there exists E € T(€) such that E C T3 UT> but neither E C T; nor E C T5.
Thus, there exist wy,ws € E such that wy € T1\T2 and wq € T2\T1. Since E is £-complete, there
exists E' € £ such that {w,w;} C E' C E, which contradicts to the assumption that (T1,7%) is

an £-decomposition pair for T. =

The next result shows that the decomposability is in fact the “complement” of the complete-

ness.
Lemma 10 An event T € F is £-complete if and only if T is not £-decomposable. Consequently,

T(E)= {TeF|T#T1UT, for any (Th,T2) € w(&)}
= FA\{Th VT2 |(T1,T2) € W(E)}.
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Proof. The “only if” part is clear from the definition. We shall establish the “if’ part. Assume
that T is not £-complete. Then there exists two distinct points wy,ws € T such that there exists
no E € & satisfying {w;,w2} € E C T. Set T} = T\{w;} and T3 = T\{w2}. By construction,
T\Z€ T, To € Ti,and Ty UT, = T. Also, for any E € £, if E C T UT, then {wy,we} € E
and so E C Ty or E C T; must hold by construction. Therefore, (T1,72) € W(E) and thus T is
&-decomposable. m

To conclude this section, we shall give a sufficient condition for completeness.

Lemma 11 Suppose that £ C F contains all the singleton events and satisfies the following
property: if E,Ey,...,Ey € € satisfy E C |J]_, E; then EUE; € £ for at least onei € {1,...,n}.
Then, £ is complete.

Proof. Let T ¢ £. We want to show that T is not £-complete. By Lemma 10, it suffices to
show that T is £-decomposable. Fix @ € T, and let T} C T be a maximal set containing & and
included in £. Since T' ¢ £, T3 must be a proper subset of T.

If Ty = {@}, then there is no event E € £ such that {&} C F C T. Then it is readily verified
that T; and T\T: constitute an £-decomposition pair for T.

If Ty # {@}, thenlet & ={E € £|ECT and E ¢ T1}. It must be true that Ty € ge, E-
To see this, suppose that 77 C |} pcer E- Then, there exists E € £’ such that Ty U E € € by the
assumption on €. Since E C T and E € T}, we have T D T3 U E D Ti, which contradicts to the
maximality of T3.

Let T = (T\T1) U (Ugee: E). We claim that (T1,T2) is an £-decomposition pair for T. By
construction, 73 UT; = T. As we noted above, T} C T. Since 71 € egcer E, T2 G T, and hence
Ty € Ty and T> € Ty. Finally, pick any E € £ with E C T and suppose E ¢ T1. Then E € £’,
and so E C Ty. Thus (T1,T,) € W(E), which completes the proof. m

In practice, a stronger condition is also useful.®

Lemma 12 Suppose that £ C F contains all the singleton events and satisfies the following
property: for any E1,Ea€ &, if EyNEy # ® then By UE> € £. Then, £ is complete.

Proof. The condition above implies the property of Lemma 11; if E C U:; 1 Ei, then for at least
onei, ENE;#0,andso FEUE; €&. m

IfENE =Q0or ECE or E'!C E for all E,F’ € £, then £ U F; is complete. Especially, if
£ is a partition of Q, then £ U F; is complete.

5This stronger condition is applied in cooperative game theory. See, for instance, Myerson (28), van den
Nouweland et al. (38), and Algaba et al. (1).
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Lemma 11, however, does not provide a necessary condition for completeness. For instance,
let © = {1,2,3,4)} and £ = {{1},{2},{3}, {4}, {1,2},{2,3},{3,4}}. Then it can be readily
checked that € is complete. But £ does not satisfy the condition of Lemma 11.

3.4 Cominimum additive operators

The notion of £-cominimum (comaximum) functions induces the following additivity property of

an operator I : R - R.

Definition 8 An operator I : R? — R is £-cominimum additive (resp. comazimum additive)
provided I(z + y) = I(z) + I(y) whenever = and y are £-cominimum (resp. comaximum).

Since £-cominimum (comaximum) additivity implies comonotonic additivity, we have the

following corollary of Theorem 12.

Corollary 5 An operator I : R? — R is homogeneous and & -cominimum (comazimum) additive
for some € C F if and only if I(z) = [zdv for allx € R where v € R is defined by the rule

U(E) =17 (1 E) .
Therefore, a homogeneous, £-cominimum (comaximum) additive operator is associated with
a game v. As is easily expected, £-cominimum (comaximum) additivity of an operator requires

some further structure on the corresponding game v. To find the required structure, we shall
focus on a game v, and say that v is £-cominimum (comaximum) additive to mean that the

corresponding operator is £-cominimum (comaximum) additive.

Definition 9 A game v is said to be £-cominimum additive (resp. £-comazimum additive) pro-
vided f(z + y)dv = [ zdv + [ ydv whenever z and y are £-cominimum (resp. £-comaximum).

The following result gives a simple sufficient condition for £-cominimum additivity.

Lemma 13 Let v = ZTG}':@TUT € R” be a game. If pr = 0 for all T & £, then v is E-

cominimum additive.

Proof. Let two functions zr and y be £-cominimum. Note that, for all E € £, argmingz N
argming y # @ and thus ming(z + y) = ming r + ming y. So using (12), we have

/(x+y)dv— ZﬂTmln (z+y)= ZBTmlnx+y Z,@T(Ir%rinx‘l-mTiny)

TeF TeE TeE
—Z,@Tmmz+ Zﬂfmmy—ZﬂTmmx+ZﬂTmmy /zdv+/ydv,
TeE TeE

which completes the proof. =
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A natural question then is whether the converse is true, i.e., £-cominimum additivity implies
Br = 0 for any T ¢ £. But in general, this is not true. For example, Fo-cominimum additivity
does not imply By = 0 for any T ¢ F» (where F, is the set of all two-point events). This
is because Fo-cominimum additivity is equivalent to comonotonic additivity and the Choquet
integral with respect to any game satisfies comonotonic additivity. Now remember that two
functions are £-cominimum if and only if they are Y (£)-cominimum by Lemma 7. Thus, one can
expect that £-cominimum additivity implies 7 = 0 for any T ¢ Y(£), which we will formally
show later.

To provide the complete characterization of £-cominimum additivity, we introduce the notion
of modularity for £-decomposition pairs. If v is £-cominimum additive then, by Lemma 8 and
the definition of the Choquet integral,

v (TUD)+uv(TinT) = /(1T1 +1p,)dv = /1T1dv + / 1p,dv = v(Ty) + v(T2) (14)
for all (T1,T2) € W(E). We call this property the modularity for £-decomposition pairs.
Definition 10 A game v is said to be modular for €-decomposition pairs provided

v(Th U Te) +v(Th NTe) = v(T1) + v(T?) for all (T1,Tz) € W(E).

We can show that £-cominimum additivity and the modularity for £-decomposition pairs are
equivalent, which leads us to the following main result of this paper.

Theorem 6 Let v = Y ;¢ Prur € R be a game. The following three statements are equiva-
lent: (i) v is £-cominimum additive; (ii) v is modular for £-decomposition pairs; (iii) Br = 0 for
any T ¢ Y(E). Therefore, if £ is complete, v is £-cominimum additive if and only if Br = 0 for
any T ¢ E.

Proof. (iii) = (i). By Lemma 13, v is T(€)-cominimum additive. By Lemma 7, two functions
are Y(€)-cominimum if and only if they are £-cominimum. Thus, v must be £-cominimum
additive.

(i) = (ii). This is true by Lemma 8 and the definition of the Choquet integral, as in (14).

(ii) = (iii). We show by induction that, for all k > 1, if |T| = k and T ¢ T(£) then fr = 0.
Since |T| > 2 for all T ¢ Y(), the statement is true when k = 1 vacuously. Let £ > 2 and
suppose as an induction hypothesis that Sr = 0 for any T ¢ Y(€) with {T| <k — 1.

Let T € Y(€) with |T| = k. Then T is £-decomposable by Lemma 10, and so there exists
(T1,T2) € W(E) such that T = T UT,. Since W(&) = W(Y(E)) by Lemma 9, any S € T(£)
with § C T must satisfy either S C T; or S C T> (or both, i.e., § C T1 N7T3). Therefore, if SC T
satisfies S ¢ Ty, and S € Ts, then S ¢ T(£) and so Bs = 0 by the induction hypothesis, unless
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S = T. Now from the modularity for £-decomposition pairs, we have

0=v(Th UT?2) + U(T1 NTy) — U(Tl) — ’U(Tz)

=> Bs+ Y, Bs— Y Bs— Y Bs

SCT SChnNT, SCTy SCT2

= > Bs = Pr,

SCT, SZT1, SZT3

which completes the proof. m

The cominimum additivity is the conjugate of the comaximum additivity, and vice versa in
the following sense.

Lemma 14 A game v is £-cominimum additive if and only if v/ is £-comazimum additive.

Proof. Since minye7 —z(w) = — max,er z(w), we have [ —zdv = — [ zdv’ by (12) and (13).
Thus, [(z+y)dv = [ zdv+ [ ydv if and only if f((—z)+(-y))dv' = J(—=z)dv' + [ (—y)dv'. Sothe
result holds because z and y are £-cominimum if and only if —z and —y are £-comaximum. =

Using the conjugate, an analogous characterization can be done for £-comaximum additivity.

Corollary 7 Let v = 3 oz vrur € R” be a game. The following three statements are equiv-
alent: (i) v is E-comazimum additive; (ii) v(Ty U Ta) + v(Th N T2) = v(T1) + v(T2) for all
(Ty,T2) € F x F with (AT, Q\Tz) € W(E); (iii) vz = 0 for any T ¢ Y(E). Therefore, if £ 1s
complete, v is E-comazimum additive if and only if yy =0 for any T ¢ €.

Proof. Note that v' = 3,z yrur. By Lemma 14, v is &-comaximum additive if and only if v’

is £-cominimum additive. So the result follows from Theorem 13. m

A slight modification of Theorem 13 shows that the completeness is tight for our characteri-

zation in the following sense.

Corollary 8 The following statements are equivalent: (i) € is complete, i.e., Y(€) = &; (i) For
any game v = Y pcy PrUT € R7, v is £-cominimum additive if and only if pr = 0 for any
T¢E.

Proof. (i) = (ii). This is a restatement of Theorem 13.

(ii) = (i). Suppose that £ is not complete. Then there is 7* ¢ £ which is E-complete, i.e.,
T* € Y(€). Consider a game v = Y 1z frur = ug+. Since fr = 0 for every T ¢ T(£), v is
£-cominimum additive by Theorem 13. On the other hand, if (ii) is true, v is not £-cominimum
additive because Br- # 0 and T* ¢ £, which is a contradiction. ®

35



3.5 Applications
3.5.1 The E-capacity and e-contamination

Denote by A(Q) the set of all probability measures and by IIg the set of probability measures
assigning probability one to an event E € F, i.e., IIg = {p € A(Q)|p(E) = 1}.

Definition 11 Form € A(Q),0<¢e <1, and E € F, the set of probability measures {(1—¢)m +
ep|p € Mg} is referred to as the e-contamination of m on E.

The notion of e-contamination is old; it is discussed in the literature of robust statistics since
? ). In economic applications, the e-contamination is used with the maximin decision rule
(? ) which evaluates a function z by the minimum of expected values with respect to the e-
contamination. The following result characterizes this decision rule,® which follows from a more

general result we shall present later.

Proposition 9 Let v € R¥ be a convez capacity and E € F be an event. Then the following three
statements are equivalent: (i) [(z +y)dv = [ zdv + [ ydv whenever arg ming z Nargming y # §;
(i) there exist T € A(Q) and e € [0,1] such thatv = (1—&)m+eug; (iii) there exist m € A(Q2) and
€ € [0,1] such that [ zdv = min{ [ zdq|q = (1 —€)m +¢p, p € llg} for any function x € R?, ie.,
the Choquet integral of = is the minimum of expected values with respect to the e-contamination
of mon E.

The maximin decision rule with the e-contamination of m on F is represented by the Choquet
integral with respect to v = (1 —¢)m+eug.” Thus, we also call this capacity the e-contamination
of Tron E.

Eichberger and Kelsey (8) investigated the class of capacities which explain the Ellsberg
paradox. They called these capacities the E-capacities, and the e-contamination is a special case.

Definition 12 Let E1,..., Ex be non-empty, disjoint subsets of Q with |Ex| > 2 for each k.
Let £ = {E1,...,Ex}. A capacity v € R is said to be an E-capacity with respect to £ if there
exists a probability 7 and a number ¢ € [0, 1], and probability assignment p on £ (i.e. p(Ex) >0
for each k and Z£{=1 p(Ex) =1)such that v = (1 —e)m +¢ ZkK=1 p(Ex)ug, .

Eichberger and Kelsey (8) gave an axiomatic characterization of the E-capacity, and so that
of the e-contamination, a fortiori. The next result, which generalizes Proposition 9, is essentially
Proposition 3.1 of Eichberger and Kelsey (8), but we give an alternative proof based on our main
result.®

6Proposition 9 is a generalization of Kojima (24) who considered the case with E = Q.

7In fact, the core of v = (1 — €)7 + eug coincides with the e-contamination of m on E, which is a consequence
of additivity of the core (cf. 7).

87 ) gave an alternative axiomatization of the e-contamination. Their axioms are not directly comparable
with Eichberger and Kelsey (8) or Kojima (24).
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Proposition 10 Letv € R¥ be a convez capacity. Let E1,. .., Ex be non-empty, disjoint subsets
of Q with |Ei| > 2 for each k. Let & = {E1,...,Ex}. Then the following three statements are
equivalent: (i) v is £-cominimum additive; (ii) v is an E-capacity with respect to &£; (iii) there
exists a probability m and numbers e1,...,ex € [0,1] with ZkK=1 er < 1 such that [zdv =
min{ [ zdg|g = (1— Zﬁ;x Ex)T + Zf=1 €xPk, Dk € g, } for any function x € R%.

Proof. (i) = (ii): Let £*= £ U F,. From Lemma 12, £* is complete. So by Theorem 13, (i)
implies that Br = 0 for every T ¢ £* where v = ) ;. Brur. Therefore, v must be of the
form v =) cq B{w}¥{w} + 2 BE,uE,, and this expression is unique. Since v(Q2) = 1, we have
Y wen But +Ei{=1 BE, = 1. Since v is non-negative, for all w € Q, B,} = v({w}) = 0. We claim
Bg, > 0 for each k. To see this, write E as the union of non-empty disjoint sets, Fy and F3, which
is possible because |Ex| > 2. Then by the convexity of v, and from the assumption that Ex’s
are disjoint, Tcp, By + Be, = v(Ex) 2 v(F1) + v(F2) = Toer, Bio) + Suer o Hence
Bg, > 0. Set e = Zf:l BE, =1— Zweﬂ ,B{w}. We show that v = Zweﬂ ,B{w}u{w} + Zk BE, UE,
is indeed the required expression. If 0 < ¢ < 1, set p(Ex) = Bg, /e for each k, and set w =
l—i_s_ Zmeﬂ ﬂ{w}U{w}. Ife=0,set v = Eweﬂ ﬂ{w}’lL{w}, and if € = 1, set p(Ey) = B, for each k.

(ii) = (iii): Assumev = (1—¢)m+e Zf__,l p(Ei)ug,. Using (12), for any function z € R%, we
have [zdv = [zd((1 —¢€)m +¢ Ele p(Ex)ug,) = (1—¢) [ zdr + e K p(Ex) min, z = (1—
¢) [ xdr+e 5, p(Ex) minp, eng, [ zdp. Since Ey’s are disjoint, this is equal to min{ [ zdg | ¢ =
1-em+ 62221 p(Ex)pk, px € g, }, so set ex = ep(Ex), and we have (iii) since Zf___l &k =
e Ty P(Bx) =

(iii) = (i): Let two functions = and y be £-cominimum. Then ming (z +y) = min, z +
min, y for every k. Set e =1 —2,1;1 ex. We have [(z+y)dv = min{[(z+y)dglg=(1—e)m+
K ewpropr €Tg ) = (1—¢€) f(z+y)dr+ Ta, ek min, (z +y) = (1 —&)(f zdr + [ ydm) +
DO ex(min,, z+ming y) = (1-¢) fzdar+sz=1 ek min,, z+(1—¢) fyd7r+zf=l eeming y =
J zdv + [ ydv, establishing £-cominimum additivity of v. =

Let us point out that although we started with a convex capacity for the sake of brevity, the re-
sults above can be translated to an “uncertainty averse preference based” axiomatization of the E-
capacity and the e-contamination in a straightforward manner. Indeed, replace Schmeidler (36)’s
comonotonic independence axiom with the £-cominimum additivity with £ = {Fy,...,Ex}.
Since £-cominimum additivity implies comonotonic additivity, by Schmeidler’s theorem, we have
a utility function in the Choquet expected utility form with a convex capacity v. Then apply the
result above to show that v is the E-capacity with respect to £.
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3.5.2 Multi-period decisions

We shall consider a multi-period decision model developed by Gilboa (13), which axiomatizes
the following special form of utility:

n n
S piw () + Y Sil2(i) — 2 - 1), (15)
i=1 i=2
where p1,...,pn and d2,...,0, are constants.® Interpret Q = {1,...,n} as a collection of time

periods, and z(1),...,z(n) as a stream of income. The utility in (15) describes the value of the
stream of income as a weighted average 3 v, p:z(i) plus an adjustment factor Y_i", &le () —
z(i — 1)| which measures the variations of the stream.

Let £ = {{i,i+1} |1 < i < n}. Thus, £ is the collection of adjacent time periods. Note that
£ U F; is complete since if E ¢ £ U F; then E must contain two points which are not adjacent.

Proposition 11 Let v = ZTE.F Brur € R¥ be a game, and define £ as above. Then the
following two statements are equivalent: (i) v is £-cominimum additive; (ii) the Choguet integral
with respect to v has the form (15).

Proof. Note that |a — b| = a + b — 2min{a, b} for any a,b € R. So, (15) can be written as

S i) + Y &ila@) —2(i - 1)) =) piz(@) + 3" bi(z (i) + 2(i — 1) — 2min{= (i), 2(i — 1)}
1=1

=1 i=2 =2

=Y Biz(i) + Y Bri—1.4y min{z(i), z(i - 1)}, (16)
i=1 =2

where 81 = p; + 02, Bi = pi + 6; + 6i41 fori € {2,...,n =1}, Bn = pn + 0pn, and P14} = —26;
fori€ {2,...,n}.

Since £ U F! is complete, by Theorem 13, (i) is equivalent to the condition that Sr = 0 unless
T is a singleton or T € £. This is true if and only if the Choquet integral with respect to v is of
the form (16). =

9We thank I. Gilboa for suggesting this application. This is a simplified version of the model studied in Gilboa
(13), which we adopted for ease of exposition.
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4 Coextrema Additive Operators

4.1 Introduction

The purpose of this paper is to characterize operators on the set of real valued functions on a
finite set which is coertrema additive: let @ be a finite set and let £ C 22 be a collection of
subsets of Q. Two functions  and y on  are said to be £-coextrema if, for each E € £, the
set of minimizers of function z restricted on E and that of function y have a common element,
and the set of maximizers of z restricted on E and that of y have a common element as well.
An operator I on the set of functions on 2 is £-coextrema additive if I(x + y) = I(x) + I(y)
whenever = and y are £-coextrema. Note that if two functions are comonotonic, then they are
E-extrema, a fortiori.

The main result shows that a homogeneous coextrema additive operator I can be represented
as I (z) = ) peg{AE maxyepz (W) + ppmingee (w)}, where Ag and pg are unigue constants,
when the collection £ satisfies a certain regularity condition. This expression can also be written
as the Choquet integral with respect to a certain non-additive (signed) measure. Therefore, a
homogeneous coextrema additive operator corresponds to a special class of the Choquet integral,
which is expressed as a weighted sum of “optimistic evaluation” max,cg  (w) and “pessimistic
evaluation” mingeg z (w). For the case where I (1) =1, we have 3~ .o (A + pg) = 1, and then
these weights can be interpreted as beliefs on events in E € £ if these are non-negative numbers.

As a corollary, our result shows that for the special case where £ consists of singletons and
the whole set Q, a homogeneous £-coextrema operator is exactly the Choquet integral of a
NEO-additive capacity, which is axiomatized by Chateaunuff, Eichberger, and Grant (6). Thus,
our result provides a natural, and important generalization of the NEO-additive capacity result.
Eichberger, Kelsey, and Schipper (9) applied a NEO-additive capacity model to the Bertrand and
Cournot competition models to study combined effects of optimism and pessimism in economic
environments.

While in the NEQ-additive capacity, optimism and pessimism are about the whole states of
the world, our model can accommodate more delicate combinations of optimism and pessimism
measured in a family of events. Thus our £-coextrema additivity model provides a rich framework
for analyzing effects optimism and pessimism in economic problems.

Kajii, Kojima, and Ui (20) considered the class of cominimum additive operators, and each
cominimum additive operator is shown to be a weighted sum of minimums. The class of comax-
imum operators is defined and characterized similarly. However, the class of coextrema additive
operators is not the intersection of the two, and the characterization result reported in this
paper cannot be done by adopting these results. In fact, the reader will see that the issue of
characterization is far more technically involved.

Ghirardato, Maccheroni, and Marinacci (2004) axiomatized the following class of operators

39



called the a-MEU functional: I () = a mingec [ zdg+(1 — @) maxqec [ zdg where C is a convex
set of additive measures. It can be readily verified that the NEO-additive capacity model is a
special class of the a-MEU functional, and so £-coextrema additive operators are also a-MEU
functionals, when £ consists of singletons and the whole set 2. But for general £, there is no
direct connection as far as we can tell.

The organization of this paper is as follows. After a summary of basic concepts and pre-
liminary results in Section 2, a formal definition of the coextrema operator is given in Section
3. Section 3 also contains some discussions on the operator, including potential applications to
economics and social sciences. The main result is stated in Section 4, and a proof is provided in
Section 5.

4.2 The model and preliminary results

Let 2 be a finite set, whose generic element is denoted by w. Denote by F the collection of all non-
empty subsets of 2, and by F; the collection of singleton subsets of Q. A typical interpretation
is that Q is the set of the states of the world and a subset E C  is an event.

We shall fix a collection £ C F, £ # @, throughout the analysis. Write o (£) for the algebra
of Q) generated by £, i.e., the smallest o-algebra containing each element of £. Let II(£) C F
be the collection of minimal elements of o (£), which constitutes a well defined partition of Q,
since ) is a finite set. A generic element of partition II(£) will be denoted by S. For each
F € F, let k(F) € 0(€) denote the minimal o(£)-measurable set containing F; that is, k(F) :=
N{Eeco(f): FCE}L

Remark 2 Note that every element of II(F) belongs to ¢ (£) and that any element E € o (£)
is the union of some elements of II(E). So in particular, for every E € E and every S € II(E),
either S C E or § C E* holds. By construction, x (F) = U{S € ITI(£) : SN F # 0}, ie., (F)
is the union of elements in partition II (£) intersecting F. It is readily verified that if E € o(F),
then k(E N F) = EN«&(F) holds for any F € F, and so in particular «(F) = E.

Example 1 Let @ = {1,2,---,8} and £ = {E, Ey, E3, E4} where E; = {1,2,3,4}, E; =
{3,4,5,6}, B3 = {1,2,5,6}, E4 = {5,6,7,8}. Then, II(£) = {S1,...,54}, where S; = {1,2},
Sy = {3, 4}, S3 = {5,6}, Sy = {7,8}. In this case, E; = S; U Sy, By = Sy US3, E3 = 8; U Ss,
E; = S3U Sy. For instance, for R = {1,3,5,7}, we have s (R) = Q, because every S € II(£)
intersects R.

A set function v : 22 — R with v(@) = 0 is called a game or a non-additive signed measure.
Since each game is identified with a point in R, we denote by R” the set of all games. For a
game v € R”, we use the following definitions:

e v is non-negative if v(E) > 0 for all E € 2%
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e v is monotone if E C F implies v(E) < v(F) for all E,F € 2. A monotone game is

non-negative.

e v is additive if v(E U F) = v(E) + v(F) for for all E,F € 2 with EN F = @, which is
equivalent to v(E) + v(F) = v(EUF) + v(ENF) for all E, F € 2.

e v is conver (or supermodular) if v(E) + v(F) < v(EUF)+v(ENF) for all E,F € 2.
e v is normalized if v() = 1.

e v is a non-additive measure if it is monotone. A normalized non-additive measure is called

a capacity.

e v is a measure if it is non-negative and additive. A normalized measure is called a probability

measure.

e The conjugate of v, denoted by v’, is defined as v/(E) = v(Q) — v(Q\E) for all E € 2.
Note that (v’) = v and (v + w)’ = v/ + w’ for v,w € R¥.

For T € F, let ur € R” be the unanimity game on T defined by the rule: ur(S) = 1 if
T C S and up(S) = 0 otherwise. Let wr be the conjugate of ur. Then wr(S) =1 TNS #0
and wy(S) = 0 otherwise. Note that when T = {w}, i.e., T is a singleton set, uy = wr and
they are additive. The following result is well known as the M&bius inversion in discrete and

combinatorial mathematics (cf. 33).

Lemma 15 The collection {ur}rer s a linear base for RT, so is the collection {wr}rer.
The unique collection of coefficients {Br}rer satisfying v = Y pcrBrur is given by Br =

S pcr.pge(— )T (E).

By convention, we shall omit the empty set in the summation indexed by subsets of (2. By
the definition of ur, we have v(E) = Y g Br for all E € F. The collection of coefficients
{Br}reF is referred to as the Mobius transform of v. If v = Y rer Brur, then the conjugate v
is given by v' = 31z Brwr. Using the formula in Lemma 15, by direct computation, one can

show that for each E € F:
wg =Y (-7 ug. (17)

TCE

Remark 3 If v = Y ;.- Brur, the game v is additive if and only if Sr = 0 unless |T| = 1.
Obviously, ZueQ B{wit{w} is an additive game. So, we can also write v = p+ zTe}',lT|>1 Brur
where p is an additive game.
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By convention, a function z : & — R is identified with an element of R®, and we denote by
1g the indicator function of event E € F. For a function = € R?, and an event E, we write
ming z := minycp z (w) and argmingr := argmin,ecp z (w). Similarly, we write maxgz :=

max,cg T (w) and arg maxg z := argmax,ce T ().

Definition 13 For z € R® and v € R¥, the Choguet integral of x with respect to v is defined as
T

/xdv = / v(z > a)da + zv(R2), (18)
z

where Z = maxq 2, £ = ming z, and v(z > o) = v({w € Q: z(w) > a}).

By definition, [ 1gdv = v(E). A direct computation reveals that, for any two sets E and F
in F,
/(1E+1F)dv=v(EUF)+v(Er‘1F). (19)

Then for each event T', we see from (18) that [ zdur = miny z and [ zdwr = maxrz. Also it
can be readily verified that the Choquet integral is additive in games. Recall that for a game v,
there is a unique set of coefficients {31 : T € F} such that v = Y, frur by Lemma 15. Using
additivity, therefore, we have [ zdv = 3, 7 minr z, as is pointed out in Gilboa and Schmeidler
(15).

Note that the additivity implies the following property: for any T € F and real numbers A
and g, [ zd Qwr + pur) = [ zd (Awr) + [ zd (pur) = Amaxr z + pminr z, and so

/wd ( Z AgwEg + uEuE) = Z {Agmaxg z + pug ming z}, (20)

EeF’ EeF

for any collection of events F' C F and collections of real numbers {Ag : E € 7'} and {ug: E € F'}.

Definition 14 Let £ C F be a collection of events. Two functions z,y € R% are said to be
E-cominimum, provided argming z Nargming y # @ for all E € £. Two functions z,y € R are
said to be &-comazimum, provided arg maxg z Nargmaxgy # @ for all E € £.

Remark 4 Clearly, £ and y are £-cominimum, if and only if —z and —y are £-comaximum.
Also, the £-cominimum and the £-comaximum relations are invariant of adding a constant. In
particular, if two indicator functions 14 and 1p are £-cominimum, 1o\ 4 (=1 — 14) and 1g\p
(=1 — 1p) are £-comaximum, and vice versa.

A function I : R®? — R is referred to as an operator.

Definition 15 An operator I is said to be homogeneous if I(ax) = ol (z) for any a > 0.
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Kajii, Kojima, and Ui (20) studied £-cominimum and £-comaximum operators defined as

follows:

Definition 16 An operator I : R® — R is £-cominimum (resp. comaximum) additive provided
I(z + y) = I(z) + I(y) whenever z and y are £-cominimum (resp. comaximum).

A pair of functions = and y are said to be comonotonic if (z (w) — z (")) (y (w) —y (w’)) 20
for any w,w’ € Q. Notice that if £ = F, a pair of functions z and y are comonotonic if and only if
they are £-cominimum, as well as £-comaximum. So when £ = F, the £-cominimum additivity, as
well as the £-comaximum additivity, is equivalent to the comonotonic additivity which Schmeidler
(1986) characterized. Then in general both the £-cominimum and the £-comaximum additivity
imply the comonotonic additivity. Therefore, the following can be obtained from Schmeidler’s

theorem in a straightforward manner.'?

Theorem 12 If an operator I : Rg — R is homogenous and satisfies £-cominimum additivity
(or £-comazimum additivity), then there exists a unique game v € R¥ such that I(z) = [zdv
for all z € R®. Moreover, game v is defined by the rule v(E) = I(1E).

We say that a game v is £-cominimum additive (resp. £-comaximum additive) if the operator
I(z) := [zdv is £-cominimum additive (resp. &£-comaximum additive). Since £-cominimum
additivity as well as £-comaximum additivity implies comonotonic additivity, Theorem 12 assures
that this is a consistent terminology.

Obviously, the properties of £-cominimum additive or £-comaximum additive operators de-

pend on the structure of the family €.

Definition 17 Let £ C F be a collection of events. An event T € F is £-complete provided,
for any two distinct points w; and wy in T, there is E € £ such that {w;, w2} € E C T. The
collection of all £-complete events is called the £-complete collection and denoted by T(£). A
collection £ is said to be complete if £ = T(£).

Note that a singleton set is automatically £-complete, so is any E € £. For each T', consider
the graph where the set of vertices is T and the set of edges consists of the pairs of vertices
{w1,w2} with {w1,ws} C E C T for some E € £. This graph is a complete graph if and only if
T is £ -complete.

Remark 5 For E,E' € £ FEUE' is not necessarily £-complete. However, by definition, for any
T € T (€) with |T| > 1, T coincides with the union of sets in £ which are included in T, thus
T is the union of (partition) elements in II(€) which are included in 7. In particular, T must

contain at least one element of II(£).

103chmeidler 1986(35) assumes monotonicity instead of homogeneity of the operator, but the method of his
proof can be adopted for this result with little modification.
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It can be shown that for any £ C F, T(€) is complete, i.e., T(£) = T(Y(€)). See Kajii,
Kojima, and Ui (20) for further discussions on this concept, as well as for the proofs of the
results shown in the rest of this section.

Example 2 In Example 1, S = S; US2 US3 = {1,2,3,4, 5,6} is £-complete, but S, US3U Sy =
{3,4,5,6,7,8} is not £-complete since there is no E € £ with {3, 7} C E CS;US3US,.

The completeness plays a crucial role in our analysis, as is indicated in the next result:

Lemma 16 Tuwo functions x and y are £-cominimum (resp. E-comazimum) if and only if they
are Y(E)-cominimum (resp. T(E)-comazimum).

The idea of “cominimum” can be stated in terms of sets by looking at the indicator functions.
Say that a pair of sets A and B is an £-decomposition pair if for any £ € £, E C AU B implies
that E C A or E C B or both. Then the following can be shown:

Lemma 17 Two indicator functions 14 and 1g are E-cominimum if and only if the pair of sets
A and B constitutes an E-decomposition pair.

Remark 6 From Lemma 17 and Remark 4, we see that two indicator functions 14 and 1p are
£-comaximum if and only if for any E € £, E C Q\ (AN B) implies that E C Q\A or E C Q\B
or both.

Finally, a characterization of cominimum additive and comaximum additive operators is given
below.

Theorem 13 Let v € R” be a game, and let I(z) = [xdv. Write v = Y pcxBrur =
Y. rernrwr. Then,

(1) the following three statements are equivalent: (i) operator I is £-cominimum additive; (ii)
v(A) 4+ v(B) = v(AUB) + v (AN B) for any E-decomposition pair A and B; (iii) 1 = 0 for
any T ¢ T(£), and

(2) the following three statements are equivalent: (i) operator I is £-comazimum additive; (ii);
v (A°) + v (B°) = v (A°U B°) + v (A° N B®) for any &-decomposition pair A and B; (iii) nr =0
for any T & YT(E).

4.3 Coextrema additive operators

In this paper we study pairs of functions which share both a minimizer and a maximizer for events
in a given collection &£, which is fixed throughout.

Definition 18 Two functions z,y € R are said to be £-coertrema, provided they are both -
cominimum and & -comazimum; that is, arg ming zNarg ming y # @ and arg maxg xNarg maxg y #
Pforall Ec&.



Analogous to the cases of cominimum and comaximum functions, the notion of £-coextrema
functions induces the following additivity property of an operator I : R® — R.

Definition 19 An operator I : R® — R is £-coextrema additive provided I(z +y) = I(z)+ I(y)

whenever z and y are £-coextrema.

The completion Y(€) plays an important role here again: the following is an immediate
consequence of the definition and Lemma 16.

Lemma 18 Two functions z and y are £-coextrema if and only if they are T(£)-coextrema.

By definition, the £-coextrema additivity implies the comonotonic additivity. So by Theorem
12, we obtain the following result.

Lemma 19 If an operator J : R® — R is homogeneous and £-coextrema additive for some
& C F, then there exists a unique game v such that I(z) = [ zdv for any z € R®. Moreover, v
is defined by the rule v(F) = I(1g).

Thus the following definition is justified:

Definition 20 A game v is said to be £-coextrema additive provided [(z+y)dv = [ zdv+ [ ydv
whenever z and y are £-coextrema.

Our goal is to establish that a game v is £-coextrema additive if and only if v can be expressed

in the form
v = Z {A\gwE + pEUE}. (21)
E€Y(€E)
Note that from (20), this is equivalent to say that the original operator I can be written as
I(z)= Z {\g maxg z (w) + ppming z (w)}. (22)
EEY(E)

In addition, if £ is complete, i.e., £ = T(£), we have the expression written in Introduction.

Remark 7 Note that by definition uy,} = w{.}, and they are the probability measure 8. which
assigns probability one to {w}. Since Y(E) contains all the singleton subsets of 2, the (21) has
a trivial redundancy for E with |E| = 1. Taking this into account, (21) can be written as:

v=p+ Z {\gwg + peug}, (23)
E€Y(E)\F
where p is an additive measure given by p := Y cq(Aw} + H{w}}dy- Similarly, (22) can be
written as

I(z) = /a:dp+ Z {A\gmaxg z + ppming z}. (24)
h EcY(EN\F

We will also show that these expressions are unique under some conditions.
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As we mentioned before, a leading case for our set up is to interpret Q as the set of states
describing uncertainty and function z as a random variable over . Then the class of operators
which can be written as in (24) with underlying capacity of the form (23) has a natural interpre-
tation that the value of z is the sum of its expected value [ zdp and a weighted average of the
most optimistic outcome and the most pessimistic outcomes on events in T (£). That is, I (z) is
the expectation biased by optimism and pessimism conditional on various events in T(£).

Alternatively, interpret Q as a collection of individuals (i.e., a society), and = {w) as the wealth
allocated to individual w. Then [ zdp can be seen as the (weighted) average income of the society,
and maxg z and ming z correspond to the wealthiest and the poorest in group E, respectively.
In particular, when p is the uniform distribution and Ag = —1 and pg = 1, then the problem
of maximizing (24) subject to f zdp being held constant means that that of reducing the sum of
wealth differences in various groups in T(£).

An interesting special subclass of (24) is the class of NEO-additive capacities obtained by
Chateaunuff, Eichberger, and Grant (6): a NEO-additive capacity is a capacity of the form
v=(1—X—p)q+ Awq + pug, ie, £ = {Q} in (24) and I (1g) = 1.!! More generally, let £ be
a partition of 2, and write £ = {E1, ..., Ex}. Then (24) is essentially v = p+ 3~ MwEg, + pkuE,,
where p is an additive game. Not only this is a generalization of the NEO-additive capacity, but
also it is a generalization of the E-capacities of Eichberger and Kelsey (1999), which correspond
to the case where A\ = 0 for all k.

4.4 Main characterization result

One direction of the characterization can be readily established, as is shown below.
Lemma 20 Letv = ZEGT(&‘){’\EwE + pgug}. Then v is €-coextrema additive.

Proof. Let z and y be £-coextrema functions. Then by Lemma 18, = and y are T(£)-coextrema.
For every E € T(£), let @ € argmaxgz Nargmaxpy and w € argming z N argming y. Then,
maxg(z+y) = (z+ ) (@) = z (@) +y (@) = maxg z+maxg y, and ming(z+y) = (z+y) (w) =
7 (w) + y(w) = ming r + ming y.

11When A = 0, i.e., there is no part for optimism, this type of capacity is also referred to as an e-contamination.
See Kajii, Kojima, and Ui (20) for more discussions.

46



Using these relations, since the Choquet integral is additive in games (see (20)), we have

[@+vao= [@rud 3 (rpws+psus))
E€Y(E)

= Z {A\g maxg(z + y) + pgming(z + y)},
EET(£)

= z {Ag (maxg z + maxg y) + pg (ming = + ming y)},
E€T(E)

= Z {Agmaxgz+ ppmingz}+ Z {A\g maxgy + ppming y},
E€Y(€) EeY(€)

/xdv-i—/ydv,

which completes the proof. m

The other direction is far more complicated. Observe first that since both {ur : T € F} and
{wr : T € F} constitute linear bases, if the collection of events Y(£) contains a sufficient variety
of events, not only coextrema additive games but also many other games can be expressed as in
(21) or (22). In other words, for these expressions to be interesting, it is important to establish
the uniqueness, and one can easily expect that the collection T(£) should not contain too many
elements for this purpose. On the other hand, £ must be rich enough relative to  as the following

example shows.

Example 3 Let |} > 3 and £ = {{1,2,3}}. Then Y(£)\F1 = £. Notice that in general when
|E| = 3, if z and y are coextrema on E, then z and y are automatically comonotonic on E. So
any non-game v of the form v = ZTQ {1,2,3} Brur is E-coextrema additive, in particular u{; o} is
&-coextrema additive. But it can be shown that u{; 2} cannot be written in the form (21).

To exclude cases like Example 3, we need to guarantee that Y (&) does not contain too many
elements. The key condition formally stated below roughly says that the elements of £, as well

as their intersections, are not too small, i.e., the collection £ are “coarse” enough:
Coarseness Condition |E| > 4 for every E € £ and |S| > 2 for every § € II(£).
The Coarseness Condition is satisfied in Example 1, but it is violated in Example 3.

Remark 8 Obviously, if £ is coarse, it contains no singleton set. However, as far as the rep-
resentation result stated below is concerned, singletons are inessential since Y (£) automatically
contains all the singletons anyway. Put it differently, we could state the condition by first ex-
cluding singletons from £ and then construct the relevant field and partition.

We are now ready to state the main result of this paper.
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Theorem 14 Let £ be a collection of events which satisfies the coarseness condition. Let v be a
game. Then the following two conditions are equivalent:

(i) v is E-coextrema additive; (ii) there exist an additive game p and two sets of real numbers,
{Me:E € Y(E)\F1} and {pr : E € T(E)\F1}, such that

v=p+ Z {A\gwE + peug}. (25)
EeT(ENA

Moreover, (25) is unique; that is, if v =0’ + 3 perenr {NsWE + Hpup} where p’ is additive,
then p = p', and Ny = Mg and ply = pg hold for every E € T(E)\F;.

We shall prove this result in the next section, but we note here that the coarseness condition
is indispensable for Theorem 14. Recall that in Example 3 the coarseness condition is violated
and there is a coextrema additive game which cannot be expressed in the form (25). The next

example is also instructive for this point.

Example 4 Let Q = {1,2,3,4}, £ = {{1,2,3},{1,2,4},{3,4}}. In this case, it is T(£)\F1 =
£ U {Q}. But if z and y are £-coextrema, then it is comonotonic on both {1, 2,3} and {1,2,4},
and hence it is comonotonic on €. So any non-additive measure v is £-coextrema additive.

Let us conclude this section with a couple of applications of Theorem 14. The first concerns
a characterization of the generalized NEO-additive, E-capacities outlined before. Let £ be a
partition of Q, and write £ = {Ex, ..., Ex} as before. It can be readily verified that Y (£) = EUF;.
Trivially, TI(£) = £. So if |Ex| > 4 for every k = 1,..., K, by Theorem 14, £ satisfies the
coarseness condition and then v is £-coextrema additive if and only if v can be written as
v=p+ Y MwEg, + pruE,, where p is an additive game.

The second is a generalization of the variation averse operator proposed in Gilboa (1989). Let
T > 1and M > 2 be integers and set Q = {(m,t) : m = 1,...,2M,t = 1,...,T}. The intended
interpretation is that t is the time and at each time ¢ there are m states representing some
uncertainty. Let £ be the collection of all sets of the following forms: {(m,t):m =1,...,2M};
{(m,t):m=1,...M}U {(m,t+1):m=1,..,M}; and {(m,t):m=M+1,..,2M}U
{(m,t+1):m=M+1,...,2M}. It can be readily verified that Y (£) = £UF1, and every set in
TI(€) contains M points. So the coarseness condition is met, and by Theorem 14, an £-extrema
additive capacity has the form in 24). Arguing analogously as in Kajii, Kojima, and Ui (20),
the coefficients for the £-events of the form {(m,t) : m =1,...,2M} represent measurements of
optimism and pessimism about the uncertainty, whereas the coefficients for the £-events of the
other forms represent measurements of (conditional) degrees of variation loving and variation

aversion.

48



4.5 The proof

This section is devoted to the proof of Theorem 14. Since Lemma 19 has already shown that (ii)
implies (i), it suffices to establish the other direction. The proof consists of several steps: basically,
starting with an £-coextrema game v, we shall first show that a restriction of v is £-comaximum.
Then we show that this construction is invariant of the way the restriction is chosen as long as
a certain condition is satisfied, which then implies the existence of a well-defined £-comaximum
additive game v;. We then show that the game vy := v — v; is £-cominimum additive. Theorem
13 can be applied to v; and v to obtain the desired expression.

Let v be an £-coextrema additive game with v = } 7. Brur. For any R € F, let vjg be
the game defined by the rule v|r(E) = v(ENR) for all E € F, ie., vjr = Y rcp Brur. Define
Enr={ENR|FE €& ENR # 0}, which is the collection of intersections of elements of £ and
R, and also define Ec g = {E | E € £, E C R}, which is the collection of elements of £ contained
in R. Note that Ecr C €nr.

To construct the desired £-comaximum additive game v;, we first observe the following prop-
erty.

Lemma 21 Let v be £-coextrema additive. Let R € F be such that Ecg =0 and Eng # 0. Then,
VR 15 Enr-comazimum additive.

Proof. Let 15 and 17 be £ng-comaximum. It is enough to show that v r(SUT) +vg(SNT) =
9 r(S)+v r(T), which is rewritten as v((SNR)U(TNR))+v((SNR)N(TNR)) = v(SNR)+v(TNR).
Therefore, it suffices to show that 1gnr and 17ng are £-coextrema because v is £-coextrema
additive.

Fix any E € €. Since Ecgr = 0, either ENR=0,or ENR#0and E\R#0. f ENR =4,
then 1gnr and 17rngr are 0 on E and thus have a common minimizer and maximizer on E. If
ENR+#®and E\R # @, then 1sngr and 17ng have a common maximizer in ENR C FE since 1g
and 17 are £-p-comaximum, and 1gng and l7ngr have a common minimizer in E\R C FE since

lsnr and 1png are 0 on R°. Therefore, 1gnr and lpng are E-coextrema. m

By this lemma and Theorem 13, v|r has a unique expression

VR = Z uﬁ,}w{w} + Z vEwE. (26)

wER E'cY(Enr)\F1
To obtain the desired game v; which will constitute a part of the expression (25), we want the
second part of the right hand side of (26) in the following form:y EET(ENA vE rwENR- Since
each E' € Eng\J; is written as B/ = EN R for some E € &, one way to proceed is to associate
each E’ with the corresponding E. Of course, this procedure is not well defined in general, since
there may be many such E for candidates. So our next step is to find a condition on the set R
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so that this procedure in fact unambiguously works. It turns out that the following property is
suitable for this purpose.

Definition 21 A set R € F is a representation of € if Ecp = 0, k(R) =Q, and |[RNE| > 2 for
all E € £. Moreover we say that R € F is a minimal representation of £ if R is a representation
of E € £ and any proper subset of R is not a representation.

In Example 1, the set R is a representation for £. Another example follows below.

Example 5 Let Q = {1,2,3,4,5,6}, and set £ = {{1,2,3,4},{3,4,5,6}}. Then II(£) =
{{1,2},{3,4},{5,6}}. R = {3,4} is not a representation, since xK(R) = {3,4} # Q. R =
{2,3,4,6} is a representation but not minimal. R = {2,4,6} is a minimal representation.

Lemma 22 When & is coarse, if T € F satisfies Enr = 0, then there is a representation R such
that T C R.

Proof. Construct R by the following procedure: first set R = T and then for each S € II (£);
if S € £ and |TN S| < 1, then add a point or two to R from S\T (recall that |[S| > 4if S €&
by the coarseness) so that two points from S are contained in R; if S € £ and |[TN S| > 2, do
nothing; if S ¢ £ and TN S = @, then add a point to R (note S\R # @ by the coarseness); if
S ¢ & and TNS # 0, do nothing. Then by construction, x(R) = Q, and |[RN E| > 2 for all
E € €. Notice also that for any E € £, there is some point which is not added to R, so Ecp =0
follows. =

Note that if R is a representation of £, x(R) = 2 holds by definition and so every S € II(£)
must necessarily intersect R. Roughly speaking, a representation is obtained by choosing some
representative elements from each S in II (£) when € is coarse. Formally, we have the following
result:

Lemma 23 If € is coarse, there exists a minimal representation, which can be constructed by the
following rule: for each S € II(E), choose two distinct elements from S if S € £, and one element
if S € £, and set R to be the set of chosen elements. Moreover, every minimal representation
can be constructed in this way, and so in particular minimal representations contain ezactly the
same number of points.

Proof. The set R constructed as above is well defined since by the coarseness condition every S
has at least two elements. We claim that R is a representation. For all E € £, thereis S € TI (£)
with S C E. If S = E, R contains exactly two points belonging to E. If S C E, then there is
another S’ # S with S’ C F because E is the union of some elements in II (£). Since R contains
one element of S and S, it contains at least two points belonging to E. Therefore, |[RN E| > 2
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for all E € £. Also, every S € II(€) intersects with R and so x(R) = Q. Finally, notice that
E C R is possible only if E € II(£). But by the coarseness condition, |E| > 4 and so this case
cannot occur in the construction, thus £cp = 0.

Next we claim that R is minimal. Let R’ be a proper subset of R and pick any w € R\R'.
Let S € I1(€) be the set where w is chosen from. If S € £, then R contains exactly two elements
of S by construction. Then |R'N S| =1, and so R’ is not a representation. If S ¢ £, then w is
the only one element from S. Then SN R’ = @ which implies x(R’) C Q\S, and so R’ is not a
representation.

Finally, let R be a minimal representation. Then SN R # @ for every S € II(£) so R contains
at least one point from each S. If S € II(€) and S € &, then |[RN S| > 2 so at least two points
from such S must be contained in R. Let R’ the collection of all these points in the intersections,
which is a minimum representation as we have shown above. Since R’ C R, we conclude R’ = R,
which completes the proof. m

Example 6 In Example 1, none of elements in II(£) belongs to £. So to obtain a minimal rep-
resentation one can choose exactly one point from each S € II{£). For instance, R = {1,3,5,7}

is a minimal representation.

When R constitutes a representation of £, we can associate each E € Y(Erg)\F; to some
unique element in Y(£)\F1, as is shown in the next result.

Lemma 24 Assume that £ is coarse, and let R € F be a representation of £. Then x(F) €
T(E)F1 for any F € Y(Enr)\F1. Conversely, if E € Y(E)\Fy, then ENR is a unique element
of T(Enr)\F1 such that k(ENR) = E. In short, given R, the restriction of k, denoted by
KR, constitutes a bijection between Y (Enr)\F1 and Y(E)\F1 by the rule kg (F) = & (F) for all
F € T (Ecr)\Fi1, and k' (E) = ENR for all E € T(E)\Fi.

Proof. Note that £ and £~ contain no singleton since £ is coarse and R is a representation of
£. Also note that from the basic property of « and « (R) = 2 by the definition of representation,
we have for each E € £, ENR € Eqng and k(ENR) = k(E)N&(R) =k(E)NQ = «&(E) =E.
We first show that k(F) € T(E)\F: for all F € Y(Engr)\Fi1. Fixany F € Y(Enr)\Fi- Choose
two distinct points wy,ws € k(F') arbitrarily, and we shall show that there is an E € £ such that
{wi,w2} € E C k(F). By the construction of k(F), there are S;, Sz € II (£) (possibly S; = S5)
such that w; € Sq, ws € S, and both S${NF and S2NF are non-empty. Suppose first that S; # Ss.
Then we can select two distinct points wj € S1NF and w) € SoNF. Since F € Y(Enr)\F1, there
exists F' € £Enpg such that w},w) € F' C F by the definition of completeness. By the definition of
Enn, there is E € £ with F' = ENR. Using the property of x (see Remark 2), and the definition
of a representation, x(F') = ENk(R) = E and s (F') C x(F). So we have {wi,w2} C F'
C k(F') = E C k(F), as we wanted. Suppose then S; = S, (= §). Recall that F € Y(Enr)\F:
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implies that F is the union of some elements in £ng. Since Sel (£), this means that there is at
least one E € € such that § C E and ENR C F. Then again by the definition of representation,
E =k(ENR)C«&(F), and so this E has the desired property.

Next, we show that the restriction kg is a map from Y(E~g)\F1 onto Y(£)\F1. Fix any
E € T(E)\F,. Since E € o(£), kr(ENR) = k(F)N k(R) = k(E) NQ = k(E) = E; that is,
ENR is in the inverse image of kg. Thus, it is enough to show that ENR € T(Enr)\F1. By the
definition of completeness, there exist F1,..., Ex € £ such that E = Uf=1 E} and that for any
pair of points w,w’ € E, w,w’ € Ey holds for some k. So in particular, for any distinct points
w,w' € ENR C E, there exists k with w,w’ € Fy, and thus w,w’ € ExNR € Enp since w,w’ € R.
Therefore, kg is onto.

Finally we show that kg is one to one, i.e., kp(F) = E occurs for F € Y(Eng)\F1 only
if F = EN R. Note that F € Y(£nr)\F1 implies that there exist E1,...,Ex € £ such that
F = Uf=1(Ek NR) = (Uf=1 Ei) N R. Since R is a representation, R must intersect any II (£)
-component of Ey for all k, and so  (F) = rc((Uf=1 E)NR) = U,CK=1 Ek. So kg(F) = E implies
UK, Ex = E and so F = EN R must hold. This completes the proof. m

By Lemma 24, if R be a representation of £, then, by rewriting (26), we have

YR = Z /\fu}w{w} + Z )\ﬁwEnR (27)
wER E€Y(E\F

where AR = vE . for each E € Y(E). By construction, the coefficients {\E : E € Y(€)} are
uniquely determined with respect to a representation R except for singletons. It turns out
that these do not depend upon the choice of representation R, which we shall demonstrate in the
following in a few lemmas. Let R, R’ € F be representations of £, and so there are corresponding
expressions of the form (27). We write R = R’ if /\fw} = )\ﬁ;} for all w € RN R’ and AR = \F
for all E € T(&)\F;. Note that the first part holds vacuously if RN R’ = 0.

Lemma 25 Assume that £ is coarse and let v be £-coextrema additive. Let R,R',R" € F be
representations of £. Suppose that R= R’ and R’ = R”. Then, R= R" holds f RNR" C R'.

Proof. By definition, A, = A, for allw € RNR'NR" (= RN R") and A§ = A" for all
EcYTENF. =

Lemma 26 Assume that £ is coarse and let v be E£-coextrema additive. Let R,R' € F be
representations of £. Then R = R’ holds if RN R’ is a representation. In particular, if R C R/,
R = R’ holds.
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Proof. Set R* = RN R'. Note that by construction, for all T' € F, vjg-(T) = vjg(T N R*) =
vir (T N R*). Using (27) on the other hand, we have

wr(TNR?) =Y AMLw(TnRY+ Y Afwenr(TNRY)

wER Ec€T(E)\F
= Z /\ﬁ,}w{w}(T) + z )\]E{'UJEHR‘ (T)
wER* EeT(EN\F

and
wER* EcY(EN\F1
Thus, for all T € F,

YoM+ Y Mwenr (D) = Y MowipD+ Y A wena (7).
wER® Ee€Y(ENF, wER* E€Y(ENF
Since R* is also a representation by assumption, by Lemma 24, Y(£g.)\F1 and Y(E)\Fy
are isomorphic. Since {wr : T € F} are linearly independent, this means that the games in
{wiw)}wer U{wEnR: } EeT(£)\#, are linearly independent. Therefore, the respective coefficients
on the both sides of the above equation must coincide each other, which completes the proof. =

Lemma 27 Assume that £ is coarse and let v be £ -coextrema additive. Let R, R’ € F be minimal
representations of . Then R = R'.

Proof. If R = R/, then obviously R = R’, and so let R # R’. By Lemma 23, |R| = |R/|
and so there is w’ € R'\R. Let S € II(£) be the unique element with «/ € S. Recall that
a representation intersects every elements of I (£), and hence we can pick an w € RN S. By
construction w # w’. Set R! = (R\{w}) U {0}, i.e., R! is obtained by substituting w with o’
both of which belong to S. So R! is also a minimal representation by Lemma, 23.

We shall show that R = R!. For this, consider first R = RU {w'}. Notice that R is a
representation; since R C R and R is a representation, it is clear that fc(fi) =Q, and )R N E] >2
for all E € £. Since £ is coarse and R is minimal, for all E € £, we have |[E\R| > 2 and so
'E\f?' > 1. Hence £ = @, which proves that R is a representation. By construction, both
RNR = Rand R!' N R = R! are representations, so by Lemma 26, R = R and R = R!. Note
that RN R! C R, which implies that R = R! by Lemma. 25.

Recall that both R and R’ are finite and they can be obtained by the method described in
Lemma 23, so repeating the argument above, i.e., replacing one w in R with another o’ € R'\R,
we can construct a sequence of minimal representations R° (= R) R, R?, ..., R* = R such
that R™! = R™ for each m = 1,..,k. By definition, AE™™" = AE™ holds for all E € T(E)\F,
for every m = 1,...,k, hence AR = AR holds for all E € Y(£)\F,. For any w € RN R/, since
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such w is never replaced along the sequence above, we have /\f:}_l = /\f:} for every m =1, ...k,
and hence ’\ﬁ;} = /\ﬁ;}. Therefore, we conclude that R= R'. m

Lemma 28 Assume that £ is coarse and let v be £-coextrema additive. Let R,R' € F be
representations of £. Then R = R'.

Proof. Choose any two minimal representations I' and I such that ' C R, I C R/, and
I'NI’ € Rn R’. Notice that by Lemma 23 such minimal representations always exist and can
be constructed as follows: for any w € RN R’, then select this w from S € I1(£) which contains
w. Now by Lemma 26, R=T and [V = R’ hold. Also, by Lemma 27, T = I"V holds. These imply
that AR = A&’ for all E € T(£)\F; and that ARy = )\ﬁ')} for all w € I NT". Since the choice of
I'nTY C RN R’ is arbitrary as is pointed out above, we must have /\?w} = )\ﬁ'}} forallw € RNR'.
Therefore, we conclude that R=R'. =

Since there is a representation containing any w € 2, Lemma 28 implies that there exists
a unique collection of constants {\g}ger(g) such that, for any representation R of £, vjgp =
YweR Mw}Wiw} + 2 Eer(E)\F \EWENR- Using this collection, define two games v; and vz by
the following rule:
v = Z Agwg and v = v — v1. (28)
EeY(E)
By Theorem 13, v; is £&-comaximum additive. To show that v is £-cominimum additive, we use
the following property of vs.

Lemma 298 Assume that £ is coarse and let v be £-coextrema additive. Then for any T € F,

v =vw( |J B (29)
Eeécr
Proof. Case 1: &cr = 0, i.e., no element in £ is contained in T. Then, v‘b’(UEeSCT E) =
v(0) — v1(@) = 0, so we need to show that vo(T) = v(T) — v1(T) = 0. Note that there exists a
representation R of £ such that ' C R (see Lemma 22). Then, v(T) = v(T N R) = yr(T) =
Y per(e), EnTxs ME = v1(T), as claimed.

Case 2: Ecr # 0. Let E* = Ugee , E and T* = T\E*. We want to show that vs (T) =
ve (E*). By construction, E* € o (£) is the union of some elements in II(£), choose one point
from each of these elements and let A be the collection of these points. Note that x(4) = E*,
and that £c 4 = Ecr-ua = B follows from the coarseness. Thus, Case 1 applies to A and T* U A,

and we have
va(A) = vo(T* U A) = 0. (30)

Now we claim that 1z« and 17+_a are £-coextrema. Note first that E* N (T™* U A) = A by
construction. To see that they are £-comaximum, recall Remark 6, and pick F' € £ with F C
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Q\A. Then F N E* = § must follow, since both F' and E* are in o (£) and so for any S € II (£)
with SC F, ANS # § would hold if S C E*. Then F C Q\E* as desired. To see that they
are £-cominimum as well, notice that if F € £ and F C E*U(T*UA) =T, then F C E* by
construction. Thus E* and (T™* U A) are an £-decomposition pair, and so apply Lemma 17.

By the coextrema additivity of v, v(E* U (T* U A))+ v(E* N (T* U A)) = v(E*) + v(T* U A),
which can be re-written as

v(E*UT*) +v(A) = v(E*) +v(T* U A). (31)
On the other hand, since 1g+ and 17,4 are £-comaximum and v; is £-comaximum additive,
vi(E*UT*) +v1(A) = vi(E*) + v1(T* U A). (32)
Subtracting (32) from (31), and using the definition of vz, and the fact T = E* UT™*, we have
vo(T) + vg (A) = vy (E*) + vo(T* U A).
Applying (30) here, we obtain the desired equation. ®

Now we are ready to show that v is £-cominimum additive.

Lemma 30 Assume that £ is coarse and let v be £-coextrema additive. Then, vy is €-cominimum

additive and thus it has a unique expression

vy = Z KEUE.

E€EY(£)

Proof. Let 14 and 1p be £-cominimum, i.e., A and B constitute an £-decomposition pair by
Lemma 17. We need to show that vo(A U B) + v2(A N B) = va(A) + va(B).

Note that for each § € II (£) such that thereisan FE€ £ with SC EC AUB,ifSZ ANB,
then either SN (B\A) # @ or SN (A\B) # 0, but not both; if both hold then A and B would
not be an £-decomposition pair.

For each S € II(£) with S € AN B, choose a point wg from SN (A\B) if SN (A\B) # @, or
from SN(B\A) if SN(B\A) # 0. Let Q* be the set of chosen points. Finally, set A* = AU(B\Q*)
and B* = BU (A\Q?*). Notice that A* U B* = AU B by construction.

We claim that if F € £ satisfies E C A*, then F C A. Indeed, suppose that there is a
point w € E N (A*\A). Since E € £, we can find (a unique) S € II(£) with w € § C E,
and w € SN (B\A). By the construction of Q*, this means that SN ((B\A)NQ*) # @ so
EN((B\A) N Q*) # 0, which is impossible since E C A* = AU (B\Q").

Similarly, if E € £ satisfies E C B*, then F C B. To sum up, the collections of £-elements
contained in A*, B*, A* U B* and A* N B* coincide with those of A, B, AUB and AN B,
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respectively. Therefore, by Lemma 29, we are done if v2(A*UB*)+v2(A*NB*) = vo(A*)+uve(B*).
For this, it suffices to show that 14+ and 1+ are E-coextrema. Indeed, since v is £-coextrema
additive, we have v(A* U B*) + v(A* N B*) = v(A*) + v(B*), and since v; is £-comaximum
additive, we have v1(A* U B*) + v1(4* N B*) = v1(A*) + v1(B*). Since v = v — vy, the desired
equation is established from these two equations.

To see 14- and 1p- are £-cominimum, notice that A and B constitutes a decomposition pair
by assumption, and so do A* and B*; if E C A*UB* with F c £, then E C AU B, which implies
EC Aor EC B and hence E C A* or E C B* as we have shown above. Thus 14- and 13- are
£-cominimum by Lemma 17. '

It remains to show that 14» and 1g. are £-comaximum. Pick any E € £ with E C
Q\ (A* N B*). We need to show that E C Q\A* or E C Q\B* or both (see Remark 6). Sup-
pose E N (A*UB*) # 0 or else the implication holds trivially, and so it suffices to show that
EN(A*\B*) =0 or EN(B*\A*) = @. If neither of these holds, then pick ws € EN (A*\B*) and
wp € EN(B*\A*). Note that A*\B* = A\B* and B*\A* = B\A" holds, and thus w4 and wp
must belong to Q* by the construction of A* and B*. Since E € &, there must be S4 € II(£)
and Sp €I (€) and E4 € £ and Ep € € such that ws € S4 C EsNECAUBandwg € Sp C
EgNE C AUB. But then, by the coarseness, both S4 N B* and Sg N A* are non-empty, which
implies EN (A* N B*) # @, a contradiction. This completes the proof. m

Since v; is £-comaximum additive and vz is £-cominimum additive, we have the desired
expression V=V +U2 = ZEET(&') AEwE + ZEET(g) HEUE =D + ZEGT(E)\}'l (/\ETUE + II'EUE)
where p = ZwEQ Plwitiw}) and P} = Afw} + B{w}- It remains to show that this is a unique
representation.

Lemma 31 Assume that £ is coarse and let v be E-coextrema additive. Then, the expression
v =Y e Plw}lw} + LEer@EnF AEWE + uEug) is unique; that is, f v = >wen Pluptivw) +
Y eer@ens Newe + ppup) then ply = Py forallw € Q, Ap = Ng, and pg = pg for all
E e Y(E)\Fi.

Proof. Let R € F be a representation of £. Then,
ViR = Z Plw}{w} + z AEWENR = Z P'{w}u{w} + Z EWENR-
w€ER EE€YT(E\F1 wER E€Y(E)\F1

By Lemma 24, Y(Engr)\F1 and Y(£)\F; are isomorphic and thus {wiw}}werRU{WENR} EeT(EN\A
are linearly independent. Therefore, py,} = p'{ w} for allw € Rand Ag = A for all E € T(E)\F1.
Since the choice of R was arbitrary, p{.} = p’{w} for all w € Q. The linear independence also
guarantees that the expression v — Y, ¢ P{w}W{w} ~ 2 Eer(E)\F AEVE = Y EeT(E)\F, HEUE
must also be unique. ®

The proof of Theorem 14 is now complete.
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5 A Refinement of the Myerson Value

5.1 Introduction

Myerson (27, 28) made a seminal contribution to describe how the outcome of a cooperative game
might depend on which groups of players hold cooperative planning conferences. A conference
is defined as a set of two or more players and a collection of conferences is called a conference
structure.!? Myerson (27, 28) augmented a cooperative game by a conference structure and
defined another cooperative game where the conference structure determines which coalitions
are feasible. The feasible coalition is the one in which any pair of players are either dérectly or
indirectly connected (i.e. path connected) by the conferences contained in the coalition. Myerson
(27, 28) showed that the Shapley value of the induced cooperative game can be characterized by
two axioms: fairness and component efficiency. This allocation rule is referred to as the Myerson
value in the subsequent literature.!3

We emphasize that the Myerson value treats direct and indirect connections equally. For
example, consider a conference structure {{1,2},{2,3}}. Player 1 and player 2 are directly
connected in the sense that they have a chance of direct communication in {1,2}, and so are
player 2 and player 3, whereas player 1 and player 3 are not directly connected but indirectly
connected in the sense that they have a chance of indirect communication via an intermediary,
i.e., player 2. In the construction of the Myerson value, this conference structure is identified
with another conference structure {{1, 2}, {2, 3}, {1,2, 3}} where player 1 and player 3 are directly
connected in {1,2,3}. That is, payoff allocations are the same in the two conference structures.
This might be justified under the premise that indirect communication is costless and/or players’
bargaining power is independent of directness of communication. This premise will be certainly
plausible in some context, but not necessarily so in general. In the example above, if it is costly for
player 2 to behave as an intermediary, say by some strategic reasons, then a conference {1,2,3}
may not function. In this case, it is more natural to distinguish the two conference structures
{{1,2},{2,3}} and {{1,2},{2,3},{1,2,3}}. We therefore contend that if an allocation rule does
not distinguish them, it overlooks some interesting aspects of communication and bargaining.

This paper proposes a refinement of the Myerson value which distinguishes direct and indirect
connections. Similar to Myerson (27, 28), we augment a cooperative game by a conference
structure and define another cooperative game where the conference structure determines which
coalitions are feasible. But different from Myerson (27, 28), the feasible coalition is the one in
which any pair of players are directly connected by the conferences contained in the coalition.

12Myerson (27) considered special conferences with exactly two players and regarded a conference structure as

a network, while Myerson (28) considered general conferences and nontransferable utility.
13The study of allocation rules with partial cooperation possibilities is well-documented since Aumann and

Dréze (3). For other allocation rules, see Meesen (26), Borm et al. (5), Hamiache (16), Bilbao and Lépez (4), and
the review by Slikker and van den Nouweland (37), among others.
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In the main result, we show that the Shapley value of the induced cooperative game can be
characterized by three axioms: fairness, complete component efficiency, and no contribution by
unconnected players. The latter two new axioms describe the behavior of the allocation rule
distinguishing direct and indirect connections. To establish the main result, we take advantage
of the idea of potentials for cooperative games originated by Hart and Mas-Colell (17). We prove
that if an allocation rule satisfies the three axioms, then it is represented in terms of the marginal
contributions of the potential for the induced cooperative game, which leads us to the main result.
Also in the main result, we provide a characterization of the potential for the induced cooperative
game, which extends the result of Hart and Mas-Colell (17).

The organization of the paper is as follows. Preliminary definitions and results are summarized
in section 2. Conference structures and allocation rules are introduced in section 3. The main
result is stated in section 4, which is proved in section 5. In section 6, we compare our result and
that of Myerson (27, 28) and show that our allocation rule is in fact a refinement of the Myerson
value. In the same section, we point out some connection of our result to the network games of
Jackson and Wolinsky (19).

5.2 Preliminaries

Let N = {1,...,n} be a set of players. A subset S € 2N s referred to as a coalition. A game v
is a function from 2% to R with v(#) = 0. The unanimity game on T € 2V is denoted by ur and

defined as
1 fTCS,
'U.T(S) = { -

0 otherwise.

A collection of coalitions P C 2% is partially ordered with the set inclusion relation. Regard
[ux(Y)]x,yep as a |P| x |P| matrix and observe that it is non-singular and thus invertible.
The Mobius function of P is defined as a function pp : P x P — R such that the matrix
[wp(X,Y)]x vep is the inverse matrix of [ux(Y)]x,yep;'* that is, for X, Y € P, it holds that

Y- up(X Tur(Y) = ) ux(Dup(T,Y) = (33)

TeP TeP

1 fX=Y,
0 otherwise.

14 A function ¢p : P X P — R such that {(p(X,Y) = ux(Y) for all X,Y € P is called the zeta function of P. The
zeta function and the Mdbius function are defined on any partially ordered set. See a textbook on combinatorics
such as Lint and Wilson (25).
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It is known that the Mdbius function up is determined inductively by the following rule:'®
1 ifX =Y,

pp(X,Y) = 0 fXZY, (34)
- ). wmXT) ifXCY.
TeP:XCTCY

For the special case of P = 2V, it holds that

(=)XI=Y1 if X C Y,
0 otherwise.

I""P(va) = {

The following result is referred to as the principle of Mébius inversion.

Lemma 32 For any functionv: P - R, if f : P — R is given by

f(X) =" v(T)up(T,X) for all X € P, (35)
TeP
then it holds that
v(X) =Y f(T)ur(X) for all X € P. (36)
TeP

Conversely, for any function f : P — R, ifv: P — R is given by (36), then (35) holds.

The principle of M&bius inversion can be easily checked because (33) and (35) imply that

> Turx) =Y (Z v(T')up(T’,T)) ur(X)

TeP TeEP \T'eP
= > () (Z ,up(T',T)uT(X)> = o(X) for all X € P,
T EP TeP

and (33) and (36) imply that

> v(Dup(T,X) =) (Z f(T’)qu(T)) up(T, X)

TeP TeP \T'€P
=y f(T) (Z up (T)pp(T, X)) = f(X) for all X € P.
T'€EP TEP

The principle of Mbius inversion for the special case of P = 2V leads us to the well known fact
that any game v is uniquely represented as a linear combination of unanimity games (33):

v= Z Brur where 1 = Z (—=1)T=18ly(8).
TE2N Te2N:SCT
15When X C Y and |Y| — |X| = 1, this formula requires that up(X,Y) = —pp(X,X) = —1, and once
pp(X,Y) is determined for X C Y with |Y| — |X| < k, then the formula determines pup(X,Y) for X C Y with
Y] - |X|=k+1, and so on.

59



Denote by 6;v(S) the marginal contribution of player 7 € S to v(S); that is,
5:0(S) = v(8) - v(S\{i}).
The Shapley value of v is the vector of payoffs ¢(v) € RN given by the following formula (33):

#i(v) = Z (S 1)|'](J.]|Yl — lSl)!b',‘v(&’) forallie N.
Se2N:ies

In particular, the Shapley value of ur is given by

1/|IT| ifieT,
0] otherwise.

¢i(ur) = {

Since the Shapley value is linear in games, we have an alternative formula for the Shapley value
of v =} rcon Brur as follows:

¢i(w)= > Bro(ur)= D Br/IT|. (37)
Te2N Te2N:4eT
A potential for a game v is a game p such that
> 6ip(S) = v(S) (38)
€S
for all S € 2. Hart and Mas-Colell (17) showed the following result.!®

Proposition 15 There exists a unique potential p for v =3 .o~ Brur, which is given by

Br
p= —UT.
T§~ T
Moreover, the vector of the marginal contributions (8;p(N))ien coincides with the Shapley value
of v; that is,
8:p(N) = ¢s(v) for alli € N.

5.3 Conference structures and allocation rules

To describe how players organize their cooperation, we specify which groups of players are willing
and able to confer together for the purpose of planning cooperative actions. Myerson (28) have
used the term a conference to refer to any set of two or more players who might meet together
to discuss their cooperative plans. So, we define a conference as a coalition with two or more

16Qriginally, Hart and Mas-Colell (17) defined a potential as a real-valued function over the space of games.
The value assigned by the potential to the restriction of a game v to a coalition S corresponds to p(S) in this

paper.
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players. A conference structure is then any collection of conferences. The collection of all possible
conference structures is denoted by

CS={HC2V||H|>2forall Hec H}.

We write Hg = {H € H|H C S} and H_; = Hp\(4) for H € CS, Se2N andieN.
We consider two types of connections between players, direct and indirect ones.

Definition 22 Players i,j € N are said to be directly H-connected in a coalition S if i = j or
there exists a conference H € Hg with {i,j} C H. Players i,j € N are said to be H-connected
in a coalition S if there exist a sequence of players i1, ...,im With ¢ = 4; and j = i, such that i
and ix4; are directly H-connected in S for k=1,...,m— 1.

Thus, two players are directly H-connected in S if they can be coordinated by direct com-
munication; and two players are H-connected in S if they can be coordinated either by direct
communication or by indirect communication via intermediaries.!” By definition, two players
are (directly) H-connected in S if and only if they are (directly) Hs-connected in S. Also by
definition, if two players are (directly) H-connected in S then they are (directly) H-connected in
T with SCT.

The above notions of connectedness for players induce the corresponding notions for coali-
tions.18

Definition 23 A coalition S € 2% is said to be H-complete if any pair of players in S are directly
H-connected in S. A coalition S € 2% is said to be H-connected if any pair of players in S are
H-connected in S.

By definition, any singleton is H-complete and H-connected. Note that S is H-complete if
and only if it is Hg-complete, and similarly, S is H-connected if and only if it is Hs-connected.
Let cm(H) € CS denote the collection of all H-complete conferences, and let cn(H) € CS
denote the collection of all H-connected conferences (so, singletons are excluded). Both cm(-) and
cn(-) are monotonic as operators on CS in the sense that cm(H) C cm(M’) and cn(H) € en(H')

if H € H'. Tt follows that
H C cm(H) C en(H), (39)

since any pair of players in S € H are directly H-connected in S and any pair of players in
S € cm(H) are (directly) H-connected in S. Furthermore, we can show the properties below.1?

17In Myerson (28), players i,j € N are said to be H-connected in S if i = j or there exists a sequence of
conferences Hy,...,Hm € Hg such that i € Hy, j € Hm, and Hx N Hx41 # @ for k= 1,...,m — 1, which is

equivalent to the above definition.
18The notion of H-completeness is introduced by ? ) for events, i.e., subsets of the set of states, and used for a

characterization of the Choquet integral. The term “complete” is adopted from an analogy to complete graphs.
For S € 2V, consider an undirected graph with a vertex set S such that {7,j} C S is an edge if there is H € H3s
satisfying {i,5} C H. This is a complete graph if and only if S is H-complete.

197 ) obtained results similar to Lemma 33.
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Lemma 33 Players i,j € N are directly H-connected in a coalition S if and only if they are
directly cm(H)-connected in S. Thus, it holds that

cm(H) = cm(cm(H)).

Proof. If i = j then the above claim holds trivially. Suppose that 7,5 € N with 7 # j are directly
H-connected in S. Then, there exists H € Mg with {i,j} € H. Since H € cm(H)s, they are
also directly cm(H)-connected in S. Conversely, suppose that i,j € N with i # j are directly
cm(H)-connected in S. Then, there exists H € cm(H)s with {i,j} € H. Since H is ‘H-complete,
there exists T € Hyg C Hg with {z,5} C T. This implies that i and j are directly H-connected in
S. The equivalence of the direct H-connected relation and the direct cm(?)-connected relation
implies the equivalence of S € cm(H) and S € cm(cm(H)). g

Lemma 34 Players i,j € N are H-connected in a coalition S if and only if they are en(H)-
connected in S. Thus, it holds that

cn(H) = em(en(H)) = cn(en(H)).

Proof. Suppose that i, € N are H-connected in S. Then, there exist a sequence of players
i1yeyim with @ = iy and j = i, such that ix and ix41 are directly H-connected in S for
k=1,...,m—1. Since H C cn(H), ix and ix4; are directly cn(H)-connected in S for each k.
This implies that i and j are cn(H)-connected in S. Conversely, suppose that %,j € N are cn(H)-
connected in S. Then, there exist a sequence of players i1, ..., im With i =4; and j = im such that
ix and ix1 are directly cn(H)-connected in S for k = 1,...,m—1. Thus, there exists Sk € en(H)s
with {ik,ik+1} C Sk, which implies that i, and x4 are ‘H-connected in S for each k. Since
the ‘H-connected relation is transitive, i and j must be H-connected in S. The equivalence of
the H-connected relation and the cn(?)-connected relation implies the equivalence of S € cn(H)
and S € cn(cn(H)), establishing cn(?) = cn(en(H)). Since cn(H) C em(en(H)) € en(en(H))
by (39), ecn(H) = cm(cn(H)) = cn(en(H)) must follow. g

Note that the H-connected relation in § is an equivalence relation, although the direct H-
connected relation in S might not be. For S € 2 and H € CS, let S/H denote the partition of
S consisting of the equivalence classes induced by the H-connected relation in S; that is,

S/H = {{j € S|i and j are H-connected in S}|i € N}.

Tt follows that S/ cn(H) = S/H = S/Hs by the equivalence of the cn(H)-connected, ‘H-connected,
and Hg-connected relations in S. We call an element of S/H a component of S. A component, of
S is a maximal H-connected coalition in S because any pair of players in a H-connected coalition
are H-connected in the component to which they both belong.
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An allocation rule assigns a vector of payoffs to each conference structure; that is, an allocation
rule is a mapping f : CS — RN where player #’s payoff is f;(H) for H € CS. Myerson (27, 28)
considered the following axioms for an allocation rule f.

Component efficiency (CE)

3 fi(H) = u(S) if S € N/H.
€S

Fairness (F)

fi(H) = fi(H\{H}) = f;(H) — f;(H\{H}) if i,j € H € 1.
Balanced contribution (BC)

fi(H) = fi(H_;) = f;(H) = f;(H_;) for all i,j € N.

Component efficiency (CE) says that if S is a component of N, i.e., a maximal H-connected
coalition, then the members of S ought to allocate to themselves the total wealth v(S) available
to them. Fairness (F) says that all players in a conference gain equally from their agreement to
form the conference. Balanced contribution (BC) says that player j’s contribution to i always
equals ¢’s contribution to j. The next result (28) shows that BC implies F.

Lemma 35 If an allocation rule satisfies BC then it satisfies F.

To characterize an allocation rule satisfying the axioms above, Myerson (27, 28) considered
a game r'¢ determined by the collection of H-connected coalitions, which is defined as follows:

r(8)= Y o(T) for all S € 2". (40)
TeES/H

The game 7 is called the restricted game of v. The following result, originally due to Myerson
(27, 28) and later elaborated by van den Nouweland et al. (38), is fundamental.

Proposition 16 The following three statements about an allocation rule f are equivalent.

(i) f satisfies CE and F.

(ii) f satisfies CE and BC.

(iii) f(H) is the Shapley value of the restricted game r™*. That is, fi(H) = ¢;(r™) for allie N
and H € CS.
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Since the restricted game r’* is uniquely determined from v and H by (40), each statement in
Proposition 16 identifies a unique allocation rule. Especially, this proposition shows that there
exists a unique allocation rule satisfying CE and F. This allocation rule is referred to as the
Myerson value.

Note that 7 = rn(") because S/H = S/cn(H). This means that the Myerson value as-
signs the same vector of payoffs to different conference structures as far as the collections of
‘H-connected conferences are the same, even if those of H-complete conferences are distinct. In
this sense, the Myerson value treats direct and indirect connections equally. For example, let
N =1{1,2,3,4} and

Hl = {{1, 2}, {2’ 3}) {3’ 4}, {1’ 23 33 4}}’
H? = {{1,2},{2,3},{3,4},{1,2,3},{1,2,3,4}}, (41)
H® = ({1,2}, {2,3}, {3, 4}, {1,2,3},{2,3,4}, {1,2,3,4}}.

Since cn(H!) = cn(H2) = cn(H3) = H3, the payoff allocations by the Myerson value are identical
for all the above conference structures. On the other hand, we have H! = cm(H?'), H? = cm(H?),
and H® = cm(H3). In the next section, we propose an allocation rule which distinguishes

conference structures with distinct collections of H-complete conferences.

5.4 The main result

Our motivation is similar to Myerson’s but we are interested in an allocation rule based upon
direct connections. We formalize this idea in terms of the following new axioms and replace CE
with them.

Complete component efficiency (CCE)

3" fi(H) = v(S) if S € N/H and S is H-complete.
i€S

No contribution by unconnected players (NCU)

fi(H) = fi(H_;) if i,j € N are not directly H-connected in N.

Complete component efficiency (CCE) is in the same spirit as Myerson’s component efficiency.
However, since we regard direct connections as basic units for communication, a component
S € N/H can function and allocate the total wealth v(S) if S is H-complete. To put it differently,
if S is not H-complete, there are some pairs in S who cannot directly meet, and thus an agreement
for cooperation may not occur. Clearly, CE implies CCE, but not vice versa.

No contribution by unconnected players (NCU) implies that player i’s payoff remains the
same when all conferences containing j, who are not directly H-connected with ¢, are removed.
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In other words, player j’s contribution to i equals zero. Note by symmetry that fi(H)—fi(H—;) =
fi(H) = f;(H_;)(= 0), which is the special case of BC. It can be readily seen that the Myerson
value does not satisfy NCU because it treats direct and indirect connections equally.

To characterize an allocation rule satisfying the axioms above, we consider a game determined
by the collection of H-complete coalitions. Write cm*(H) = cm(H) U {{é}|i € N} for the
collection of all H-complete coalitions and let pcy-(3) be the Mdbius function of cm*(H). Define
the following game v’*, which we call the direct-connection restricted (d-restricted) game of v:

Z Hcm* (H) (51 T)'U(S) if T € cm* (H)1
v’ = Z BRur where B3 = { secem=(3) (42)
Te2N 0 if T ¢ cn*(H).
We will see in section 5.6 that the construction of v™ generalizes that of the restricted game r7%.

The following lemma provides a simple characterization of v’

Lemma 36 Let w = ) rcon Yrur be a game. Then, w = v if and only if w(S) = v(S) for all
S € ecm*(H) and yr =0 for all T & cm*(H).

Proof. Assume that w(S) = v(S) for all S € cm*(H) and y7 = 0 for all T € cm*(H). Then,

w(S) = Z ~yrur(S) = v(S) for all § € cm*(H). (43)
Tecm*(H)
By Lemma 32 with f(X) = yx and v(X) = w(X) restricted to cm*(H), (43) is equivalent to
yr = Z om0 (S T)v(S) for all T € cm*(H). (44)
S€cm*(H)
By (42) and (44), yr = B for all T € 2V and thus w = v™. Conversely, assume that w = v™
and thus y7 = ¥ forall T € 2N Then, (42) implies that v = 0 for all T ¢ cm*(H) and (44),
the latter of which is equivalent to (43). Therefore, w(S) = v(S) for all S € cm*(H) and y7 =0
for all T & cm*(H). g

Now we are ready to state our main result, which characterizes an allocation rule satisfying
CCE, NCU, and F.

Proposition 17 The following four statements about an allocation rule f are equivalent.
(i)  f satisfies CCE, NCU, and F.

(ii) f satisfies CCE, NCU, and BC.
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(iii) f(H) is the vector of the marginal contributions of a game p'™ satisfying the following two

conditions:
Z 8;p"(S) = v(8) if S is H-complete. (45)
t€S
5:p™(8) = 8:;p" (S\{j}) if i,j € S are not directly H-connected in S. (46)

That is, fi(H) = 8;p" (N) for alli € N and H € CS.

(iv) f(H) is the Shapley value of the d-restricted game oM. That is, fi(H) = ¢:(v™) for all
i€ N and H € CS.

Since the d-restricted game v™ is uniquely determined from v and H by (42), each statement
in Proposition 17 identifies a unique allocation rule. Especially, this proposition shows that there
exists a unique allocation rule satisfying CCE, NCU, and F. We call this allocation rule the
direct-connection Myerson (d-Myerson ) value.

Notice the resemblance between p™ in (iii) and the potential for v. The latter satisfies (38) for
all coalitions, whereas the former satisfies it for all H-complete coalitions, which is the condition
(45). The other condition (46) requires that the marginal contribution of player i to p(S) be
determined by players who are directly H-connected in S with i. In both of the conditions, the
direct H-connected relation is essential. Note that if 7 is the finest conference structure (hence
any coalition is H-complete), then (45) is identical to (38), and (46) holds trivially because any
pair of players are directly H-connected in any coalition containing them. Thus in this case,
p™ coincides with the potential for v by Proposition 15. As will be shown in Lemma 40 in the
next section, p'* is the potential for v™, which will explain why the allocation rule is uniquely

determined.

5.5 The proof

This section provides the proof of Proposition 17. It proceeds in the following order: (i) = (ii)
= (iii), (iii) & (iv), and (iii) = (ii) = (i).

5.5.1 (i) = (ii) = (iii)

As the next result shows, F and NCU together imply BC. Thus, if an allocation rule satisfies
CCE, NCU, and F, then it satisfies CCE, NCU, and BC, establishing (1) = (ii).

Lemma 37 If an allocation rule f satisfies F and NCU, then it satisfies BC.

Proof. If i,j € N are not directly H-connected in N, then NCU implies that fiH) - fi(H-;) =
fi(H) — fi(H-) = 0. If i,j € N are directly ‘H-connected in N, then write {H € H|{i,j} C
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H} = {H,...,H;}. By applying F repeatedly, we have

fi(H) — fi(M\{Hy, ..., Hx}) = f;(H) = f;(H\{H\,. .., He}). (47)

Note that i and j are not directly H\{Hy, ..., Hi}-connected in N since H\{H,...,Hx} =
{H e H|{i,j} € H}. Thus, NCU implies that

fiH\{H,..., H¢}) = fi(H\{Hy,..., He})—5) = fi(H-) (48)

where the latter equality holds because (H\{H1i,...,Hx})—; = {H € H|{i,j} € Handj &
H}={H € H|j ¢ H} = H_;. Similarly, it follows that f;(H\{Hi,...,Hi}) = f;(H-:). By
plugging this and (48) into (47), we have established BC. g

As noted by Hart and Mas-Colell (17), BC is a finite difference analogue of the Frobenious
integrability condition, i.e., the symmetry of the cross partial derivatives, which suggests that the
solution admits a potential. In fact, BC assures the existence of a “potential” in the following

sense.20

Lemma 38 If an allocation rule f satisfies BC, then, for each H € CS, there exists a game pMt
such that fi(Hs) = 6:p™(S) for alli€ S and S € oN,

Proof. Define a game p”* by the following rule: for each § = {i1,...,ik} € 2V with i < .-+ <k,
p™(S) = o, fi(Hysy.43) Note that, by construction, if i = max S then fi(Hs) = p"(8) —
P (S\{i}) = &p™(S).

We show by induction that fi(Hg) = &;p™(S) for all i € Sand § € 2V. If |S| = 1 and
S = {i}, then f;(H;y) = p"({i}) — p™(9) = 8:p™({i}). Suppose as an induction hypothesis that
fi(Hs) = 8;p™(S) for all i € S and S € 2V with |S| <k <n. Let § = {i1,...,ik4+1} € 2N with
i1 < -+ < igy1. For every i € S, by applying BC (with Hs instead of H), we have

fi(HS) = fik+1 (HS) - fik+1 ((HS)—i) + fi((HS)—'ik+1)

= firss (H8) = finss (Havap) + fi(Hs\fiep})- (49)
By the construction of pt,
Fiess(Hs) = p™(S) — P’ (S\{ir+1})- (50)
By the induction hypothesis,
firesMsriay) =P (S\{E) = P (S\{é, i1}, (51)
FiMs\ingny) = P\ {ik11}) — P (S\{i, i D). (52)

20Consider a vector-valued mapping F : R — R”. In vector analysis, a function f : R® — R is said to be a
potential of F if F = (8f/8x:)],.
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Plugging (50), (51), and (52) into (49), we have
fi(Hs) = p"(S) — p™(S\{3}) = 8:p™(S),
which completes the proof. g

A “potential” in Lemma 38 is shown to satisfy (45) and (46) if an allocation rule satisfies
CCE and NCU in addition.

Lemma 39 Let an allocation rule f satisfy CCE and NCU. Suppose that there exists a game p"
such that fi(Hg) = 8:;p™(S) for alli € S and S € 2N. Then, p™ satisfies (45) and (46).

Proof. Suppose that S is H-complete. Then S € N/Hs and S is Hg-complete. By CCE,
Yies filHs) = Lics 6™ (S) = v(S). Therefore, p™ satisfies (45). To show that p™ satisfies
(46), suppose that i,j € S are not directly H-connected in S. Then, they are not directly Hs-
connected in N. Thus, by NCU, &;p™(S) = fi(Hs) = fi(Hs) ;) = fi(Hs\5)) = 8™ (S\{5})-
Therefore, p'* satisfies (46). g

By Lemma 38 and Lemma 39, if an allocation rule f satisfies CCE, NCU, and BC, then
there exists a game p’* satisfying (45) and (46) such that fi(H) = fi(Hn) = &ip™(N), which
establishes (ii) = (iii).

5.5.2 (iii) < (iv)

We shall show below that a game p’* which satisfies the conditions in (iii) must be the potential
for the d-restricted game v. This suffices to establish (iii) «> (iv) since §;p"*(N) = ¢;(v™") holds
by Proposition 15.

Lemma 40 There ezists a unique game p'* satisfying (45) and (46). The game p™ coincides

with the potential for the d-restricted game v'*.

Proof. We first show that the potential for v™ does satisfy (45) and (46). So let P’ be the
potential for v* = Y. con BFur. Then by Proposition 15, p™ = Y reon (B¥/|T|)ur. Observe
that 3,5 0:ip™(S) = v"(S) = v(S) if S is H-complete, where the first equality holds since p™t
is the potential for v* and the second equality holds by Lemma 36. This is the condition (45).
Next, observe that, since 3 = 0 for all T ¢ cm*(H),

5:p"(S) = p"(S) — P (S\{i})
= Y sm- Y AT

Tecm*(H)s Tecm*(H)s\ (i}

= > BF/TI (53)

Tecem*(H)s:i€T
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and similarly,

8™ (S\{4}) = >, BF/1T). (54)
Tecm*(H) s\ (;}1€T
Now suppose that i, € S are not directly H-connected in S. Then, there is no T € cm*(H)s
such that {,5} C T because any pair of players in T € cm*(H)s are directly H-connected in T
and thus in S. This implies that {T € cm*(H)s|i € T} = {T € cm*(H)g\y;} |4 € T} and thus
8:p™(S) = 8;p™(S\{j}) by (53) and (54). This is the condition (46).

To complete the proof, we show that a game p™ satisfying (45) and (46) is unique, by con-
structing p™ recursively such that in the k-th step we determine the unique value of p™(S) with
|S| = k from p™(S’) with |S’| < k — 1. Start with p™(#) = 0 since p™ is a game. Consider the
k-th step with k > 1 and pick any S with |S| = k. Suppose that S is H-complete. Then, (45) is
rewritten as

pH(S) =n"! (v(S) ¥ Z::H(S\{i})) .
i€S
Since p’*(S\{i}) on the right hand side is uniquely calculated for each i € N in the previous
step, so is p"*(S) on the left hand side. Suppose that S is not #-complete. Then, there exist two
distinct players i, € S who are not directly H-connected in S. So, by (46),

p(S) = P (S\{s}) + 2" (S\(5}) - P"(S\{i, 3})- (55)

Since the terms on the right hand side are uniquely calculated in the earlier steps, so is p"(S) on
the left hand side. Note that p’*(S) in (55) does not depend upon the choice of i and j because
(55) holds for any 4,5 € S who are not directly H-connected in S. By the above procedure, we
can uniquely determine p’* recursively, which establishes the uniqueness. g

5.5.3 (iii) = (ii) = (i)

Recall that BC implies F by Lemma 35, which establishes (ii) = (i). To prove (iii) = (ii), we
use the following lemma.

Lemma 41 Let p™ be a game satisfying (45) and (46) for each H € CS. Then, §;p"s(S) =
8:;p™(S) for alli€ S and S € 2V.

Proof. By Lemma 40 and Proposition 15, p™ = ¥ 7con (8% /|T|)ur where

3> bemrn(S,TH0(S) i T € cm®(H),
ﬁ:]):t = Secm*(H)
0 if T ¢ cn*(H).

Observe that if T C R then pems#)(S,T) = pcm=(1g)(S,T). This is because the recursive
construction of pems(2)(S,T) in (34) implies pem»(2) (S, T) = Pem* 7y (S, T) and the definition
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of H-completeness implies cm*(H)g = cm*(Hg). Therefore, S} = X7 if T C R and thus
p"(8) = Xrcs BE/IT) = ETQS;@;‘R/QTI = p"~r(S) if $ C R. This implies that §;p"s(S) =
&:p™(S)-n

We are ready to establish (iii) = (ii).
Lemma 42 Let f be an allocation rule stated in (iii). Then, f satisfies CCE, NCU, and BC.

Proof. If i # j, then they are not directly H_j-connected in N. Thus f;(H_;) = §;p"-i(N) =
8;p"-i (N\{j}) by (46). By setting S = N\{j} in Lemma 41, we have §;p"-i(N\{j}) =
5:p"(N\{3}). Therefore, fi(H_;) = 8;p™(N\{j}), which implies BC because

fi(H) = fi(H_;) = 8™ (N) — 8™ (N\{5})
=p"*(N) — p(N\{i}) — P (N\{5}) + p"*(N\{4,5})
= §;p"(N) — 6;™ (N \{3})
= fi(H) = fi(H-)-
If i,7 € N are not directly H-connected in N, then §;p™(N) = §;p"(N\{j}) by (46), and the
above equation is reduced to f;(H) — fi(H_-;) = 0, which is NCU.

It remains to prove that f satisfies CCE. Let S € N/H be H-complete. We first show
that &p"(N) = 6;p"(S) for i € S. Let N\S = {j1,..-,Jm} and Tx = N\{j1,...,Jx} for
k =1,...,m. Since i,j; € N are not directly H-connected in N, it holds that §;p"(N) =
8:p™(N\{j1}) = &:p™(T1) by (46). Similarly, since 4,jx € Tk_1 are not directly H-connected
in Tx_;, it holds that &;p™(Tx_1) = &0 (Te—1\{jr}) = &:p"(T%) by (46) for k = 2,...,m.
Therefore, 8;p"(N) = §;p™(Ty) = --- = §;p"(Tn) = 8:p™(S). Then, we have 3, ¢ fi(H) =
Yies Oip™(N) = X5 8:ip™(S) = v(S) by (45), which is CCE. 3

5.6 Discussions
5.6.1 Characterization of v

The d-restricted game v7¢, which is fundamental to our allocation rule, can be characterized in
various ways, as stated in the following result.

Lemma 438 Fiz a game v and H € CS. The following four statements about a game w =
Y rean YTUT are equivalent.

H

(i) w=1v", ie, w is the d-restricted game.

(il) w(S) = v(S) if § is H-complete and yr = 0 if T is not H-complete.
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(iii) {yr}Teon is determined recursively by the following rule:

1. vy = v({i}) for alli € N.
2. For T € 2N with |T| > 2,

o yp =v(T) = Y gcr¥s if T is H-complete,
o v =0 if T is not H-complete.

(iv) w satisfies the following two conditions:

w(S) = v(S) if S is H-complete. (56)
S;w(S) = &w(S\{j}) ifi,5 € S are not directly H-connected in S. (57)

Proof. Lemma 36 established (i) <> (ii). So we prove (ii) < (iii) and (ii) < (iv).

(i) < (iii): The rule in (iii) is rewritten as the condition that if S is H-complete then
v(S) = ¥ pcs¥r = w(S) and if T is not H-complete then yr = 0, which is (ii).

(i) & (i_v): Let w be as stated in (ii). Then, the condition (56) is obviously satisfied. If
i,j € S are not directly H-connected in S, then, as shown in the proof of Lemma 40, we have
{T € em*(H)s|i € T} = {T € em*(H)s\(;}|¢ € T}. Since y7 = 0 for all T ¢ cm*(H), a
calculation similar to (53) and (54) shows that

sw®)= Y. = > vr = Sw(S\{5}),
T€cm*(H)sH€T Tecm* (H)s\;3:4€T
which is the condition (57).2' Thus, (ii) implies (iv).

Suppose that w satisfies the conditions in (iv). To prove that (iv) implies (ii), it suffices to
show that w is uniquely determined because v”* is the unique game that satisfies the conditions
in (ii) by Lemma 36, which also satisfies the conditions in (iv) as discussed above. To show the
uniqueness, we construct w recursively such that in the k-th step we determine the unique value
of w(S) with |S| = k from w(S’) with |S’| < k — 1. Start with w(#) = 0. Consider the k-th step
with k > 1 and pick any S with |S| = k. If S is H-complete, then w(S) = v(S) by (56). If S is
not H-complete, then there exist ,j € S who are not directly H-connected in S and so, by (57),

w(S) = w(S\{i}) + w(S\{5}) — w(S\{%,5})- (58)

Since the terms on the right hand side are uniquely calculated in the earlier steps, so is w(S) on
the left hand side. Note that w(S) in (58) does not depend upon the choice of ¢ and j because
(58) holds for any 7,5 € S who are not directly H-connected in S. By the above procedure, we
can uniquely determine w recursively, which establishes the uniqueness. g

21?7 ) considered a condition similar to (57) and called it modularity for H-decomposition pairs. They showed
that yr = 0 for all T € em*(H) if and only if w is modular for H-decomposition pairs. It can be readily shown
that (57) and modularity for H-decomposition pairs are equivalent.
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5.6.2 The Myerson value and the d-Myerson value

We shall first relate the d-restricted game v™ to the restricted game r’*, which is done in the
following result.

Lemma 44 For each H € CS, it holds that v°*(M) = ¢,
Proof. We prove that

v ™($) = Y 87 Mur(S)= Y o(T) forall S € 2V (59)
Te2N TeS/H

Let us write cn*(H) = cn(H)U {{i}|i € N}, which is the collection of all H-connected coalitions.
Note that 82" = 0 for all T ¢ cm*(cn(H)) by Lemma 36. Since cm(cn(M)) = cn(H) by
Lemma 34, it follows that cm*(cn(H)) = cm(en(H)) U {{i}|i € N} = en(H) U {{i}|i € N} =
cn*(H). Thus, for each S € 2%,

po(H) (8) = Z B;n(ﬂ) — Z ﬂ;‘“(ﬂ) - Z ﬁ;n(ﬂ). (60)

TCS Teem*(en(H))s Teen*(H)s

Observe that each T € cn*(H)s is a H-connected coalition contained in S and thus there exists
R € S/H such that T C R because any pair of players in T are H-connected in S and thus they
are H-connected in the component of S to which they both belong. Note that such R € S/H is
unique. Hence we have

o ;=Y [T = Y v ™(R), (61)
T€cn*(MH)s ReS/H \TCR ReS/H

Observe that R € S/H is cn{H)-complete because if R is a singleton then it is so by definition
and if |R| > 2 then any i,j € R are H-connected in R and thus R € cn(H) = cm(en(H)) by
Lemma 34, which with Lemma 36 implies that

v M(R) = v(R). (62)
By (60), {61), and (62), we have (59), completing the proof. g

This lemma implies that the Shapley value of r’* and that of v*™) coincide. Therefore, by
Proposition 16 and Proposition 17, a payoff vector of the Myerson value for H coincides with
that of the d-Myerson value for the collection of all H-connected conferences.

Lemma 45 Let fM be the Myerson value and f*™ be the d-Myerson value. Then,

FM(H) = §M (cn(H)) for all H € CS.
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By this lemma, the d-Myerson value can be regarded as a refinement of the Myerson value.
To illustrate this, we study a simple example. Consider again H', 12, and H? specified in (41)
with N = {1,2,3,4} and define a game v by

v = 3uq1 2,3} — 3u{2,3,4} +4u{1,2,3,4}-

Using the construction method (iii) of Lemma 43, we have oM = duyy 23,4} o = duqi2,3; +
u{1,2,3,4}, and v = v. The payoff vectors given by the d-Myerson value can be found by
calculating the Shapley value of these games, and using the formula (37), we have them in the
following table.

i player 1 players 2 and 3 player 4

M (HY) 1 1 1
FM(H?) 5/4 5/4 1/4
M (H3) 2 1 0

Note that fM(H') = fM(H?) = fM(H3) = f4M(H3) by Lemma 45. To appreciate the im-
plication of these numbers, consider the following story. For each conference in !, there are
hotlines connecting its members, but indirect communication is very costly initially. Then the
cost of indirect communication among players in {1,2,3} is drastically reduced but not that
in {2,3,4}. The resulting conference structure is thus H2. Under the Myerson value, players’
shares are unchanged. But note that f#M(H2) > fEM(H') for i € {1,2,3}; that is, addition
of a conference {1,2,3} to H?, i.e., reduction of communication cost among players in {1,2, 3},
increases the payoffs of these players. Reduction of communication cost should not necessarily
lead to improvement of payoffs in general, which is the case in this example too. Note that

AM (142) > f4M(13) for i € {2,3,4}; that is, deletion of a conference {2, 3,4} from H> increases
the payoffs of players in {2,3,4}.

Let us conclude with a final remark on the comparison of the two allocation rules. In some
applications, it may make sense to require } ., ¢ fi(H) = v(S) to hold for all S € N/H. The
d-Myerson value, however, do not satisfy CE and thus Y, s fi(H) > v(S) is certainly possible
for § € N/H which is not H-complete. Our suggestion to avoid this difficulty is simple: adopt
f(H U (N/H)) as the payoff vector for H instead of f(H). That is, every element of N/H
is considered to be directly connected. Since each S € N/H is (H U (N/H))-complete and
S € N/(HU (N/H)), it holds that Y, s fi(H U (N/H)) = v(S) for all S € N/H by CCE. We
believe that this is not an ad hoc treatment because Y, g fi(H) = v(S) implies that players
in S can cooperate and thus it is natural to add S to H. Note that, for the Myerson value
M it holds that fM(H U (N/H)) = fM(H) for all H € CS because N/H C cn(H) and thus
en(H U (N/H)) = en(H). So, it is also of interest to compare f¥(H) and f(H U (N/H)). In the
above example, we have f(H¥ U (N/HF)) = f(HF) for each k because H* = H* U (N/HF) holds.
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5.6.3 Network games and d-restricted games

Let G be the collection of conference structures each conference of which contains exactly two
players:
G={GeCS||L|=2forall L €G}.

Each G € G is regarded as a network because (N, G) is an undirected graph with a vertex set N
and an edge set G.

Jackson and Wolinsky (19) called a function V : G — R a network game where V(G) is the
total wealth when the network G € G is formed. They considered an allocation rule f : G — RV
given by the Shapley value of a game w satisfying w(S) = V(Gs) for all S € 2N They called
this allocation rule the Myerson value for network games and gave a characterization similar to
that of Myerson (27).

The following result shows that a special class of network games are represented in terms of
the d-restricted game v9.

Lemma 46 Let V : G — R be a network game with V(@) = 0. Suppose that, for each G € G, it
holds that

V(Gs) — V(Gs\iiy) = V(Gs\s1) — V(@s\iagy) #f {i,5} € S and {i,5} € G. (63)
Then, there exists a game v such that
v9(S) = V(Gs) for all S €2 and G € G. (64)
Proof. Let v be a game such that
o(S) = V({{5, 5} | {i,j} S S}) for all S € 2. (65)

Fix G € G. Let w be a game such that w(S) = V(Gs). If S is G-complete, then Gs =
{{i,3}1{i,5} C S} and thus w(S) = V({{i,5}|{i,5} € S}) = v(S). If i,j € S are not directly
G-connected in S, then {i,j} ¢ G and &;w(S) = Sw(S\{s}) by (63). Thus w satisfies the
conditions (56) and (57). The equivalence of (i) and (iv) in Lemma 43 implies w = v9, which
completes the proof. g

The condition (63) says that if players ¢ and j contained in S are not linked in the network G
then the marginal contribution of i to V(Gs) equals that to V(Gs\(;}). The above lemma implies
that if a network game V satisfies (63) for all G € G then the Myerson value for V coincides with
the d-Myerson value of v give by (65). For example, consider a network game V defined by

V(G)=) wpforallGeG

Leg
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where wy, € R is a constant. It is easy to check that V satisfies (63) for all ¢ € G and that (64)
holds for a game v such that

v(S) = Z wy, for all S € 2V,
LCS

5.7 Concluding remarks

This paper has proposed and axiomatized the d-Myerson value as a refinement of the Myerson
value. In so doing, we have introduced the two new axioms, CCE and NCU, and the d-restricted
game; the axiomatization of the d-Myerson value is done by replacing the CE axiom in that of
the Myerson value with the CCE and NCU axioms, and the d-Myerson value is shown to coincide
with the Shapley value of the d-restricted game in place of the restricted game in the Myerson
value. As concluding remarks, we point out other possible applications of the CCE and NCU
axioms and the d-restricted game.

The position value (26; 5) and the Hamiache value (16) are allocation rules defined on the
collection of networks G. Later, these allocation rules are extended to those on the collection of
conference structures CS (38; 4). Both of them also treat direct and indirect connections equally
because the position value is defined in terms of the restricted game and the Hamiache value is
axiomatized in terms of the CE axiom. So, it is natural to consider refinements of these allocation
rules respecting differences of direct and indirect connections, as we did for the Myerson value.
We speculate that the CCE and NCU axioms and the d-restricted game might be employed
instead of the CE axiom in the Hamiache value and the restricted game in the position value.
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