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Chapter 1

Introduction

1.1 Background

This thesis concerns conditional inference for contingency tables. In the conditional inference,
we use distributions of the sufficient statistic for the parameter that we concern, conditioning
on the sufficient statistic for the nuisance parameter in the model. For example, suppose we
want to test a null hypothesis H0 that corresponds to a log-linear model symbolized by M0,
under the assumption that a more general model M1 holds, corresponding to an alternative
hypothesis H1. Denote minimal sufficient statistics for these models by T0 and T1, respectively.
Then we use the conditional distribution of T1 given T0. From the theory of sufficiency, the
conditional distribution does not depend on the nuisance parameter, and a similar test can
be constructed. For detail, see Anderson (1974), Lehmann (1986), Agresti (1990, 1992), for
example.

The above general story can be applied to analyses of contingency tables. To illustrate
the problem, we first consider a typical analysis of two-way contingency tables. Let Z≥0 =
{0, 1, 2, . . .} and suppose cell frequencies {xij , i ∈ [I], j ∈ [J ]}, xij ∈ Z≥0 have a multinomial
distribution generated by n independent trials with IJ cell probabilities {pij, i ∈ [I], j ∈ [J ]},
where we define [m] = {1, . . . , m} for m ∈ Z>0 = {1, 2, . . .}. The nonnegative integer array
x = {xij}, xij ∈ Z≥0 is called as a contingency table of size I × J . In this case, the saturated
log-linear model has the form

log pij = µ + αi + βj + γij.

For the identifiability of the parameters, we assume

αI = βJ = γIj = γiJ = 0

and then obtain the reverse transformation (see Plackett, 1981, for example)

µ = log pIJ , αi = log
piJ

pIJ
, βj = log

pIj

pIJ
, γij = log

pijpIJ

piJpIj
, i ∈ [I − 1], j ∈ [J − 1].

It should be noted that, if we start with the other sampling model, again the same conditional
distribution is derived (Plackett, 1981). Another typical situation is, for example, x = {xij}
are independent Poisson random variables with parameters {npij}.
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In the analysis of two-way contingency tables, a hypothesis of statistical independence be-
tween the row and column is most familiar and is often considered. Since the association
between the row and column is represented as the cross-product ratios {γij}, the other pa-
rameters, µ, {αi}, {βj}, are nuisance parameters in this case (see Altham, 1970). An direct
calculation shows that the sufficient statistics are n = x·· for µ, xi· for αi, x·j for βj and xij

for γij. Then to conduct the inference about {γij}, we consider the conditional distribution of
{xij , i ∈ [I − 1], j ∈ [J − 1]} given x··, {xi·, i ∈ [I − 1]}, {x·j, j ∈ [J − 1]}. This conditional
distribution is written as

p(x) =

exp


 ∑

i∈[I−1]

∑

j∈[J−1]

xijγij




∏

i∈[I]

∏

j∈[J ]

xij !

/
∑

y∈F





exp


 ∑

i∈[I−1]

∑

j∈[J−1]

yijγij




∏

i∈[I]

∏

j∈[J ]

yij!





, (1.1)

where
F = {y = {yij} | yij ∈ Z≥0, yi· = xi·, y·j = x·j , i ∈ [I], j ∈ [J ]}

is the reference set of all possible contingency tables having the same marginal totals to x.
To test the statistical independence of the row and column, we use this conditional distri-

bution under the null hypothesis

H0 : γij = 0 for i ∈ [I − 1], j ∈ [J − 1].

It should be noted that, under the null hypothesis, (1.1) can be written as

p(x; γij = 0) = h(x) =
∏

j∈[J ]

(
x·j

x1j , · · · , xIj

)/(
x··

x1·, · · · , xI·

)
, (1.2)

which is the hypergeometric distribution. To complete a test, we need to specify a test statistic
and the way to compute the p value. One of the most widely used statistics is the Pearson
chi-squared statistic for testing the goodness-of-fit of the independence model,

χ2(x) =
∑

i∈[I]

∑

j∈[J ]

(xij − xi·x·j/x··)
2

xi·x·j/x··

.

It is also known that the asymptotic distribution of this statistic under the null hypothesis is
the chi square distribution with the degree of freedom (I − 1)(J − 1). Then comparing the tail
probability of the observed value of the statistic for χ2

(I−1)(J−1) to the prespecified value of α,
we can derive a statistical decision, i.e., whether the null hypothesis is rejected or accepted.

Traditionally, as we have seen in the above example, statistical conditional inference for
contingency tables has relied heavily on large-sample approximations for sampling distribution
of the test statistics. However, many works have shown that large-sample approximations can
be very poor when the contingency table contains both small and large expected frequencies
even when the sample size is large. See Haberman (1988) and Agresti (1992), for example. In
this thesis, we consider several methods, in which we calculate sampling distributions of test
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statistics by not using large-sample theories. As for the above example, we want to calculate the
exact p value of χ2(x), i.e., the probability that χ2(x) is equal to or greater than the observed
value χ2(xo) for some observed data xo under the null hypothesis. Note that the p value is
calculated using the distribution of the test statistic that is induced by the exact conditional
distribution of cell frequencies x. For example, the exact p value of the Pearson chi-squared
statistic χ2(x) is calculated as

p =
∑

x∈T

h(x),

where
T = {x | x ∈ F , χ2(x) ≥ χ2(xo)}

is the contribution region of this case, i.e., the set of tables which contribute to the p value, and
h(x) is the conditional distribution of x under the null hypothesis given by (1.2).

Though we mainly consider computation of p values in this thesis, we give a generalization
of the above argument as follows. Suppose x ∈ Z

d
≥0 is a contingency table, i.e., an array of

nonnegative cell frequencies, where d denotes the number of cells. In the case of I1×I2×· · ·×Ik

k-way contingency tables, d = I1 × I2 × · · · × Ik. Let Q(x) is some real valued function, which
is determined by the contribution region of the problem, and T (x) is a vector-valued function.
Suppose p(x) is the null distribution of x conditioning the values T (x) on T (xo) for some
observed data xo. Then substantial wide class of the problems for the analysis of contingency
tables are formalized as the inference of the conditional expectation,

E[Q(x) | T (x) = T (xo)] =
∑

x∈F

Q(x)p(x), (1.3)

where
F = {x | x ∈ Z

d
≥0, T (x) = T (xo)}. (1.4)

The above example of the Pearson chi-squared test corresponds to the special case that d = IJ ,

Q(x) =

{
1, if χ2(x) ≥ χ2(xo),
0, otherwise,

T (x) = (x··, x1·, . . . , xI−1·, x·1, . . . , x·J−1)

and p(x) is the hypergeometric distribution (1.2).
Now we have a generalized description of the problem, i.e., conditional inference for the

contingency tables as (1.3) and (1.4), which we consider in this thesis. What we should note
here is that actual computations of (1.3) require working with all the elements in the reference
set (1.4), i.e., the set of contingency tables having the given values of the sufficient statistic
for the nuisance parameter. However, the huge cardinality of the reference set often prevents
performing the exact conditional inference. Even for the case of I × J two-way contingency
tables, it is known that, for given I and J and marginal proportions, the number of tables in
the reference set of I × J contingency tables having those fixed marginal proportions increases
exponentially in the sample size n. Moreover, for given n, the number of tables also increases
rapidly as I and J increase or as the row and column proportions become more homogeneous.
For this two-way setting, Good (1977) and Gail and Mantel (1977) gave approximate methods
of counting number of tables with fixed marginals. Their works clearly show the complexity
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of this problem. For this reason, algorithms that provide total enumeration of the reference
set (e.g., March, 1972 or Baker, 1977) are very time-consuming, and adequate only for small
problems. Such a problem of the huge cardinality of the reference sets also arises for problems
of higher dimensional contingency tables in far more serious ways.

Then, how can we compute the conditional expectation (1.3) ? The approach can be
classified into the following two areas:

• invent some ingenious enumeration schemes that do not require the total enumeration of
the reference set and enable the exact computation in feasible computing times,

• generate random samples x1, . . . , xM from p(x) and estimate (1.3) as, say,

p̂ =
1

M

M∑

m=1

Q(xm).

In this thesis we call the above two methods as the exact method and the Monte Carlo method,
respectively. In the analysis of two-way contingency tables, there are several algorithms to
compute the exact p values of the generalized Fisher’s exact test (Freeman-Halton test), in-
cluding Pagano and Halvorsen (1981). However, the most popular and adaptable algorithm is
the network algorithm proposed by Mehta and Patel (1983), which we consider in this thesis.
Note that the possibility of constructing efficient exact algorithms relies heavily on the char-
acteristic of the function Q(x), i.e., test statistics. For example, when the test statistic has
a good property such as a Markov property, some efficient algorithms to compute the exact p
values have been proposed. See Hirotsu et al. (2001), for example, which proposed an efficient
algorithm to compute the exact p values for the multiple comparison type test statistics for
the analysis of the three-factor interaction in the 2×J ×K contingency tables. Unfortunately,
however, construction of the exact methods for higher-dimensional tables are difficult in gen-
eral, and at an infant stage nowadays. For such data sets, i.e., for sparse and high-dimensional
data sets where total enumeration becomes infeasible and the large-sample approximation is
not adequate, approximation of the p values by Monte Carlo methods may be the only feasible
approach. Note that, theoretically, we can estimate p values in arbitrary accuracy by adjusting
sample sizes. In this thesis we also consider the Monte Carlo method, with special interest in
the Markov chain Monte Carlo method.

1.2 Our contributions

1.2.1 Exact methods

In the exact methods part of this thesis (Chapter 2), we consider two topics of computing
exact p values. The first topic (Section 2.1) is the Freeman-Halton test of the independence
between the row and column in two-way contingency tables, and the second topic (Section 2.2)
is the exact test of the Hardy-Weinberg proportion for multiple alleles, which appears in the
analysis of allele frequency data in population genetics. For both problems, we consider the
network algorithm that is originally proposed by Mehta and Patel (1983). As we have stated,
the network algorithm is the most popular and adaptable algorithm for the Freeman-Halton
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test. In this thesis we give an improvement of this algorithm first, and give an extension of this
algorithm to the analysis of the allele frequency data. These results are published separately
as Aoki (2002) and Aoki (2003).

The essential feature of the network algorithm is the evaluation of some maximization and
minimization problems. In the improvement upon the work of Mehta and Patel (1983), we
give another upper bound for this maximization problem. The idea of this improvement is
based on the differential geometry, and it will be shown that the proposed bound performs well
regardless of the types of problems, i.e., the pattern of marginal totals of observed data. As for
the extension of the network algorithm to the test of Hardy-Weinberg proportion, the same idea
can be applied and an upper bound for the corresponding maximization problem is presented.
In addition, some interesting new theorems are proved and the closed form expression of the
optimal solution for the minimization problem is given. Some numerical examples show that
the efficacy of the computation is greatly improved by our algorithm compared to the total
enumeration algorithm.

1.2.2 Markov chain Monte Carlo methods

In Chapter 3 of this thesis, we consider the Markov chain Monte Carlo methods. As we have
stated, for sparse data sets where enumeration becomes infeasible and the large-sample approx-
imation is not adequate, approximation of the p values by Monte Carlo methods may be the
only feasible approach. For some models, random samples can be easily generated from the con-
ditional distribution. A primary example is decomposable log-linear models (e.g., Section 4.4
of Lauritzen, 1996) in multi-way contingency tables. In decomposable models, random samples
can be easily generated by exploiting the nesting structure of conditional independence. On the
other hand, for testing more general hierarchical log-linear models in multi-way contingency
tables, direct generation of random samples is difficult. In this case Markov chain Monte Carlo
techniques can be used.

As an example, consider testing the null hypothesis of no three-factor interactions in the
log-linear model of three-way contingency tables. This is the simplest case of non-decomposable
hierarchical log-linear model for multi-way contingency tables. According to the general theory
of the similar tests described in Section 1.1, we want to sample from the hypergeometric distri-
bution over three-way contingency tables with all two-dimensional marginal frequencies fixed.
This problem is surprisingly difficult. Not only the direct generation of random samples but
also the construction of an appropriate connected Markov chain is difficult as shown in Diaco-
nis and Sturmfels (1998). This interesting example motivated us to investigate this topic. In
Section 3.1 we illustrate the difficulty of this problem in detail and review some related works.
In Section 3.2 and Section 3.3, we consider this interesting problem for some small contingency
tables, i.e., 3× 4×K, 4× 4× 4, and so on. These sections correspond to our two papers, Aoki
and Takemura (2003a) and Aoki and Takemura (2003c), respectively.

For the case of two-way contingency tables, on the other hand, it is rather simple to de-
scribe a connected Markov chain over two-way contingency tables with fixed one-dimensional
marginals, if there are no additional restrictions on individual cells. However, if there are
additional restrictions on the cell frequencies such as structural zeros in two-way contingency
tables, description of a connected Markov chain becomes more complicated. We consider such
situations in Section 3.4, which corresponds to our paper, Aoki and Takemura (2002). See also
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Chapter 5 of Bishop et al. (1975) for comprehensive treatment of structural zeros in contingency
tables.

Section 3.5 and Section 3.6 give some basic and theoretical results for the problem of con-
structing a connected Markov chain. As we will see in Section 3.1, it is summarized that our
purpose is to compute a Markov basis. These two sections relate a minimality and its uniqueness
of the Markov basis.

In Section 3.5, we derive some basic characterizations of minimal Markov basis for a con-
nected Markov chain for sampling from conditional distributions, which we published as Take-
mura and Aoki (2004). Our arguments are totally elementary. We also give a necessary and
sufficient condition for the uniqueness of minimal Markov basis. Our approach is basically
constructive and it clarifies a partially ordered structure of minimal Markov basis. At present,
our result is not powerful enough to completely characterize a minimal Markov basis for a
given problem, but with further refinement it might be possible to implement an alternative
algorithm for constructing a Markov basis for a connected Markov chain over a given sample
space.

Moreover, in Section 3.6, we consider a symmetry of the Markov basis. We treat the permu-
tation of indices of each axis of contingency tables as an action of a direct product of symmetric
groups to the basis elements and define an invariant Markov basis. Logically important point is
that if a unique minimal Markov basis exists then it is also the unique invariant Markov basis.
On the other hand, if a minimal Markov basis is not unique, an invariant minimal Markov basis
is important, since a minimal Markov basis is usually not symmetric. We combine the results of
Section 3.5 with the theory of transformation groups to study minimality of invariant Markov
bases and give some characterizations of invariant Markov basis and its minimality. We also
give a necessary and sufficient condition for uniqueness of invariant minimal Markov basis. The
main part of this section is that of Aoki and Takemura (2003b).
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Chapter 2

Exact methods

This chapter provides two topics of the exact methods of computing p values. Both topics
are concerned with the network algorithm, which is originally proposed by Mehta and Patel
(1983) in the framework of computing p values for Freeman-Halton exact tests. First we give an
improvement of the original algorithm of Mehta and Patel (1983) in Section 2.1, and then give
an extension of this algorithm to the exact test of the Hardy-Weinberg proportion for multiple
alleles in Section 2.2, which appears in the analysis of allele frequency data in population
genetics.

2.1 Network algorithm for Fisher’s exact test in two-way

contingency tables

This section provides an improvement of the network algorithm for calculating the exact p value
of Freeman-Halton exact tests in two-way contingency tables. We give a new exact upper bound
and an approximate upper bound for the maximization problems encountered in the network
algorithm. The approximate bound has some very desirable computational properties and
the meaning is elucidated from a viewpoint of differential geometry. Our proposed procedure
performs well regardless of the pattern of marginal totals of data.

2.1.1 Historical background

In testing the independence of the row and column effects in two-way contingency tables, one
would, in general, prefer to report the exact p value of the generalized Fisher’s exact test
(Freeman-Halton test), especially when the entries in each cell are small. It is more common,
however, to report the tail probability of the Pearson’s χ2 statistic because of computational
feasibility. In fact, calculating the exact p value requires working with the set of contingency
tables having the given values of the sufficient statistics and algorithms based on total enumer-
ation of the reference set (e.g., March, 1972; Baker, 1977) are often very time-consuming. Gail
and Mantel (1977) gave an approximate method of counting the number of tables with fixed
marginals. Their work clearly shows the complexity of this problem.

There are several algorithms, including Pagano and Halvorsen (1981), that do not require
total enumeration of the reference set. However, the most popular and adaptable algorithm is
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the network algorithm proposed by Mehta and Patel (1983). This algorithm has been applied
to many problems other than the Freeman-Halton test. For example, see Mehta, Patel and
Tsiatis (1984) for exact tests for 2 × J tables; Mehta, Patel and Gray (1985) for inference for
the common odds ratio in 2 × 2 × K tables; Hirji, Mehta and Patel (1987) for exact logistic
regression; Agresti, Mehta and Patel (1990) for exact inference in I × J tables with ordered
categories; Mehta, Patel and Senchaudhuri (1991) for inference for 2×J×K tables; and Hilton,
Mehta and Patel (1991) for Smirnov tests for categorical or continuous data.

This section improves upon the work of Mehta and Patel (1983), which applies the network
algorithm to the Freeman-Halton exact test. Another upper bound is given for some maxi-
mization problems encountered in the network algorithm. The evaluation of this maximization
problem plays an important role in the network algorithm. We also give a closed form for an
approximate upper bound that makes it possible to compute sufficiently accurate p values. It
will be shown that this bound performs well regardless of the pattern of marginal totals of data.

The construction of this section is as follows. In Section 2.1.2, a brief outline of the network
algorithm is provided. We refer the reader to the original article by Mehta and Patel (1983)
for technical details of the algorithm. In Section 2.1.3, the new approach is described. In
Section 2.1.4, we demonstrate desirable properties of our bound through some computation-
based examples.

2.1.2 The network algorithm

Let x ∈ Z
IJ
≥0 be an I × J contingency table and let xij , i ∈ [I], j ∈ [J ] be the entry in row i and

column j. Let Ri =
∑J

j=1 xij and Cj =
∑I

i=1 xij be the marginal totals and let F denote the
reference set of all possible I × J contingency tables with the same marginal totals as x. Thus

F =

{
y = {yij}

∣∣∣∣∣ y ∈ Z
IJ
≥0,

J∑

j=1

yij = Ri,

I∑

i=1

yij = Cj

}
.

We define N =
∑I

i=1 Ri =
∑J

j=1 Cj and D = N !/{(∏I
i=1 Ri!)(

∏J
j=1 Cj!)} for later use. Under

the null hypothesis of row and column independence, the conditional probability of observing
any y ∈ F is expressed as

P (y) =

(∏I
i=1 Ri!

)(∏J
j=1 Cj!

)

N !
∏I

i=1

∏J
j=1 yij!

=
1

D

(
I∏

i=1

J∏

j=1

yij!

)−1

.

Freeman and Halton (1951) defined the p value for the conditional test of independence to
be the sum of the probabilities of all the tables in F that are no more likely than x, that is,

p =
∑

y∈T

P (y),

where T = {y | y ∈ F , P (y) ≤ P (x)} is the contribution region of this case. This test is also
known as the generalized Fisher’s exact test in two-way contingency tables.

The network representation of the reference set for F consists of nodes and arcs constructed
in J + 1 stages. For j = J, J − 1, ..., 0, the nodes at stage j have the form (j, Rj), where
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Rj = (R1,j , ..., RI,j). There are as many nodes at stage j as there are possible partial sums
for the first j columns of the tables. Arcs emanate from each node at stage j and every arc is
connected to only one node at stage j−1. The network is constructed recursively by specifying
all successive nodes (j − 1, Rj−1) that are connected by arcs to each node (j, Rj). A path
(J, R1, ..., RI) = (J, RJ) → (c − 1, Rc−1) → · · · → (0, R0) = (0, 0, ..., 0) represents a distinct
table in F , with yij = Ri,j −Ri,j−1, i ∈ [I], j ∈ [J ]. Figure 2.1 shows the network representation
for all the 3 × 3 contingency tables with (R1, R2, R3) = (2, 1, 6), (C1, C2, C3) = (3, 3, 3). The
dotted path gives the contingency table of counts x = (x11, x12, x13, x21, x22, x23, x31, x32, x33) =
(1, 0, 1, 0, 1, 0, 2, 2, 2).

1)003

3)216

2)006

1)102

1)111

1)201

2)105

2)204

2)015 1)012

1)210

0)000

2)114

2)213

Figure 2.1: Network representation for all the 3 × 3 contingency tables with (R1, R2, R3) =
(2, 1, 6), (C1, C2, C3) = (3, 3, 3).

We define the length of an arc from node (j, Rj) to node (j−1, Rj−1) by {(R1,j −R1,j−1)!×
· · · × (RI,j − RI,j−1)!}−1 and the length of the path or sub-path by the product of the corre-
sponding arc lengths. Then we can readily verify that the length of the complete path from
(J, RJ) to (0, R0) is equal to D · P (y). Now our goal is to identify and sum all paths whose
lengths do not exceed D · P (x).

For calculating the p value efficiently, we compute at each node (j, Rj) the shortest and
longest lengths of the sub-path from node (j, Rj) to (0, R0). We call these items as LP or SP
(longest / shortest sub-path) according to Mehta and Patel (1983). Using these values, we can
determine tables that necessarily do or do not contribute to the p value, without processing the
remaining parts of paths in the network passing through that node.

If we can evaluate LP and SP exactly, we can trim paths perfectly. It is worth pointing out,
however, that if we can only evaluate an upper bound for LP and a lower bound for SP, we can
trim paths incompletely. Hence both the quality of the bounds and the time for computing the
bounds influence the efficiency of the algorithm. Mehta and Patel (1983) evaluated the upper
bound for LP by using the closed form of LP when all the Cj’s are equal. This upper bound
works well when the Cj’s are equal, or nearly equal. On the other hand, when the pattern
of Cj’s is imbalanced, the quality of this upper bound is poor, i.e., this upper bound is much
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larger than LP. In this section, we propose another upper bound. We demonstrate that our
new method performs well regardless of the pattern of Cj ’s and makes it possible to compute
the exact p values more efficiently.

2.1.3 Numerical computation of the upper bound for longest paths

from any node to the terminal node

In Section 2.1.3, we present a new upper bound for LP. First we define the continuous relaxation
problem that gives the upper bound for the optimal solution of the original maximization
problem. Next we show how to evaluate the optimal solution of the relaxation problem. And
at last, we provide how to determine the initial vector. The choice of the initial vector is very
important for our improved upper bound.

Relaxation problem

The problem that we consider can be written in the following form:

P: minimize
I∑

i=1

J∑

j=1

log yij!

subject to

J∑

j=1

yij = Ri, i ∈ [I],
I∑

i=1

yij = Cj, j ∈ [J ], (2.1)

yij ∈ Z≥0, i ∈ [I], j ∈ [J ].

This integer programming problem is equivalent to the original problem for LP discussed in
Mehta and Patel (1983), and we fixed the number of columns at J for simplicity. Corresponding
to an upper bound for LP, we consider the following relaxation problem:

P
′
: minimize

I∑

i=1

J∑

j=1

g(yij) subject to (2.1) and yij ≥ 0 for all i, j,

where the function g(y) : [0,∞) 7→ R is a convex function of class C1 which satisfies

g(n) = log n! for all n ∈ Z≥0. (2.2)

One simple method of specifying g(y) is to fit a piecewise quadratic function. We show
that a closed form of the piecewise quadratic function satisfying (2.2) can be uniquely obtained
using the following lemma. For future use, we define

n!! =

{
n(n − 2)(n − 4) × · · · × 4 × 2, if n is even,
n(n − 2)(n − 4) × · · · × 3 × 1, if n is odd,

0!! ≡ (−1)!! ≡ 1.
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Lemma 2.1.1 Let I[n,n+1)(y) be the indicator function given by

I[n,n+1)(y) =

{
1, if n ≤ y < n + 1,
0, otherwise

and let gn(y) be quadratic in y. Then the piecewise quadratic function

g(y) =
∞∑

n=0

I[n,n+1)(y)gn(y)

is a convex function of class C1 satisfying the condition (2.2) if and only if

gn(y) = log n! + vn(y − n) +
1

2
∆vn(y − n)2, n = 0, 1, 2, ...,

where

vn = (−1)n log
2

π
+ 2 log

n!!

(n − 1)!!
, ∆vn = vn+1 − vn.

Proof. Because g(y) satisfies condition (2.2), gn(y) must be written as

gn(y) = log n! + vn(y − n) + An(y − n)2

where vn ≡ g′
n(y)|y=n. From the continuity of gn(y) and g′

n(y) at y = n + 1, we have

gn(n + 1) = log n! + vn + An = log(n + 1)!,

g′
n(y)|y=n+1 = vn + 2An = vn+1

and hence we obtain

An =
1

2
(vn+1 − vn) =

1

2
∆vn,

vn+1 + vn = 2 log(n + 1). (2.3)

The recurrence formula (2.3) can be easily solved as vn = (−1)nv0 + 2 log{n!!/(n − 1)!!}. Now
we will show that v0 is determined uniquely from the convexity of g(y). If n = 2m, we have

∆v2m − ∆v2m−2 = 2 log

(
1 − 1

4m2

)
< 0

and

lim
m→∞

∆v2m = −2v0 + 2 log
2

π
(Wallis′ formula).

Hence ∆v0 > ∆v2 > ∆v4 > · · · ≥ 0 holds if and only if v0 ≤ log
2

π
. Similarly, if n = 2m − 1,

we have

∆v2m−1 − ∆v2m−3 = 2 log

{
1 − 1

(2m − 1)2

}
< 0

and

lim
m→∞

∆v2m−1 = 2v0 − 2 log
2

π
(Wallis′ formula).
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Hence ∆v1 > ∆v3 > ∆v5 > · · · ≥ 0 holds if and only if v0 ≥ log
2

π
. Consequently, v0 can be

determined uniquely as v0 = log
2

π
. Q.E.D.

Because the objective function of the problem P
′

is convex, the optimal solution of this
problem can be obtained by a technique of a convex programming. Our approach is to solve
P

′
numerically by a gradient method. For convenience, we regard y as the column vector

y = (y11, ..., y1J , ..., yI1, ..., yIJ)
′
and rewrite P

′
in the vector notation as

P
′′
: minimize f(y) subject to Ay = b and y ≥ 0,

where the function f : R
rc 7→ R is defined as f =

∑I
i=1

∑J
j=1 g(yij) and A is an (I +J −1)× IJ

matrix such that Ay forms a set of linearly independent marginals. For example, we can select
A and b as

A =

[
II−1 ⊗ j

′

J | O(I−1)×J

j
′

I ⊗ IJ

]
, b = (R1, ..., RI−1, C1, ..., CJ)

′

,

where In is an n × n identity matrix, jn is an n × 1 column vector with all the elements equal
to one and O(I−1)×J is an (I − 1) × J zero matrix. We also define the feasible region S as
S = {y | Ay = b, y ≥ 0} ⊂ RIJ . Our algorithm is to construct the sequence y0, y1, ... ∈ S
which satisfies f(yk+1) < f(yk), k = 0, 1, 2, · · · , by the formula

yk+1 = yk + αkdk, (2.4)

beginning with some initial vector y0 ∈ S. We show how to determine dk, αk and y0 in the
followings.

The direction vector and the step size

For y ∈ S, we want to determine the direction vector dk ∈ R
IJ which satisfies

∃α, s. t. yk + αdk ∈ S and f(yk + αdk) < f(yk) for ∀α ∈ [0, α]. (2.5)

Such a vector dk can be determined as the orthogonal projection of

−∇f(yk) = −
(

∂f(yk)

∂y11
k

, · · · , ∂f(yk)

∂yIJ
k

)′

= −
(

∂g(y11
k)

∂y11
k

, · · · , ∂g(yIJ
k)

∂yIJ
k

)′

to the subspace which is defined by the active constraints at yk (gradient projection method,
Rosen, 1960).

First we consider the case that all the elements of yk are positive.

Lemma 2.1.2 If yk > 0, then

dk = −{I − A
′

(AA
′

)−1A}∇f(yk) (2.6)

is a direction vector which satisfies condition (2.5).
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Proof. For any yk(> 0) ∈ S, we can see that ∃α > 0, s. t. yk + αdk ∈ S for ∀α ∈ [0, α]
because P = I − A

′
(AA

′
)−1A is an orthogonal projector from R

IJ to the IJ − (I + J − 1)
dimensional subspace M = {y | Ay = 0, y ∈ R

IJ}. Now we show that (2.6) satisfies the latter
part of (2.5). Using the properties P 2 = P, P ′ = P, we can derive

∇′

f(yk)dk = −∇′

f(yk)P∇f(yk) = −‖P∇f(yk)‖2 = −‖dk‖2 < 0. (2.7)

On the other hand, the mean value theorem produces

∀α, ∃θ ∈ [0, 1], s. t. f(yk + αdk) − f(yk) = α∇′

f(yk + θαdk)dk. (2.8)

From the continuity of ∇′
f(yk) and (2.7), the left hand side of (2.8) is negative for all α ∈ (0, α]

if we choose α that is sufficiently small. Q.E.D.

Following this lemma, we can write the direction vector as dij
k = fij

k − I−1
∑I

i=1 fij
k −

J−1
∑J

j=1 fij
k+(IJ)−1

∑I
i=1

∑J
j=1 fij

k where dk = (d11
k, ..., dIJ

k)
′
and ∇f(yk) = (f11

k, ..., fIJ
k)

′
.

Next consider the case that only one element of yk is zero. Let us assume that y11
k =

0, yij
k > 0, (i, j) 6= (1, 1), and define

Ã
′

=
[
A

′ |e11

]
, e11 = (1, 0, ..., 0)

′ ∈ R
IJ . (2.9)

Then similarly to Lemma 2.1.2, it can be shown that the direction vector dk can be obtained as
the orthogonal projection of −∇f(yk) to the IJ−(I+J) dimensional subspace M̃ = {y | Ãy =

0, y ∈ R
IJ}, that is, dk = −P̃∇f(yk) = −{I−Ã

′
(ÃÃ

′
)−1Ã}∇f(yk). The next lemma is useful

to calculate the orthogonal projector P̃ .

Lemma 2.1.3 P̃ is obtained from P and e11 as P̃ = P − Pe11e
′

11P/(e
′

11Pe11).

Proof. Substituting (2.9) into P̃ = I − Ã
′
(ÃÃ

′
)−1Ã and simplifying it, using P = I −

A
′
(AA

′
)−1A yields the lemma. Q.E.D.

If there is more than one zero element in yk, we can obtain the orthogonal projector in a similar
way by using Lemma 2.1.3 repeatedly.

Finally we discuss how to determine the step size αk according to yk and dk. The optimal
value of αk can be defined as α∗ = arg minα f(yk + αdk).

We first assume that we know the interval [α, α] which includes α∗, that is, α∗ ∈ [α, α].
Since f(yk + αdk) is a unimodal function of α in the interval [α, α], for all interior points
α1, α2 ∈ [α, α], α1 < α2 we can see that

if f(yk + α1d
k) > f(yk + α2d

k) then α∗ ∈ [α1, α],

if f(yk + α1d
k) = f(yk + α2d

k) then α∗ ∈ [α1, α2],

if f(yk + α1d
k) < f(yk + α2d

k) then α∗ ∈ [α, α2].
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Using this relation repeatedly, we can shorten the interval which includes α∗ and obtain α∗

with any accuracy.
Obviously, the initial value of α should be zero. A simple initial value of α is α =

min
{
−yij

k/dij
k
∣∣ dij

k < 0
}

. We can also obtain better initial value of α by a bracketing pro-
cedure.

It is known that if we select the interior points α1, α2 according to a golden section ratio
(Bazaraa et al. 1993, pp. 270-271), we can shorten the interval which includes α∗ most
efficiently.

The initial vector

Here we discuss our choice of the initial vector y0. A very good initial vector is given by

yij
0 =

RiCj

N
, i ∈ [I], j ∈ [J ]. (2.10)

The meaning of (2.10) can be understood as follows. The objective function of the original
integer programming problem P can be approximated to

I∑

i=1

J∑

j=1

log yij! '
I∑

i=1

J∑

j=1

log
(√

2πyij
yij+

1

2 e−yij

)

= Const. +
I∑

i=1

J∑

j=1

(
yij +

1

2

)
log yij (2.11)

by replacing the factorial with Stirling’s formula. We can see that except for the constant term
the right hand side of (2.11) is a negative entropy if we ignore the factor 1

2
. It follows that the

problem P is approximately equivalent to the maximizing entropy problem.
We can interpret this problem from a viewpoint of differential geometry. Let P1 be the

reference empirical distribution given by pij = yij/N, i ∈ [I], j ∈ [J ] and PU be the uniform
distribution given by pij = 1/IJ, i ∈ [I], j ∈ [J ]. We also define the Kullback-Leibler divergence
from P1 to PU as D(P1, PU). It is well known that the maximum entropy is obtained when the
occurrence probability from the uniform distribution is maximum, in other words, D(P1, PU) is
minimum. The important property of the divergence D(P1, PU) is the following Pythagorean
decomposition

D(P1, PU) = D(P1, PM) + D(PM , PU) (2.12)

where PM is the maximum likelihood estimate under the model of no interaction between the
row and column given by pij = RiCj/N

2, i ∈ [I], j ∈ [J ]. This can be easily checked by
direct calculation. The Pythagorean decomposition can be derived from a dually flat structure
of the parameter space. A meaning of this decomposition is elucidated from the differential
geometrical point of view. For details, see Amari (1985, 1989), for example. Since the second
term of the right hand side of (2.12) is constant, we only have to consider the minimizing
D(P1, PM). This naturally implies (2.10).

Of course, we can rewrite D(P1, PM) directly as

D(P1, PM) =
I∑

i=1

J∑

j=1

yij

N

(
log

yij

N
− log

RiCj

N2

)
=

1

N

I∑

i=1

J∑

j=1

yij log yij + Const.
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and again we can see that minimizing the divergence D(P1, PU) corresponds to maximizing
entropy. See also Lemma 2.2 of Darroch and Speed (1983).

2.1.4 Some computational results

We present exact p values by the network algorithm for some problems. In this study, con-
tingency tables of three or four rows were considered. All the algorithms were programmed
by C on a PC running on Linux (Pentium III, 930 MHz). We compared our algorithm only
with the algorithm by Mehta and Patel (1983), since their algorithm already yields consider-
able improvements over previously published algorithm, e.g., Pagano and Halvorsen’s algorithm
(1981).

We must check the quality of the upper bound for LP carefully, because our upper bound,
the optimal solution of the relaxation problem, relies on numerical optimization. We compared
four upper bounds for LP:

• UBMP : the upper bound proposed by Mehta and Patel (1983),

• UB0: the approximate upper bound attained at (2.10),

• UB1: the modification of UB0 by using (2.4) once,

• UBk: the modification of UB0 by using (2.4) recursively according to some stopping rule.

We have determined the stopping rule of UPk as

‖dk‖ < ε ⇒ stop,

where ε is specified in advance.
As for the SP, we estimated its lower bound in the same way as Mehta and Patel (1983),

that is, we estimated the lower bound as a basic feasible solution to a set of constraints when
the Cj ’s are equal. This bound also arises in the transportation problem of linear programming.
For detail, see Hadley (1962).

We first considered some examples discussed in Mehta and Patel (1983). Table 2.1 shows
the p values and CPU times.

As for UBk, we calculated the p values for ε = 0.01, 0.001, and 0.0001, though only the cases
of ε = 0.0001 were displayed in Table 2.1. Actually, we observed that the p values were not
affected by ε, whereas the CPU times were affected. For example, the CPU times for computing
the p values of problem 4 of Mehta and Patel (1983) for several values of ε were 8:14.65 for
ε = 0.01, 8:50.14 for ε = 0.001, and 8:50.60 for ε = 0.0001, although all the obtained p values
were the same (p = 0.0353520690). In our study, we did not examine the relation between the
threshold value ε and the CPU times in detail because even the initial vector y0 is satisfactory
and a tight stopping rule was not needed to calculate the exact p values.

Table 2.1 shows two things. First, the proposed algorithm gives exact (strictly speaking,
sufficiently accurate) p values, even when we use UB0. This implies that the approximate upper
bound attained at (2.10) is quite good in practice. Second, in these examples, the proposed
algorithms do not improve the computational efficacy compared to the method by Mehta and
Patel (1983). This is due to the well balanced values of the column sums, since the upper bound
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Table 2.1: Computing results with the network algorithm for balanced column sum cases.
table upper bound p values CPU timea

(problem 2 of Mehta and Patel)
20126 UBMP 0.0911177720 0:01.48
13111 UB0 0.0911177720 0:01.66
10310 UB1 0.0911177720 0:01.70
12120 UBk

b 0.0911177720 0:02.13
(problem 3 of Mehta and Patel)
201265 UBMP 0.0453742835 0:44.19
131112 UB0 0.0453742835 0:48.15
103100 UB1 0.0453742835 0:48.96
121200 UBk

b 0.0453742835 0:51.48
(problem 4 of Mehta and Patel)
111000124 UBMP 0.0353520690 7:37.04
444555650 UB0 0.0353520690 8:10.76
111000124 UB1 0.0353520690 8:17.88

UBk
b 0.0353520690 8:50.60

aCPU time is represented by min:sec.millisec.
bUsing the stopping rule with ε = 0.0001.

by Mehta and Patel (1983) is evaluated by the optimal value when the column sums are equal.
But the inferiority of the proposed method, especially when using UB0, is quite small.

Next we consider the cases of imbalanced column sums. The values of column sums that
we treated here are (C1, C2, C3, C4, C5, C6) = (5, 5, 10, 10, 20, 20) for 3 × 6 contingency tables
and (C1, C2, C3, C4, C5) = (5, 5, 10, 10, 20) for 4 × 5 contingency tables. For both patterns
of the marginals, we considered the examples of large (larger than 0.8), middle (around 0.5)
and small (less than 0.05) p values, even though examples of only small p values had been
considered in Mehta and Patel (1983). This is because the analyses of examples of large p
values are considered to be more suitable for the purpose of comparing the quality of the upper
bounds. The p values and CPU times for the imbalanced case are shown in Table 2.2. Table
2.2 also shows the number of trimmings by the upper bounds.

Table 2.2 again shows that our algorithms gave exact p values, even when we use UB0 for the
upper bound. The CPU times show that UB0 performed uniformly better and UB1 performed
better for most cases than UPMP . As for UBk, it was not as good as UPMP for a 4× 5 case. It
does not, however, explain the relation between the size of table and the efficacy of the methods
since the CPU time for the case of UBk is affected by ε. The number of trimmings clearly shows
the good quality of our upper bounds. It is observed that our upper bounds enabled a more
efficient trimming in the early stage, especially in stage J − 1, of the algorithm and hence the
total number of paths to be considered in the algorithm decreases. The number of trimmings
also shows that UB0 and UB1 did not reach the optimal solution of the relaxation problem.
It should be noticed, however, that this fact does not indicate over-trimming. Over-trimming
may occur only if these values are smaller than the optimal solution of the original problem.
The accuracy of p values in Table 2.2 shows that the values of UB0 or UB1 were at least larger
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Table 2.2: Computing results with the network algorithm for unbalanced column sum cases.
# of trimming by the upper bound

table upper bound p values CPU timea stag e 5 stage 4 stage 3 stage 2
012278 UBMP 0.8200735203 0:02.89 21 24946 362928 2954230
424578 UB0 0.8200735203 0:00.61 185 7578 51358 274554
124364 UB1 0.8200735203 0:00.65 185 7574 51540 275996

UBk
b 0.8200735203 0:00.86 185 7574 51524 276456

003269 UBMP 0.4783413730 0:05.83 14 22483 430003 4950199
335388 UB0 0.4783413730 0:02.65 157 11164 107840 889258
222563 UB1 0.4783413730 0:02.70 157 11160 108018 890380

UBk
b 0.4783413730 0:02.92 157 11156 108132 891356

201359 UBMP 0.0129408780 0:33.04 6 12662 441645 10965868
341688 UB0 0.0129408780 0:29.17 79 15405 285220 4161458
018173 UB1 0.0129408780 0:29.29 79 15383 284724 4176262

UBk
b 0.0129408780 0:29.34 79 15285 283074 4210124

00235 UBMP 0.8892778315 0:03.35 536 102958 3058464
32226 UB0 0.8892778315 0:01.12 1090 34083 406826
12444 UB1 0.8892778315 0:01.27 1090 34071 407902
11215 UBk

b 0.8892778315 0:10.48 1090 34031 412310
11215 UBMP 0.4972713811 0:08.31 363 97113 5057688
02355 UB0 0.4972713811 0:05.90 916 56346 1386424
32433 UB1 0.4972713811 0:06.15 916 55918 1406148
10117 UBk

b 0.4972713811 0:15.78 916 55764 1418840
10027 UBMP 0.0354175392 0:35.08 116 59345 6904807
03543 UB0 0.0354175392 0:34.69 484 71236 3406770
41433 UB1 0.0354175392 0:35.47 480 70208 3470314
01117 UBk

b 0.0354175392 0:43.86 464 70805 3487145

aCPU time is represented by min:sec.millisec.
bUsing the stopping rule with ε = 0.0001.

21



than the optimal solution of the original problem in most cases, or if not, that its influence was
negligible.

2.1.5 Discussion

The essential feature of the network algorithm is the evaluation of an upper bound for LP and
a lower bound for SP. Mehta and Patel (1983) evaluate an upper bound for LP by using the
closed form of LP when all the column sums are equal. In this study, we have given an improved
method of evaluating an upper bound for LP.

There are other methods of evaluating an upper bound. We can calculate LP directly by a
dynamic programming procedure, for example. Computational efficiency, however, depends on
both (i) time needed for calculating (an upper bound for) LP and (ii) efficiency of trimming. If
we calculate LP exactly, we can trim paths most efficiently but we may need a comparatively
long time to evaluate it. On the other hand, we can evaluate an upper bound in a simple way,
which leads to incomplete trimming. Both approaches by Mehta and Patel (1983) and by us
are the latter one.

An important point of our method is that we obtain the closed form of the approximately
optimal solution of the relaxation problem. As we have seen in Section 2.1.4, this approximate
bound gave sufficiently accurate p values and the number of trimmings in Table 2.2 shows
that this bound enabled much more efficient trimmings than the bound by Mehta and Patel
(1983). From these results, we recommend using the new method to calculate the p values
when the column sums are imbalanced. Our new method is recommended in particular when
some extremely large values are included in the column sums, because the Mehta and Patel’s
upper bound is inevitably affected by max Cj. Considering the fact that for the inferiority of
our method in Table 2.1 when the column sums are balanced is quite small, our method can
be used for most cases in the practical applications.

Finally, it is worth pointing out that this idea of evaluating an approximate optimal solution
as the value at maximum likelihood estimator can be applied to a variety of optimizing problems.
The most straightforward extension may be a case of higher dimensional tables. For example,
consider the three-way contingency table. The maximizing problem:

maximize
∏

i

∏

j

∏

k

(yijk!)
−1 subject to yij·, yi·k, y·jk are fixed

can be again interpreted as a maximizing probability problem under the hypothesis of no three-
way interaction. The relaxation approach of this section can be applied to this maximization
problem.

2.2 Network algorithm for the exact test of Hardy-Weinberg

proportion for multiple alleles

2.2.1 Historical background

Since its discovery in the early 1900s, the Hardy-Weinberg law plays an important role in the
field of population genetics and often serves as a basis for genetic inference (see, for example,
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Crow, 1988). This law states that in a large random-mating population with no selection,
mutation or migration, the allele frequencies and the genotype frequencies are constant from
generation to generation and that there is a simple relationship between the allele frequencies
and the genotype frequencies. For an r-allele autosomal locus with alleles A1, A2, ..., Ar, the
probability that a random individual from random breeding population will be AiAj is p2

i (i = j)
or 2pipj(i 6= j), where pi is the proportion of type Ai, which are known as the Hardy-Weinberg
equilibrium probabilities. Because of its importance, much attention has been paid to tests of
the hypothesis that a population being sampled is in Hardy-Weinberg equilibrium against the
alternative hypothesis that disturbing forces any deviation from this Hardy-Weinberg ratio.

For testing Hardy-Weinberg proportion, various large-sample goodness-of-fit tests, such as
Pearson’s statistic, likelihood ratio statistic or Freeman-Tukey statistic, are often used. It has
been recognized, however, that the adequacy of applying these goodness-of-fit tests of Hardy-
Weinberg proportion is often questionable when the sample size or some genotypic frequencies
are small (see, for example, Emigh, 1980). Although a variety of corrections for small sample
sizes are proposed (Emigh and Kempthorne, 1975; Elston and Forthofer, 1977; Smith, 1986),
it is found that they usually do not greatly improve the results obtained from the traditional
goodness-of-fit tests (Emigh, 1980; Hernández and Weir, 1989). Moreover, with the advent
of variable number of tandem repeats (VNTRs) or micro-satellite marker, genetic loci with
10 or more alleles are not uncommon nowadays. In Section 2.2.5, we will treat 6 alleles or 8
alleles examples (genotype frequency data from Cazeneuve et al., 1999) involving some small
and zero genotype counts. We show that large-sample inference does not work well for these
examples, yielding incorrect p values. For these reasons, use of exact tests, which do not rely
on asymptotic theory, is desirable.

Levene (1949) obtained the conditional distribution of a sample drawn from a population in
Hardy-Weinberg equilibrium for an arbitrary number of alleles and Emith (1980) used Levene’s
distribution for the case of two alleles in his comparison of many statistical tests of Hardy-
Weinberg hypothesis. Louis and Dempster (1987) proposed an algorithm for generating all
possible samples for the exact distribution. Their algorithm works well when the number of
alleles is small (say, four or five). However, it is not of practical use for loci with more than a
few alleles since the number of possible samples with the same gene frequencies and sample sizes
grows exponentially with the number of alleles (Hernández and Weir, 1989). An alternative
approach that avoids complete enumeration is the simulated method such as a conventional
Monte Carlo method or a Markov chain method (Guo and Thompson, 1992). Although Monte
Carlo methods yield an unbiased estimate of the exact p value to arbitrary accuracy, there is
currently no widely-used method that allows efficient computation of the exact p value, itself.

Our work builds on Louis and Dempster (1987) to provide an efficient method for exact
inference. In this section, we propose a new technique that considerably extends the bounds
of computational feasibility of the exact test. Our algorithm is constructed analogously to a
network algorithm proposed by Mehta and Patel (1983) for Freeman-Halton exact test (Freeman
and Halton, 1951) in two-way contingency tables. As in their application of the network
algorithm, the computation of the smallest and largest values for the statistic plays an important
role in our algorithm and some interesting new theorems are proved for computing these values.

The construction of this section is as follows. In Section 2.2.2, an exact test of Hardy-
Weinberg proportion for multiple alleles is formulated. In Section 2.2.3, the network algorithm
for computing the exact p values is given. In Section 2.2.4, several new theorems for some op-
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timizing problems are proved. Some numerical examples are given in Section 2.2.5 to illustrate
the practicality of our algorithm.

2.2.2 Exact test for multiple alleles

We assume that there are r distinct alleles, A1, A2, ..., Ar, of a given gene. If a sample of size N
is drawn from a population of interest, the data can be expressed as the upper triangular array

A1 xo
11 xo

12 · · · xo
1r

A2 xo
22 · · · xo

2r
... · · · · · ·

Ar xo
rr

A1 A2 · · · Ar

where xo
ij (1 ≤ i ≤ j ≤ r) is the observed count of genotype AiAj in the sample. Throughout

this section we will use a vector notation x = (xij) to designate this type of table. For
notational convenience, we write xij = xji for i > j. We also define y = (y1, y2, ..., yr) with
yi = xo

ii +
∑r

j=1 xo
ij , i ∈ [r]. yi is the number of Ai genes in the sample. Clearly we have∑

i≤j xo
ij = N and

∑r
i=1 yi = 2N. Let F denote the reference set of all possible counts of

genotype with the same gene counts as xo:

F =

{
x | x = (x11, x12, x22, ..., xrr), xii +

r∑

j=1

xij = yi for i ∈ [r]

}
.

We denote the number of elements in F by #F . Write D = (2N)!/(N !
∏r

i=1 yi!) for later use.
Then, under Hardy-Weinberg proportions and conditional on y, the probability of observing
any x ∈ F is expressed as (Levene, 1949)

P (x) =
N !
∏r

i=1 yi!

(2N)!
∏

i≤j xij !
2z =

1

D

2z

∏
i≤j xij !

, (2.13)

where z =
∑

i<j xij = N −∑r
i=1 xii is the number of heterozygotes in the sample.

The p value for the conditional test of Hardy-Weinberg proportions is defined as the sum
of probabilities of all the counts of genotype in F that are no more likely than xo (see, for
example, Chapco, 1976), that is,

p =
∑

x∈T

P (x), (2.14)

where T = {x | x ∈ F , P (x) ≤ P (xo)} is the contribution region of this case. Acceptance or
rejection is based on a comparison of this value with some preset α level as in any statistical
test. This test corresponds to the two-sided version of Fisher’s exact test for 2× 2 contingency
table, or Freeman-Halton exact test for two-way contingency table.

2.2.3 The network representation and the algorithm

For calculating the p value defined by (2.14), one simple approach is to generate all the samples
in F . Louis and Dempster (1987) described how to generate all the samples in F and computed
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the exact p values for some examples with three or four alleles. Their algorithm is, however,
very time-consuming if #F is large. In our study, we propose a new algorithm that does not
require total enumeration of the reference set. This algorithm is a natural extension of the
network algorithm for computing Freeman-Halton exact p values for two-way contingency table
(Mehta and Patel, 1983). Similarly as in Section 2.1, first we provide a network representation
of the reference set F .

The network representation consists of nodes and arcs constructed in r + 1 stages in this
situation. For k = r, r − 1, ..., 1, 0, the nodes at stage k have the form (k, Y1,k, Y2,k, ..., Yk,k) ≡
(k, Y k). There are as many nodes at stage k as there are possible partial sums of genes
for the first k alleles. Arcs emanate from each node at stage k and every arc is connected
to only one node at stage k − 1. The network is constructed recursively by specifying all
successor nodes (k − 1, Y k−1) that are connected by arcs to each node (k, Y k). The range
of Yi,k, i = 1, ..., k, for these successor nodes is obtained from using the algorithm of Louis
and Dempster (1987). There is only one node at stage r, the initial node, which is labeled
(r, Y r) ≡ (r, Y1,r, ..., Yr,r) = (r, y1, ..., yr) = (r, y). There is also only one node at stage 0, the
terminal node, which is labeled (0). A path through the network is a sequence of arcs

(r, Y r) → (r − 1, Y r−1) → · · · → (2, Y 2) → (1, Y 1) → (0).

One can verify that each path represents a distinct element in F , with the relations

x11 =
1

2
Y1,1, (2.15)

xik = Yi,k − Yi,k−1, i = 1, ..., k − 1, k = 2, ..., r, (2.16)

and

xkk =
1

2

(
Yk,k −

k−1∑

i=1

xik

)
, k = 2, ..., r. (2.17)

Figure 2.2 shows the network representation for three alleles case with gene counts (y1, y2, y3) =
(6, 5, 3). The dotted path gives the array of counts x = (x11, x12, x13, x22, x23, x33) = (2, 1, 1, 2, 0, 1).

We define the length of an arc from node (k, Y k) to (k − 1, Y k−1) by

ARC(k, Y k, Y k−1) =
2

� k−1

i=1
(Yi,k−Yi,k−1)

[
1
2
{Yk,k −

k−1∑

i=1

(Yi,k − Yi,k−1)}
]
! ×

k−1∏

i=1

(Yi,k − Yi,k−1)!

.

The length of path or sub-path is defined as the product of the corresponding arc lengths.
Then it is straightforward to verify that the length of complete path from the initial node to
the terminal node is equal to D · P (x) by using the relations (2.15), (2.16) and (2.17).

Now our goal is to identify and sum all paths whose length do not exceed D · P (xo). If
we systematically enumerate each path through the network, compute its length and sum the
path lengths that does not exceed D ·P (xo), we are in effect considering all the elements in F .
This is the algorithm of Louis and Dempster (1987) and is usually computationally infeasible
if #F is large.

25



3) 6,5,3

2) 6,4

2) 3,5

2) 5,3

2) 4,4

2) 5,5

2) 6,2
1) 6

1) 2

1) 0

1) 4
0

Figure 2.2: Network representation for three alleles case with (y1, y2, y3) = (6, 5, 3).

To avoid such total enumeration, we compute at each node (k, Y k) the shortest and longest
values of the sub-path from the node (k, Y k) to the terminal node. We call these sub-paths
as LP (longest sub-path) or SP (shortest sub-path) similarly as in Section 2.1. On the other
hand, the length of the sub-path from the initial node to the current node (k, Y k) is calculated
from the labels (r, Y r), ..., (k, Y k) as

PAST =
r∏

j=k+1

ARC(j, Y j , Y j−1).

Now we can determine whether all the paths having a common sub-path (r, Y r) → · · · →
(k, Y k) do or do not contribute to the p value, without processing the remaining parts of paths
as follows.

• Case 1. If
PAST · LP (k, Y k) ≤ D · P (xo), (2.18)

then the lengths of all paths having common sub-path (r, Y r) → · · · → (k, Y k) are not
greater than D · P (xo). Hence the lengths of all these paths contribute the p value.

• Case 2. If
PAST · SP (k, Y k) > D · P (xo), (2.19)

then the lengths of all paths having common sub-path (r, Y r) → · · · → (k, Y k) exceed
D · P (xo). Hence none of these paths contributes to the p value.

• Case 3. Otherwise, we consider the next stage (stage k − 1).

It should be noted that the sum of all the sub-path lengths from the node (k, Y k) to the terminal
node is equal to (2Nk)!/(Nk!

∏k
i=1 Yi,k), where Nk = 1

2

∑k
i=1 Yi,k. This relation is derived in

the same manner as Levene (1949). Then the contribution to the p value in Case 1 equals
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PAST · (2Nk)!/(Nk!
∏k

i=1 Yi,k). Consequently, we need not enumerate the remaining parts of
paths for Case 1 or 2. In Case 3, we consider the common sub-path to a node (k − 1, Y k−1) at
stage k − 1 which is connected to the node (k, Y j), and proceed to verify (2.18) and (2.19) in
the same manner as before.

The only remaining problem is to compute LP and SP at each node. If we can evaluate LP
and SP exactly, we can ignore paths whose associated tables completely do or do not contribute
to the p value. (We can trim paths.) It is worth pointing out, however, that if we can only
evaluate an upper bound for LP or a lower bound for SP, we can make incomplete trimming.
For Freeman-Halton exact test in two-way contingency table, Mehta and Patel (1983) evaluated
an upper bound for LP and a lower bound for SP. For the Hardy-Weinberg case, we obtain the
closed form expression of exact SP value in the following. As for LP, although no closed form
of exact LP value is available, we present two upper bounds for LP.

2.2.4 Computing the shortest and longest paths from any node to
the terminal node

A closed form expression of SP

First we present a closed form expression of SP (k, Y k). Before we state a theorem we define
I = [k], Ie = {i | Yi,k is even} and Io = {i | Yi,k is odd}. We also define the following

decomposition of the set Io as Io = I∗
o ∪ Ĩo, I∗

o ∩ Ĩo = ∅, where I∗
o is the maximal set made from

the unions of pair (i, j) such that Yi,k = Yj,k and Ĩo = Io − I∗
o is the remaining set satisfying

Yi,k 6= Yj,k for all i, j ∈ Ĩo, i 6= j. If Y k = (13, 12, 11, 11, 11, 10, 9, 8, 5, 5, 3, 3, 3), for example,
we have Ie = {2, 6, 8}, I∗

o = {3, 4, 9, 10, 11, 12} and Ĩo = {1, 5, 7, 13}. (Although the elements of
Ĩo and I∗

o are not unique, corresponding values of Yi,k are uniquely determined.) It should be

noted that, by definition, Y1,k + · · ·+Yk,k, #Io, #Ĩo and #I∗
o are all even numbers. Using these

sets, our problem can be written in the following form:

P1 : minimize
2z

∏

1≤i≤j≤k

xij !
, z =

∑

1≤i<j≤k

xij , (2.20)

subject to

xii +
k∑

j=1

xij = 2mi, for i ∈ Ie, (2.21)

xii +
k∑

j=1

xij = 2mi + 1, for i ∈ Io, (2.22)

xji = xij , (2.23)

xij ∈ Z≥0 for i, j ∈ [k]. (2.24)

A solution of P1 is given in the following theorem.

Theorem 2.2.1 The optimal objective function value of P1 is given by
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2z∗

(
∏

i∈Ie

1

mi!

)
∏

i∈ �Io

1

mi!






∏

i∈I∗o

1

(2mi + 1)!





1/2

, where z∗ =
1

2




∑

i∈I∗o

(2mi + 1) + #Ĩo



 .

(2.25)

Hereafter, we define x∗ = (x∗
11, x

∗
12, x

∗
22, ..., x

∗
kk) as one of the solutions of P1 that minimizes

(2.20) subject to (2.21), (2.22), (2.23) and (2.24). To prove the above theorem, we prepare the
following lemma.

Lemma 2.2.1 The optimal solution x∗ satisfies the following conditions.
(a) x∗

ij , i 6= j, cannot be a positive even number.
(b) {x∗

i1, ..., x
∗
ii−1, x

∗
ii+1, ..., x

∗
ik} includes at most one odd number for all i.

Proof of Lemma 2.2.1.
(a) Suppose that x∗

ij = 2n, n ≥ 1, for some i, j (i 6= j). Consider another solution x
′

=

(x
′

11, ..., x
′

kk), where {
x

′

ii = x∗
ii + n, x

′

jj = x∗
jj + n, x

′

ij = 0,

x
′

ij = x∗
ij for all the other i, j.

Clearly, x
′

satisfies (2.21),(2.22),(2.23) and (2.24). Let OF ∗ be the value of the objective
function under x∗ and OF

′
be the value of the objective function under x

′
. Then we have

OF ∗

OF ′ =
22n(n!)2

(2n)!

(
x∗

ii + n
x∗

ii

)(
x∗

jj + n
x∗

jj

)
≥ 22n(n!)2

(2n)!
≡ f1(n),

f1(n + 1)

f1(n)
=

2(n + 1)

2n + 1
> 1

and f1(n) > f1(n − 1) > · · · > f1(1) = 2 > 1. Hence OF ∗ > OF
′
holds. This contradicts that

OF ∗ is the optimal objective function value.

(b) Suppose that x∗
ij1

= 2n1 +1, x∗
ij2

= 2n2+1, n1, n2 ≥ 0, j1 6= i, j2 6= i for some j1, j2 (j1 6= j2).

Consider another solution x
′
, where





x
′

ii = x∗
ii + n1 + n2 + 1, x

′

j1j1 = x∗
j1j1 + n1, x

′

j2j2 = x∗
j2j2 + n2,

x
′

ij1 = x
′

ij2 = 0, x
′

j1j2 = x∗
j1j2 + 1,

x
′

ij = x∗
ij for all the other i, j.

Clearly, x
′

satisfies (2.21),(2.22),(2.23) and (2.24). Let OF
′

be the value of the objective
function under x

′
. Then we have

OF ∗

OF ′ =
22n1+2n2+1n1!n2!(n1 + n2 + 1)!

(2n1 + 1)!(2n2 + 1)!

(
x∗

ii + n1 + n2 + 1
x∗

ii

)(
x∗

j1j1
+ n1

x∗
j1j1

)

×
(

x∗
j2j2

+ n2

x∗
j2j2

)
(x∗

j1j2 + 1)

≥ 22n1+2n2+1n1!n2!(n1 + n2 + 1)!

(2n1 + 1)!(2n2 + 1)!
≡ f2(n1, n2)
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and
f2(n1 + 1, n2)

f2(n1, n2)
=

2(n1 + n2 + 2)

2n1 + 3
≥ 2(n1 + 2)

2n1 + 3
> 1.

Similarly we have
f2(n1, n2 + 1)

f2(n1, n2)
> 1. Hence f2(n1, n2) > f2(0, 0) = 2 > 1 and OF ∗ > OF

′

holds. This contradicts that OF ∗ is the optimal objective function value. Q.E.D.

Now we prove Theorem 2.2.1 using the above lemma.

Proof of Theorem 2.2.1.
As a direct result of the Lemma 2.2.1, we have x∗

ii = mi, x∗
ij = 0, j 6= i, for all i ∈ Ie since the

number of odd values in {x∗
i1, ..., x

∗
ii−1, x

∗
ii+1, ..., x

∗
ik} is even for all i ∈ Ie. On the other hand,

we see that the elements of Io are separated into pairs as (i1, j1), (i2, j2), ..., (ip, jp) such that

x∗
ij > 0, if (i, j) is a pair,

= 0, otherwise,

and p = #Io/2 is the number of the pairs. Then the optimal objective function value of P1 can
be written as

2z∗

(
∏

i∈Ie

1

mi!

)(
p∏

n=1

1

x∗
inin!x∗

jnjn
!x∗

injn
!

)
, z∗ =

p∑

n=1

x∗
injn

. (2.26)

Hereafter we call (i, j) an identical pair if mi = mj and a different pair if mi 6= mj . It is worth
pointing out that i, j ∈ I∗

o for all identical pairs (i, j).
First we consider the identical pair (i, j). Let mi = mj ≡ m and

x∗
ij = 2(m − n) + 1, x∗

ii = x∗
jj = n (2.27)

for these i, j. Now we show that n has to be zero, that is, min
0≤n≤m

OF (n) = OF (0), where OF (n)

is the objective function value when x∗
ij , x

∗
ii and x∗

jj of x∗ are given by (2.27) for n = 0, ..., m.
We have

OF (n + 1)

OF (n)
=

(2m − 2n + 1)(m − n)

2(n + 1)2
.

If we compare this ratio to 1 for n = 0, 1, ..., m, then we have

OF (n + 1)

OF (n)
< 1 for n >

2m2 + m − 2

4m + 5

and
OF (n + 1)

OF (n)
> 1 for n <

2m2 + m − 2

4m + 5

and hence min
0≤n≤m

OF (n) = min{OF (0), OF (m)}. Besides we have

OF (m)

OF (0)
=

(2m + 1)!

22m(m!)2
≡ f3(m)
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and
f3(m + 1)

f3(m)
=

2m + 3

2(m + 1)
> 1.

Hence
f3(m) > f3(m − 1) > · · · > f3(0) = 1 (2.28)

and OF (m) > OF (0). We have now shown that




x∗
ij = 2mi + 1,

xis = 0, for s 6= j,
xjs = 0, for s 6= i,

(2.29)

for the identical pair (i, j).
Next we consider the different pair (i, j). We can assume mi > mj without loss of generality.

Similarly to the case of the identical pair, we denote

x∗
ii = mi − n, x∗

jj = mj − n, x∗
ij = 2n + 1

and consider the sequence OF (n), n = 0, 1, ..., mj. The ratio is written as

OF (n)

OF (0)
=

n−1∏

k=0

{
2(mi − k)

2(n − k) + 1
× mj − k

n − k

}
≥

n−1∏

k=0

2(mi − k)

2(n − k) + 1
.

From mi > mj , we have mi − n > mj − n ≥ 0 and then mi ≥ n + 1 holds. Hence we have

OF (n)

OF (0)
≥

n−1∏

k=0

2(n + 1 − k)

2(n − k) + 1
> 1

and OF (n) > OF (0). We have shown that
{

x∗
ii = mi, x∗

jj = mj, x∗
ij = 1,

xis = xjs = 0 for s 6= i, j
(2.30)

for the different pair (i, j).
Now we show that the pairs have to be constructed in such a way that the number of

identical pairs is maximized. Clearly it is sufficient to consider the case of four alleles, Y k =
(Y1,k, Y2,k, Y3,k, Y4,k) = (2m1 + 1, 2m1 + 1, 2m3 + 1, 2m4 + 1) where m1 6= m3 and m1 6= m4.

(i) If we make pairs as (1, 3) and (2, 4), then the optimal x∗ is obtained from (2.30) as

{
x∗

11 = x∗
22 = m1, x∗

33 = m3, x∗
44 = m4, x∗

13 = x∗
24 = 1,

otherwise x∗
ij = 0.

(ii) Similarly, if we make pairs as (1, 2) and (3, 4), x∗ is written as follows:

• If m3 = m4, then {
x∗

12 = 2m1 + 1, x∗
34 = 2m3 + 1,

otherwise x∗
ij = 0.

30



• If m3 6= m4, then

{
x∗

12 = 2m1 + 1, x∗
33 = m3, x∗

44 = m4, x∗
34 = 1,

otherwise x∗
ij = 0.

Let OFi and OFii denote the objective function values corresponding to (i) and (ii), respectively.

• If m3 = m4, then

OFi

OFii

=
(2m1 + 1)!

22m1(m1!)2
· (2m3 + 1)!

22m3(m3!)2
= f3(m1)f3(m3).

From (2.28), we have OFi > OFii in this case.

• If m3 6= m4, then
OFi

OFii

=
(2m1 + 1)!

22m1(m1!)2
= f3(m1).

Again from (2.28), we have OFi > OFii .

From these considerations, it is shown that the case of (i) is not optimal. In other words, all

the different pairs have to be included in Ĩo and all the identical pairs have to be included in I∗
o .

Substitution of (2.29) and (2.30) into (2.26) corresponding to Ĩo and I∗
o and some simplification

yields (2.25). Q.E.D.

Some upper bounds for LP

Next we consider LP (k, Y k). The problem we consider is

P2 : maximize
2z

∏

1≤i≤j≤k

xij !
, z =

∑

1≤i<j≤k

xij ,

subject to

xii +

k∑

j=1

xij = Yi,k, for i = 1, ..., k (2.31)

and (2.23),(2.24). Unfortunately the closed form expression of LP (k, Y k) in not available except
for small k. In this study, two upper bounds for LP (k, Y k) and closed form of LP (2, Y 2) are
provided.

Theorem 2.2.2 An upper bound for the optimal objective function value of P2 is given by

max
0≤z≤Nk

2z

(d1 + 1)Nk−z−kd1(d1!)k(d2 + 1)z−k(k−1)d2/2(d2!)k(k−1)/2
, (2.32)

where d1 = [(Nk − z)/k] , d2 = [2z/{k(k − 1)}] , Nk = 1
2

∑k
i=1 Yi,k, and [x] denotes the largest

integer less than or equal to x.
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Proof. Fixing z and ignoring the constraints (2.31), we can easily show that the object function
value

2z

∏
i≤j xij !

=
2z

(∏k
i=1 xii!

)(∏
i<j xij !

) (2.33)

is maximized when |xii −xjj | ≤ 1 for all i, j and |xij −xi′ j′ | ≤ 1 for all i < j, i
′
< j

′
. Therefore

under the constraints
∑k

i=1 xii = Nk−z and
∑

i<j xij = z, Nk−z−kd1 elements in {x11, ..., xkk}
are equal to d1 +1 and the rest are equal to d1, and z−k(k−1)d2/2 elements in {x12, ..., xk−1k}
are equal to d2 + 1 and the rest are equal to d2. Substituting these values into (2.33) and
maximizing with respect to z yields (2.32). Since (2.32) is the maximum objective function
value for the relaxation problem of P2 where the constraints (2.31) are ignored, it is indeed an
upper bound for the optimal objective function value of P2. Q.E.D.

We can see that the upper bound given in Theorem 2.2.2 is equal to the exact LP (k, Y k)
value when the components of Y k is equal or nearly equal to each other. For this reason, this
upper bound is a natural analogue of an upper bound for LP given by Mehta and Patel (1983)
for Freeman-Halton case.

Next we provide another (approximate) upper bound which has good property regardless
of the pattern of Y k in the following Theorem.

Theorem 2.2.3 An approximate upper bound for the optimal objective function value of P2 is
given by

2z∗

∏
i≤j g(x∗

ij)
, z∗ =

∑

i<j

x∗
ij,

where

x∗
ii =

Y 2
i,k

4Nk

, x∗
ij =

Yi,kYj,k

2Nk

, i 6= j, (2.34)

and g(x) is an arbitrary continuous function satisfying g(n) = n! if n is an integer.

Proof. Replacing x! with the function g(x) defined above and ignoring the constraint that xij

is integer, the continuous relaxation problem of P2 is obtained as

P
′

2 : maximize
2z

∏
i≤j g(xij)

, z =
∑

i<j

xij ,

subject to (2.31),(2.23) and xij ≥ 0. Clearly the optimal objective function value of P
′

2 is an
upper bound for the original integer optimizing problem P2.

On the other hand, the optimal solution of P
′

2 is approximated by (2.34) for the following
reason. Let p1 be the reference empirical distribution given by

pij = xij/Nk, i = 1, ..., k, j = i, ..., k,
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where xij satisfies (2.31) and p0 be the Hardy-Weinberg distribution given by

pii = p2
i , i = 1, ..., k,

pij = 2pipj, i = 1, ..., k − 1, j = i + 1, ..., k.

We denote the Kullback-Leibler divergence from p1 to p0 as D(p1, p0). Since the optimal
solution of P2 corresponds to p1 whose occurrence probability is maximum when the true dis-
tribution is p0, P2 is approximately equivalent to minimizing D(p1, p0). Here the decomposition

D(p1, p0) = D(p1, pM) + D(pM , p0) (2.35)

holds where pM is the conditional maximum likelihood estimate under the Hardy-Weinberg
model given by pij = xij/Nk where xij is given by (2.34). This prove the theorem. Q.E.D.

The decomposition (2.35) is an important property of the divergence D(p1, p0) and can be
derived directly for the present case. The meaning of this decomposition is elucidated from the
differential geometrical point of view. For detail, see Amari (1985, 1989) for example.

The standard example of g(x) is Gamma function, g(x) = Γ(x + 1). However, similarly as
in Section 2.1, even simpler function such as piecewise linear or piecewise quadratic function
can also be used.

As the last result of this section, we provide the closed form expression of LP (2, Y 2). The
problem that we consider is written as

P3 : maximize
2x12

x11!x12!x22!
,

subject to
2x11 + x12 = Y1,2, 2x22 + x12 = Y2,2,

x11, x12, x22 ∈ Z≥0.

Theorem 2.2.4 The optimal solution x∗ = (x∗
11, x

∗
12, x

∗
22) of P3 is given as follows.

1. If Y1,2, Y2,2 are both even numbers, let a(Y 2) = (Y1,2Y2,2 − 2)/{2(Y1,2 + Y2,2 + 3)}. The
optimal solution is

x∗
11 =

Y1,2

2
− n, x∗

22 =
Y2,2

2
− n, x∗

12 = n,

where {
n = a(Y 2) or a(Y 2) + 1, if a(Y 2) is integer,
n = |a(Y 2) + 1|, otherwise.

2. If Y1,2, Y2,2 are both odd numbers, let a(Y 2) = {(Y1,2−1)(Y2,2−1)−6}/{2(Y1,2+Y2,2+3)}.
The optimal solution is

x∗
11 =

Y1,2 − 1

2
− n, x∗

22 =
Y2,2 − 1

2
− n, x∗

12 = 2n + 1,

where {
n = a(Y 2) or a(Y 2) + 1, if a(Y 2) is integer,
n = |a(Y 2) + 1|, otherwise.

The proof of this theorem is straightforward and omitted.
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Table 2.3: Genotype frequency data from Guo and Thompson (1992).
Genotype No

A1A1 3
A1A2 4
A1A3 2
A1A4 3
A2A2 2
A2A3 2
A2A4 3
A2A5 1
A3A3 2
A3A4 2
A3A7 1
A4A4 1
A4A8 2
A5A8 1
A6A6 1
Total 30

2.2.5 Some numerical examples

We computed exact p values for problems of various sizes by the network algorithm. All
the algorithms were programmed using C language on a PC running on Linux (Pentium III,
930MHz).

First we analyze the data of r = 8, N = 30, y = (15, 14, 11, 12, 2, 2, 1, 3), displayed in Table
2.3. This data is taken from Figure 1 of Guo and Thompson (1992). Since the size of this
data is moderately large, they could not calculate the exact p value and instead evaluated
the simulated value by Monte Carlo method. We computed the exact p value for this data
by using a complete enumeration algorithm proposed by Louis and Dempster (1987), Markov
chain Monte Carlo method by Guo and Thompson (1992) and the network algorithm. As for
computing upper bounds for LP in the network algorithm, two upper bounds proposed in the
previous section (Theorem 2.2.2 and Theorem 2.2.3) were considered. For the Markov chain
Monte Carlo method, the dememorization period is 1, 000 steps. We use a batching method to
obtain an estimate of variance (Hastings, 1970; Ripley, 1987), that is, we divide the observations
into B batches of C consecutive observations each, and use

S2 =
1

B(B − 1)

B∑

i=1

(p̂i − p̂)2

as an estimate of variance, where p̂ is an estimated p value computed from all the observations
and p̂i is an estimated p value computed from observations in the ith batch. Table 2.4 shows the
p values and CPU times. The results of various goodness-of-fit tests are also listed: F 2 is the
Freeman-Tukey statistic; G2, the likelihood ratio statistic; χ2, Pearson’s statistic; χ2

.5, Pearson’s
statistic with continuity correction of .5; χ2

.25, Pearson’s statistic with continuity correction of
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Table 2.4: A results of goodness-of-fit and exact tests for the allele frequency data in Table 2.3
(r = 8, #F = 250552020 ∼ 2.5 × 108).

Statistic/Method Value p value S.E. CPU timea

F 2 14.7601 0.9809 — —
G2 25.9748 0.5744 — —
χ2 51.9302 0.003908 — —
χ2

.5 71.5300 1.1344 ×10−5 — —
χ2

.25 39.4041 0.07464 — —
MCMC (B = 100, C = 10, 000) — 0.2253 0.00470 0:03.31
MCMC (B = 100, C = 100, 000) — 0.2144 0.00149 0:25.02
MCMC (B = 100, C = 1, 000, 000) — 0.2157 0.000425 4:13
Complete enumeration — 0.2159398218 — 44:43
Network (LP by Thm. 2.2.2) — 0.2159398218 — 10:25
Network (LP by Thm. 2.2.3) — 0.2159433639 — 8:21

aCPU time is represented by min : sec.

.25 as suggested by Emigh(1980). Table 2.4 shows, as is reported by Guo and Thompson
(1992), that the different goodness-of-fit statistics employed could lead to completely different
conclusions. This implies the need for the exact test. For the exact tests, it takes about 45
minutes to perform the complete enumeration algorithm. By the Markov chain Monte Carlo
methods, the exact p values are computed to the accuracy of the two digits in 4 minutes. This
implies that the Markov chain Monte Carlo method is a valuable tool if a rough estimate of p
value is needed. On the other hand, the network algorithm enables more efficient calculations
than the complete enumeration algorithm. To calculate the exact p value, it takes about 10
minutes when using the upper bound proposed in Theorem 2.2.2 and about 8 minutes when
using the approximate upper bound proposed in Theorem 2.2.3. These CPU times show that
the path was trimmed in Case 1 (in Section 2.2.3) more efficiently when using the approximate
upper bound. Strictly speaking, it is not guaranteed that the obtained p value is precise when
the approximate upper bound is used. This is because the optimal solution of the relaxation
problem P

′

2 is attained at (2.34) only approximately. Then an over trimming may occur when
the optimal solution of the relaxation problem is underestimated than the true optimal solution
of the original integer maximization problem. Indeed, the p value by Network (LP by Thm.
2.2.3) in Table 2.4 is slightly larger than the values by Network (LP by Thm. 2.2.2) and the
complete enumeration. However, Table 2.4 shows that the p value is computed to the accuracy
of the five digits when using the approximate upper bound and it can be considered that the
accuracy of the approximation is sufficiently good in practice.

Next we analyze the genotype frequency data at the MEFV locus in Armenian patients
from Cazeneuve et al. (1999) displayed in Table 2.5. Note that there is an “unidentified allele”
in Table 2.5. In this study, we treat it in two ways. First, we ignore the unidentified allele (and
also the complex allele) and calculate p values for the 6 alleles (M694V, V726A, M680I, F479L,
E148Q, R761H) data of N = 76, y = (73, 40, 32, 4, 2, 1). Table 2.6 shows the results. Second,
we treat the unidentified allele (and also the complex allele) as one allele and calculate p values
for the 8 alleles data of N = 85, y = (75, 42, 33, 12, 4, 2, 1, 1). Table 2.7 shows the results.

35



Table 2.5: Genotype frequency data at the MEFV locus in Armenian patients from Cazeneuve
et al. (1999).

Genotype No (%)
M694V/M694V 18 (21.2)
M694V/V726A 22 (25.9)
M694V/M680I 13 (15.3)
M726A/M680I 9 (10.6)
M680I/M680I 4 (4.7)
V726A/V726A 3 (3.5)
V726A/F479L 3 (3.5)
M694V/E148Q 2 (2.4)
M680I/R761H 1 (1.2)
M680I/F479L 1 (1.2)
M680I/unidentified allele 1 (1.2)
M694V/unidentified allele 2 (2.4)
complex allelea/unidentified allele 1 (1.2)
unidentified allele/unidentified allele 3 (3.5)
Total 85 (100)

aE148Q, P369S and R408Q mutations in cis.

Table 2.6: A results of goodness-of-fit and exact tests for the MEFV data (6 alleles) in Table
2.5 (#F = 3048176 ∼ 3.0 × 106).

Statistic/Method Value p value S.E. CPU timea

F 2 11.6791 0.7783 — —
G2 14.4440 0.5895 — —
χ2 13.4047 0.6645 — —
χ2

.5 132.3692 < 1.0 × 10−38 — —
χ2

.25 38.4253 0.00024558 — —
MCMC (B = 100, C = 10, 000) — 0.2488 0.00507 0:03.04
MCMC (B = 100, C = 100, 000) — 0.2555 0.00172 0:30.10
MCMC (B = 100, C = 1, 000, 000) — 0.2547 0.000435 5:04
Complete enumeration — 0.2537322421 — 0:27.68
Network (LP by Thm. 2.2.2) — 0.2537322421 — 0:02.01
Network (LP by Thm. 2.2.3) — 0.2537322421 — 0:01.45

aCPU time is represented by min : sec.
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Table 2.7: A results of goodness-of-fit and exact tests for the MEFV data (8 alleles) in Table
2.5 (#F = 9365418588 ∼ 9.4 × 109).

Statistic/Method Value p value S.E. CPU timea

F 2 22.0452 0.8226 — —
G2 31.5254 0.3532 — —
χ2 47.0085 0.01251 — —
χ2

.5 323.1206 < 1.0 × 10−38 — —
χ2

.25 103.3698 8.4231×10−15 — —
MCMC (B = 100, C = 10, 000) — 0.009833 0.00109 0:02.51
MCMC (B = 100, C = 100, 000) — 0.01070 0.000399 0:24.77
MCMC (B = 100, C = 1, 000, 000) — 0.01080 0.000117 4:14
Complete enumeration — 0.0109317715 — 1488:17
Network (LP by Thm. 2.2.2) — 0.0109317226 — 191:39
Network (LP by Thm. 2.2.3) — 0.0109317318 — 155:10

aCPU time is represented by min : sec.

Table 2.6 and Table 2.7 again show that the different goodness-of-fit statistics could lead to
different conclusions as we have seen in Table 2.4. Especially, the p values calculated from χ2

with continuity corrections are erroneously small. Table 2.6 shows that the network algorithms
perform quite well for this data: it takes only 1 or 2 seconds to calculate the exact p values
by the network algorithm and the accuracy of the p value when using the approximate upper
bound is quite good (at least ten digits). It can be concluded that there is no reason for using
the Markov chain Monte Carlo method for this data. On the other hand, Table 2.7 shows that
it takes a moderately long time to calculate the p values by the network algorithms, though
the network algorithms perform much better than the complete enumeration algorithm.

Finally, we compare the network algorithm with the complete enumeration algorithm in
detail. For considering the computational feasibility, we analyze data sets of various sizes.
Table 2.8 shows the p values and CPU times for the examples of r = 5, where the pattern of
y is uniform. Table 2.9 shows the p values and CPU times for the various pattern of y for
examples of N = 50. In each example, the p value close to 0.05 is calculated. The number
of all the tables (#F) and the ratio of CPU time (complete enumeration to network) are also
provided when the complete enumeration is feasible.

Table 2.8 and Table 2.9 show that the network algorithm performs uniformly better for
all these examples. CPU ratio shows that the efficiency of the network algorithm is more
emphasized when the size of the problem is large. We see that the p values of examples of
moderate size (#F ∼ 109) can be calculated within about 30 minutes by the network algorithm,
while it took several hours by the complete enumeration. Comparing the upper bound for LP,
we see that the approximate upper bound proposed in Theorem 2.2.3 performs better and the
accuracy of the approximation is satisfactory.

It should be noted that the CPU time is greatly effected by p value when using the network
algorithm, while it takes same time regardless of p value by the complete enumeration or the
Monte Carlo method. In this study p values about 0.05 are mainly considered, however, larger
p values can be more easily calculated by the network algorithm. Table 2.10 shows CPU times
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Table 2.8: A comparison of the network and the Louis and Dempster algorithms for the allele
frequency data of r = 5 (uniform case).

y Algorithm p value CPU timea(ratiob) #F
(20, 20, 20, 20, 20) Complete enumeration 0.0448476262 46:27 3.0 × 108

Network (LP by Thm. 2.2.2) 0.0448476262 4:55 ( 9.45)
Network (LP by Thm. 2.2.3) 0.0448505876 4:03 (11.47)

(22, 22, 22, 22, 22) Complete enumeration 0.0443505782 106:56 7.0 × 108

Network (LP by Thm. 2.2.2) 0.0443505782 9:06 (11.75)
Network (LP by Thm. 2.2.3) 0.0443514885 7:27 (14.35)

(24, 24, 24, 24, 24) Complete enumeration 0.0476068427 230:13 1.5 × 109

Network (LP by Thm. 2.2.2) 0.0476068428 15:09 (15.20)
Network (LP by Thm. 2.2.3) 0.0476073528 12:21 (18.64)

(26, 26, 26, 26, 26) Complete enumeration infeasiblec

Network (LP by Thm. 2.2.2) 0.0490752414 27:42
Network (LP by Thm. 2.2.3) 0.0490747618 24:20

(28, 28, 28, 28, 28) Complete enumeration infeasiblec

Network (LP by Thm. 2.2.2) 0.0502934492 37:29
Network (LP by Thm. 2.2.3) 0.0502939082 30:38

(30, 30, 30, 30, 30) Complete enumeration infeasiblec

Network (LP by Thm. 2.2.2) 0.0516508563 55:49
Network (LP by Thm. 2.2.3) 0.0516511735 45:29

aCPU time is represented by min : sec.
bCPU time (complete enumeration) / CPU time (network)
cFail to compute p value within 360 CPU minutes.
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Table 2.9: A comparison of the network and the Louis and Dempster algorithms for the allele
frequency data of N = 50, r = 4 ∼ 8.

y Algorithm p value CPU timea(ratiob) #F
(25, 25, 25, 25) Complete enumeration 0.0526117171 0:02.05 2.3 × 105

Network (LP by Thm. 2.2.2) 0.0526117171 0:00.46 ( 4.46)
Network (LP by Thm. 2.2.3) 0.0526117171 0:00.40 ( 5.13)

(40, 30, 20, 5, 5) Complete enumeration 0.0566520911 0:18.28 2.0 × 106

Network (LP by Thm. 2.2.2) 0.0566520911 0:04.25 ( 4.30)
Network (LP by Thm. 2.2.3) 0.0566520911 0:03.64 ( 5.02)

(30, 30, 30, 5, 5) Complete enumeration 0.0479355528 0:26.98 3.0 × 106

Network (LP by Thm. 2.2.2) 0.0479355528 0:06.13 ( 4.40)
Network (LP by Thm. 2.2.3) 0.0479355528 0:05.48 ( 4.92)

(40, 30, 10, 10, 10) Complete enumeration 0.0682463011 1:41.53 1.1 × 107

Network (LP by Thm. 2.2.2) 0.0682463011 0:17.50 ( 5.80)
Network (LP by Thm. 2.2.3) 0.0683323439 0:13.66 ( 7.43)

(20, 20, 20, 20, 20) Complete enumeration 0.0448476262 46:27 3.0 × 108

Network (LP by Thm. 2.2.2) 0.0448476262 4:55 ( 9.45)
Network (LP by Thm. 2.2.3) 0.0448505876 4:03 (11.47)

(30, 30, 30, 4, 3, 3) Complete enumeration 0.0449065433 2:16 1.5 × 107

Network (LP by Thm. 2.2.2) 0.0449065433 0:31 ( 4.39)
Network (LP by Thm. 2.2.3) 0.0449065433 0:28 ( 4.86)

(40, 30, 10, 10, 5, 5) Complete enumeration 0.0606964775 27:47 1.8 × 108

Network (LP by Thm. 2.2.2) 0.0606964775 4:29 ( 6.20)
Network (LP by Thm. 2.2.3) 0.0607761595 3:28 ( 8.01)

(40, 20, 20, 8, 7, 5) Complete enumeration 0.0435034239 85:03 5.6 × 108

Network (LP by Thm. 2.2.2) 0.0435027787 16:06 ( 5.28)
Network (LP by Thm. 2.2.3) 0.0435052514 12:12 ( 6.97)

(30, 30, 20, 8, 7, 5) Complete enumeration 0.0521534407 133:05 8.8 × 108

Network (LP by Thm. 2.2.2) 0.0521534422 22:40 ( 5.87)
Network (LP by Thm. 2.2.3) 0.0521535686 19:16 ( 6.91)

(30, 20, 20, 20, 5, 5) Complete enumeration 0.0426073065 264:41 1.7 × 109

Network (LP by Thm. 2.2.2) 0.0426073065 43:40 ( 6.06)
Network (LP by Thm. 2.2.3) 0.0426079323 35:39 ( 7.42)
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Table 2.9: Continued.

y Algorithm p value CPU timea(ratiob) #F
(40, 30, 20, 3, 3, 2, 2) Complete enumeration 0.0657281092 4:56 3.3 × 107

Network (LP by Thm. 2.2.2) 0.0657281092 0:59 (5.02)
Network (LP by Thm. 2.2.3) 0.0657315171 0:49 (6.04)

(30, 30, 30, 3, 3, 2, 2) Complete enumeration 0.0640574757 7:17 4.8 × 107

Network (LP by Thm. 2.2.2) 0.0640574757 1:22 (5.33)
Network (LP by Thm. 2.2.3) 0.0640574757 1:13 (5.99)

(40, 30, 10, 10, 5, 3, 2) Complete enumeration 0.0480403049 121:27 8.0 × 108

Network (LP by Thm. 2.2.2) 0.0480403049 21:21 (5.69)
Network (LP by Thm. 2.2.3) 0.0480998952 16:48 (7.23)

(40, 25, 15, 10, 5, 3, 2) Complete enumeration 0.0493349444 228:40 1.5 × 109

Network (LP by Thm. 2.2.2) 0.0493349444 40:43 (5.62)
Network (LP by Thm. 2.2.3) 0.0493396952 31:50 (7.18)

(40, 30, 20, 2, 2, 2, 2, 2) Complete enumeration 0.0658297002 13:57 9.2 × 107

Network (LP by Thm. 2.2.2) 0.0658297002 2:38 (5.30)
Network (LP by Thm. 2.2.3) 0.0658300956 2:12 (6.34)

(40, 25, 25, 2, 2, 2, 2, 2) Complete enumeration 0.0531653738 15:37 1.0 × 108

Network (LP by Thm. 2.2.2) 0.0531653738 3:09 (4.96)
Network (LP by Thm. 2.2.3) 0.0531653738 2:40 (5.86)

(40, 30, 18, 4, 2, 2, 2, 2) Complete enumeration 0.0492180369 45:16 3.0 × 108

Network (LP by Thm. 2.2.2) 0.0492180369 8:59 (5.04)
Network (LP by Thm. 2.2.3) 0.0492180505 7:30 (6.04)

(40, 30, 15, 7, 2, 2, 2, 2) Complete enumeration 0.0422794862 114:12 7.6 × 108

Network (LP by Thm. 2.2.2) 0.0422794862 22:58 (4.97)
Network (LP by Thm. 2.2.3) 0.0422816826 18:57 (6.03)

(40, 30, 15, 5, 4, 2, 2, 2) Complete enumeration 0.0641293814 217:22 1.4 × 109

Network (LP by Thm. 2.2.2) 0.0641293814 33:32 (6.48)
Network (LP by Thm. 2.2.3) 0.0641321353 26:34 (8.18)
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Table 2.10: A comparison of the network and the Louis and Dempster algorithms for the allele
frequency data of y = (30, 30, 20, 8, 7, 5) for various p values.

CPU timea

p Complete enumeration Network (LP by Thm. 2.2.2) Network (LP by Thm. 2.2.3)
0.9968 133:12 0:05.89 0:00.19
0.9101 133:09 0:18.56 0:05.82
0.8242 133:11 0:34.76 0:15.24
0.5933 133:09 1:45 1:07
0.4728 133:09 2:56 2:00
0.3178 133:09 5:23 4:02
0.2161 133:25 8:20 6:34
0.1070 133:31 14:58 12:22
0.0522 133:05 22:40 19:16

aCPU time is represented by min : sec.millisec

to calculate various p values for the case of y = (30, 30, 20, 8, 7, 5).

2.2.6 Discussion

The contribution of this section is to extend the bounds of computational feasibility of the exact
test of Hardy-Weinberg proportion for multiple alleles by the network algorithm. Numerical
examples in Section 2.2.5 show that the efficacy of the computation is greatly improved by
our algorithm compared to the algorithm proposed by Louis and Dempster. The CPU time
required for calculating p values around 0.05 is within 30 minutes by the network algorithm
when the size of the problem (the number of all possible counts of genotype with the same gene
counts as observed data) is 109, while it takes more than 2 hours by the complete enumeration
algorithm. Table 2.10 shows that the degree of the improvement increases for large p values.
This is because larger p values can be more easily calculated by the network algorithm, while
the value of p does not effect the CPU time in the complete enumeration.

The essential features of the network algorithm are the evaluation of LP, the longest path
from any node to the terminal node, and SP, the shortest path from any node to the terminal
node. In this study, we proved an interesting optimization theorem that leads to the closed
form expression for SP. Although no comparable closed form for LP is available, it is shown
that two upper bounds for LP are easily evaluated: one is the optimal solution of the one vari-
able maximizing problem, and the other is the approximate optimal solution of the continuity
relaxation problem. It is worth pointing out that the latter idea can be applied to a variety of
integer optimizing problems, for example Freeman-Halton tests, which we have seen in Section
2.1.

Our numerical examples show that these two upper bounds have their own merits. The
approximate upper bound is slightly superior in the CPU times required, however, the approx-
imation may slightly influence the p value. Both the difference of the efficacy between the two
methods and the degree of the overestimate of p values caused by the approximation are quite
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small. It should be noted that the approximation never leads to the underestimate of p values.
Therefore in practical use, the influence of the approximation may not be so important because
the conservative decision can be done.

The simulation results suggest that most trimming occurs when tables associated with paths
emanating from the node are all less probable than the observed table (trimming based on the
LP bound) rather than when they are all more probable (trimming based on the SP table).
This is true even when the observed data are “rare” under the Hardy-Weinberg equilibrium
in the usual sense (i.e., when p values are around 0.05 ∼ 0.01) and more SP-trimming would
be expected. One reason for this is related to the shape of the conditional probability func-
tion (2.13), where the factorial part of the denominator drastically increases when the table
becomes close to the least probable case. Regardless of how probable is the assignment of
alleles Ar, ..., Ak+1, alleles Ak, ..., A1 can be assigned to construct a table which is improbable
by making the factorial part of the denominator as large as possible given the assignment for
Ar, ..., Ak+1. Hence SP-trimmings hardly ever occur unless the observed table itself is the least
probable case.
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Chapter 3

Markov chain Monte Carlo methods

In this chapter we consider the Markov chain Monte Carlo methods. In Section 3.1, we illustrate
an outline of the Markov chain Monte Carlo methods in the analysis of contingency tables. We
consider the no three-factor interaction model in three-way contingency tables as an example,
and show the difficulty in performing the Markov chain Monte Carlo method for this case.
Section 3.1 also reviews related works concerning the Markov chain Monte Carlo methods in
the analysis of contingency tables, including the important work by Diaconis and Sturmfels
(1998). This problem of the no three-factor interaction model in three-way contingency tables
is thoroughly investigated in Section 3.2 and Section 3.3 for some problems of relatively small
sizes. Section 3.4 concerns problems for two-way contingency tables containing structural zero
cells. Section 3.5 and Section 3.6 give some basic and theoretical results.

3.1 Introduction

In this section, we illustrate the problem that we consider in this chapter. First we consider
a simple problem of generating two-way contingency tables with fixed row and column totals,
which we have seen in Chapter 1. The problem is written as follows. Let x = {xij} ∈ Z

IJ
≥0 be

an I × J contingency table and

F({xi·}, {x·j}) = {y = {yij} | yi· = xi·, y·j = x·j , yij ∈ Z≥0 i ∈ [I], j ∈ [J ]}

denote the reference set of all I × J contingency tables with the same marginal totals as x.
Under the hypothesis of statistical independence (i.e. pij = pi·p·j), the sufficient statistics are
the row and column sums, xi·, x·j, i ∈ [I], j ∈ [J ]. The hypergeometric distribution h(x) on
F({xi·}, {x·j}), which is written as (1.2), is the conditional distribution of x, given the sufficient
statistics. To test the hypothesis of independence, our approach in this chapter is to generate
samples from h(x) and calculate the null distribution of various test statistics. An important
point is that, if an arbitrary connected Markov chain on F({xi·}, {x·j}) is constructed, the chain
can be modified to give a connected and aperiodic Markov chain with stationary distribution
h(x) by the usual Metropolis procedure (Hastings, 1970, for example). Then how can we
construct a connected Markov chain on F({xi·}, {x·j}) ?

In this case of two-way contingency tables, a connected Markov chain on F({xi·}, {x·j}) is
easily constructed as follows. Let x be the current state in F({xi·}, {x·j}). The next state is
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selected by choosing a pair of rows and a pair of columns at random, and modifying x at the
four entries where the selected rows and columns intersect as

+ −
− +

or
− +
+ − with probability

1

2
each. (3.1)

The modification adds or subtracts 1 from each of the four entries, keeping the row and column
sums. If the modification forces negative entries, discard it and continue by choosing a new
pairs of rows and columns. Hereafter we call such modifications (two-dimensional) rectangles or
rectangular moves. A precise definition of rectangles is given in Section 3.2 (Definition 3.2.5).

Extending the above approach, now consider the three-way case. Let x = {xijk} ∈ Z
IJK
≥0 be

an I × J × K contingency table. The reference set is now defined as

F({xij·}, {xi·k}, {x·jk}) = {y | yij· = xij·, yi·k = xi·k, y·jk = x·jk, yijk ∈ Z≥0, i ∈ [I], j ∈ [J ], k ∈ [K]} ,

and our aim is to construct a connected Markov chain over F({xij·}, {xi·k}, {x·jk}). The simple
analogue of rectangles in (3.1) is the eight-entries modifications:

i = i1
j\k k1 k2

j1 +1 −1
j2 −1 +1

i = i2
j\k k1 k2

j1 −1 +1
j2 +1 −1 .

(3.2)

However, a chain constructed from this type of modifications is known to be not connected. A
simple counter-example is given by the following 3 × 3 × 3 contingency table.

m 0 0
0 m 0
0 0 m

0 m 0
0 0 m
m 0 0

0 0 m
m 0 0
0 m 0

For this table, the two-dimensional marginals have the same value, i.e., xij· = xi·k = x·jk =
m for 1 ≤ i, j, k ≤ 3. It is clear that this state is not connected to any other states in
F({xij·}, {xi·k}, {x·jk}) by the eight-entries modification described in (3.2) for any m, i.e., we
cannot modify any set of eight entries of the position described as (3.2) without causing negative
entries. This simple 3 × 3 × 3 example clearly describes the difficulty of this problem.

The Markov chain Monte Carlo approach is extensively used in various two-way settings, for
example, Smith, Forster and McDonald (1996) for tests of independence, quasi-independence
and quasi-symmetry for square two-way contingency tables; Guo and Thompson (1992) for
exact tests of Hardy-Weinberg proportions (triangular two-way contingency tables). There are
also many works that discuss the convergence of the chain, for example, Diaconis and Saloff-
Coste (1995) for two-way contingency tables; Hernek (1998), Dyer and Greenhill (2000) for
2 × J contingency tables. On the other hand, there are only a few works dealing with high
dimensional tables. For example see Besag and Clifford (1989) for the Ising model and Forster,
McDonald and Smith (1996) for general 2d tables.

Diaconis and Sturmfels (1998) presented a general algorithm for computing a Markov basis
(we give precise definition afterward) in the setting of a general discrete exponential family
of distribution. Their approach relies on the existence of a Gröbner basis of a well specified
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polynomial ideal. For the above setting of three-way contingency tables, the argument is
summarized as follows. Let K be a field and consider the map of polynomial rings

φ : K[xijk, i ∈ [I], j ∈ [J ], k ∈ [K]] → K[aij , bik, cjk, i ∈ [I], j ∈ [J ], k ∈ [K]],

xijk 7→ aijbikcjk, i ∈ [I], j ∈ [J ], k ∈ [K].

Then the Markov basis for this problem corresponds to generators for the kernel of φ. See also
Dinwoodie (1998) for a clear exposition of the Gröbner basis technique.

Their approach is extremely appealing because, in principle, it can be used for the problems
of any dimension. Despite its generality, however, the power of their procedure is limited for the
following two reasons; the computational feasibility and outputs of redundant basis elements.
The first one stems from the computational complexity of computing Gröbner bases. Although
intensive research is being conducted for improving the efficiency of Gröbner bases computation
(e.g. Sturmfels, 1995; Boffi and Rossi, 2001), it is still difficult to obtain a Gröbner basis by
standard packages even for problems of moderate sizes. We also note that the computational
complexity of the Buchberger algorithm increases double exponentially with the number of
variables as well as the number of categories per variable (see Dobra, 2003). The second one,
which we especially consider in this thesis, stems from the lack of minimality and symmetry of
a reduced Gröbner basis. Gröbner basis is in general not symmetric because it depends on the
particular term order. For example, Diaconis and Sturmfels reported in their paper that the
reduced Gröbner basis for the 3 × 3 × 3 case contains moves of

28 relations of the form
0 0 0
0 −1 +1
0 +1 −1

+1 0 −1
−1 +1 0
0 −1 +1

−1 0 +1
+1 0 −1
0 0 0

(3.3)

and

1 relation of the form
−2 +1 +1
+1 0 −1
+1 −1 0

+1 0 −1
0 0 0
−1 0 +1

+1 −1 0
−1 0 +1
0 +1 −1

. (3.4)

However, as remarked by Diaconis and Sturmfels, the moves of the above types are not essential
in view of the connectedness of the chain. We also consider this point in Section 3.2. As another
example, Sakata and Sawae (2000) reports that for 4× 4× 4 tables with fixed two-dimensional
marginals, their lattice based algorithm was not able to produce the Gröbner basis after two
months of computation and the incomplete basis at that time already contained more than
340,000 basis elements. Furthermore the resulting Gröbner basis may not be easily interpretable
due to the redundant elements and the dependence on the chosen term order. On the other
hand, we show in Section 3.3 that there are exactly 14 types of moves, which constitute the
unique minimal basis for 4×4×4 tables. All these points are related to the notion of minimality
of Markov basis as defined below.

Now we give a a definition of Markov basis and its minimality according to Diaconis and
Sturmfels (1998) in this three-way setting. Let F0 be a set of I × J × K integer arrays with
zero two-way marginal totals

F0 = {z = {zijk} | zij· = zi·k = z·jk = 0, zijk ∈ Z, i ∈ [I], j ∈ [J ], k ∈ [K]} ,

where Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Elements of F0 are called moves in this thesis.
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Definition 3.1.1 A Markov basis is a set B = {z1, . . . , zL} of I×J×K integer arrays z` ∈ F0,
` ∈ [L], such that, for any {xij·}, {xi·k}, {x·jk} and x, x′ ∈ F({xij·}, {xi·k}, {x·jk}), there exist
A > 0, (ε1, zt1), . . . , (εA, ztA) with εs = ±1, such that

x′ = x +
A∑

s=1

εszts and x +
a∑

s=1

εszts ∈ F({xij·}, {xi·k}, {x·jk}) for 1 ≤ a ≤ A.

A Markov basis B is minimal if no proper subset of B is a Markov basis. A minimal Markov
basis is unique if there exists only one minimal Markov basis.

If a Markov basis is obtained, a connected Markov chain over F({xij·}, {xi·k}, {x·jk}) is
easily constructed. As Diaconis and Sturmfels (1998) mentioned, it may be preferable to run
the chain by selecting a Markov basis element, say z, calculating the collection of points, {ci},
so that x+ciz contains no negative entries, and selecting amongst these points with probability

pi = f(x + ciz) /
∑

j

f(x + cjz),

where f is the null probability function of x.
The above definition of a Markov basis is written in the three-way setting. We postponed

a more general definition of a Markov basis to Section 3.5, since we consider this three-way
problem for a while. It should be noted that, this no three-way interaction model is the simplest
model of the non-decomposable hierarchical log-linear models for multi-way contingency tables,
and hence is important in applications. For a general three-way setting, i.e., for general an
I×J ×K case, a closed-form expression of the Markov basis is very complicated, except for the
case that min(I, J, K) = 2 (see Diaconis and Sturmfels, 1998, Section 4). In Section 3.2 and
Section 3.3, we give the unique minimal Markov basis for problems of relatively small sizes.

3.2 Construction of a connected Markov chain over 3 ×
3×K contingency tables with fixed two-dimensional

marginals

3.2.1 Representation of the unique minimal Markov basis for 3×3×K

tables

First we derive a closed-form expression of the unique minimal Markov basis for 3 × 3 × K
tables in Section 3.2.1. Theorem 3.2.1 gives the unique minimal basis for the 3 × 3 × 3 case.
Theorem 3.2.2 is for the 3× 3× 4 case, Theorem 3.2.3 is for the 3× 3× 5 case, and finally our
main result in Theorem 3.2.4 gives the unique minimal basis for the 3 × 3 × K case. Proofs of
these theorems are postponed to Section 3.2.2.

The degree of z ∈ F0 is defined according to Diaconis and Sturmfels (1998). Write z =
z+ − z− where z+ and z− are the positive and the negative part of z having the elements

z+
ijk = max(zijk, 0), z−ijk = max(−zijk, 0) and define deg z =

∑

i,j,k

z+
ijk =

∑

i,j,k

z−ijk.
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For an I × J × K contingency table y = {yijk}, i-slice (or i = i0 slice) of y is the two-
dimensional slice yi=i0 = {yi0jk}j∈[J ], k∈[K], where i = i0 is fixed. We similarly define j-slice and
k-slice. To display 3×3×K contingency tables, we write three i-slices of size 3×K as follows:

i = 1
j\k 1 · · · K

1
2
3

i = 2
j\k 1 · · · K
1
2
3

i = 3
j\k 1 · · · K
1
2
3

In the following, it is always assumed that the indices are integers such that

1 ≤ i1, i2, i3 ≤ 3, i1, i2, i3 all distinct;
1 ≤ j1, j2, j3 ≤ 3, j1, j2, j3 all distinct;
1 ≤ k1, k2, ..., kK ≤ K, k1, k2, ..., kK all distinct.

Moves of degree 4 (basic moves)

First we define the most elementary eight-entries move that is already discussed in (3.2).

Definition 3.2.1 A move of degree 4 is a 3 × 3 × K integer array m4(i1i2, j1j2, k1k2) ∈ F0,
where m4(i1i2, j1j2, k1k2) has the elements

mi1j1k1
= mi1j2k2

= mi2j1k2
= mi2j2k1

= 1,

mi1j1k2
= mi1j2k1

= mi2j1k1
= mi2j2k2

= −1,

and all the other elements are zero.

We call this move a basic move. Figure 3.1 gives a three-dimensional view of the basic move.

+1 -1

+1

+1

+1

-1

-1

-1

Figure 3.1: Basic move

From the definition, the relation

m4(i1i2, j1j2, k1k2) = m4(i1i2, j2j1, k2k1) = m4(i2i1, j1j2, k2k1) = −m4(i2i1, j1j2, k1k2)

is derived.
The moves of degree 4 are the most elemental moves in the sense that all the other moves

of higher degree in F0 are written as linear combinations of degree 4 moves with integral
coefficients.
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Moves of degree 6

As we have seen in Section 3.1, a connected Markov chain cannot be constructed by the set of
basic moves alone in the case of min(I, J, K) ≥ 3. Here we consider patterns of moves that are
composed of two basic moves.

As preparations, we provide a complete list of the patterns that are obtained by the sum of
two overlapping basic moves. For two basic moves, m4(i1i2, j1j2, k1k2) and m4(i

′
1i

′
2, j

′
1j

′
2, k

′
1k

′
2),

define

∆I = δi1i′
1
+ δi1i′

2
+ δi2i′

1
+ δi2i′

2
,

∆J = δj1j′
1
+ δj1j′

2
+ δj2j′

1
+ δj2j′

2
,

∆K = δk1k′
1
+ δk1k′

2
+ δk2k′

1
+ δk2k′

2

and

∆ = ∆I + ∆J + ∆K ,

where δij = 1 if i = j; and = 0 otherwise. Since two moves are overlapping, ∆I , ∆J , ∆K ≥ 1.
Furthermore ∆I ≤ 2, because i1 6= i2 and i′1 6= i′2. Similarly, ∆J , ∆K ≤ 2, therefore, ∆ ∈
{3, 4, 5, 6}. Corresponding to the values of ∆, all the patterns are classified as follows.

• ∆ = 3: m4(i1i2, j1j2, k1k2) and m4(i
′
1i

′
2, j

′
1j

′
2, k

′
1k

′
2) overlap at one nonzero entry. We call

this case a combination of type 1 or a type-1 combination. If the signs of this overlapped
cell are opposite, a move of degree 7 is obtained. Figure 3.2 gives a three-dimensional
view of this type of move. Note that (3.3) in Section 3.1 is this type of move.

+1

-1 +1

-1

-1

+1

+1

-1

+1-1

+1

-1

+1

-1

Figure 3.2: 3 × 3 × 3 move of degree 7

• ∆ = 4: m4(i1i2, j1j2, k1k2) and m4(i
′
1i

′
2, j

′
1j

′
2, k

′
1k

′
2) overlap at two nonzero entries. We call

this case a combination of type 2 or a type-2 combination. If the pairs of signs of these two
cells are opposite, a move of degree 6 is obtained. Figure 3.3 gives a three-dimensional
view of this type of move.
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+1-1

+1 -1

+1

-1

+1-1

+1-1

+1

-1

Figure 3.3: 2 × 3 × 3 move of degree 6

• ∆ = 5: m4(i1i2, j1j2, k1k2) and m4(i
′
1i

′
2, j

′
1j

′
2, k

′
1k

′
2) overlap at four nonzero entries along

a two-dimensional rectangle. If all the pairs of signs are canceled, a basic move is again
obtained as

m4(i1i2, j1j2, k1k2) = m4(i1i2, j1j2, k1k3) + m4(i1i2, j1j2, k3k2)
= m4(i1i2, j1j3, k1k2) + m4(i1i2, j3j2, k1k2)
= m4(i1i3, j1j2, k1k2) + m4(i3i2, j1j2, k1k2).



 (3.5)

• ∆ = 6: m4(i1i2, j1j2, k1k2) and m4(i
′
1i

′
2, j

′
1j

′
2, k

′
1k

′
2) overlap completely.

The relation (3.5) suggests the difficulty of the concept of decomposing a larger move into
several basic moves. If we call a move of degree 6 or 7 as a ‘two-step move’, it means that at
least two basic moves are needed to construct these moves. Among the above list, a combination
of type 2 is the most important case from the viewpoint of a connected Markov chain. It is
discussed in the next definition and in Theorem 3.2.1 below.

Definition 3.2.2 A move of degree 6 is a 3 × 3 × K integer array mI
6(i1i2, j1j2j3, k1k2k3)

∈ F0 with elements

mi1j1k1
= mi1j2k2

= mi1j3k3
= mi2j1k2

= mi2j2k3
= mi2j3k1

= 1,
mi1j1k2

= mi1j2k3
= mi1j3k1

= mi2j1k1
= mi2j2k2

= mi2j3k3
= −1,

and all the other elements are zero. mJ
6 (i1i2i3, j1j2, k1k2k3) and mK

6 (i1i2i3, j1j2j3, k1k2) are
defined similarly.

Examples for the 3 × 3 × 4 case are displayed as follows.

mI
6(12, 123, 123) :

+1 −1 0 0
0 +1 −1 0
−1 0 +1 0

−1 +1 0 0
0 −1 +1 0

+1 0 −1 0

0 0 0 0
0 0 0 0
0 0 0 0
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mJ
6 (123, 12, 123) :

+1 −1 0 0
−1 +1 0 0
0 0 0 0

0 +1 −1 0
0 −1 +1 0
0 0 0 0

−1 0 +1 0
+1 0 −1 0
0 0 0 0

mK
6 (123, 123, 12) :

+1 −1 0 0
−1 +1 0 0
0 0 0 0

0 0 0 0
+1 −1 0 0
−1 +1 0 0

−1 +1 0 0
0 0 0 0

+1 −1 0 0

Similarly as in the basic move, the relations

mI
6(i1i2, j1j2j3, k1k2k3) = mI

6(i1i2, j2j3j1, k2k3k1) = mI
6(i2i1, j1j3j2, k2k1k3),

mI
6(i1i2, j1j2j3, k1k2k3) = −mI

6(i2i1, j1j2j3, k1k2k3),

and similar relations for mJ
6 (i1i2i3, j1j2, k1k2k3) and mK

6 (i1i2i3, j1j2j3, k1k2) are derived from
the definition.

The expression of the move of degree 6 as a type-2 combination of two basic moves is
not unique. Figure 3.4 illustrates the same move of degree 6 shown in Figure 3.3, but the
overlapping cells of the two basic moves are different.

+1

-1

+1

+1

+1

+1

+1

-1

-1

-1

-1

-1

Figure 3.4: 2 × 3 × 3 move of degree 6 (as another combination of type 2)

We now give the unique minimal basis for a connected Markov chain over 3 × 3× 3 tables.

Theorem 3.2.1 A set of basic moves m4(i1i2, j1j2, k1k2) and moves of degree 6,
mI

6(i1i2, j1j2j3, k1k2k3), m
J
6 (i1i2i3, j1j2, k1k2k3), m

K
6 (i1i2i3, j1j2j3, k1k2) constitute the unique min-

imal Markov basis for 3 × 3 × 3 tables.

This theorem shows that a move of degree 7 is not needed to construct a connected Markov
chain. To demonstrate this point, consider the following two 3 × 3 × 3 contingency tables.

x :
0 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 0 0
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y :
0 0 0
0 0 1
0 1 0

1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 0 0

These two contingency tables are the negative part and the positive part of the move of degree 7
in (3.3) and mutually accessible by the move of degree 7. However, instead of adding (3.3) to x,
m4(23, 12, 13) can be added to x, and then, m4(12, 23, 32) can be added to x+m4(23, 12, 13),
to obtain y . Note that move (3.3) is a type-1 combination of m4(23, 12, 13) and m4(12, 23, 32),
and x + m4(23, 12, 13) does not contain a negative entry, while x + m4(12, 23, 32) contains a
negative entry at the cell (2, 2, 3). Note also that m4(23, 12, 13) and m4(12, 23, 32) overlap at
this cell. Because the two basic moves are canceling at this cell, it is obvious that at least one
of these basic moves (that has +1 at this cell) can be added without causing negative cells.

On the other hand, because the type-2 combination has two overlapped cells, it cannot be
avoided that one of these two cells must become negative in adding basic moves one by one.
For this reason, the type-2 combination is essential.

Concerning the move of degree 9 displayed as (3.4) of Section 3.1, it can be written as type-1
combination of a basic move and a move of degree 6, m4(12, 13, 31) + mI

6(31, 132, 123), and
hence is not needed for the same reason as that in the case of the degree 7 move.

Moves of degree 8

The next essential move is a three-step move. For the case of a general I × J × K contingency
table, there are several types of such a move. One is a 2 × 4 × 4 move of degree 8 already
discussed in Diaconis and Sturmfels (1998, equation (4.6)). Another one is a 3 × 4 × 4 move
of degree 9, which is discussed in Section 3.2.4. For the 3 × 3 × K case, the following type of
move is needed.

Definition 3.2.3 A move of degree 8 is a 3 × 3 × K integer array
m8(i1i2i3, j1j2j3, k1k2k3k4) ∈ F0 with the elements

mi1j1k1
= mi1j2k2

= mi2j1k3
= mi2j2k1

= mi2j3k4
= mi3j1k2

= mi3j2k4
= mi3j3k3

= 1,
mi1j1k2

= mi1j2k1
= mi2j1k1

= mi2j2k4
= mi2j3k3

= mi3j1k3
= mi3j2k2

= mi3j3k4
= −1,

and all the other elements are zero.

For example, m8(123, 123, 1234) is displayed as follows.

+1 −1 0 0
−1 +1 0 0
0 0 0 0

−1 0 +1 0
+1 0 0 −1
0 0 −1 +1

0 +1 −1 0
0 −1 0 +1
0 0 +1 −1

Figure 3.5 gives a three-dimensional view of this type of move.
From the definition, the relation

m8(i1i2i3, j1j2j3, k1k2k3k4) = m8(i1i3i2, j2j1j3, k2k1k4k3) = −m8(i1i3i2, j1j2j3, k2k1k3k4)

is derived.
Now we state a theorem for the 3 × 3 × 4 case.

Theorem 3.2.2 A set of basic moves m4(i1i2, j1j2, k1k2), moves of degree 6,
mI

6(i1i2, j1j2j3, k1k2k3), m
J
6 (i1i2i3, j1j2, k1k2k3), m

K
6 (i1i2i3, j1j2j3, k1k2), and moves of degree 8,

m8(i1i2i3, j1j2j3, k1k2k3k4)) constitute the unique minimal Markov basis for 3 × 3 × 4 tables.
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Figure 3.5: 3 × 3 × 4 move of degree 8

Moves of degree 10

Continuing the above discussion, next we consider a four-step move. For the case of a 3×3×K
contingency table, only a move of the following type needs to be considered.

Definition 3.2.4 A move of degree 10 is a 3 × 3 × K integer array
m10(i1i2i3, j1j2j3, k1k2k3k4k5) ∈ F0 with the elements

mi1j1k1
= mi1j2k2

= mi1j2k5
= mi1j3k4

= mi2j1k3

= mi2j2k1
= mi2j3k5

= mi3j1k2
= mi3j2k4

= mi3j3k3
= 1,

mi1j1k2
= mi1j2k1

= mi1j2k4
= mi1j3k5

= mi2j1k1

= mi2j2k5
= mi2j3k3

= mi3j1k3
= mi3j2k2

= mi3j3k4
= −1,

and all the other elements are zero.

For example, m10(123, 123, 12345) is displayed as follows.

+1 −1 0 0 0
−1 +1 0 −1 +1
0 0 0 +1 −1

−1 0 +1 0 0
+1 0 0 0 −1
0 0 −1 0 +1

0 +1 −1 0 0
0 −1 0 +1 0
0 0 +1 −1 0

Figure 3.6 gives a three-dimensional view of this type of move.
From the definition, the relation

m10(i1i2i3, j1j2j3, k1k2k3k4k5) = m10(i1i3i2, j3j2j1, k4k5k3k1k2)
= −m10(i1i2i3, j3j2j1, k5k4k3k2k1)

is derived.
As for a connected Markov chain, the next theorem holds for the 3 × 3 × 5 case.
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Figure 3.6: 3 × 3 × 5 move of degree 10

Theorem 3.2.3 A set of basic moves m4(i1i2, j1j2, k1k2), moves of degree 6, mI
6(i1i2, j1j2j3, k1k2k3),

mJ
6 (i1i2i3, j1j2, k1k2k3), m

K
6 (i1i2i3, j1j2j3, k1k2), degree 8, m8(i1i2i3, j1j2j3, k1k2k3k4)), and de-

gree 10, m10(i1i2i3, j1j2j3, k1k2k3k4k5) constitute the unique minimal Markov basis for 3×3×5
tables.

Finally, it can be shown that for the case K ≥ 6, no more new moves are needed to construct
a connected Markov chain. We now state the main result of this section in the following theorem.

Theorem 3.2.4 A set of basic moves m4(i1i2, j1j2, k1k2), moves of degree 6,
mI

6(i1i2, j1j2j3, k1k2k3), m
J
6 (i1i2i3, j1j2, k1k2k3), m

K
6 (i1i2i3, j1j2j3, k1k2), degree 8,

m8(i1i2i3, j1j2j3, k1k2k3k4)), and degree 10, m10(i1i2i3, j1j2j3, k1k2k3k4k5) constitute the unique
minimal Markov basis for 3 × 3 × K (K ≥ 5) tables.

3.2.2 Proofs of the theorems

The proofs of the theorems in Section 3.2.1 are given here. Our proofs are based on exhaustive
investigations of possible patterns and all the proofs are similar and repetitive. However, the
whole proofs, without any abbreviations, are shown for the sake of completeness.

Ingredients of our proofs

Let x and y denote three-dimensional contingency tables of the same size with the same two-
dimensional marginal totals. Note that all the marginal totals of x−y are zero. We also define

|x| =
∑

i,j,k

|xijk|. The idea of our proofs is based on the following simple observation. Suppose

that a set of moves B = {z1, . . . , zL} is given. If x and y are made as close as possible, in other
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words, make |x − y| as small as possible, by applying moves zi1 , zi2 , . . . ∈ B without causing
negative entries on the way, it follows that

|x − y| can be decreased to 0 ⇐⇒ B is a Markov basis.

This shows that only the patterns of x−y have to be considered, after making |x−y| as small
as possible by applying moves from B.

Minimality of the bases given in the theorems in Section 3.2.1 will be clear from our proofs.
Our argument for the minimality is as follows. Suppose that B = {z1, . . . , zL} is shown to be
a Markov basis. To prove its minimality, it is sufficient to show that B \ zi is not a Markov
basis for each i. Let x = z+

i be the positive part of zi. In our proofs it will be clear that
none of zj , j 6= i, can be added to this x without causing negative entries. Therefore x = z+

i

is not connected to any other states in F({xij·}, {xi·k}, {x·jk}) by B \ zi and the minimality of
B follows. The uniqueness of the minimal basis is again clear from the fact that the move zi

is needed to move from x = z+
i to y = z−

i and hence zi has to belong to each Markov basis.
Properties and uniqueness of a minimal basis is investigated in Section 3.5.

Hereafter the following abbreviations are used: ‘without loss of generality’ (wlog); and
‘without causing negative entries’ (wcne).

The following definition for describing patterns of two-dimensional slices of y − x is given
below.

Definition 3.2.5 Let A be a two-dimensional matrix with elements aij. Then a rectangle is a
set of four entries (ai1j1 , ai2j1 , ai2j2, ai1j2) with alternating signs. Similarly, a 6-cycle is a set of
six entries (ai1j1, ai2j1 , ai2j2 , ai3j2, ai3j3, ai1j3) with alternating signs.

Using the fact that all the marginal totals of z = x − y are zero, it can be easily shown
that any nonzero entry of z has to be a member of either a rectangle or a 6-cycle in all of the
i-, j- and k-slices when x and y are 3 × 3 × K contingency tables.

The following useful lemma concerning patterns of two-dimensional slices of z can now be
proved.

Lemma 3.2.1 Let x and y be 3 × 3 × K contingency tables and let z = x − y. Consider z

after minimizing |z| by applying the basic moves and the moves of degree 6 wcne on the way.
Then

(a) each k-slice of z does not contain 6-cycles, and
(b) there is at least one rectangle in either an i-slice or a j-slice unless z = 0.

Proof. In the proof of this lemma, we display k-slices of z instead of our usual display of
i-slices.

To prove (a), suppose that wlog k = 1 slice of z contains the following 6-cycle

i\j 1 2 3
1 + − ∗
2 − ∗ +
3 ∗ + −

.

Since z11· = 0, there exists at least one negative element in z112, z113, . . . , z11K . Let z112 < 0
wlog. As is shown above, z112 has to be an element of either a rectangle or a 6-cycle in the
k = 2 slice. The two cases are considered respectively as follows.
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Case 1: z112 is an element of a 6-cycle
It is seen that the negative entries in the 6-cycle in the k = 2 slice, which includes z112, can
be either (i) (z112, z222, z332) or (ii) (z112, z232, z322). In case (i), m4(12, 12, 12) can be added
to y wcne to make |z| smaller since y121, y211, y112, y222 > 0. On the other hand, in case (ii),
mK

6 (132, 123, 12) can be added to y wcne to make |z| smaller since y121, y211, y331, y112, y232, y322 >
0. These imply that Case 1 is a contradiction.

Case 2: z112 is an element of a rectangle
It is seen that the negative entries in the rectangle, which includes z112, can be either (i)
(z112, z222), (ii) (z112, z232), (iii) (z112, z322) or (iv) (z112, z332). In case (i), m4(12, 12, 12) can
be added to y wcne and |z| can be made smaller as in (i) of Case 1. In case (ii), it follows
that z132, z212 > 0 and m4(12, 13, 21) can be added to x wcne and make |z| smaller since
x111, x231, x132, x212 > 0. Case (iii) is the symmetric case of (ii). In case (iv), the two k-slices,
{zij1} and {zij2} are represented as

{zij1} :

i\j 1 2 3
1 + − ∗
2 − ∗ +
3 ∗ + −

{zij2} :

i\j 1 2 3
1 − ∗ +
2 ∗ ∗ ∗
3 + ∗ −

In this case, since z331, z332 < 0, at least one of z333, . . . , z33K has to be positive. Let z333 > 0
wlog. Here, z333 is again an element of either a rectangle or a 6-cycle. But as already seen in
Case 1, there cannot be another 6-cycle in the k 6= 1 slice. Thus z333 has to be a member of
a rectangle. Moreover, for the same reason as (i)–(iii) of Case 2, the k = 3 slice has to be a
mirror image of the k = 2 slice:

{zij1} :

i\j 1 2 3
1 + − ∗
2 − ∗ +
3 ∗ + −

{zij2} :

i\j 1 2 3
1 − ∗ +
2 ∗ ∗ ∗
3 + ∗ −

{zij3} :

i\j 1 2 3
1 + ∗ −
2 ∗ ∗ ∗
3 − ∗ +

However, m4(13, 13, 23) can be added to x or m4(13, 13, 32) can be added to y wcne and |z|
can be made smaller, which contradicts the assumption. These imply that Case 2 also is a
contradiction. These considerations indicate that the 6-cycle cannot be included in any 3 × 3
slices and the proof of (a) is completed.

Next (b) is proved. Suppose z has nonzero entries and let z111 > 0 wlog. It is known
that z111 is a member of a rectangle in the k = 1-slice from (a). Then let the k = 1-slice be
represented as

i\j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗

wlog. We are assuming that there exists no rectangle in the 3×K i-slices or j-slices of z. Write

55



z112 < 0 wlog since z11· = 0.

{zij1} :

i\j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗

{zij2} :

i\j 1 2 3
1 − ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

From the assumption, it follows that z122, z212 ≤ 0 because otherwise either i = 1-slice or j = 1-
slice has a rectangle. We also write z222 ≥ 0 because otherwise we can add m4(12, 12, 12) to y

wcne and make |z| smaller. Hereafter we display non-negative elements by 0+ and non-positive
elements by 0−.

{zij1} :

i\j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗

{zij2} :

i\j 1 2 3
1 − 0− ∗
2 0− 0+ ∗
3 ∗ ∗ ∗

Since z112 has to be an element of a rectangle in a k = 2 slice, z132 > 0, z312 > 0 and z332 < 0
are derived.

{zij1} :

i\j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗

{zij2} :

i\j 1 2 3
1 − 0− +
2 0− 0+ ∗
3 + ∗ −

It is seen that if z131 < 0, there appears a rectangle in the i = 1 slice; and if z311 < 0, there
appears a rectangle in the j = 1 slice. This contradicts the assumption. Then it follows
z131, z311 ≥ 0. Here we write z123 > 0 wlog, since z12· = 0.

{zij1} :

i\j 1 2 3
1 + − 0+
2 − + ∗
3 0+ ∗ ∗

{zij2} :

i\j 1 2 3
1 − 0− +
2 0− 0+ ∗
3 + ∗ −

{zij3} :

i\j 1 2 3
1 ∗ + ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

It is seen that if z113 < 0, there appears a rectangle in the i = 1 slice; and if z223 < 0, there
appears a rectangle in the j = 2 slice. This contradicts the assumption. Then it follows
z113, z223 ≥ 0.

{zij1} :

i\j 1 2 3
1 + − 0+
2 − + ∗
3 0+ ∗ ∗

{zij2} :

i\j 1 2 3
1 − 0− +
2 0− 0+ ∗
3 + ∗ −

{zij3} :

i\j 1 2 3
1 0+ + ∗
2 ∗ 0+ ∗
3 ∗ ∗ ∗

Since z123 has to be an element of a rectangle in the k = 3 slice, z133, z323 < 0 and z333 > 0 are
derived.

{zij1} :

i\j 1 2 3
1 + − 0+
2 − + ∗
3 0+ ∗ ∗

{zij2} :

i\j 1 2 3
1 − 0− +
2 0− 0+ ∗
3 + ∗ −

{zij3} :

i\j 1 2 3
1 0+ + −
2 ∗ 0+ ∗
3 ∗ − +
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But there appears a rectangle (z132, z133, z333, z332) in the j = 3 slice, which contradicts the
assumption and the proof of (b) is completed. Q.E.D.

We now carry out proofs of the theorems in Section 3.2.1 using the above lemma.

Proof of Theorem 3.2.1.

It has already been shown that a set of basic moves is not a Markov basis for the 3× 3× 3 case
in Section 3.1. It is also obvious that a minimal Markov basis includes a set of basic moves
and degree 6 moves. Accordingly, to prove Theorem 3.2.1, it is only needed to show that the
elements of z = x − y have to be all zero after minimizing |z| by applying the basic moves or
the moves of degree 6 wcne on the way.

Suppose z has nonzero entries. Let z111 > 0 wlog. From Lemma 3.2.1(a), z111 has to be an
element of rectangles, in each of the i = 1, j = 1 and k = 1 slices. We can take one of these
rectangles in the i = 1 slice as (z111, z112, z122, z121) wlog.

+ − ∗
− + ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Next consider the j = 1 slice. We claim that z111 and z112 are elements of the same rectangle
in j = 1 slice. To prove this, consider the sign of z113. If z113 ≥ 0, the rectangle containing z111

in the j = 1 slice contains z112, and if z113 < 0, the rectangle containing z112 in the j = 1 slice
contains z111. Therefore, z111 and z112 are elements of the same rectangle in the j = 1 slice and
the rectangle can be taken as (z111, z112, z212, z211) wlog.

+ − ∗
− + ∗
∗ ∗ ∗

− + ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Now consider the rectangle in the k = 1 slice containing z111. For a similar reason as above,
this rectangle also contains z121. In addition, if z221 > 0, m4(12, 12, 21) can be added to x wcne
and |z| can be made smaller, which contradicts the assumption. Hence, the rectangle in the
k = 1 slice including z111 has to be (z111, z121, z321, z311).

+ − ∗
− + ∗
∗ ∗ ∗

− + ∗
0− ∗ ∗
∗ ∗ ∗

− ∗ ∗
+ ∗ ∗
∗ ∗ ∗

Next consider the rectangle in the j = 2 slice including z121. For a similar reason as above,
this rectangle also contains z122. Hence, the rectangle in the j = 2 slice including z121 has to
be (z121, z122, z322, z321).

+ − ∗
− + ∗
∗ ∗ ∗

− + ∗
0− ∗ ∗
∗ ∗ ∗

− ∗ ∗
+ − ∗
∗ ∗ ∗
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However, m4(13, 12, 12) can be added to y wcne and |z| can be made smaller, which contradicts
the assumption. From these considerations, a set of the basic moves and the moves of degree
6 is shown to be a Markov basis for the 3 × 3 × 3 case. The minimality and the uniqueness is
obvious as discussed in the top of Section 3.2.2. This completes the proof of Theorem 3.2.1.

Q.E.D.

Proof of Theorem 3.2.2.

From Theorem 3.2.1, it is also shown that a (minimal) Markov basis for the 3 × 3 × 4 case
has to include a set of basic moves and moves of degree 6. In addition, if the pattern of x is
expressed as

+ 0 0 0
0 + 0 0
0 0 0 0

0 0 + 0
+ 0 0 0
0 0 0 +

0 + 0 0
0 0 0 +
0 0 + 0

and the pattern of y is expressed as

0 + 0 0
+ 0 0 0
0 0 0 0

+ 0 0 0
0 0 0 +
0 0 + 0

0 0 + 0
0 + 0 0
0 0 0 +

,

it is observed that any basic moves or moves of degree 6 cannot be added to x or y wcne.
This implies that a set of basic moves and moves of degree 6 is not a Markov basis for the
3 × 3 × 4 case. Accordingly, to prove Theorem 3.2.2, it only has to be shown that the pattern
of z = x − y has to be of all zero entries after minimizing |z| by adding the basic moves, the
moves of degree 6 or degree 8, wcne on the way.

Suppose z has nonzero entries. Let z111 > 0 wlog. From Lemma 3.2.1(b) we can also assume
that there is a rectangle including z111 in either an i = 1-slice or a j = 1-slice. We can take one
of these rectangles in the i = 1-slice as (z111, z112, z121, z122) wlog. Moreover, z211 < 0, z221 > 0
wlog since it is known from Lemma 3.2.1(a) that z111 is an element of a rectangle in the k = 1
slice.

+ − ∗ ∗
− + ∗ ∗
∗ ∗ ∗ ∗

− ∗ ∗ ∗
+ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

As in the proof of Theorem 3.2.1, by considering the sign of z132, we see that z112 and z122 are
members of the same rectangle in the k = 2 slice. Then (z212, z222) and/or (z312, z322) has to be
(+,−). But if z212 > 0, m4(12, 12, 21) can be added to x wcne; and if z222 < 0, m4(12, 12, 12)
can be added to y wcne; and |z| can be made smaller. These imply that z312 > 0, z322 < 0 and
z212 ≤ 0, z222 ≥ 0. Similarly, if z311 < 0, m4(13, 12, 12) can be added to y wcne; and if z321 > 0,
m4(13, 12, 21) can be added to x wcne; and |z| can be made smaller, which forces z311 ≥ 0 and
z321 ≤ 0.

+ − ∗ ∗
− + ∗ ∗
∗ ∗ ∗ ∗

− 0− ∗ ∗
+ 0+ ∗ ∗
∗ ∗ ∗ ∗

0+ + ∗ ∗
0− − ∗ ∗
∗ ∗ ∗ ∗

Since z21· = 0, let z213 > 0 wlog, which forces z123 ≤ 0, otherwise, m4(12, 12, 31) can be
added to x wcne and |z| can be made smaller. That z213 > 0 also forces z323 ≤ 0, otherwise,
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mJ
6 (132, 21, 123) can be added to x wcne and |z| can be made smaller.

+ − ∗ ∗
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + ∗
+ 0+ ∗ ∗
∗ ∗ ∗ ∗

0+ + ∗ ∗
0− − 0− ∗
∗ ∗ ∗ ∗

Since z·23 = 0, it follows z223 ≥ 0. This implies z224, z233 < 0 since z22· = z2·3 = 0.

+ − ∗ ∗
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + ∗
+ 0+ 0+ −
∗ ∗ − ∗

0+ + ∗ ∗
0− − 0− ∗
∗ ∗ ∗ ∗

From symmetry (in interchanging roles of + and −), z114, z314 ≥ 0, otherwise, m4(12, 12, 14)
can be added to y wcne or mJ

6 (132, 12, 124) can be added to y wcne and |z| can be made
smaller. These also implies z214 ≤ 0, z234 > 0 since z·14 = z2·4 = 0.

+ − ∗ 0+
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + 0−
+ 0+ 0+ −
∗ ∗ − +

0+ + ∗ 0+
0− − 0− ∗
∗ ∗ ∗ ∗

(3.6)

Since z31· = z32· = z3·3 = z3·4 = 0, it follows that z313 < 0, z324 > 0, z333 > 0, z334 < 0.

+ − ∗ 0+
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + 0−
+ 0+ 0+ −
∗ ∗ − +

0+ + − 0+
0− − 0− +
∗ ∗ + −

But m8(132, 123, 2134) can be added to x (or m8(123, 123, 1234) can be added to y) wcne and
|z| can be made smaller.

From these considerations, a set of the basic moves, the moves of degree 6 and degree 8
is shown to be a Markov basis for the 3 × 3 × 4 case. The minimality and the uniqueness is
obvious as in the proof of Theorem 3.2.1. Q.E.D.

Proof of Theorem 3.2.3.

Theorem 3.2.2 implies that a (minimal) Markov basis for the 3×3×5 case has to include a set
of basic moves, moves of degree 6 and degree 8. In addition, if the pattern of x is expressed as

+ 0 0 0 0
0 + 0 0 +
0 0 0 + 0

0 0 + 0 0
+ 0 0 0 0
0 0 0 0 +

0 + 0 0 0
0 0 0 + 0
0 0 + 0 0

and the pattern of y is expressed as

0 + 0 0 0
+ 0 0 + 0
0 0 0 0 +

+ 0 0 0 0
0 0 0 0 +
0 0 + 0 0

0 0 + 0 0
0 + 0 0 0
0 0 0 + 0

,

it is observed that we cannot add any basic move, move of degree 6 and degree 8 to x or y

wcne. This implies that a set of basic moves, moves of degree 6 and degree 8 is not a Markov
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basis for the 3 × 3 × 5 case. Accordingly, to prove Theorem 3.2.3, all we have to show is that
the pattern of z = x − y must be of all zero entries after minimizing |z| by adding the basic
moves, the moves of degree 6, degree 8 or degree 10, wcne on the way.

Suppose z has nonzero entries. For a similar reason leading to (3.6) in the proof of Theorem
3.2.2, the patterns can be restricted to

+ − ∗ 0+ ∗
− + 0− ∗ ∗
∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗
+ 0+ 0+ − ∗
∗ ∗ − + ∗

0+ + ∗ 0+ ∗
0− − 0− ∗ ∗
∗ ∗ ∗ ∗ ∗

wlog. Since z31· = z32· = 0, at least z313 or z315 has to be negative and at least z324 or z325 has to
be positive. But we have already seen that (z313, z324) = (−, +) contradicts the assumption. In
addition, if (z315, z325) = (−, +), it follows that z115 ≤ 0 and z125 ≥ 0, (otherwise m4(13, 12, 25)
can be added to x wcne and m4(13, 12, 52) can be added to y wcne and |z| can be made smaller)
and (z215, z225) = (+,−) since z·15 = z·25 = 0. But mJ

6 (132, 21, 125) can be added to x wcne and
mJ

6 (132, 12, 125) can be added to y wcne and |z| can be made smaller. All of these contradict
the assumption. The remaining patterns are (z313, z325) = (−, +) or (z315, z324) = (−, +).
Considering the symmetry, we write (z313, z325) = (−, +) wlog. Then the patterns are wlog
summarized as

+ − ∗ 0+ ∗
− + 0− ∗ ∗
∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗
+ 0+ 0+ − ∗
∗ ∗ − + ∗

0+ + − 0+ 0+
0− − 0− 0− +
∗ ∗ ∗ ∗ ∗

.

Since z·24 = z1·4 = z3·3 = z3·5 = 0, it follows that z124 > 0, z134 < 0, z333 > 0, z335 < 0.

+ − ∗ 0+ ∗
− + 0− + ∗
∗ ∗ ∗ − ∗

− 0− + 0− ∗
+ 0+ 0+ − ∗
∗ ∗ − + ∗

0+ + − 0+ 0+
0− − 0− 0− +
∗ ∗ + ∗ −

If z225 < 0, m8(123, 123, 1235) can be added to y wcne and |z| can be made smaller, which
contradicts the assumption. Similarly, if z235 > 0, m8(123, 213, 1253) can be added to x wcne
and |z| can be made smaller, which contradicts the assumption. These imply z225 ≥ 0, z234 ≤ 0,
which also imply z125 < 0, z135 > 0 since z·25 = z·35 = 0.

+ − ∗ 0+ ∗
− + 0− + −
∗ ∗ ∗ − +

− 0− + 0− ∗
+ 0+ 0+ − 0+
∗ ∗ − + 0−

0+ + − 0+ 0+
0− − 0− 0− +
∗ ∗ + ∗ −

But m10(123, 321, 45321) can be added to x (or m10(123, 123, 12354) can be added to y) wcne
and |z| can be made smaller, which contradict the assumption.

From these considerations, a set of the basic moves, the moves of degree 6, degree 8 and
degree 10 is shown to be a Markov basis for 3× 3× 5 case. The minimality and the uniqueness
is obvious as in the proof of Theorem 3.2.1. Q.E.D.

Proof of Theorem 3.2.4.

Again we can begin with the following pattern.

+ − ∗ 0+ ∗ ∗
− + 0− ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗ ∗
+ 0+ 0+ − ∗ ∗
∗ ∗ − + ∗ ∗

0+ + ∗ 0+ ∗ ∗
0− − 0− ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
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As we have seen in the proof of Theorem 3.2.3, z313 has to be nonnegative and z324 has to be
nonpositive, since (z313, z326) = (−, +) or (z316, z324) = (−, +) also contradict the assumption.
The case of (z316, z326) = (−, +) also contradicts the assumption for a similar reason that
(z315, z325) = (−, +) does. Hence the remaining pattern is (z315, z326) = (−, +) or (z316, z325) =
(−, +). We write (z315, z326) = (−, +) wlog.

+ − ∗ 0+ ∗ ∗
− + 0− ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗ ∗
+ 0+ 0+ − ∗ ∗
∗ ∗ − + ∗ ∗

0+ + 0+ 0+ − ∗
0− − 0− 0− ∗ +
∗ ∗ ∗ ∗ ∗ ∗

According to the symmetry in interchanging the roles of {+,−}, the roles of {z2jk, z3jk} and
the roles of {(zij3, zij4), (zij5, zij6)}, the patterns can be restricted to

+ − ∗ 0+ ∗ 0−
− + 0− ∗ 0+ ∗
∗ ∗ ∗ ∗ ∗ ∗

− 0− + 0− 0− 0−
+ 0+ 0+ − 0+ 0+
∗ ∗ − + ∗ ∗

0+ + 0+ 0+ − 0+
0− − 0− 0− 0− +
∗ ∗ ∗ ∗ + −

for a similar reason to the proof of Theorem 3.2.2. Since z·13 = z·15 = z·24 = z·26 = 0, it
follows that z113 < 0, z115 > 0, z124 > 0 and z126 < 0. z1·3 = z1·4 = z1·5 = z1·6 = 0 also forces
z133 > 0, z134 < 0, z135 < 0 and z136 > 0.

+ − − 0+ + 0−
− + 0− + 0+ −
∗ ∗ + − − +

− 0− + 0− 0− 0−
+ 0+ 0+ − 0+ 0+
∗ ∗ − + ∗ ∗

0+ + 0+ 0+ − 0+
0− − 0− 0− 0− +
∗ ∗ ∗ ∗ + −

But this pattern includes moves of degree 6. We can add mI
6(21, 132, 134) to x, mI

6(12, 132, 134)
to y, mI

6(13, 132, 256) to x or mI
6(31, 132, 256) to y wcne and make |z| smaller, which contra-

dicts the assumption.
From these considerations, it is shown that a set of the basic moves, the moves of degree 6,

degree 8 and degree 10 is also a Markov basis for the 3× 3×K (K ≥ 5) case. The minimality
and the uniqueness is again obvious. Note that although we have displayed 3×3×6 tables, the
above argument does not involve k-slices for k ≥ 7. Therefore we obtain the same contradiction
for the 3 × 3 × K (K ≥ 7) tables. Q.E.D.

3.2.3 Computational examples

The Markov basis obtained above can be used to perform various tests by the Monte Carlo
method. Here we show simple examples of testing the hypothesis of no three-factor interaction.
We consider the null distribution of the classical goodness-of-fit chi-squared statistic. It is
known that, under the hypothesis of no three-factor interaction, the conditional probability of
cell counts is a hypergeometric distribution. Our concern is to compute a finite sample null
distribution of the goodness-of-fit chi-squared statistic, without using large-sample theory.

The settings of the examples are as follows. The size of the contingency table is 3 × 3 × 8
and the total frequency x··· is taken to be 72 and 216. The marginal totals are assumed to
be completely uniform, i.e., xi·k = x·jk = 3 or 9 and xij· = 8 or 24 for all i, j and k. For
this case, as we have seen, a set of 2 × 2 × 2 basic moves, 2 × 3 × 3, 3 × 2 × 3, 3 × 3 × 2
moves of degree 6, 3 × 3 × 4 moves of degree 8 and 3 × 3 × 5 moves of degree 10, forms a
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Markov basis. For constructing a Markov chain which has a hypergeometric distribution as a
stationary distribution, we use the Metropolis procedure described in Diaconis and Sturmfels
(1998, Lemma 2.2). After 50 000 burn-in steps, the walk was run for 100 000 steps sampling
every 50 steps for a total of 2000 values. To compare the obtained sample to the asymptotic
distribution, we made a Q-Q plot of the permutation distribution of the chi-squared statistic
versus the limiting chi-squared distribution with 28 degrees of freedom. Figures 3.7 and 3.8
show the cases of x··· = 72 and 216, respectively. It is clear that the approximation is not good,
especially for the case of x··· = 72.
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Figure 3.7: Q-Q plot of the permutation distribution of chi-squared statistic versus asymptotic
distribution (x··· = 72).

3.2.4 Discussion

Our main contribution in Section 3.2 is twofold. First, an explicit form of the unique minimal
Markov basis for 3× 3×K contingency tables is provided, by considering all the patterns that
do not contradict the constraints. These results enable us to construct a connected Markov
chain over 3 × 3 × K contingency tables. Adjusting this chain to have a given stationary
distribution by the Metropolis procedure, we can perform various tests by the Monte Carlo
method. A typical example of an application is the Monte Carlo simulation of the finite sample
distribution of the goodness-of-fit chi-squared statistic under the hypothesis of no three-factor
interaction in Section 3.2.3. Our approach is also applicable to the problem of data security,
where very sparse contingency tables with fixed marginals are treated. See Irving and Jerrum
(1994), for example. Second, a general method to obtain a Markov basis is provided. It is true
that our method is laborious one as seen in Section 3.2.2. But Theorem 3.2.4 assures us that
no other moves are needed to construct a connected Markov chain regardless of the value of K.
This result is attractive since it may not be derived by performing algebraic algorithms, which
leads to a general problem suggested by a referee of Aoki and Takemura (2003a).
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Figure 3.8: Q-Q plot of the permutation distribution of chi-squared statistic versus asymptotic
distribution (x··· = 216).

Problem Does there exist a bound µI,J depending on I and J , such that for any
K the corresponding minimal Markov basis for the three-dimensional I × J × K
contingency tables with fixed two-dimensional marginals consists of moves whose
degree are all less than µI,J?

From the paper by Diaconis and Sturmfels (1998) it is known that µ2,J = 2J and we showed
that µ3,3 = 10. As the next simplest case we consider the case of 3 × 4 × K tables in Section
3.3.1. Recently Santos and Sturmfels (2002) give an upper bound for µI,J using the theory of
Graves basis.

Our approach seems to be difficult to generalize to larger tables. For illustration, we here
present a Markov basis for the 3 × 4 × 4 case. Similarly as in Section 3.2.2, it can be shown
that the unique minimal Markov basis for the 3×4×4 case is composed of basic moves, moves
of degree 6 (2 × 3 × 3, 3 × 2 × 3, 3 × 3 × 2), moves of degree 8 (3 × 3 × 4, 3 × 4 × 3), moves of
degree 8 (2 × 4 × 4) like

+1 −1 0 0
0 +1 −1 0
0 0 +1 −1
−1 0 0 +1

−1 +1 0 0
0 −1 +1 0
0 0 −1 +1

+1 0 0 −1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

moves of degree 9 (3 × 4 × 4, Figure 3.9) like

+1 −1 0 0
−1 0 +1 0
0 +1 −1 0
0 0 0 0

−1 +1 0 0
+1 0 0 −1
0 0 0 0
0 −1 0 +1

0 0 0 0
0 0 −1 +1
0 −1 +1 0
0 +1 0 −1

,
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and moves of degree 10 (3 × 4 × 4, Figure 3.10) like

+1 −1 0 0
−1 +1 0 0
0 0 +1 −1
0 0 −1 +1

−1 +1 0 0
0 0 0 0

+1 0 −1 0
0 −1 +1 0

0 0 0 0
+1 −1 0 0
−1 0 0 +1
0 +1 0 −1

.

Proofs of these results are elementary, but considerably longer and are not reproduced here.
Among the newly obtained moves, the 3 × 4 × 4 move of degree 10 is interpreted as a type-2
combination of a basic move and a move of degree 8, which is similar to the 3 × 3 × 5 move
of degree 10 shown in Section 3.2.1. However, the 3 × 4 × 4 move of degree 9 is new in the
sense that this is a type-2 combination of a basic move and a move of degree 7. Recall that the
move of degree 7 itself is not needed to construct a connected Markov chain. In this section, we
have only considered combinations of basic moves that happen ‘one at a time’. But it might be
worthwhile to think of this degree 9 move as a combination of three basic moves that happens
‘all at once’, and every two of these basic moves are type-1 combinations. The move of degree
9 suggests the difficulty in forming a conjecture on a minimal Markov basis for larger tables.
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-1+1

-1

+1
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-1
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-1
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Figure 3.9: 3 × 4 × 4 move of degree 9

3.3 Construction of a connected Markov chain over three-

way contingency tables of larger sizes with fixed two-

dimensional marginals

We derived an explicit form of unique minimal Markov basis for 3 × 3 × K tables in Section
3.2.1, by considering all the patterns that do not contradict the constraints as shown in Section
3.2.2. These results enable us to construct a connected Markov chain over 3 × 3 × K tables,
and to perform various tests by the Monte Carlo methods as shown in Section 3.2.3. In Section
3.3, we consider larger tables.
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Figure 3.10: 3 × 4 × 4 move of degree 10

As we have seen, our method in Section 3.2.2 is laborious, though it is one of general methods
for obtaining a Markov basis. However, as is stated in Section 3.2.4, Theorem 3.2.4 assures us
that no other moves are needed for constructing a connected Markov chain, regardless of the
value K. This result is attractive since it cannot be derived by performing algebraic algorithms.
This is the reason why we dared to perform the similar laborious and exhaustive investigations
of possible sign patterns for the next simpler case, 3 × 4 × K tables. We also considered the
more complicated problem, 4× 4× 4 tables. We found that, for all these problems, the unique
minimal Markov bases exist. Though we give some characterization of a minimal Markov basis
and its uniqueness in detail in Section 3.5, we give an important definition here in advance.

Definition 3.3.1 An indispensable move is a move z ∈ F0 which is written as z = x − y,
where x and y constitute a two elements reference set F({xij·}, {xi·k}, {x·jk}) = {x, y}.

We use the term indispensable for the following reason.

Lemma 3.5.3 Every indispensable move belongs to each Markov basis.

This lemma suggests that indispensable moves play an important role in uniqueness of minimal
Markov bases. Relations between the indispensable moves and uniqueness of a minimal Markov
basis is summarized as follows.

Corollary 3.5.2 The unique minimal Markov basis exists if and only if the set
of indispensable moves forms a Markov basis. In this case, the set of indispensable
moves is the unique minimal Markov basis.

From this corollary, we see that the minimal Markov basis for the 3×3×K contingency tables
is the unique minimal Markov basis since all the basis elements described in Section 3.2.1 are
indispensable moves. Similarly, we found that the set of all indispensable moves for 3 × 4 ×K
and 4 × 4 × 4 tables constituted the unique minimal Markov basis for these problems.

The organization of Section 3.3 is as follows. In Section 3.3.1, we describe a list of all
indispensable moves for the 3 × 4 × K and 4 × 4 × 4 cases. In Section 3.3.2 we prove a result
on combination of two indispensable moves preserving the indispensability and in Section 3.3.3
we prove a result on separation and combination of the two-dimensional slices preserving the
indispensability. Some discussion is given in Section 3.3.4. In Appendix we give a (non-
exhaustive) list indispensable moves for larger tables.
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3.3.1 List of indispensable moves of the unique minimal Markov
basis for 3 × 4 × K and 4 × 4 × 4 tables

In Section 3.3.1, we give a list of all indispensable moves for the 3 × 4 × K and 4 × 4 × 4
cases. After laborious derivation, we found that these indispensable moves, together with the
permutations of indices for each axis and the permutations of axes of these moves, constitute
the unique minimal Markov basis for each case. Our approach is similar to that of Section 3.2.2.
Note that the permutation of indices for each axis of moves can be considered as an action of
a direct product of symmetric groups to the moves. We consider this point in Section 3.6.

Let z ∈ F0 be an indispensable move for our problems. Write z = z+ − z− where z+ and
z− are the positive and the negative parts of z. Similarly as in Section 3.2, to display I×J ×K
moves z, we write I i-slices of size J × K as follows:

i = 1
j\k 1 · · · K

1 z111 · · · z11K
...

...
...

J z1J1 · · · z1JK

· · ·

i = I
j\k 1 · · · K
1 zI11 · · · zI1K
...

...
...

J zIJ1 · · · zIJK

(3.7)

We also define the i, j-line (or i = i0, j = j0-line) of z as the one-dimensional line zi=i0,j=j0 =
{zi0j0k}k∈[K], where i0 ∈ [I] and j0 ∈ [J ] are fixed. We similarly define the i, k-line and the
j, k-line of z. We label each indispensable move by its size, degree and slice degree defined as
follows. The size of I × J × K contingency table x is defined as the size of the smallest 3-way
subtable containing the support of x, defined by

supp(x) = {(i, j, k) | xijk > 0} .

We call this subtable the supporting subtable (or supporting rectangle) of x and denote it by

R(x) = Ix × Jx × Kx ⊂ [I] × [J ] × [K],

where
Ix = {i ∈ [I] | xijk > 0 for some j ∈ [J ], k ∈ [K]},

and so on. We also define the supporting subtable of a move z as the supporting subtable of
its positive and negative parts, i.e., R(z) = R(z+) = R(z−). Note that R(z+) and R(z−) are
equal since z+ and z− have the same marginal totals. The size of z is defined as the size of
R(z). We denote the size of z by si × sj × sk. We assume that si ≤ sj ≤ sk without loss
of generality since other moves can be produced by permutations of axes of these moves. For
example, the following 2 × 3 × 3 move is an indispensable move, which we found in Section
3.2.1.

+1 −1 0
−1 0 +1
0 +1 −1

−1 +1 0
+1 0 −1
0 −1 +1

(3.8)

By permuting axes of this move, we have other indispensable moves, i.e., 3 × 2 × 3 move

+1 −1 0
−1 +1 0

−1 0 +1
+1 0 −1

0 +1 −1
0 −1 +1
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and 3 × 3 × 2 move
+1 −1
−1 +1
0 0

−1 +1
0 0

+1 −1

0 0
+1 −1
−1 +1

.

In this case, only 2 × 3 × 3 move is included in our list.
We have already defined the degree of move z as the total frequency of z+ or z−, i.e.,

deg(z) =
∑

i,j,k

z+
ijk =

∑

i,j,k

z−ijk =
1

2

∑

i,j,k

|zijk|.

The slice degree of z (with the size si × sj × sk) is the degrees of each slices having the form
{di

1, . . . , d
i
si
} × {dj

1, . . . , d
j
sj
} × {dk

1, . . . , d
k
sk
}, where

di
i0 = deg(zi=i0) =

∑

j,k

z+
i0jk =

∑

j,k

z−i0jk =
1

2

∑

j,k

|zi0jk|

and so on. For example, the 2 × 3 × 3 move displayed in (3.8) has the degree 6 and the slice
degree {3, 3} × {2, 2, 2} × {2, 2, 2}. We label this move as

2 × 3 × 3 move of degree 6 with slice degree {3, 3} × {2, 2, 2} × {2, 2, 2}

in this thesis. We also assume that

di
1 ≤ di

2 ≤ · · · ≤ di
si
, dj

1 ≤ dj
2 ≤ · · · ≤ dj

sj
, dk

1 ≤ dk
2 ≤ · · · ≤ dk

sk

without loss of generality since we take account of the permutations of indices for each axis of
moves. Therefore our display of the form (3.7) is according to this order of the slice degree. It
should be noted that the size, degree and slice degree are examples of invariants for the permu-
tations of indices for each axis of moves and the permutations of axes of moves. Unfortunately,
we cannot completely distinguish all indispensable moves by these invariants only. We consider
this point in Section 3.3.4.

Closely related notions to indispensability are the notions of fundamental moves and circuits
discussed in Ohsugi and Hibi (1999b, 2003). For a move z its support is defined by supp(z) =
supp(z+) ∪ supp(z−). z is called a circuit if z′ is a move such that supp(z′) ⊂ supp(z) then
z′ = cz for some integer c. For a three-way contingency table x, let

t(x) = {{xij·}, {xi·k}, {x·jk}}

denote the marginal frequencies and let supp(t(x)) denote the set of positive marginal cells for x.
For a move z define supp(t(z)) = supp(t(z+)) = supp(t(z−)). A move z is called fundamental
if z′ is a move such that supp(t(z′)) ⊂ supp(t(z)) then z′ = cz for some integer c. In Ohsugi
and Hibi (2003) the following two facts are proved. i) Fundamental moves are indispensable
and circuits. ii) There is in general no implications between the notions of indispensability and
circuits. Therefore it is of theoretical interest to investigate whether our indispensable moves
are fundamental or circuits. We also define a hidden zero cell for a move z as

{(i, j, k) | zijk = 0, z+
ij·z

+
i·kz

+
·jk 6= 0}.
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Note that a non-fundamental move which has no hidden zero cell is also a non-circuit move by
definition.

Now we list all indispensable moves for 3 × 4 × K and 4 × 4 × 4 tables by their degrees.
We found that most of the indispensable moves are at the same time fundamental moves and
circuits. Therefore we only give a verbal description if an indispensable move is not fundamental
or not a circuit in the list. We also give a more compact information of indispensable moves in
the form:

((SIZE), (DEGREE), (SLICE DEGREE), (PROPERTY), (HIDDEN ZERO), (CELLS)),
(3.9)

where PROPERTY means

• f : fundamental, F : not fundamental

• c: circuit, C: not circuit

• s: square free (i.e., consists only of 0,±1), S: not square free,

HIDDEN ZERO means the multi-indices of hidden zero cells of z and CELLS means the multi-
indices of z+ and z−. In the i-slices display of z, we write (0) for a hidden zero cell. All these
informations are available from the author’s web page:

http://www.stat.t.u-tokyo.ac.jp/~aoki/list-of-indispensable-moves.html.

List of indispensable moves for 3 × 4 × K tables

• 2 × 2 × 2 basic move of degree 4 with slice degree {2, 2} × {2, 2} × {2, 2}
((2, 2, 2), (4), ((2, 2), (2, 2), (2, 2)), (fcs), ∅, ((111, 122, 212, 221), (112, 121, 211, 222)))

+1 −1
−1 +1

−1 +1
+1 −1

• 2 × 3 × 3 move of degree 6 with slice degree {3, 3} × {2, 2, 2} × {2, 2, 2}
((2, 3, 3), (6), ((3, 3), (2, 2, 2), (2, 2, 2)), (fcs), ∅, ((111, 123, 132, 212, 221, 233),
(112, 121, 133, 211, 223, 232)))

+1 −1 0
−1 0 +1
0 +1 −1

−1 +1 0
+1 0 −1
0 −1 +1

• 2 × 4 × 4 move of degree 8 with slice degree {4, 4} × {2, 2, 2, 2} × {2, 2, 2, 2}
((2, 4, 4), (8), ((4, 4), (2, 2, 2, 2), (2, 2, 2, 2)), (fcs), ∅, ((111, 122, 133, 144, 212, 223, 234, 241),
(112, 123, 134, 141, 211, 222, 233, 244)))

+1 −1 0 0
0 +1 −1 0
0 0 +1 −1
−1 0 0 +1

−1 +1 0 0
0 −1 +1 0
0 0 −1 +1

+1 0 0 −1
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• 3 × 3 × 4 move of degree 8 with slice degree {2, 3, 3} × {2, 3, 3} × {2, 2, 2, 2}
((3, 3, 4), (8), ((2, 3, 3), (2, 3, 3), (2, 2, 2, 2)), (fcs), ∅, ((121, 132, 214, 223, 231, 313, 322, 334),
(122, 131, 213, 221, 234, 314, 323, 332)))

0 0 0 0
+1 −1 0 0
−1 +1 0 0

0 0 −1 +1
−1 0 +1 0
+1 0 0 −1

0 0 +1 −1
0 +1 −1 0
0 −1 0 +1

• 3 × 4 × 4 move of degree 9 with slice degree {3, 3, 3} × {2, 2, 2, 3} × {2, 2, 2, 3}
((3, 4, 4), (9), ((3, 3, 3), (2, 2, 2, 3), (2, 2, 2, 3)), (fcs), ∅, ((111, 124, 142, 214, 233, 241, 322,
334, 343), (114, 122, 141, 211, 234, 243, 324, 333, 342)))

+1 0 0 −1
0 −1 0 +1
0 0 0 0
−1 +1 0 0

−1 0 0 +1
0 0 0 0
0 0 +1 −1

+1 0 −1 0

0 0 0 0
0 +1 0 −1
0 0 −1 +1
0 −1 +1 0

• 3 × 3 × 5 move of degree 10 with slice degree {3, 3, 4} × {3, 3, 4} × {2, 2, 2, 2, 2}
((3, 3, 5), (10), ((3, 3, 4), (3, 3, 4), (2, 2, 2, 2, 2)), (fcs), ∅, ((113, 125, 131, 212, 223, 234, 311,
324, 332, 335), (111, 123, 135, 213, 224, 232, 312, 325, 331, 334)))

−1 0 +1 0 0
0 0 −1 0 +1

+1 0 0 0 −1

0 +1 −1 0 0
0 0 +1 −1 0
0 −1 0 +1 0

+1 −1 0 0 0
0 0 0 +1 −1
−1 +1 0 −1 +1

• 3 × 4 × 4 move of degree 10 with slice degree {3, 3, 4} × {2, 2, 3, 3} × {2, 2, 3, 3}
(not fundamental, circuit)
((3, 4, 4), (10), ((3, 3, 4), (2, 2, 3, 3), (2, 2, 3, 3)), (Fcs), (333, 344), ((113, 131, 144, 224, 233,
242, 314, 323, 332, 341), (114, 133, 141, 223, 232, 244, 313, 324, 331, 342)))

0 0 +1 −1
0 0 0 0

+1 0 −1 0
−1 0 0 +1

0 0 0 0
0 0 −1 +1
0 −1 +1 0
0 +1 0 −1

0 0 −1 +1
0 0 +1 −1
−1 +1 (0) 0
+1 −1 0 (0)

• 3 × 4 × 5 move of degree 10 with slice degree {2, 4, 4} × {2, 2, 3, 3} × {2, 2, 2, 2, 2}
((3, 4, 5), (10), ((2, 4, 4), (2, 2, 3, 3), (2, 2, 2, 2, 2)), (fcs), ∅, ((131, 142, 213, 225, 234, 241,
314, 323, 332, 345), (132, 141, 214, 223, 231, 245, 313, 325, 334, 342)))

0 0 0 0 0
0 0 0 0 0

+1 −1 0 0 0
−1 +1 0 0 0

0 0 +1 −1 0
0 0 −1 0 +1
−1 0 0 +1 0
+1 0 0 0 −1

0 0 −1 +1 0
0 0 +1 0 −1
0 +1 0 −1 0
0 −1 0 0 +1
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• 3 × 4 × 5 move of degree 10 with slice degree {3, 3, 4} × {2, 2, 3, 3} × {2, 2, 2, 2, 2}
((3, 4, 5), (10), ((3, 3, 4), (2, 2, 3, 3), (2, 2, 2, 2, 2)), (fcs), ∅, ((111, 133, 142, 224, 235, 243,
312, 325, 331, 344), (112, 131, 143, 225, 233, 244, 311, 324, 335, 342)))

+1 −1 0 0 0
0 0 0 0 0
−1 0 +1 0 0
0 +1 −1 0 0

0 0 0 0 0
0 0 0 +1 −1
0 0 −1 0 +1
0 0 +1 −1 0

−1 +1 0 0 0
0 0 0 −1 +1

+1 0 0 0 −1
0 −1 0 +1 0

• 3 × 4 × 5 move of degree 12 with slice degree {4, 4, 4} × {3, 3, 3, 3} × {2, 2, 2, 2, 4}
((3, 4, 5), (12), ((4, 4, 4), (3, 3, 3, 3), (2, 2, 2, 2, 4)), (fcs), ∅,
((111, 123, 132, 144, 215, 221, 234, 245, 312, 325, 335, 343),
(112, 121, 134, 143, 211, 225, 235, 244, 315, 323, 332, 345)))

+1 −1 0 0 0
−1 0 +1 0 0
0 +1 0 −1 0
0 0 −1 +1 0

−1 0 0 0 +1
+1 0 0 0 −1
0 0 0 +1 −1
0 0 0 −1 +1

0 +1 0 0 −1
0 0 −1 0 +1
0 −1 0 0 +1
0 0 +1 0 −1

• 3 × 4 × 6 move of degree 12 with slice degree {3, 4, 5} × {2, 3, 3, 4} × {2, 2, 2, 2, 2, 2}
((3, 4, 6), (12), ((3, 4, 5), (2, 3, 3, 4), (2, 2, 2, 2, 2, 2)), (fcs), ∅,
((121, 133, 142, 214, 226, 231, 245, 315, 322, 334, 343, 346),
(122, 131, 143, 215, 221, 234, 246, 314, 326, 333, 342, 345)))

0 0 0 0 0 0
+1 −1 0 0 0 0
−1 0 +1 0 0 0
0 +1 −1 0 0 0

0 0 0 +1 −1 0
−1 0 0 0 0 +1
+1 0 0 −1 0 0
0 0 0 0 +1 −1

0 0 0 −1 +1 0
0 +1 0 0 0 −1
0 0 −1 +1 0 0
0 −1 +1 0 −1 +1

• 3 × 4 × 6 move of degree 12 with slice degree {4, 4, 4} × {2, 3, 3, 4} × {2, 2, 2, 2, 2, 2}
((3, 4, 6), (12), ((4, 4, 4), (2, 3, 3, 4), (2, 2, 2, 2, 2, 2)), (fcs), ∅,
((111, 123, 132, 144, 212, 221, 236, 245, 325, 334, 343, 346),
(112, 121, 134, 143, 211, 225, 232, 246, 323, 336, 344, 345)))

+1 −1 0 0 0 0
−1 0 +1 0 0 0
0 +1 0 −1 0 0
0 0 −1 +1 0 0

−1 +1 0 0 0 0
+1 0 0 0 −1 0
0 −1 0 0 0 +1
0 0 0 0 +1 −1

0 0 0 0 0 0
0 0 −1 0 +1 0
0 0 0 +1 0 −1
0 0 +1 −1 −1 +1

• 3 × 4 × 6 move of degree 12 with slice degree {4, 4, 4} × {3, 3, 3, 3} × {2, 2, 2, 2, 2, 2}
((3, 4, 6), (12), ((4, 4, 4), (3, 3, 3, 3), (2, 2, 2, 2, 2, 2)), (fcs), ∅,
((111, 123, 132, 144, 215, 221, 234, 246, 312, 326, 335, 343),
(112, 121, 134, 143, 211, 226, 235, 244, 315, 323, 332, 336)))

+1 −1 0 0 0 0
−1 0 +1 0 0 0
0 +1 0 −1 0 0
0 0 −1 +1 0 0

−1 0 0 0 +1 0
+1 0 0 0 0 −1
0 0 0 +1 −1 0
0 0 0 −1 0 +1

0 +1 0 0 −1 0
0 0 −1 0 0 +1
0 −1 0 0 +1 0
0 0 +1 0 0 −1
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• 3 × 4 × 6 move of degree 14 with slice degree {4, 4, 6} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 4}
((3, 4, 6), (14), ((4, 4, 6), (3, 3, 4, 4), (2, 2, 2, 2, 2, 4)), (fcS), ∅,
((111, 122, 133, 146, 212, 225, 234, 246, 314, 323, 336, 336, 341, 345),
(112, 123, 136, 141, 214, 222, 236, 245, 311, 325, 333, 334, 346, 346)))

+1 −1 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 0 0 −1
−1 0 0 0 0 +1

0 +1 0 −1 0 0
0 −1 0 0 +1 0
0 0 0 +1 0 −1
0 0 0 0 −1 +1

−1 0 0 +1 0 0
0 0 +1 0 −1 0
0 0 −1 −1 0 +2

+1 0 0 0 +1 −2

• 3 × 4 × 6 move of degree 14 with slice degree {4, 5, 5} × {3, 3, 3, 5} × {2, 2, 2, 2, 2, 4}
((3, 4, 6), (14), ((4, 5, 5), (3, 3, 3, 5), (2, 2, 2, 2, 2, 4)), (fcS), ∅,
((111, 122, 133, 144, 216, 223, 236, 241, 245, 312, 325, 334, 346, 346),
(112, 123, 134, 141, 211, 225, 233, 246, 246, 316, 322, 336, 344, 345)))

+1 −1 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 −1 0 0
−1 0 0 +1 0 0

−1 0 0 0 0 +1
0 0 +1 0 −1 0
0 0 −1 0 0 +1

+1 0 0 0 +1 −2

0 +1 0 0 0 −1
0 −1 0 0 +1 0
0 0 0 +1 0 −1
0 0 0 −1 −1 +2

• 3× 4× 7 move(1) of degree 14 with slice degree {4, 4, 6} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((3, 4, 7), (14), ((4, 4, 6), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅,
((111, 123, 132, 144, 215, 221, 237, 246, 312, 327, 334, 336, 343, 345),
(112, 121, 134, 143, 211, 227, 236, 245, 315, 323, 332, 337, 344, 346)))

+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

−1 0 0 0 +1 0 0
+1 0 0 0 0 0 −1
0 0 0 0 0 −1 +1
0 0 0 0 −1 +1 0

0 +1 0 0 −1 0 0
0 0 −1 0 0 0 +1
0 −1 0 +1 0 +1 −1
0 0 +1 −1 +1 −1 0

• 3× 4× 7 move(2) of degree 14 with slice degree {4, 4, 6} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((3, 4, 7), (14), ((4, 4, 6), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅,
((111, 123, 132, 144, 215, 221, 236, 247, 312, 327, 334, 335, 343, 346),
(112, 121, 134, 143, 211, 227, 235, 246, 315, 323, 332, 336, 344, 347)))

+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

−1 0 0 0 +1 0 0
+1 0 0 0 0 0 −1
0 0 0 0 −1 +1 0
0 0 0 0 0 −1 +1

0 +1 0 0 −1 0 0
0 0 −1 0 0 0 +1
0 −1 0 +1 +1 −1 0
0 0 +1 −1 0 +1 −1

• 3 × 4 × 7 move of degree 14 with slice degree {4, 5, 5} × {3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 2}
((3, 4, 7), (14), ((4, 5, 5), (3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅,
((111, 122, 133, 144, 215, 226, 232, 241, 247, 313, 324, 337, 345, 346),
(113, 124, 132, 141, 211, 222, 237, 245, 246, 315, 326, 333, 344, 347)))

+1 0 −1 0 0 0 0
0 +1 0 −1 0 0 0
0 −1 +1 0 0 0 0
−1 0 0 +1 0 0 0

−1 0 0 0 +1 0 0
0 −1 0 0 0 +1 0
0 +1 0 0 0 0 −1

+1 0 0 0 −1 −1 +1

0 0 +1 0 −1 0 0
0 0 0 +1 0 −1 0
0 0 −1 0 0 0 +1
0 0 0 −1 +1 +1 −1
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• 3 × 4 × 7 move of degree 14 with slice degree {4, 5, 5} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((3, 4, 7), (14), ((4, 5, 5), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅,
((111, 122, 133, 144, 215, 224, 237, 241, 246, 313, 326, 332, 335, 347),
(113, 124, 132, 141, 211, 226, 235, 244, 247, 315, 322, 333, 337, 346)))

+1 0 −1 0 0 0 0
0 +1 0 −1 0 0 0
0 −1 +1 0 0 0 0
−1 0 0 +1 0 0 0

−1 0 0 0 +1 0 0
0 0 0 +1 0 −1 0
0 0 0 0 −1 0 +1

+1 0 0 −1 0 +1 −1

0 0 +1 0 −1 0 0
0 −1 0 0 0 +1 0
0 +1 −1 0 +1 0 −1
0 0 0 0 0 −1 +1

• 3 × 4 × 7 move of degree 16 with slice degree {4, 6, 6} × {3, 3, 5, 5} × {2, 2, 2, 2, 2, 2, 4}
((3, 4, 7), (16), ((4, 6, 6), (3, 3, 5, 5), (2, 2, 2, 2, 2, 2, 4)), (fcS), ∅,
((111, 123, 132, 144, 215, 221, 234, 236, 247, 247, 312, 326, 337, 337, 343, 345),
(112, 121, 134, 143, 211, 226, 237, 237, 244, 245, 315, 323, 332, 336, 347, 347)))

+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

−1 0 0 0 +1 0 0
+1 0 0 0 0 −1 0
0 0 0 +1 0 +1 −2
0 0 0 −1 −1 0 +2

0 +1 0 0 −1 0 0
0 0 −1 0 0 +1 0
0 −1 0 0 0 −1 +2
0 0 +1 0 +1 0 −2

• 3 × 4 × 8 move of degree 16 with slice degree {4, 6, 6} × {3, 3, 5, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
(not fundamental, not circuit)
((3, 4, 8), (16), ((4, 6, 6), (3, 3, 5, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (FCs), ∅,
((111, 123, 132, 144, 218, 221, 234, 237, 245, 246, 312, 327, 335, 336, 343, 348),
(112, 121, 134, 143, 211, 227, 235, 236, 244, 248, 318, 323, 332, 337, 345, 346)))

+1 −1 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 +1 0 −1 0 0 0 0
0 0 −1 +1 0 0 0 0

−1 0 0 0 0 0 0 +1
+1 0 0 0 0 0 −1 0
0 0 0 +1 −1 −1 +1 0
0 0 0 −1 +1 +1 0 −1

0 +1 0 0 0 0 0 −1
0 0 −1 0 0 0 +1 0
0 −1 0 0 +1 +1 −1 0
0 0 +1 0 −1 −1 0 +1

List of indispensable moves for 4 × 4 × 4 tables

• 4 × 4 × 4 move(1) of degree 10 with slice degree {2, 2, 3, 3} × {2, 2, 3, 3} × {2, 2, 3, 3}
((4, 4, 4), (10), ((2, 2, 3, 3), (2, 2, 3, 3), (2, 2, 3, 3)), (fcs), ∅, ((113, 124, 231, 242, 314, 333, 341,
423, 432, 444), (114, 123, 232, 241, 313, 331, 344, 424, 433, 442)))

0 0 +1 −1
0 0 −1 +1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

+1 −1 0 0
−1 +1 0 0

0 0 −1 +1
0 0 0 0
−1 0 +1 0
+1 0 0 −1

0 0 0 0
0 0 +1 −1
0 +1 −1 0
0 −1 0 +1

• 4 × 4 × 4 move(2) of degree 10 with slice degree {2, 2, 3, 3} × {2, 2, 3, 3} × {2, 2, 3, 3}
((4, 4, 4), (10), ((2, 2, 3, 3), (2, 2, 3, 3), (2, 2, 3, 3)), (fcs), ∅, ((114, 133, 231, 243, 313, 324, 342,
422, 434, 441), (113, 134, 233, 241, 314, 322, 343, 424, 431, 442)))

0 0 −1 +1
0 0 0 0
0 0 +1 −1
0 0 0 0

0 0 0 0
0 0 0 0

+1 0 −1 0
−1 0 +1 0

0 0 +1 −1
0 −1 0 +1
0 0 0 0
0 +1 −1 0

0 0 0 0
0 +1 0 −1
−1 0 0 +1
+1 −1 0 0
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• 4 × 4 × 4 move of degree 12 with slice degree {2, 2, 4, 4} × {2, 2, 4, 4} × {3, 3, 3, 3}
((4, 4, 4), (12), ((2, 2, 4, 4), (2, 2, 4, 4), (3, 3, 3, 3)), (fcs), ∅,
((131, 142, 234, 243, 311, 324, 332, 333, 413, 422, 441, 444),
(132, 141, 233, 244, 313, 322, 331, 334, 411, 424, 442, 443)))

0 0 0 0
0 0 0 0

+1 −1 0 0
−1 +1 0 0

0 0 0 0
0 0 0 0
0 0 −1 +1
0 0 +1 −1

+1 0 −1 0
0 −1 0 +1
−1 +1 +1 −1
0 0 0 0

−1 0 +1 0
0 +1 0 −1
0 0 0 0

+1 −1 −1 +1

• 4 × 4 × 4 move of degree 12 with slice degree {2, 3, 3, 4} × {2, 3, 3, 4} × {3, 3, 3, 3}
(not fundamental, circuit)
((4, 4, 4), (12), ((2, 3, 3, 4), (2, 3, 3, 4), (3, 3, 3, 3)), (Fcs), (242, 421),
((134, 142, 221, 232, 243, 311, 324, 333, 413, 422, 441, 444),
(132, 144, 222, 233, 241, 313, 321, 334, 411, 424, 442, 443)))

0 0 0 0
0 0 0 0
0 −1 0 +1
0 +1 0 −1

0 0 0 0
+1 −1 0 0
0 +1 −1 0
−1 (0) +1 0

+1 0 −1 0
−1 0 0 +1
0 0 +1 −1
0 0 0 0

−1 0 +1 0
(0) +1 0 −1
0 0 0 0

+1 −1 −1 +1

• 4 × 4 × 4 move(1) of degree 12 with slice degree {3, 3, 3, 3} × {3, 3, 3, 3} × {3, 3, 3, 3}
(not fundamental, circuit)
((4, 4, 4), (12), ((3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3)), (Fcs), (122, 244, 311, 433),
((111, 123, 132, 214, 233, 241, 312, 321, 344, 422, 434, 443),
(112, 121, 133, 211, 234, 243, 314, 322, 341, 423, 432, 444)))

+1 −1 0 0
−1 (0) +1 0
0 +1 −1 0
0 0 0 0

−1 0 0 +1
0 0 0 0
0 0 +1 −1

+1 0 −1 (0)

(0) +1 0 −1
+1 −1 0 0
0 0 0 0
−1 0 0 +1

0 0 0 0
0 +1 −1 0
0 −1 (0) +1
0 0 +1 −1

• 4 × 4 × 4 move(2) of degree 12 with slice degree {3, 3, 3, 3} × {3, 3, 3, 3} × {3, 3, 3, 3}
((4, 4, 4), (12), ((3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3)), (fcs), ∅,
((111, 123, 132, 214, 233, 241, 312, 324, 343, 421, 434, 442),
(112, 121, 133, 211, 234, 243, 314, 323, 342, 424, 432, 441)))

+1 −1 0 0
−1 0 +1 0
0 +1 −1 0
0 0 0 0

−1 0 0 +1
0 0 0 0
0 0 +1 −1

+1 0 −1 0

0 +1 0 −1
0 0 −1 +1
0 0 0 0
0 −1 +1 0

0 0 0 0
+1 0 0 −1
0 −1 0 +1
−1 +1 0 0
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• 4 × 4 × 4 move(1) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 3, 5} × {3, 3, 4, 4}
(not fundamental, circuit)
((4, 4, 4), (14), ((3, 3, 3, 5), (3, 3, 3, 5), (3, 3, 4, 4)), (FcS), (113, 234, 442),
((111, 123, 142, 221, 232, 244, 313, 331, 344, 412, 424, 434, 443, 443),
(112, 121, 143, 224, 231, 242, 311, 334, 343, 413, 423, 432, 444, 444)))

+1 −1 (0) 0
−1 0 +1 0
0 0 0 0
0 +1 −1 0

0 0 0 0
+1 0 0 −1
−1 +1 0 (0)
0 −1 0 +1

−1 0 +1 0
0 0 0 0

+1 0 0 −1
0 0 −1 +1

0 +1 −1 0
0 0 −1 +1
0 −1 0 +1
0 (0) +2 −2

• 4 × 4 × 4 move(2) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 3, 5} × {3, 3, 4, 4}
(not fundamental, circuit)
((4, 4, 4), (14), ((3, 3, 3, 5), (3, 3, 3, 5), (3, 3, 4, 4)), (FcS), (342, 421),
((111, 123, 142, 221, 232, 244, 312, 333, 344, 414, 424, 431, 443, 443),
(112, 121, 143, 224, 231, 242, 314, 332, 343, 411, 423, 433, 444, 444)))

+1 −1 0 0
−1 0 +1 0
0 0 0 0
0 +1 −1 0

0 0 0 0
+1 0 0 −1
−1 +1 0 0
0 −1 0 +1

0 +1 0 −1
0 0 0 0
0 −1 +1 0
0 (0) −1 +1

−1 0 0 +1
(0) 0 −1 +1
+1 0 −1 0
0 0 +2 −2

3.3.2 Sufficient condition for type-2 combination of indispensable

moves which preserves the indispensability

As is stated, it is important to find the indispensable moves especially when the unique minimal
Markov basis exists. However, our approach seems to be difficult to generalize to larger tables.
Then, how can we find indispensable moves of larger sizes, i.e., 3 × 5 × 5, 4 × 4 × 5 and so on?
In Section 3.3.2 and Section 3.3.3, we give some basic features of indispensable moves, which
we can make use of for finding larger indispensable moves.

As the first basic feature of the indispensable moves, in Section 3.3.2 we consider indispens-
able moves having the structure that they are separated to two indispensable moves. Important
findings are obtained by comparing 2 × 3 × 3 indispensable move of degree 6 with slice degree
{3, 3} × {2, 2, 2} × {2, 2, 2},

+1 −1 0
−1 0 +1
0 +1 −1

−1 +1 0
+1 0 −1
0 −1 +1

and the following 3 × 3 × 3 move of degree 7 with slice degree {2, 2, 3} × {2, 2, 3} × {2, 2, 3},

+1 −1 0
−1 +1 0
0 0 0

−1 +1 0
+1 0 −1
0 −1 +1

0 0 0
0 −1 +1
0 +1 −1

.

These two moves have the common structure that they are represented as a combination of
two basic moves. The difference between these two moves lies in the number of overlapping

74



cells, i.e., the move of degree 6 is made from two basic moves that overlap at two non-zero
entries, while the move of degree 7 is made from two basic moves that overlap at one non-zero
entry. In Section 3.2.1, we called the former combination as a type-2 combination and the latter
combination as a type-1 combination. In Section 3.2.1, it is shown that the move of degree
7 is dispensable because two basic moves can be applied one by one in an appropriate order
without causing negative entries on the way instead of applying the move of degree 7. On
the other hand, because the type-2 combination has two overlapped cells, one of these cells
necessarily becomes negative in adding two basic moves one by one. For this reason, the type-2
combination is essential. In fact, all indispensable moves of the 3×3×K case are made by the
type-2 combinations of some basic moves (see Section 3.2.1).

From these considerations, we are interested in a relationship between the type-2 com-
bination and the indispensability. We give a sufficient condition for type-2 combination of
indispensable moves which preserves the indispensability in Theorem 3.3.1 below. Note that
this is only a sufficient condition for obtaining an indispensable move from combining some
smaller indispensable moves. We discuss this point in Section 3.3.4.

Before stating the theorem, we consider some additional constraints to the type-2 com-
bination and consider a simple situation. Let z and z′ be moves satisfying R(z), R(z′) ⊂
[I]× [J ]× [K]. We assume that R(z)∩R(z ′)(6= ∅) is included in a one-dimensional line. With-
out loss of generality, we write R(z)∩R(z′) ⊂ {(i0, j0, k) | k ∈ [K]}. The two nonzero elements
of z or z′ where they overlap and cancel signs are on this line. We write the i = i0, j = j0-line
of z, z′ as

zi0j0k =





+1, if k = k2

−1, if k = k1

0, otherwise,
z′i0j0k =





+1, if k = k1

−1, if k = k2

0, otherwise,

without loss of generality. It should be noted that the following five lines

{(i0, j0, k) | k ∈ [K]},
{(i, j0, k1) | i ∈ [I]}, {(i, j0, k2) | i ∈ [I]},
{(i0, j, k1) | j ∈ [J ]}, {(i0, j, k2) | j ∈ [J ]}

(3.10)

intersect both R(z) and R(z′). We assume that there does not exist one-dimensional line other
than the above five lines that intersect both R(z) and R(z′). In addition, we assume that the
(i0, k1)-,(i0, k2)-,(j0, k1)-,(j0, k2)-marginals of z+, z−, z

′+, z
′− are all one, i.e.,

1 = z+
i0·k1

= z−i0·k1
= z

′+
i0·k1

= z
′−
i0·k1

= z+
i0·k2

= z−i0·k2
= z

′+
i0·k2

= z
′−
i0·k2

= z+
·j0k1

= z−·j0k1
= z

′+
·j0k1

= z
′−
·j0k1

= z+
·j0k2

= z−·j0k2
= z

′+
·j0k2

= z
′−
·j0k2

.

Now we present a theorem.

Theorem 3.3.1 Let z and z′ be indispensable moves satisfying the above conditions then z∗ =
z + z′ is an indispensable move with its positive part

z∗+ = z+ + z
′+ − (δi0j0k1

+ δi0j0k2
)

and its negative part
z∗− = z− + z

′− − (δi0j0k1
+ δi0j0k2

),

where δijk is a table with the element +1 only at the cell (i, j, k), and 0 otherwise.

75



For example, let z be a 2 × 3 × 3 indispensable move of degree 6 with slice degree {3, 3} ×
{2, 2, 2} × {2, 2, 2} and z′ be a 3 × 3 × 4 indispensable move of degree 8 with slice degree
{2, 3, 3} × {2, 3, 3} × {2, 2, 2, 2}. Then the following 4 × 5 × 5 move is made by the type-2
combination of z and z′ satisfying the conditions and is an indispensable move. In this case,
R(z) ∩ R(z′) ⊂ {(2, 3, k) | k ∈ [K]} and k1 = 2, k2 = 3.

+1 −1 0 0 0
−1 0 +1 0 0
0 +1 −1 0 0
0 0 0 0 0
0 0 0 0 0

−1 +1 0 0 0
+1 0 −1 0 0
0 0 0 0 0
0 −1 +1 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 −1 0 +1 0
0 +1 0 0 −1
0 0 0 −1 +1

0 0 0 0 0
0 0 0 0 0
0 0 +1 −1 0
0 0 −1 0 +1
0 0 0 +1 −1

Proof It is seen that z∗+ and z∗− have the same marginal totals by definition. We write the
reference set of the tables that have the same marginal totals to z∗+ and z∗− as F∗. We want
to show that F∗ is a two-element set, i.e., if x ∈ F∗ then x = z∗+ or x = z∗−. We consider
the cells in the support of x. Let (i, j, k) ∈ supp(x).

First we consider the case that (i, j, k) 6∈ R(z) ∪ R(z′). In this case, (i, j, k) lies on at least
one two-dimensional slice which is zero slice in z since (i, j, k) 6∈ R(z). Similarly, (i, j, k) also
lies on at least one two-dimensional slice which is zero slice in z′ since (i, j, k) 6∈ R(z′). These
two slices have at least one line in common, and corresponding line sum of x must be zero, which
contradicts that (i, j, k) ∈ supp(x). Next we consider the case that (i, j, k) ∈ R(z) ∩ R(z′). In
this case, (i, j, k) is in the line {(i0, j0, k) | k ∈ [K]} by definition. However, xi0j0· must be zero
by definition and therefore this case is also contradiction. From these considerations, it is seen
that each cell in the support of x belongs to exactly one of R(z) or R(z′). We write x = y +y′

where

yijk =

{
xijk, if (i, j, k) ∈ R(z),
0, otherwise,

y′
ijk =

{
xijk, if (i, j, k) ∈ R(z′),
0, otherwise.

Let n =
∑

i,j,k yijk and n′ =
∑

i,j,k y′
ijk.

Here we consider the marginal totals of y. By definition, only the five line sums described
as (3.10) can differ between y and z+, z−. First we consider the line sums along the k-axis. It
follows that

yij· = z+
ij· = z−ij·, for (i, j) 6= (i0, j0),

yi0j0· = 0,
z+

i0j0·
= z−i0j0·

= 1.

Therefore n =
∑

i,j yij· = deg(z) − 1. Similarly n′ =
∑

i,j y′
ij· = deg(z′) − 1 holds. Next we

consider the line sums along the j-axis. It follows that

yi·k = z+
i·k = z−i·k, for (i, k) 6= (i0, k1), (i0, k2).

Since
z+

i0·k1
= z−i0·k1

= z+
i0·k2

= z−i0·k2
= 1,

z∗+i0·k1
= z∗−i0·k1

= z∗+i0·k2
= z∗−i0·k2

= 1
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and n + 1 = deg(z), it follows that

(yi0·k1
, yi0·k2

) = (1, 0) or (0, 1).

Similarly, by considering the line sums along the i-axis, it follows that

(y·j0k1
, y·j0k2

) = (1, 0) or (0, 1).

Moreover, since

z+
··k1

=
∑

i

z+
i·k1

=
∑

i6=i0

z+
i·k1

+ z+
i0·k1

=
∑

i6=i0

yi·k1
+ 1

=
∑

j

z+
·jk1

=
∑

j 6=j0

z+
·jk1

+ z+
·j0k1

=
∑

j 6=j0

y·jk1
+ 1

and

y··k1
=
∑

i

yi·k1
=
∑

j

y·jk1
,

we have

0 =

(
∑

i

yi·k1
−
∑

j

y·jk1

)
−
(
∑

i6=i0

yi·k1
−
∑

j 6=j0

y·jk1

)
= yi0·k1

− y·j0k1
.

Similarly we have yi0·k2
= y·j0k2

. From these considerations, only possible patterns are

(a) : (yi0·k1
, yi0·k2

, y·j0k1
, y·j0k2

) = (1, 0, 1, 0)

or

(b) : (yi0·k1
, yi0·k2

, y·j0k1
, y·j0k2

) = (0, 1, 0, 1).

In the case of (a), it follows that y = z+−δi0j0k2
since z is an indispensable move. In this case,

it also follows that y′ = z
′+ − δi0j0k1

by definition, and therefore x = y + y′ = z∗+. Similarly,
in the case of (b), it is shown that x must be z∗− and Theorem 3.3.1 is proved. Q.E.D.

3.3.3 Separation and combination of two-dimensional slices

In Section 3.3.3 we consider separation and combination of two-dimensional slices preserving the
indispensability. First we provide a sufficient condition that a move created by separation of a
two-dimensional slice of an indispensable move is again an indispensable move. Next, conversely,
we also consider combination of two-dimensional slices of an indispensable move. Using these
results, we can produce many larger indispensable moves from a set of indispensable moves that
we have. In Appendix, we give a list of indispensable moves for larger tables produced by the
separations and combinations of two-dimensional slices of 3×4×K and 4×4×4 indispensable
moves presented in Section 3.3.1.

Sufficient condition for indispensability in separations of a two-dimensional slice

First we consider separation of a two-dimensional slice of an indispensable move. To illustrate
our result on separation, we consider two examples. First example is the following 3 × 4 × 4
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move of degree 10 with slice degree {3, 3, 4} × {2, 2, 3, 3} × {2, 2, 3, 3}:
0 0 +1 −1
0 0 0 0

+1 0 −1 0
−1 0 0 +1

0 0 0 0
0 0 −1 +1
0 −1 +1 0
0 +1 0 −1

0 0 −1 +1
0 0 +1 −1
−1 +1 0 0
+1 −1 0 0

.

The i = 3-slice of this indispensable move seems to contain two loops, i.e., the following decom-
position is observed.

0 0 −1 +1
0 0 +1 −1
−1 +1 0 0
+1 −1 0 0

=

0 0 −1 +1
0 0 +1 −1
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
−1 +1 0 0
+1 −1 0 0

In fact, the above separation of the i = 3-slice creates another indispensable move (4 × 4 × 4
move(1) of degree 10 with slice degree{2, 2, 3, 3} × {2, 2, 3, 3} × {2, 2, 3, 3}).

Next example is the following 3 × 3 × 5 move of degree 10 with slice degree {3, 3, 4} ×
{3, 3, 4} × {2, 2, 2, 2, 2}

−1 0 +1 0 0
0 0 −1 0 +1

+1 0 0 0 −1

0 +1 −1 0 0
0 0 +1 −1 0
0 −1 0 +1 0

+1 −1 0 0 0
0 0 0 +1 −1
−1 +1 0 −1 +1

.

We consider the i = 3-slice of this indispensable move. It is seen that this slice is again
decomposed to two loops as follows:

+1 −1 0 0 0
0 0 0 +1 −1
−1 +1 0 −1 +1

=
+1 −1 0 0 0
0 0 0 0 0
−1 +1 0 0 0

+
0 0 0 0 0
0 0 0 +1 −1
0 0 0 −1 +1

.

In fact, the above separation of the i = 3-slice creates a 4 × 3 × 5 move. After permuting
the axes and the indices, we see that the move is a 3 × 4 × 5 indispensable move of degree 10
with slice degree {3, 3, 4} × {2, 2, 3, 3} × {2, 2, 2, 2, 2}, which is included in our list. These two
examples suggest the possibility that we can create a new indispensable move by separations
of a two-dimensional slice of an already obtained indispensable move under some conditions.

Now we provide some definitions. Let z = z+ − z− be a move of the size I × J × K with
the positive part z+ and the negative part z−. Without loss of generality, we consider the
separation of zk=k0

, i.e., k = k0-slice of z. Note that zk=k0
is an I × J two-dimensional integer

array with zero row sums and zero column sums. In the following, we assume that the level
indices i1, i2, . . . ∈ [I], j1, j2, . . . ∈ [J ] are all distinct, i.e.,

im 6= in and jm 6= jn for all m 6= n. (3.11)

The following definition gives a fundamental tool.

Definition 3.3.2 A loop of degree r is an I × J integer array Lr, where Lr has the elements

Li1j1 = Li2j2 = · · · = Lir−1jr−1
= Lirjr = 1,

Li1j2 = Li2j3 = · · · = Lir−1jr = Lirj1 = −1,

for some i1, . . . , ir ∈ [I], j1, . . . , jr ∈ [J ] and all the other elements in the two-way subarray
{i1, . . . , ir} × {j1, . . . , jr} are zero.
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Note that there is at most one +1 and −1 in each row and column of a loop. We call {i1, . . . , ir}×
{j1, . . . , jr} the supporting rectangle of the loop Lr. Now we clarify the separation of the two-
dimensional slice of moves which we have seen in the above examples.

Lemma 3.3.1 Let zk=k0
be an I × J two-dimensional slice of a move z. Then zk=k0

can be
expressed as a sum

z = a1Lr(1) + · · ·+ anLr(n), (3.12)

where a1, . . . , an are positive integers, r(1), . . . , r(n) ≤ min(I, J), Lr(1), . . . , Lr(n) are all distinct
and there is no cancellation of signs in any cell.

Proof of this lemma is postponed to Section 3.4.4. In Section 3.4.4, we give more detailed
descriptions of the loops and the above lemma.

The separations of slices in the examples above correspond to the cases that the expression
(3.12) is uniquely determined. Note that there are cases of unique separation of a slice even
when the supporting rectangles of the loops in (3.12) have common cells. The following is an
example of such a case:

+1 −1 0
+1 +1 −2
−2 0 +2

=
+1 −1 0
0 +1 −1
−1 0 +1

+
0 0 0

+1 0 −1
−1 0 +1

.

Conversely, there are cases of non-unique separation of a slice even when the supporting rect-
angles of the loops in (3.12) are disjoint. The following is an example of such a case:

+1 +1 −1 −1
−1 −1 +1 +1

=
+1 0 −1 0
−1 0 +1 0

+
0 +1 0 −1
0 −1 0 +1

=
+1 0 0 −1
−1 0 0 +1

+
0 +1 −1 0
0 −1 +1 0

.

Now we give the main theorem related to the separation of two-dimensional slices.

Theorem 3.3.2 Let z be an I × J × K indispensable move. Suppose that a slice zk=k0
is

expressed uniquely as (3.12) and a1 + · · ·+ an ≥ 2. Then
(i) I×J × (K +n−1) move z∗ that is created from z by the separation of zk=k0

with respect
to the loops of (3.12) and

(ii) I × J × (K + a1 + · · · + an − 1) move z∗∗ that is created from z∗ such that the each
k-slice that is created from the zk=k0

is a single loop
are indispensable moves, respectively.

Proof. We only show a proof of (i) since (ii) is obvious when (i) is shown. The positive part
and the negative part of z∗ are in the same reference set of I × J × (K + n − 1) contingency
tables. We write this reference set as F∗. Let z̃

+ and z̃
− be the I×J ×(K +n−1) contingency

tables created from z+ and z− by the separation (3.12), respectively. Since z̃
+, z̃− ∈ F∗, all

we have to show is that x = z̃
+ or x = z̃

− holds for any x ∈ F∗. Let κ denote the set of
slice indices which are the separation of zk=k0

. We have |κ| = n by definition. Let x̂ be the
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I × J × K contingency table which is made from x by the addition of the k-slices for k ∈ κ.
Since x̂ has the same marginal totals to z+ and z−, x̂ = z+ or x̂ = z− holds. We assume
x̂ = z+ without loss of generality. Note that

xijk = z̃+
ijk for i ∈ [I], j ∈ [J ], k 6∈ κ. (3.13)

Therefore we only have to show that xijk = z̃+
ijk for k ∈ κ. Here consider I × J × n subarrays

of x and z̃
+ for k ∈ κ. From (3.13), we see that x and z̃

+ have the same two-dimensional
marginals in these subarrays. Note that

∑
k∈κ xijk =

∑
k∈κ z̃+

ijk in particular. From this, it is
seen that

{(i, j) | xijk > 0, ∃k ∈ κ} = {(i, j) | z̃+
ijk > 0, ∃k ∈ κ}.

Moreover, since there is no cancellation of signs in (3.12), it is also seen that

{(i, j) | z̃+
ijk > 0, ∃k ∈ κ} ∩ {(i, j) | z̃−ijk > 0, ∃k ∈ κ} = ∅.

Therefore, if x 6= z̃
+, x and z̃

− have disjoint supports, then x− z̃
− 6= z∗ is another separation

of z, which contradicts the assumption that the separation is unique. Q.E.D.

Combinations of two-dimensional slices

Next we consider combinations of two-dimensional slices of indispensable moves. It should
be noted that the converse of the statement in Theorem 3.3.2 is not always true. To see
this, consider again the following 3 × 3 × 5 indispensable move of degree 10 with slice degree
{3, 3, 4} × {3, 3, 4} × {2, 2, 2, 2, 2}

−1 0 +1 0 0
0 0 −1 0 +1

+1 0 0 0 −1

0 +1 −1 0 0
0 0 +1 −1 0
0 −1 0 +1 0

+1 −1 0 0 0
0 0 0 +1 −1
−1 +1 0 −1 +1

. (3.14)

Combining k = 1-slice and k = 4-slice of this move makes the following 3 × 3 × 4 move.

1 + 4 2 3 5
−1 0 +1 0
0 0 −1 +1

+1 0 0 −1

1 + 4 2 3 5
0 +1 −1 0
−1 0 +1 0
+1 −1 0 0

1 + 4 2 3 5
+1 −1 0 0
+1 0 0 −1
−2 +1 0 +1

(3.15)

It is seen that this is a dispensable move, although [k = 1-slice] + [k = 4-slice] is a unique
decomposition of the form (3.12). This example implies that we have to consider some additional
conditions to assure that moves made by combining two-dimensional slices of indispensable
moves are again indispensable moves.

Unfortunately, it seems difficult to derive a necessary and sufficient condition for this prob-
lem. We give a sufficient condition similar as Theorem 3.3.1 for this problem.

Let z = z+ − z− be an indispensable move of the size I × J ×K with the positive part z+

and the negative part z−. Without loss of generality, we consider the combination of k = K−1-
slice and k = K-slice of z. Let z∗ = z∗+ − z∗− be a move of the size I × J × (K − 1) with the
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positive part z∗+ and the negative part z∗−, which is made by the combination of zk=K−1 and
zk=K from z, i.e., the elements of z∗ are given by

z∗ijk =

{
zijk, for k ∈ [K − 2],
zijK−1 + zijK , for k = K − 1,

(3.16)

for i ∈ [I], j ∈ [J ]. We also assume that there is no cancellation of signs in any cell of zk=K−1

and zk=K. Hence we only consider the case of deg(z) = deg(z∗). z∗+ and z∗− are obtained
by combining k = K − 1- and k = K-slices of z+ and z−, respectively, and have the same
two-dimensional marginal totals, which are calculated as

z∗+ij· = z+
ij·,

z∗+i·k =

{
z+

i·k, for k ∈ [K − 2],
z+

i·K−1 + z+
i·K , for k = K − 1,

z∗+·jk =

{
z+
·jk, for k ∈ [K − 2],

z+
·jK−1 + z+

·jK , for k = K − 1,

for i ∈ [I], j ∈ [J ]. Our aim is to derive a sufficient condition that z∗ = z∗+ − z∗− is an
indispensable move, i.e.,

F({z∗+ij· }, {z∗+i·k }, {z∗+·jk}) = {z∗+, z∗−}.

Here we consider a separation of the one-dimensional marginal totals of the two-dimensional
slice z∗+

k=K−1, which is expressed as integer vectors p1 = {p1i}, p2 = {p2i}, i ∈ [I], and q1 =
{q1j}, q2 = {q2j}, j ∈ [J ], satisfying





z∗+i·K−1 = p1i + p2i, for i ∈ [I],
z∗+·jK−1 = q1j + q2j , for j ∈ [J ],

I∑

i=1

p1i =

J∑

j=1

q1j ≥ 2,

I∑

i=1

p2i =

J∑

j=1

q2j ≥ 2.
(3.17)

Then, for given {z∗+ij· }, {z∗+i·k }, {z∗+·jk}, i ∈ [I], j ∈ [J ], k ∈ [K − 1] and p1, p2, q1, q2, we consider
the following simultaneous equation (for cell frequencies y = {yijk} of the size I × J × K).





yij· = z∗+ij· ,
yi·k = z∗+i·k , yi·K−1 = p1i, yi·K = p2i,
y·jk = z∗+·jk , y·jK−1 = q1i, y·jK = q2i,

i ∈ [I], j ∈ [J ], k ∈ [K − 2].

(3.18)

By definition, Equation (3.18) has solutions y = z+ and y = z− when
{

p1i = z+
i·K−1, p2i = z+

i·K , i ∈ [I],
q1j = z+

·jK−1, q2j = z+
·jK , j ∈ [J ]

(3.19)

or {
p1i = z+

i·K , p2i = z+
i·K−1, i ∈ [I],

q1j = z+
·jK , q2j = z+

·jK−1, j ∈ [J ].
(3.20)

Our sufficient concerns the situation that (3.18) has solutions only when the condition (3.19)
or (3.20) holds.
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Theorem 3.3.3 Let z be an I × J × K indispensable move and let z∗ be an I × J × (K − 1)
move satisfying deg(z) = deg(z∗), which is made from z by combining k = K − 1- and k = K-
slices of z as (3.16). Then z∗ is an indispensable move when the following two conditions are
satisfied.

(a) The simultaneous equations (3.18) has solutions only when the condition (3.19) or (3.20)
holds.

(b) max(z∗+1·K−1, . . . , z
∗+
I·K−1, z

∗+
·1K−1, . . . , z

∗+
·JK−1) ≥ 2.

Proof. We argue by contradiction. Suppose z∗ is a dispensable move. Then there is some
x ∈ F({z∗+ij· }, {z∗+i·k }, {z∗+·jk}) where x 6= z∗+ and x 6= z∗−. If xk=K−1 = z∗+

k=K−1 or xk=K−1 =

z∗−
k=K−1 holds, we can make an I × J × K table x̃ by the separation of xk=K−1 satisfying

x̃ ∈ F({z+
ij·}, {z+

i·k}, {z+
·jk}), which contradicts the assumption x 6= z∗+ and x 6= z∗− since z is

an indispensable move. Hence we only have to consider the case that xk=K−1 6= z∗+
k=K−1 and

xk=K−1 6= z∗−
k=K−1. Define an I × J × (K − 1) move v as v = z∗+ − x and an I × J × (K − 1)

table u = {uijk} as uijk = min(z∗+ijk, xijk) for i ∈ [I], j ∈ [J ], k ∈ [K − 1].

Case 1. First we consider the case that there is some i ∈ [I], j ∈ [J ] such that uijK−1 > 0.
Note that z∗+ = v+ + u and x = v− + u hold. Separation of the k = K − 1-slice of z∗+ to
v+

k=K−1 and uk=K−1 makes a solution for (3.18) where

p1i = v+
i·K−1, p2i = ui·K−1, i ∈ [I],

q1i = v+
·jK−1, q2i = u·jK−1, j ∈ [J ].

(3.21)

Similarly, separation of the k = K −1-slice of x to v−
k=K−1 and uk=K−1 makes another solution

for (3.18) where p1, p2, q1, q2 are defined as (3.21). From the condition (a) and the assumption
that z is an indispensable move, it follows that x = z∗+ or x = z∗−, which is a contradiction.

Case 2. Next we consider the case that uijK−1 = 0 for all i ∈ [I], j ∈ [J ]. In this case, z∗+

and x do not have positive elements at common cells in the k = K − 1-slice. In addition, an
I×J two-dimensional k = K−1-slice of z∗+−x has zero marginal totals. Hence (z∗+−x)k=K−1

can be expressed as a finite sum of loops with the form (3.12). Furthermore, (z∗+ −x)k=K−1 is
expressed as at least two loops, i.e., a1 + · · ·+an ≥ 2 in the expression (3.12), because otherwise
it contradicts the condition (b). According to this expression, we can write (z∗+ − x)k=K−1 =

L + L̃, where L and L̃ are (possibly sum of) I × J loops such that there is no cancellation of

signs in any cell. Here, separation of the k = K −1-slice of z∗+ to L+ and L̃
+

makes a solution
for (3.18) where

p1i = L+
i· , p2i = L̃i·

+
, i ∈ [I],

q1i = L+
·j , q2i = L̃·j

+
, j ∈ [J ].

(3.22)

Similarly, separation of the k = K − 1-slice of x to L− and L̃
−

makes another solution for
(3.18) where p1, p2, q1, q2 are defined as (3.22). Then we see that Case 2 is also a contradiction
for the same reason as Case 1. Q.E.D.

To see whether a move z∗ is an indispensable move or not according to Theorem 3.3.3,
we have to consider all the possible patterns of p1, p2, q1, q2 satisfying the condition (3.17).
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However, it is usually a much more complicated task than simply investigating z∗ itself. For
example, consider the 3 × 3 × 5 indispensable move of degree 10 with slice degree {3, 3, 4} ×
{3, 3, 4} × {2, 2, 2, 2, 2} displayed as (3.14) again. Considering the move (3.15) which is made
by the combination of the k = 1- and k = 4-slices of (3.14), possible patterns of p1, p2, q1, q2

include
p1 = (1, 1, 0), p2 = (0, 0, 2), q1 = (1, 1, 0), q2 = (0, 0, 2)

and
p1 = (1, 0, 1), p2 = (0, 1, 1), q1 = (0, 1, 1), q2 = (1, 0, 1).

Note that these two patterns permit solutions for (3.18), while the original indispensable move
(3.14) is the difference of the two solutions for (3.18) when

p1 = (1, 0, 1), p2 = (0, 1, 1), q1 = (1, 0, 1), q2 = (0, 1, 1).

3.3.4 Discussion

In this section, we provide an explicit form of the unique minimal Markov basis for 3 × 4 × K
and 4 × 4 × 4 contingency tables by considering all the sign patterns. Our approach is an
elementary one and similar to Section 3.2.

Our results in this section enable us to construct a connected Markov chain over 3× 4×K
and 4 × 4 × 4 contingency tables. Adjusting this chain to have a given stationary distribution
by the Metropolis procedure, we can perform various tests by the Monte Carlo method. It
should be noted that, for some data sets, construction of a connected Markov chain over three-
dimensional contingency tables with the given two-dimensional marginals is a difficult problem.
Moreover, it is also difficult to determine whether a simple-minded Markov chain described in
Section 3.1, i.e., a Markov chain constructed from the 2× 2× 2 basic moves described in (3.2)
alone, is connected or not for given marginal totals. Therefore our results are valuable since
our definition of Markov basis takes into account arbitrary patterns of the marginal totals. In
addition, our result of the unique minimal Markov basis for 3×4×K contingency tables shows
that it is sufficient to consider the moves with sizes up to 3 × 4 × 8 to construct a connected
Markov chain over 3× 4×K tables for any K ≥ 8. This result is attractive since it cannot be
derived by performing algebraic algorithms.

There are still many open problems on the Markov basis for three-way contingency tables
with fixed two-dimensional marginals. One of the most interesting problems may be a problem
concerning the existence of unique minimal Markov basis.

Problem For any positive integers I, J and K, does there exist a unique minimal
Markov basis for the three-dimensional I × J × K contingency tables with fixed
two-dimensional marginals?

As we show in Section 3.5 and Section 3.6, a minimal Markov basis is not unique for many
problems that we usually consider. For example, a minimal Markov basis for the model of
complete independence in the log-linear model in the three-dimensional contingency tables,
pijk = αiβjγk, is shown to be not unique in Section 3.5. It is also shown in Section 3.6 that
minimal Markov bases for many models of the hierarchical 2 × 2 × 2 × 2 log-linear models are
not unique. Clearly the uniqueness of a minimal Markov basis depends on the models, i.e., the
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sufficient statistics that we fix. However, it seems very difficult to determine whether the given
model has unique minimal Markov basis or not.

The list of indispensable moves in Section 3.3.1 gives some further informations.
(i) An importance of the type-2 combination of indispensable moves are suggested in Section

3.3.2. However, 3 × 4 × 4 move of degree 9 with slice degree {3, 3, 3} × {2, 2, 2, 3} × {2, 2, 2, 3}
suggests another possibility of forming larger indispensable moves. In Section 3.2.4, it is pointed
out that this move of degree 9 has a structure that three 2 × 2 × 2 basic moves combine all
at once in such a way that any two of the three basic moves forms a type-1 combination, and
this move suggests the difficulty in forming a conjecture on a minimal Markov basis for larger
tables. In fact, our list in Appendix contains many moves of odd degrees.

(ii) We found that some indispensable moves have entries ±2, which leads to a next general
problem.

Problem What is the value UI,J,K depending on I, J and K, such that for each
element z of a minimal Markov basis for the three-dimensional I×J×K contingency
tables with fixed two-dimensional marginals, UI,J,K = maxi,j,k |zijk|?

We see that U3,4,K = 1 when K ≤ 5, U3,4,K = 2 when K ≥ 6 and U4,4,4 = 2.
(iii) We found that some indispensable moves are asymmetric, where we define a symmetric

move as a move z which can be transformed to −z by the permutations of indices for each axis
of the move. We consider this symmetry in Section 3.6. In our list of indispensable moves in
Section 3.3.1,

3 × 4 × 6 move of degree 12 with slice degree {3, 4, 5} × {2, 3, 3, 4} × {2, 2, 2, 2, 2, 2} and

4 × 4 × 4 move of degree 12 with slice degree {2, 3, 3, 4} × {2, 3, 3, 4} × {3, 3, 3, 3}

are asymmetric, while all the other indispensable moves are symmetric. Furthermore, we found
another indispensable move of size 3 × 5 × 6 that has only one of +2 or −2:

+1 0 0 0 0 −1
0 0 0 0 0 0
0 +1 −1 0 0 0
−1 0 +1 0 0 0
0 −1 0 0 0 +1

0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 +1 −1 0 0
0 0 −1 0 +1 0
0 0 0 0 −1 +1

−1 0 0 0 0 +1
0 0 0 −1 0 +1
0 −1 0 +1 0 0

+1 0 0 0 −1 0
0 +1 0 0 +1 −2

.

This is an example of obvious asymmetric indispensable moves.
(iv) In Section 3.3.1, we label each indispensable move by three invariants for the permu-

tations of indices for each axis and the permutations of axes of moves: size, degree and slice
degree. However, we cannot completely distinguish all indispensable moves by these invariants.
As is seen in Section 3.3.1, the following four pairs of indispensable moves have these three
invariants in common:

3 × 4 × 7 moves of degree 14 with slice degree {4, 4, 6} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2},

4 × 4 × 4 moves of degree 10 with slice degree {2, 2, 3, 3} × {2, 2, 3, 3} × {2, 2, 3, 3},
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4 × 4 × 4 moves of degree 12 with slice degree {3, 3, 3, 3} × {3, 3, 3, 3} × {3, 3, 3, 3},

4 × 4 × 4 moves of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 3, 5} × {3, 3, 4, 4}.

To distinguish these indispensable moves, other invariants can be considered. For example,
consider a set of values {c0, c1, c2, . . .} which we define as

cn =

∣∣∣∣∣

{
(i, j, k)

∣∣∣∣∣
∑

i

z+
ijk +

∑

j

z+
ijk +

∑

k

z+
ijk = n

}∣∣∣∣∣ .

It is seen that {c0, c1, c2, . . .} is an invariant. We can distinguish two 4 × 4 × 4 moves of de-
gree 12 with slice degree {3, 3, 3, 3} × {3, 3, 3, 3} × {3, 3, 3, 3} by this invariant. In fact the
values for the two indispensable moves are {0, 12, 24, 28} and {4, 0, 36, 24}, respectively. We
can also distinguish two 4×4×4 moves of degree 14 with slice degree {3, 3, 3, 5}×{3, 3, 3, 5}×
{3, 3, 4, 4} by this invariant ({1, 6, 24, 22, 9, 0, 2} and {2, 4, 24, 24, 8, 0, 2}, respectively). Unfor-
tunately, however, we cannot distinguish two 3 × 4 × 7 moves of degree 14 with slice degree
{4, 4, 6}× {3, 3, 4, 4}× {2, 2, 2, 2, 2, 2, 2} and two 4× 4× 4 moves of degree 10 with slice degree
{2, 2, 3, 3}× {2, 2, 3, 3}× {2, 2, 3, 3} even when we consider the above invariant. To distinguish
these indispensable moves, we have to consider other invariants. In this study, however, we do
not consider the identification of indispensable moves by invariants furthermore.

We found that substantial number of non-fundamental indispensable moves. We also found
the following rare examples of non-circuit indispensable moves in Section 3.3.1 and Appendix:

• ((3, 4, 8), (16), ((4, 6, 6), (3, 3, 5, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (FCs), ∅,
((111, 123, 132, 144, 218, 221, 234, 237, 245, 246, 312, 327, 335, 336, 343, 348),

(112, 121, 134, 143, 211, 227, 235, 236, 244, 248, 318, 323, 332, 337, 345, 346)))

• ((3, 5, 7), (16), ((4, 6, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 4)), (FCs), ∅,
((121, 133, 142, 154, 216, 222, 237, 247, 253, 255, 317, 325, 331, 344, 356, 357),

(122, 131, 144, 153, 217, 225, 233, 242, 256, 257, 316, 321, 337, 347, 354, 355)))

3.4 Construction of a connected Markov chain over in-

complete two-way contingency tables with fixed mar-

ginals

3.4.1 Structural zero and sampling zero cells

Researchers often encounter the problem of analyzing incomplete contingency tables, i.e., tables
containing some structural, or a priori, zeros. Structural zeros arise in situations where it is
theoretically impossible for some cells to contain observations. For example, when a secondary
infection can occur only if a primary infection occurs, the cell in the contingency table that
corresponds to the secondary infection without the primary infection would necessarily contain
a structural zero. Such cells can occur naturally as a feature of the data and can be distinguished
from sampling zeros, which occur due to the sampling variability and the relative smallness of
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the cell probabilities. It is noted that if probabilities of some cells are free from models, i.e.,
if the probabilities of some cells are regarded as nuisance parameters, these cells can also be
treated as if they are structural zero cells.

For analyzing two-way incomplete contingency tables, one of the most familiar models is the
quasi-independence model (see Bishop et al., 1975, for example). To perform the exact test of
quasi-independence, the null distribution of an appropriate test statistic is required. However,
a complete enumeration of this distribution is often computationally infeasible and a Monte
Carlo exact test is used.

As we have seen in Section 3.1, a Markov chain Monte Carlo approach is extensively used in
various settings of contingency tables, including Smith et al. (1996) for tests of independence,
quasi-independence and quasi-symmetry for square contingency tables. This section gives an
extension of the work of Smith et al. (1996), which considers the situation that the contingency
table is square and the diagonal cells are structural zeros. In this section, we consider more
general situation; the contingency table is not necessarily square and there is no constraint on
the configuration of structural zero cells. In addition, our approach provides more concise and
explicit expressions of a Markov basis than the general algorithms by Diaconis and Sturmfels
(1998), and subsequent work by Rapallo (2003). As is stated in Section 3.1, Gröbner basis
computation produces large number of redundant basis elements due to the lack of symmetry
and minimality inherent in Gröbner basis. In this section, we give the closed form expression
of the unique minimal basis for two-way contingency tables with arbitrary configuration of
structural zeros. Though Rapallo (2003) considered the same problem to us, he does not
produce the closed form expression of the basis by his Gröbner basis approach and does not
refer the minimality of a basis.

The construction of this section is as follows. Section 3.4.2 and Section 3.4.3 describe the
problem. Section 3.4.4 gives an explicit characterization a minimal basis. We also prove its
uniqueness. Section 3.4.5 describes the algorithms for enumerating elements of the unique
minimal basis. In this section, an explicit forms of minimal bases for some typical situations
are also given. Computational example is given in Section 3.4.6. In Section 3.4.7 we discuss
further basis reduction for the case of positive sufficient statistics. Finally in Section 3.4.8 we
give a corresponding result on quasi-symmetry for square two-way tables.

3.4.2 Exact tests for quasi-independence

Let x = {xij} ∈ Z
IJ
≥0 be an I ×J contingency table. Let S ⊂ {(i, j) | i ∈ [I], j ∈ [J ]} be the set

of cells that are not structural zeros. We consider models for the cell probability in incomplete
contingency tables in the (natural) logarithmic scale as

log pij = µ + αi + βj + γij (3.23)

for (i, j) ∈ S and pij ≡ 0 for (i, j) 6∈ S. We then define the model of quasi-independence for
the subtable S by setting

H0 : γij = 0

for (i, j) ∈ S. This is a natural extension of the familiar model of independence of the variables
corresponding to rows and columns in the ordinary two-way contingency tables. An interpre-
tation of this model and restrictions on the parameters are discussed in detail in Bishop et al.
(1975).
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According to the general theory of similar tests described in Chapter 1, our approach is to
base the inference on the conditional distribution given a sufficient statistic for the nuisance
parameters. Under the null hypothesis of quasi-independence, the row sums, xi·, and the column
sums, x·j, are the sufficient statistics for the nuisance parameters µ, αi, βj. The conditional
distribution is then written as

f(x | {xi·}, {x·j}, S) = C
∏

(i,j)∈S

1

xij !
, (3.24)

where C is the normalizing constant determined from {xi·}, {x·j}, S and written as

C−1 =
∑

x∈F({xi·},{x·j},S)


 ∏

(i,j)∈S

1

xij !


 ,

where

F({xi·}, {x·j}, S) =

{
Y

∣∣∣∣∣

J∑

j=1

yij = xi·,
I∑

i=1

yij = x·j, yij ∈ Z, and yij = 0 for (i, j) /∈ S

}
.

Hereafter, for simplicity we omit S in F({xi·}, {x·j}, S), when S = [I] × [J ], i.e., there is no
structural zero cell. The discrepancy from the null hypothesis H0 is measured by an appropriate
test statistic. For each element in F({xi·}, {x·j}, S), the value of this test statistic is calculated.
The exact conditional p value is the sum of the conditional probabilities for the elements in
F({xi·}, {x·j}, S) which are at least as discrepant from the null hypothesis as the observed
data. To calculate the p values, we use a Markov chain Monte Carlo method in this section,
supposing the situations that a complete enumeration of all the elements in F({xi·}, {x·j}, S),
and hence the calculation of the normalizing constant C, is computationally infeasible.

3.4.3 Metropolis-Hastings sampling

To perform the exact tests of quasi-independence, our approach is to generate samples from
f(X | {xi·}, {x·j}, S) and calculate the null distribution of various test statistics. If a connected
Markov chain over F({xi·}, {x·j}, S) is constructed, the chain can be modified to give a con-
nected and aperiodic Markov chain with stationary distribution f(X | {xi·}, {x·j}, S) by the
usual Metropolis procedure (Hastings, 1970, for example).

As we have seen in Section 3.1, if there is no structural zero cell, a connected Markov chain
over F({xi·}, {x·j}) is easily constructed. Recall that the rectangular moves described in (3.1)
form a Markov basis for this problem. On the other hand, if there are structural zero cells, a
chain constructed from this type of moves might not be connected. As the simplest example,
consider 3 × 3 contingency tables having structural zero cells as the diagonal elements, i.e.,
S = {(i, j), i 6= j}. If the marginal totals are xi· = x·j = 1 for all 1 ≤ i, j ≤ 3, there are two
states in F({xi·}, {x·j}, S) displayed as

[0] 1 0
0 [0] 1
1 0 [0]

and
[0] 0 1
1 [0] 0
0 1 [0]

.
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Here and hereafter we denote a structural zero cell by [0], in order to distinguish it from a
sampling zero cell. To connect these two states, moves such as

0 −1 +1
+1 0 −1
−1 +1 0

are needed. In Smith et al. (1996), it is remarked without proofs that a connected chain can be
constructed only by the moves such as (3.1) for I × I contingency tables with structural zeros
as diagonal cells, when I > 3. In Section 3.4.7 we show that this statement is true when all the
marginal totals are positive. But our concern in this section is to list a common minimal set of
moves that is needed to construct a connected chain for arbitrary values of the marginal totals,
depending only on the size of the contingency tables and S, the configuration of the structural
zero cells.

To describe the problem precisely, we give a definition of a Markov basis and its minimality
as described in Section 3.1, which adapt to this section. Let F0(S) be the set of I × J integer
arrays with non-structural zero cells as S and zero marginal totals

F0(S) = { y | yi· = y·j = 0, yij ∈ Z, and yij = 0 for (i, j) /∈ S } ,

The elements of F0(S) are moves on S.

Definition 3.4.1 A Markov basis is a set B = {z1, . . . , zL} of I × J integer arrays zi ∈
F0(S), i ∈ [L], such that, for any {xi·}, {x·j} and x, x′ ∈ F({xi·}, {x·j}, S), there exist A > 0,
(ε1, Bt1), . . . , (εA, BtA) with εs = ±1, such that

x′ = x +
A∑

s=1

εszts and x +
a∑

s=1

εszts ∈ F({xi·}, {x·j}, S) for 1 ≤ a ≤ A.

A Markov basis B is minimal if no proper subset of B is a Markov basis.

3.4.4 Unique minimal basis for quasi-independence in two-way in-

complete contingency tables

In this section, we derive a minimal Markov basis for I × J contingency tables with structural
zeros. We assume the condition (3.11) again, i.e., that the level indices i1, i2, . . . and j1, j2, . . .
are all distinct.

In this section, a loop described in Definition 3.3.2 again plays an important role. Though
it is slightly redundant, we give the definition again in more precise form to use in the proofs
of theorems afterward.

Definition 3.4.2 A loop of degree r on S is an I × J integer array

Lr(i1, . . . , ir; j1, . . . , jr) ∈ F0(S), i1, . . . , ir ∈ [I], j1, . . . , jr ∈ [J ],

where Lr(i1, . . . , ir; j1, . . . , jr) has the elements

Li1j1 = Li2j2 = · · · = Lir−1jr−1
= Lirjr = 1,

Li1j2 = Li2j3 = · · · = Lir−1jr = Lirj1 = −1,
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and all the other elements are zero. Specifically degree 2 loop L2(i1, i2; j1, j2) is called a basic
move. The support of Lr(i1, . . . , ir; j1, . . . , jr) is the set of its non-zero cells {(i1, j1), (i1, j2), . . . ,
(ir, j1)}.

Note that because of the condition (3.11), there is at most one +1 and −1 in each row and
each column of a degree r loop. Loops constitute an essential subset of F0(S). We have already
seen the role of the loops as Lemma 3.3.1 in Section 3.3.3, i.e., any y ∈ F0(S) can be expressed
as a finite sum

y =
∑

k

akLr(k)(i1(k), . . . , ir(k); j1(k), . . . , jr(k)), (3.25)

where ak is a positive integer, r(k) ≤ min{I, J} and there is no cancellation of signs in any cell.
Here we give a proof of Lemma 3.3.1.

Proof of Lemma 3.3.1. Let y ∈ F0(S) have some nonzero elements and write |y| =
I∑

i=1

J∑

j=1

|yij| < ∞. Since all the row and column sums of y are zero, there exists at least one

sequence {(i1, j1), (i1, j2), (i2, j2), (i2, j3), . . . , (ip−1, jp−1), (ip−1, jp), (ip, jp), (ip, j1)} satisfying

{
yi1j1 , yi2j2, . . . , yip−1jp−1

, yipjp > 0,
yi1j2 , yi2j3, . . . , yip−1jp, yipj1 < 0.

(3.26)

We call the above sequence satisfying (3.26) a cycle C(i1, . . . , ip; j1, . . . , jp) of the length p.
Note that the condition (3.11) does not necessarily hold for cycles here. Our argument in
this proof is to consider the shortest cycles, i.e., cycles which have the smallest length. We
claim that the condition (3.11) holds for the shortest cycles for the following reason. Let
C(i1, . . . , ir; j1, . . . , jr) be one of the shortest cycles in y and suppose in = im for 1 ≤ n < m ≤ r.
In this case, we see another cycle C(in, in+1, . . . , im−1; jm, jn+1, . . . , jm−1) of the length m−n <
r, which contradicts that C(i1, . . . , ir; j1, . . . , jr) is a shortest cycle. Corresponding to this
shortest cycle C(i1, . . . , ir; j1, . . . , jr), let 0 < a ≤ min{yi1j1 , . . . , yirjr ,−yi1j2, . . . ,−yirj1} and
y′ = y−aLr(i1, . . . , ir; j1, . . . , jr). Then we see that there is no cancellation of signs in any cell
of the right hand side, and y′ is again in F0(S). Moreover it follows that |y′| = |y|−2ar < |y|.
Similarly, we can subtract loops corresponding to the shortest cycles one by one, and make a
finite sequence y

′′
, y

′′′
, . . . satisfying |y| > |y′| > |y′′ | > |y′′′ | > · · · > |y′′···′′ | = 0 since |y| is

finite, which gives the expression (3.25). r(k) ≤ min{I, J} also holds from (3.11). Q.E.D.

We show an example to clarify the meaning of Lemma 3.3.1. Let y ∈ F0(S) be 4×5 integer
array expressed as follows.

3 −2 0 −2 1
−2 3 0 0 −1
−1 −1 2 0 0

0 0 −2 2 0

In this example, the shortest cycle is C(1, 2; 1, 2), which corresponds to the basic move L2(1, 2; 1, 2).
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Then we can subtract (twice) this basic move from y as follows.

y =

2 −2 0 0 0
−2 2 0 0 0

0 0 0 0 0
0 0 0 0 0

+

1 0 0 −2 1
0 1 0 0 −1

−1 −1 2 0 0
0 0 −2 2 0

= 2L2(1, 2; 1, 2) + y′

Note that there is no cancellation of signs in any cell and the remaining pattern, y′ = y −
2L2(1, 2; 1, 2), is again in F0(S). Hence we can consider a further decomposition of y′. We
observe that one of the shortest cycles in y′ is C(1, 4, 3; 1, 4, 3), which corresponds to the degree
3 loop L3(1, 4, 3; 1, 4, 3), and the remaining pattern is L4(1, 4, 3, 2; 5, 4, 3, 2). Now the following
decomposition of y is obtained.

y =

2 −2 0 0 0
−2 2 0 0 0

0 0 0 0 0
0 0 0 0 0

+

1 0 0 −1 0
0 0 0 0 0

−1 0 1 0 0
0 0 −1 1 0

+

0 0 0 −1 1
0 1 0 0 −1
0 −1 1 0 0
0 0 −1 1 0

= 2L2(1, 2; 1, 2) + L3(1, 4, 3; 1, 4, 3) + L4(1, 4, 3, 2; 5, 4, 3, 2)

It should be noted that this is not the only decomposition of y.

y = L2(1, 2; 1, 2) + L2(1, 2; 5, 2) + L3(1, 4, 3; 1, 4, 3) + L4(1, 4, 3, 2; 1, 4, 3, 2)

is another decomposition of y, satisfying the condition of Lemma 3.3.1. Lemma 3.3.1 describes
the relation between Definition 3.4.2 and a Markov chain over F({xi·}, {x·j}, S). Suppose
x, x′ ∈ F({xi·}, {x·j}, S). Then the difference y = x − x′ is in F0(S). Hence to move from x

to x′, we can add a sequence of loops in Definition 3.4.2 to x, without forcing negative entries
on the way. In other words, a set of all the loops of degree 2, . . . , min{I, J} constitute a trivial
Markov basis.

From the definition, we have the relations

Lr(i1, . . . , ir; j1, . . . , jr) = Lr(i2, . . . , ir, i1; j2, . . . , jr, j1)
= −Lr(ir−1, ir−2, . . . , i2, i1, ir; jr, jr−1, . . . , j2, j1).

Using these relations, we have 2r equivalent representations for a degree r loop. For example,
a degree 4 loop used above

0 0 0 −1 1
0 1 0 0 −1
0 −1 1 0 0
0 0 −1 1 0

is expressed as either as

L4(1, 4, 3, 2; 5, 4, 3, 2), L4(4, 3, 2, 1; 4, 3, 2, 5), L4(3, 2, 1, 4; 3, 2, 5, 4),
L4(2, 1, 4, 3; 2, 5, 4, 3), −L4(3, 4, 1, 2; 2, 3, 4, 5), −L4(4, 1, 2, 3; 3, 4, 5, 2),
−L4(1, 2, 3, 4; 4, 5, 2, 3), −L4(2, 3, 4, 1; 5, 2, 3, 4).
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Then if there is no structural zero cells, there are

min{I,J}∑

r=2

(
I

r

)(
J

r

)
(r!)2

2r

distinct loops in I × J contingency tables.
It is well known that the set of all basic moves constitutes a Markov basis for the case of

no structural zero cells. Moreover, it is shown in Section 3.5 that this is the unique minimal
Markov basis. In the presence of structural zeros, the set of loops is generally not a minimal
basis. In this section, we give an explicit characterization of the unique minimal Markov basis
for an arbitrary configuration of structural zero cells. The next definition provides a key tool.

Definition 3.4.3 A loop Lr(i1, . . . , ir; j1, . . . , jr) is called df 1 if R(i1, . . . , ir; j1, . . . , jr) does
not contain support of any loop on S of degree 2, . . . , r − 1, where

R(i1, . . . , ir; j1, . . . , jr) = R(Lr(i1, . . . , ir; j1, . . . , jr)) = {(i, j) | i ∈ {i1, . . . , ir}, j ∈ {j1, . . . , jr}}

is the supporting rectangle of Lr(i1, . . . , ir; j1, . . . , jr) described in Section 3.3.1.

Here the term df is intended as “degree of freedom”. To clarify the meaning of this definition,
we give an equivalent condition to Definition 3.4.3 in the following lemma.

Lemma 3.4.1 Lr(i1, . . . , ir; j1, . . . , jr) is df 1 if and only if R(i1, . . . , ir; j1, . . . , jr) contains
exactly two elements in S in every row and column.

Proof. The case r = 2 is obvious. Consider r ≥ 3.
(Sufficiency) We argue by contradiction. By permuting the rows and columns, without loss

of generality suppose that Lr(1, . . . , r; 1, . . . , r) is a degree r loop which does not satisfy the
statement of the lemma. We also suppose (1, a) ∈ S, 3 ≤ ∃a ≤ r, without loss of generality.
Then this loop is decomposed as

Lr(1, . . . , r; 1, . . . , r) = Lr−a+2(1, a, a + 1, . . . , r; 1, a, a + 1, . . . , r)

+La−1(1, 2, . . . , a − 1; a, 2, 3, . . . , a − 1). (3.27)

An example of r = 5, a = 4 is displayed as follows.

+1 −1 [0] 0 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

=

+1 0 [0] −1 [0]
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

+

0 −1 [0] +1 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] 0 0
0 [0] [0] [0] 0

Here, the nonzero cells of the two loops, Lr−a+2(1, a, a + 1, . . . , r; 1, a, a + 1, . . . , r)
and La−1(1, 2, . . . , a−1; a, 2, 3, . . . , a−1) overlap at (1, a) ∈ S only. Therefore R(1, . . . , r; 1, . . . , r)
contains the supports of Lr−a+2(1, a, a+1, . . . , r; 1, a, a+1, . . . , r) and La−1(1, 2, . . . , a−1; a, 2, 3, . . .
, a − 1), which are loops on S. Hence Lr(1, . . . , r; 1, . . . , r) is not df 1.
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(Necessity) Suppose that Lr(1, . . . , r; 1, . . . , r) is a degree r loop such that R(1, . . . , r; 1, . . . , r)
contains exactly two elements in S in every row and column. Without loss of generality, it is
sufficient to show that R(1, . . . , r − 1; 1, . . . , r) does not contain support of any loop of degree
2, . . . , r − 1 on S. An example of R(1, 2, 3, 4; 1, 2, 3, 4, 5) is displayed as follows.

L11 L12 [0] [0] [0]
[0] L22 L23 [0] [0]
[0] [0] L33 L34 [0]
[0] [0] [0] L44 L45

From the assumption, (1, 1) is the only cell in S in R(1, . . . , r−1; 1), since Lr(1, . . . , r; 1, . . . , r)
has exactly two nonzero elements there, i.e., L11 = +1 and Lr1 = −1. Hence L11 is zero in any
loop in R(1, . . . , r − 1; 1, . . . , r). Moreover, by using the constraints L1· = L·2 = L2· = · · · =
Lr−1· = 0, it is shown that only the element of F0(S) that can be contained in R(1, . . . , r −
1; 1, . . . , r) is the zero contingency table. Q.E.D.

Lemma 3.4.1 describes the forms of the df 1 loops. The displays below are examples of df
1 loops of degree 2,3,4 in 4 × 5 integer arrays.

+1 −1 0 0 0
−1 +1 0 0 0
0 0 0 0 0
0 0 0 0 0

+1 −1 [0] 0 0
−1 [0] +1 0 0
[0] +1 −1 0 0
0 0 0 0 0

+1 −1 [0] [0] 0
−1 [0] +1 [0] 0
[0] +1 [0] −1 0
[0] [0] −1 +1 0

Obviously, every basic move is df 1. The term df 1 is motivated by the following consider-
ation. Denote the positive and the negative part of a df 1 loop Lr(i1, . . . , ir; j1, . . . , jr) as
L+

r (i1, . . . , ir; j1, . . . , jr) and L−
r (i1, . . . , ir; j1, . . . , jr), respectively, i.e.,

L+
ij = max(Lij , 0), L−

ij = max(−Lij , 0).

Then

Lr(i1, . . . , ir; j1, . . . , jr) = L+
r (i1, . . . , ir; j1, . . . , jr) − L−

r (i1, . . . , ir; j1, . . . , jr). (3.28)

Here, consider the set of contingency tables which have the same marginal totals and the
configuration of S as L+

r (i1, . . . , ir; j1, . . . , jr) or L−
r (i1, . . . , ir; j1, . . . , jr), in other words,

F({L+
i· }, {L+

·j}, S) = F({L−
i·}, {L−

·j}, S).

Then we see that this set is a two-elements set with L+
r (i1, . . . , ir; j1, . . . , jr) and L−

r (i1, . . . , ir;
j1, . . . , jr) being the only members.

Here we give our main theorem.

Theorem 3.4.1 The set of df 1 loops of degree 2, . . . , min{I, J} constitutes a unique minimal
Markov basis for I × J contingency tables.
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Proof. We have already seen that the set of loops forms a Markov basis. We also note
that every minimal Markov basis has to contain all loops of degrees 2, . . . , min{I, J} on S.
This is because, as we have seen in (3.28), df 1 loop is written as the difference of the two
elements of F({xi·}, {x·j}, S), which is exactly the two-elements set. Following the arguments
of indispensable moves in Section 3.5, we only need to verify that the set of the df 1 loops is
itself a Markov basis. In order to show this, we argue by induction. We start from the trivial
Markov basis consisting of all loops. We look at a non-df-1 loop of the highest degree. Below
we show that this loop can be replaced by a combination of loops of smaller degrees, so that
the resulting set is still a Markov basis. Then by induction on the highest degree of non-df-1
loops, it follows that the set of df 1 loops is a Markov basis.

In order to show that a non-df-1 loop of the highest degree can be replaced by combi-
nation of loops of lower degrees we again use the decomposition of loops that we have al-
ready seen. Suppose a Markov basis contains non-df-1 loops. Without loss of generality let
Lr(1, . . . , r; 1, . . . , r) be a non-df-1 loop of the highest degree and (1, a) ∈ S, 3 ≤ ∃a ≤ r. Then
this loop is decomposed as (3.27). Here, the two loops, Lr−a+2(1, a, a+1, . . . , r; 1, a, a+1, . . . , r)
and La−1(1, 2, . . . , a − 1; a, 2, 3, . . . , a − 1), overlap, i.e., have nonzero element in common po-
sition, only at (1, a) ∈ S. Since (1, a) elements of these loops are −1 and +1, respectively,
we can add or subtract these loops in an appropriate order to x ∈ F({xi·}, {x·j}, S) without
forcing negative entries on the way, instead of adding or subtracting Lr(1, . . . , r; 1, . . . , r) to x.
Therefore Lr(1, . . . , r; 1, . . . , r) can be removed from the Markov basis and the remaining set
is still a Markov basis. Q.E.D.

We clarify the last step of the above proof by an example. Let x and x′ be

x =

0 1 [0] 0 [0]
[0] 0 1 [0] [0]
[0] [0] 0 1 [0]
[0] [0] [0] 0 1
1 [0] [0] [0] 0

, x′ =

1 0 [0] 0 [0]
[0] 1 0 [0] [0]
[0] [0] 1 0 [0]
[0] [0] [0] 1 0
0 [0] [0] [0] 1

.

x and x′ are in the same F({xi·}, {x·j}, S) and the difference x′ −x is expressed as a non-df-1
loop,

L5(1, 2, 3, 4, 5; 1, 2, 3, 4, 5) =

+1 −1 [0] 0 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

.

However we have already seen the decomposition

L5(1, 2, 3, 4, 5; 1, 2, 3, 4, 5) =

+1 0 [0] −1 [0]
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

+

0 −1 [0] +1 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] 0 0
0 [0] [0] [0] 0

= L3(1, 4, 5; 1, 4, 5) + L3(1, 2, 3; 4, 2, 3).
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Seeing that the (1, 4) element of L3(1, 2, 3; 4, 2, 3) is positive, it follows x + L3(1, 2, 3; 4, 2, 3) ∈
F({xi·}, {x·j}, S) as

x + L3(1, 2, 3; 4, 2, 3) =

0 0 [0] 1 [0]
[0] 1 0 [0] [0]
[0] [0] 1 0 [0]
[0] [0] [0] 0 1
1 [0] [0] [0] 0

.

Now, seeing that (1, 4), (4, 5), (5, 1) elements are positive, we can add L3(1, 4, 5; 1, 4, 5) to x +
L3(1, 2, 3; 4, 2, 3) and obtain x′. Hence it is shown that the non-df-1 loop L5(1, 2, 3, 4, 5; 1, 2, 3, 4, 5)
is redundant. It should also be noted that the two loops, L3(1, 4, 5; 1, 4, 5) and L3(1, 2, 3; 4, 2, 3),
are both df 1 and hence cannot be removed.

Remark. As is stated in Remark 3.4 of Diaconis and Sturmfels (1998), two-way contingency
tables with structural zero cells are considered to be a subgraph G of KIJ , where KIJ is the
complete bipartite graph on I and J nodes, and G is formed by deleting the edges (i, j) of
KIJ for (i, j) 6∈ S. In graph theoretic terms, a cycle in G corresponds to a move on S, and an
induced cycle in G corresponds to a df 1 move on S. Theorem 3.4.1 states that the set of all
induced cycles in G constitute a unique minimal Markov basis. See Ohsugi and Hibi (1999a)
for further relations between bipartite graphs and Gröbner basis.

Example. Comparison of the minimal basis and the reduced Gröbner basis.
Consider 6 × 6 contingency tables of the following form.

[0] x12 x13 [0] [0] x16

x21 [0] x23 x24 [0] [0]
x31 x32 [0] [0] x35 [0]
[0] [0] x43 [0] x45 x46

x51 [0] [0] x54 [0] x56

[0] x62 [0] x64 x65 [0]

By the algebraic algorithm described in Diaconis and Sturmfels (1998), we calculated the re-
duced Gröbner basis using the degree reverse lexicographical ordering. The result was composed
of 3 basic moves, 20 degree 3 loops, 10 degree 4 loops and 3 degree 5 loops. The following is a
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list of these loops.

L2(1, 4; 6, 3) L2(2, 5; 4, 1) L2(3, 6; 5, 2)
L3(1, 2, 3; 2, 3, 1) L3(1, 2, 5; 6, 3, 1) L3(1, 2, 5; 6, 3, 4)
L3(1, 3, 4; 6, 2, 5) L3(1, 3, 5; 6, 2, 1) L3(1, 4, 3; 2, 3, 5)
L3(1, 6, 2; 3, 2, 4) L3(1, 6, 4; 3, 2, 5) L3(1, 6, 4; 6, 2, 5)
L3(1, 6, 5; 6, 2, 4) L3(2, 3, 6; 4, 1, 2) L3(2, 4, 3; 1, 3, 5)
L3(2, 5, 4; 3, 1, 6) L3(2, 5, 4; 3, 4, 6) L3(2, 6, 3; 1, 4, 5)
L3(2, 6, 4; 3, 4, 5) L3(3, 5, 4; 5, 1, 6) L3(3, 5, 6; 5, 1, 4)
L3(3, 6, 5; 1, 2, 4) L3(4, 5, 6; 5, 6, 4)
L4(1, 2, 3, 4; 6, 3, 1, 5) L4(1, 2, 6, 3; 2, 3, 4, 5) L4(1, 3, 2, 5; 6, 2, 1, 4)
L4(1, 3, 5, 4; 3, 2, 1, 6) L4(1, 5, 6, 3; 2, 6, 4, 5) L4(1, 6, 5, 4; 3, 2, 4, 6)
L4(1, 6, 5, 2; 3, 2, 4, 1) L4(2, 3, 6, 4; 3, 1, 2, 5) L4(2, 5, 4, 3; 1, 4, 6, 5)
L4(3, 6, 4, 5; 1, 2, 5, 6)
L5(1, 3, 2, 5, 4; 3, 2, 1, 4, 6) L5(1, 3, 2, 6, 4; 3, 2, 1, 4, 5) L5(1, 3, 5, 6, 4; 3, 2, 1, 4, 5)

This list is very confusing and we cannot recognize the structure of the basis at first sight. One
reason for the difficulty is that the above list is not minimal. (Note that the reduced Gröbner
basis may not be a minimal basis.) It can be easily checked that the loops of degree 4 and 5 are
not df 1. On the other hand, all the 20 loops of degree 3 are df 1. Hence from Theorem 3.4.1,
the above 3 basic moves and 20 degree 3 loops constitute the unique minimal Markov basis.

In Section 3.4.5, a simple algorithm to list all the elements of the unique minimal Markov
basis is given.

3.4.5 Algorithms for enumerating elements of a minimal basis

In this section, we discuss how to list all the elements of the unique minimal basis. As we have
seen, the elements of the unique minimal Markov basis have a simple structure described in
Lemma 3.4.1. Considering this structure, we have an explicit form of a minimal basis for some
typical situations, which play important roles in applications. We consider these special cases
first and then consider general cases.

Separable tables Separability is one of the most important concepts for analyzing incomplete
contingency tables. The definition of the separability is as follows (Mantel, 1970, Bishop et al.,
1975). In a two-way contingency table two cells are associated if they do not contain structural
zeros and if they are either in the same row or the same column. A set of non-structural zero
cells is connected if every pairs of cells can be linked by a chain of cells, any two consecutive
members of which must be associated. Finally, an incomplete two-way table is connected if
its non-structural zero cells form a connected set. An incomplete table that is not connected
is said to be separable. Separable two-way contingency tables can be rearranged to a block
diagonal form with connected subtables by permuting the rows and columns. Table 3.1 is an
example of separable table from Harris (1910). By permuting the rows and columns, we see
that this table is separable with exactly two connected subtables as displayed in Table 3.2.

We see easily that the minimal Markov basis for this example consists of basic moves only.
This is obvious from the fact that the two connected subtables do not contain structural zero
cells respectively. When the connected subtables contain some structural zero cells, the minimal

95



Table 3.1: An example of a separable table:
Relationship between radial asymmetry and locular
composition in Staphylea (Series A of Harris, 1910)

locular coefficient of radial asymmetry
composition 0.00 0.47 0.82 0.94 1.25 1.41 1.63 1.70 1.89
3 even, 0 odd 462 [0] [0] 130 [0] [0] 2 [0] 1
2 even, 1 odd [0] 614 138 [0] 21 14 [0] 1 [0]
1 even, 2 odd [0] 443 95 [0] 22 8 [0] 5 [0]
0 even, 3 odd 103 [0] [0] 35 [0] [0] 1 [0] 0

Table 3.2: Data from Table 3.1 after rearrangement of rows and columns
locular coefficient of radial asymmetry
composition 0.00 0.94 1.63 1.89 0.47 0.82 1.25 1.41 1.70
3 even, 0 odd 462 130 2 1 [0] [0] [0] [0] [0]
0 even, 3 odd 103 35 1 0 [0] [0] [0] [0] [0]
2 even, 1 odd [0] [0] [0] [0] 614 138 21 14 1
1 even, 2 odd [0] [0] [0] [0] 443 95 22 8 5

Markov basis for the whole table is a union of the minimal Markov bases for these subtables.
For example, the minimal Markov basis for the following separable 6 × 7 contingency table

x11 x12 x13 [0] [0] [0] [0]
[0] [0] x23 x24 [0] [0] [0]
x31 x32 [0] x34 [0] [0] [0]
[0] [0] [0] [0] x45 x46 [0]
[0] [0] [0] [0] [0] x56 x57

[0] [0] [0] [0] x65 [0] x67

is the union of the minimal Markov basis for two subtables,

x11 x12 x13 [0]
[0] [0] x23 x24

x31 x32 [0] x34

and
x45 x46 [0]
[0] x56 x57

x65 [0] x67

.

We see it is {L2(1, 3; 1, 2), L3(1, 2, 3; 1, 3, 4), L3(1, 2, 3; 2, 3, 4), L3(4, 5, 6; 5, 6, 7)}.

Block triangular tables Another typical situation is that an incomplete table is in block
triangular form, i.e., after suitable permutation of rows and columns, (i, j) /∈ S implies (k, l) /∈ S
for all k ≥ i and l ≥ j (Goodman, 1968, Bishop et al., 1975). The following tables are examples
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of block triangular tables.

x11 x12 x13 x14

x21 x22 x23 [0]
x31 x32 [0] [0]
x41 [0] [0] [0]

[0] [0] x13 x14

[0] [0] x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11 x12 x13 x14

[0] x22 x23 x24

[0] x32 x33 x34

[0] [0] x43 x44

[0] [0] x53 x54

Table 3.3 shows an example of a block triangle contingency table from Bishop and Fienberg
(1969). The minimal Markov bases for these tables are simple, i.e., the set of basic moves

Table 3.3: An example of a block triangular table:
Initial and final ratings on disability of stroke patients

final state
initial state A B C D E

E 11 23 12 15 8
D 9 10 4 1 [0]
C 6 4 4 [0] [0]
B 4 5 [0] [0] [0]
A 5 [0] [0] [0] [0]

Source: Bishop and Fienberg (1969).

constitutes the minimal Markov basis. Hence a Metropolis-Hasting sampling can be constructed
simply by choosing pairs of rows and columns, which intersect at non-structural zero cells.
McDonald and Smith (1995) also proposed Monte Carlo exact tests of quasi-independence for
such types of tables.

Square tables with diagonal elements being structural zeros There are many situa-
tions that the contingency tables are square and all the diagonal elements are structural zero
cells. Table 3.4 is an example of such tables. It is obvious that the minimal Markov basis for

Table 3.4: An example of a square table
with diagonal elements being structural zeros

passive participant
active participant R S T U V W

R [0] 1 5 8 9 0
S 29 [0] 14 46 4 0
T 0 0 [0] 0 0 0
U 2 3 1 [0] 28 2
V 0 0 0 0 [0] 1
W 9 25 4 6 13 [0]

Source: Ploog (1967).
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such tables contains degree 3 loops which correspond to every triplet of the structural zeros.
For examples, degree 3 loops such as

[0] −1 +1 0 0 0
+1 [0] −1 0 0 0
−1 +1 [0] 0 0 0
0 0 0 [0] 0 0
0 0 0 0 [0] 0
0 0 0 0 0 [0]

or

[0] 0 0 0 0 0
0 [0] 0 0 +1 −1
0 0 [0] 0 0 0
0 0 0 [0] 0 0
0 −1 0 0 [0] +1
0 +1 0 0 −1 [0]

are needed to construct a connected Markov chain. It is seen that for I × I contingency tables,

there are

(
I
2

)(
I − 2

2

)
basic moves and

(
I
3

)
df 1 degree 3 loops in the minimal Markov

basis.
For such types of contingency tables, the hypothesis of quasi-symmetry is also of interest in

many situations (Smith et al., 1996). We also derive the unique minimal Markov basis for the
case of a quasi-symmetry hypothesis in Section 3.4.8.

General incomplete tables We have seen some typical situations which frequently appear
in applications. Now we give some rules and algorithms to list all the elements in the mini-
mal Markov basis for arbitrary configuration of structural zeros. Table 3.5 is an example of
incomplete tables which cannot be categorized as any type discussed above. In view of Lemma

Table 3.5: Classification of Purum marriages
Sib of husband

Sib of wife Marrim Makan Parpa Thao Kheyang
Marrim [0] 5 17 [0] 6
Makan 5 [0] 0 16 2
Parpa [0] 2 [0] 10 11
Thao 10 [0] [0] [0] 9
Kheyang 6 20 8 0 1

Source: White (1963), based on data of Das (1945).

3.4.1, it may be easy to list all the elements of the unique minimal basis for many situations,
especially when there are only a few structural zero cells.

It is also easy to obtain an upper bound of the degree of loops which is in the minimal
basis, simply by counting the number of structural zero cells in each row and column. It should
be noted that if the minimal Markov basis contains a degree r loop, then there are at least r
rows and r columns which have r − 2 structural zero cells. Hence for Table 3.5, we see that
the degree of the loops contained in the minimal Markov basis is at most 3. For these types of
contingency tables, simple enumeration algorithms may be effective. Indeed, for Table 3.5, we
see that L3(1, 2, 3; 2, 3, 4) is the only degree 3 loop in the minimal basis by considering every
triplet of structural zero cells located in distinct rows and columns.

In general, we can make use of the following recursive algorithm to list all the elements in the
minimal basis. This algorithm works especially well in some situations that the contingency
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table is near separable, or semi-separable (Mantel, 1970), i.e., when the table can be made
separable into two or more connected subtables by the removal of a single row or a single
column. The following tables are examples of semi-separable tables.

(i)
x11 x12 [0] [0] [0]
x21 x22 [0] [0] x25

[0] [0] x33 x34 x35

[0] [0] x43 x44 [0]
[0] [0] x53 x54 x55

(ii)
x11 x12 [0] [0] [0]
x21 x22 [0] [0] [0]
[0] [0] x33 x34 x35

[0] [0] x43 x44 [0]
x51 x52 [0] x54 x55

We see that these tables are made to be separable by removal of (i) the row 2 or the column 5
and (ii) the row 5, respectively. Now we give a simple recursive algorithm.

Input: I0 = {1, . . . , I}, J0 = {1, . . . , J}, S
Output: elements of a minimal basis

ListMoves(I0; J0)

{
Choose i∗ ∈ I0 and J∗ = {j | (i∗, j) ∈ S};
List df 1 moves which have ±1 elements in R(i∗; J∗);
ListMoves(I0 − {i∗}; J0);

}

To illustrate the meanings of this algorithm, we reanalyze the 6 × 6 example discussed in
Section 3.4.4, which is displayed below.

1 2 3 4 5 6
1 [0] x12 x13 [0] [0] x16

2 x21 [0] x23 x24 [0] [0]
3 x31 x32 [0] [0] x35 [0]
4 [0] [0] x43 [0] x45 x46

5 x51 [0] [0] x54 [0] x56

6 [0] x62 [0] x64 x65 [0]

It has been already mentioned that the minimal Markov basis for this table is a set of basic
moves and 20 degree 3 loops. To see this, first we choose i∗ = 1 and hence J∗ = {2, 3, 6}. We

also denote Ĩ = I0 − {i∗} = {2, 3, 4, 5, 6}, J̃ = J0 − J∗ = {1, 4, 5}.

J̃ J∗

1 4 5 2 3 6
i∗ 1 [0] [0] [0] x12 x13 x16

2 x21 x24 [0] [0] x23 [0]
3 x31 [0] x35 x32 [0] [0]

Ĩ 4 [0] [0] x45 [0] x43 x46

5 x51 x54 [0] [0] [0] x56

6 [0] x64 x65 x62 [0] [0]
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Next step of the algorithm is to list all df 1 loops which have ±1 elements in R(i∗; J∗). To
perform this step, we can make use of the fact that such loop has exactly one +1 and one
−1 both in R(i∗; J∗) and R(Ĩ; J∗). For example, if we select (2, 3) from J∗ and (2, 3) from Ĩ,
we can ignore the column 6, the rows 4 and 6. We can also ignore the column 5 because this
column has only one cell in S when we ignore the rows 4 and 6. Then the table is reduced to
the following.

J̃ J∗

1 4 2 3
i∗ 1 [0] [0] x12 x13

2 x21 x24 [0] x23

Ĩ 3 x31 [0] x32 [0]
5 x51 x54 [0] [0]

This subtable contains supports of L3(1, 2, 3; 2, 3, 1) and L4(1, 2, 4, 3; 3, 4, 2, 1). However,
L4(1, 2, 4, 3; 3, 4, 2, 1) is not df 1, and only L3(1, 2, 3; 2, 3, 1) is listed in this case. Similarly we

can list all loops which have exactly one +1 and one −1 both in R(i∗; J∗) and R(Ĩ; J∗) by
listing all pairs of columns in J∗. In this case,

• if select (2, 3) from J∗ then L3(1, 2, 3; 2, 3, 1), L3(1, 6, 2; 3, 2, 4), L3(1, 4, 3; 2, 3, 5) and
L3(1, 6, 4; 3, 2, 5) are listed,

• if select (2, 6) from J∗ then L3(1, 3, 4; 6, 2, 5), L3(1, 3, 5; 6, 2, 1), L3(1, 6, 4; 6, 2, 5) and
L3(1, 6, 5; 6, 2, 4) are listed,

• if select (3, 6) from J∗ then L2(1, 4; 6, 3), L3(1, 2, 5; 6, 3, 1) and L3(1, 2, 5; 6, 3, 4) are listed.

These are all the df 1 loops which have ±1 in this i∗ = 1-th row. Now all we have to consider
is the subtable R(Ĩ; J0), to which we can apply the similar procedure, and finally the solution
described in Section 4 is given.

In general case, it is effective to select i∗ so that there are as many structural zero cells in
R(i∗; J0) as possible. Hence i∗ should be chosen as

i∗ = arg max
i

#{j | (i∗, j) /∈ S}.

However, if the table is semi-separable, it is also effective to select i∗ so that the remaining
table R(Ĩ; J0) becomes separable.

3.4.6 Computational examples

Using the Markov basis obtained above, we can perform various tests by the Monte Carlo
method. In this section, we show an example of testing the hypothesis of quasi-independence for
a given data set. Table 3.6 shows a data collected by Vidmar (1972) for discovering the possible
effects on decision making of limiting the number of alternatives available to the members of
a jury panel. This is a 4 × 7 contingency table which has 9 structural zero cells. The degrees
of freedom for testing quasi-independence is 9. The maximum likelihood estimate under the
hypothesis of quasi-independence is calculated by iterative method as displayed in Table 3.7.
See Bishop et al.(1975) for maximum likelihood estimation of incomplete tables.
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Table 3.6: Effects of decision alternatives on the verdicts
and social perceptions of simulated jurors

condition
alternative 1 2 3 4 5 6 7
first-degree 11 [0] [0] 2 7 [0] 2
second-degree [0] 20 [0] 22 [0] 11 15
manslaughter [0] [0] 22 [0] 16 13 5
not guilty 13 4 2 0 1 0 2

Source: Vidmar (1972).

Table 3.7: Maximum likelihood estimate for Table 3.6
condition

alternative 1 2 3 4 5 6 7
first-degree 14.05 [0] [0] 2.61 3.64 [0] 1.70
second-degree [0] 21.93 [0] 19.55 [0] 13.75 12.77
manslaughter [0] [0] 20.95 [0] 17.78 8.95 8.32
not guilty 9.95 2.07 3.05 1.84 2.58 1.30 1.21

As the discrepancy measure from the hypothesis of quasi-independence, we use the likelihood-
ratio statistic

G2 = 2
∑

S

xij log
xij

m̂ij

,

where m̂ij is the MLE of the expectation parameter mij . The observed value of G2 is 18.816
and the corresponding asymptotic p value is 0.0268 from the asymptotic distribution χ2

9.
To perform the Markov chain Monte Carlo method, first we obtain the minimal Markov

basis. From the considerations in the above sections, we see easily that a set of basic moves and
a degree 3 loop L3(1, 2, 3; 5, 4, 6) constitute the unique minimal Markov basis. Using this basis,
we construct a connected chain, which is modified so as to have the null distribution (3.24) as
the stationary distribution by the Metropolis-Hasting procedure. The estimated exact p value
is 0.0444, with estimated standard deviation 0.00052. (We use a batching method to obtain an
estimate of variance. See Hastings, 1970, or Ripley, 1987.) Figure 3.11 shows a histogram of
the Monte Carlo sampling generated from the exact distribution of the likelihood ratio statistic
under the quasi-independence hypothesis, along with the corresponding asymptotic distribution
χ2

9. We see that the asymptotic distribution understates the probability that the test statistic
is greater than the observed value, and overemphasize the significance.

3.4.7 Basis reduction for the case of positive marginals

The minimality of the basis considered in the previous sections is based on the condition that
the values of the marginal totals are arbitrary. However, for performing exact conditional tests
to a given data set, we can assume without loss of generality that xi·, x·j > 0 for all i, j because
all cell values in rows or columns with zero marginals are necessarily zeros and such rows or
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Figure 3.11: Asymptotic and Monte Carlo estimated exact distribution
for the likelihood ratio statistic under the quasi-independence model

columns can be ignored in the conditional analysis.
Under the assumption of positive marginal totals, there may be cases, where some elements

of the minimal basis obtained in Section 3.4.4 are not needed to construct a connected chain.
Therefore it is worth investigating further reduction of the minimal basis to F({xi·}, {x·j}, S)
for fixed positive values of xi· and x·j. From practical viewpoint it is important to give a
sufficient condition on xi· and x·j , such that a df 1 loop of degree r ≥ 3 can be replaced by a
series of basic moves. A simple example is the following 3 × 4 contingency table.

[0] x12 x13 x14

x21 [0] x23 x24

x31 x32 [0] x34

From the considerations of Section 3.4.4, we know that the 4 loops, L2(1, 3; 2, 4), L2(1, 2; 3, 4),
L2(2, 3; 1, 4) and L3(1, 3, 2; 3, 2, 1), constitute the unique minimal Markov basis. They are
displayed as follows.

0 +1 0 −1
0 0 0 0
0 −1 0 +1

,
0 0 +1 −1
0 0 −1 +1
0 0 0 0

,
0 0 0 0

+1 0 0 −1
−1 0 0 +1

,
0 −1 +1 0

+1 0 −1 0
−1 +1 0 0

.

However, under the assumption that all the marginal totals are positive, it is shown that
L3(1, 3, 2; 3, 2, 1) is not needed to construct a connected chain. To see this, suppose 3×4 tables
x, x′ are in F({xi·}, {x·j}, S = {(1, 1), (2, 2), (3, 3)}) and x′ − x = L3(1, 3, 2; 3, 2, 1). In this
case, two states x and x′ are mutually reachable by adding or subtracting L3(1, 3, 2; 3, 2, 1).
These two states can be written as

x =
[0] a1 + 1 a2 a3

a4 [0] a5 + 1 a6

a7 + 1 a8 [0] a9

and x′ =
[0] a1 a2 + 1 a3

a4 + 1 [0] a5 a6

a7 a8 + 1 [0] a9
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where a1, . . . , a9 ∈ Z≥0. Here an important point is that at least one of a3, a6, a9 is positive
because x·4 > 0. Then we can add or subtract the above three basic moves one by one in
appropriate order to x to reach x′. We show this procedure in the following when a3 ≥ 1.

x =
[0] a1 + 1 a2 a3(≥ 1)
a4 [0] a5 + 1 a6

a7 + 1 a8 [0] a9

−→
+L2(1, 2; 3, 4)

[0] a1 + 1 a2 + 1 a3 − 1
a4 [0] a5 a6 + 1

a7 + 1 a8 [0] a9

−→
+L2(2, 3; 1, 4)

[0] a1 + 1 a2 + 1 a3 − 1
a4 + 1 [0] a5 a6

a7 a8 [0] a9 + 1

−→
−L2(1, 3; 2, 4)

[0] a1 a2 + 1 a3

a4 + 1 [0] a5 a6

a7 a8 + 1 [0] a9

= x′

The above consideration gives a decomposition of a df 1 degree r loop into r basic moves,
by using one additional row or column. If this row or column is known to contain at least
one positive cell, a connected chain can simply be constructed by using basic moves, instead of
using this degree r loop.

We summarize the above consideration in the following lemma.

Lemma 3.4.2 Under the assumption of positive marginals, a df 1 loop Lr(i1, . . . , ir; j1, . . . , jr), r ≥
3, can be replaced by a series of basic moves, if one of the following conditions is satisfied.

(a) There exists i∗ 6= ik, 1 ≤ k ≤ r, such that (i∗, jk) ∈ S for all k = 1, . . . , r and xi∗· >
∑

j∈A

x·j

where A = {j | j 6= jk, 1 ≤ k ≤ r and (i∗, j) ∈ S}.

(b) There exists j∗ 6= jk, 1 ≤ k ≤ r, such that (ik, j
∗) ∈ S for all k = 1, . . . , r and x·j∗ >

∑

i∈A

xi·

where A = {i | i 6= ik, 1 ≤ k ≤ r and (i, j∗) ∈ S}.

Proof. It is sufficient to show the lemma for the case (a). It holds that

Lr(i1, . . . , ir; j1, . . . , jr) =

r−1∑

t=1

L2(it, i
∗; it, it+1) + L2(ir, i

∗; ir, 1). (3.29)

It should be noted that the r basic moves of the right hand side constitute a cycle, of which
the consecutive two basic moves have only one nonzero cell in common. Moreover, at least
one of xi∗j1 , xi∗j2, . . . , xi∗jr have to be positive for all the elements in F({xi·}, {x·j}, S) from
the positiveness of xi∗·, x·j. Hence we can add or subtract these r basic moves one by one to
or from x ∈ F({xi·}, {x·j}, S) without forcing negative entries on the way, instead of using
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Lr(i1, . . . , ir; j1, . . . , jr). Q.E.D.

To illustrate the argument of this lemma, let L4(1, 2, 3, 4; 1, 2, 3, 4) be df 1 loop and and for
example let i∗ = 5 satisfy the condition (a). Then the decomposition (3.29) is written as

L4(1, 2, 3, 4; 1, 2, 3, 4) = L2(1, 5; 1, 2) + L2(2, 5; 2, 3) + L2(3, 5; 3, 4) + L2(4, 5; 4, 1). (3.30)

In the case of I = 5, J = 4, this is displayed as

+1 −1 [0] [0]
[0] +1 −1 [0]
[0] [0] +1 −1
−1 [0] [0] +1
0 0 0 0

=

+1 −1 [0] [0]
[0] 0 0 [0]
[0] [0] 0 0
0 [0] [0] 0
−1 +1 0 0

+

0 0 [0] [0]
[0] +1 −1 [0]
[0] [0] 0 0
0 [0] [0] 0
0 −1 +1 0

+

0 0 [0] [0]
[0] 0 0 [0]
[0] [0] +1 −1
0 [0] [0] 0
0 0 −1 +1

+

0 0 [0] [0]
[0] 0 0 [0]
[0] [0] 0 0
−1 [0] [0] +1
+1 0 0 −1

.

It should be noted that, in the above example, A = ∅ in the condition (a) and hence at least
one of x51, . . . , x54 must be positive from x5· > 0. Now consider adding L4(1, 2, 3, 4; 1, 2, 3, 4) to
some x ∈ F({xi·}, {x·j}, S). If x + L4(1, 2, 3, 4; 1, 2, 3, 4) is again in F({xi·}, {x·j}, S), at least
4 entries of x, x12, x23, x34, x41, must be positive. Then if at least one of x51, . . . , x54 is positive,
we can add some basic moves in the right hand side of (3.30). Suppose x52 > 0, for example,
then x + L2(2, 5; 2, 3) ∈ F({xi·}, {x·j}, S) holds. Now the (5, 3) element of x + L2(2, 5; 2, 3) is
positive, hence next basic move, L2(3, 5; 3, 4), can be added without forcing negative entries.
In the similar way, we can add all the basic moves in the right hand side of (3.29) without
forcing negative entries and df 1 loop Lr(i1, . . . , ir; j1, . . . , jr) is shown to be redundant.

We now consider another case not covered by Lemma 3.4.2. The following display is df 1
degree 3 loop L3(1, 2, 3, 2, 3, 1) in 5 × 5 square contingency table with diagonal elements being
structural zeros.

[0] +1 −1 0 0
−1 [0] +1 0 0
+1 −1 [0] 0 0
0 0 0 [0] 0
0 0 0 0 [0]

Of course, we can decompose this loop to 3 basic moves as directed in Lemma 3.4.2 as

L3(1, 2, 3; 2, 3, 1) =

[0] +1 −1 0 0
0 [0] 0 0 0
0 0 [0] 0 0
0 −1 +1 [0] 0
0 0 0 0 [0]

+

[0] 0 0 0 0
−1 [0] +1 0 0
0 0 [0] 0 0

+1 0 −1 [0] 0
0 0 0 0 [0]

+

[0] 0 0 0 0
0 [0] 0 0 0

+1 −1 [0] 0 0
−1 +1 0 [0] 0
0 0 0 0 [0]

.

However, it is not guaranteed that we can apply some of the above basic moves to every state
which satisfies either of x12, x23, x31 > 0 or x13, x21, x32 > 0, because we cannot exclude the
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possibility that x41 = x42 = x43 = 0 even under the assumption of positive marginals. To deal
with such cases, we give another decomposition of df 1 degree r loop into r + 1 basic moves in
the next lemma.

Lemma 3.4.3 Under the assumption of positive marginals, a df 1 loop Lr(i1, . . . , ir; j1, . . . , jr), r ≥
3, can be replaced by a series of basic moves, if one of the following conditions is satisfied.

(a) There exists i∗ 6= ik, 1 ≤ k ≤ r, such that (i∗, jk) ∈ S for all k = 1, . . . , r and for all j such
that (i∗, j) ∈ S, j 6= jk, k = 1, . . . , r, there exists i(j) ∈ {i1, . . . , ir} such that (i(j), j) ∈ S.

(b) There exists j∗ 6= jk, 1 ≤ k ≤ r, such that (ik, j
∗) ∈ S for all k = 1, . . . , r and for all i such

that (i, j∗) ∈ S, i 6= ik, k = 1, . . . , r, there exists j(i) ∈ {j1, . . . , jr} such that (i, j(i)) ∈ S.

Proof. It is again sufficient to show the lemma for (a). Suppose that both x and x +
Lr(i1, . . . , ir; j1, . . . , jr) are in F({xi·}, {x·j}, S). If this x has some positive entries at (i∗, j1), . . . ,
(i∗, jr), the decomposition in Lemma 3.4.2 can be applied and Lr(i1, . . . , ir; j1, . . . , jr) can be
replaced by r basic moves. Hence it is sufficient to consider the case of xi∗j1 + · · · + xi∗jr = 0.
In this case, there exists some j 6= jk, k = 1, . . . , r, such that xi∗j > 0, (i∗, j) ∈ S from xi∗· > 0.
We denote this j by j∗. Now from the condition (a), there exists some i ∈ {i1, . . . , ir} such that
(i, j∗) ∈ S. We assume that i1 satisfies this condition without loss of generality. Here, consider
the following decomposition

Lr(i1, . . . , ir; j1, . . . , jr) = L2(i1, i
∗; j1, j

∗)+L2(i1, i
∗; j∗, j2)+

r−1∑

t=2

L2(it, i
∗; it, it+1)+L2(ir, i

∗; ir, j1).

It is again observed that the r + 1 basic moves of the right hand side constitute a cycle, of
which the consecutive two basic moves have only one nonzero cell in common. Moreover, since
xi∗j∗ > 0, x + L2(i1, i

∗; j∗, j2) is in F({xi·}, {x·j}, S). From these considerations, we can add
these r + 1 basic moves one by one to x without forcing negative entries on the way, instead of
adding Lr(i1, . . . , ir; j1, . . . , jr) to x, and the lemma is proved. Q.E.D.

An example of the decomposition of L4(1, 2, 3, 4; 1, 2, 3, 4) is displayed as follows.

+1 −1 [0] [0] 0
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
−1 [0] [0] +1 [0]
0 0 0 0 0

=

+1 0 [0] [0] −1
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
0 [0] [0] 0 [0]
−1 0 0 0 +1

+

0 −1 [0] [0] +1
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
0 [0] [0] 0 [0]
0 +1 0 0 −1

+

0 0 [0] [0] 0
[0] +1 −1 [0] [0]
[0] [0] 0 0 [0]
0 [0] [0] 0 [0]
0 −1 +1 0 0

+

0 0 [0] [0] 0
[0] 0 0 [0] [0]
[0] [0] +1 −1 [0]
0 [0] [0] 0 [0]
0 0 −1 +1 0

+

0 0 [0] [0] 0
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
−1 [0] [0] +1 [0]
+1 0 0 −1 0

Lemma 3.4.2 and 3.4.3 are concerned with replacing a particular degree r loop by a series
of basic moves. We now consider the case, where all loops of degree r ≥ 3 can be replaced by
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basic moves, so that a connected Markov chain over F({xi·}, {x·j}, S) can be constructed by
basic moves only.

Following Smith et al. (1996), consider the situation that the contingency table is I × I and
the diagonal cells are structural zeros. By symmetry and as a direct consequence of Lemma
3.4.2, we see that the set of basic moves are sufficient to construct a connected chain under
the assumption of positive marginals for 4× 4 contingency tables with diagonal elements being
structural zeros. For the case of I ≥ 5, we see that the degree 3 loop L3(1, 2, 3; 2, 3, 4) in Table
5 satisfies the condition of Lemma 3.4.3. Considering the symmetry again, we see the set of
basic moves constitutes a connected Markov chain. Therefore we obtain the following corollary
to Lemma 3.4.3.

Corollary 3.4.1 A connected chain can be constructed by a set of basic moves for I × I con-
tingency tables, I ≥ 4, with only diagonal elements being structural zeros under the assumption
of positive marginals.

Lemma 3.4.2 and Lemma 3.4.3 give convenient sufficient conditions that a df 1 loop of
degree r ≥ 3 can be replaced by a series of basic moves. Hence for the situations that do not
satisfy the conditions of Lemma 3.4.2 nor Lemma 3.4.3, we may have to use df 1 loops of degree
r ≥ 3, to ensure the connectivity of the chain. To demonstrate the importance of the minimal
basis, we give an example where the set of the basic moves does not constitute a connected
chain even if all the marginals are positive as follows.

x11 x12 [0] x14 1
[0] x22 x23 x24 1
x31 [0] x33 [0] 1
[0] x42 x43 x44 1
1 1 1 1

In this case, there are 6 elements in F({xi·}, {x·j}, S) displayed as

F({xi·}, {x·j}, S)

=





1 0 [0] 0
[0] 1 0 0
0 [0] 1 [0]
[0] 0 0 1

,

1 0 [0] 0
[0] 0 0 1
0 [0] 1 [0]
[0] 1 0 0

,

0 1 [0] 0
[0] 0 1 0
1 [0] 0 [0]
[0] 0 0 1

,

0 1 [0] 0
[0] 0 0 1
1 [0] 0 [0]
[0] 0 1 0

,

0 0 [0] 1
[0] 1 0 0
1 [0] 0 [0]
[0] 0 1 0

,

0 0 [0] 1
[0] 0 1 0
1 [0] 0 0
[0] 1 0 0





.

We see that these 6 elements are not mutually reachable simply by the basic moves. To connect
all the elements, we have to use degree 3 loops.

Conversely, when some of the conditions of Lemma 3.4.2 or 3.4.3 are satisfied, there is
a possibility that we do not have to consider all the elements of the minimal basis. For
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example, if we can permute rows and columns to {I1, I2}, {J1, J2}, where the elements of
R(I1; J2), R(I2; J1), R(I2; J2) are all in S and there are at least one cells of S in every row
and column of R(I1; J1), we know that a set of basic moves constitutes a connected Markov
chain regardless of the remaining pattern of R(I1; J1).

3.4.8 Minimal Markov basis for the hypothesis of quasi-symmetry

For some types of square contingency tables, the hypothesis of quasi-symmetry is of interest
(Bishop et al., 1975, for example). Quasi-symmetry corresponds to symmetric off-diagonal
association, which implies that the interaction parameters in a log-linear model for symmetri-
cally opposite cells are equal, but makes no assumption on the diagonal interaction parameters.
Hence it is represented as H1 : γij = γji, i 6= j in the log-linear model (3.23). Quasi-symmetry
model is also related to Bradley-Terry model.

For the quasi-symmetry hypothesis, an exact conditional test can also be constructed (Smith
et al., 1996). For this case, a sufficient statistic is {xi·}, {x·j}, {xij + xji} and the conditional
distribution is proportional to

∏
ij(xij !)

−1. See Smith et al. (1996) for detail.
To perform the exact tests of quasi-symmetry, the Markov chain Monte Carlo approach is

also useful if a complete enumeration is infeasible. In this case, a connected Markov chain over
the reference set

F({xi·}, {x·j}, {xij + xji}) = { y | yi· = xi·, y·j = x·j , yij + yji = xij + xji, yij ∈ Z≥0}

can be modified to give a connected and aperiodic Markov chain with stationary distribution
as the conditional null distribution under the quasi-symmetry hypothesis by the Metropolis
procedure. Similarly to the quasi-independence hypothesis, our interest is a minimal basis for
a connected chain over F({xi·}, {x·j}, {xij + xji}). The result is summarized as follows.

Definition 3.4.4 A loop of degree r is an I × I integer array L∗
r(i1, . . . , ir), i1, . . . , ir ∈ [I],

where L∗
r(i1, . . . , ir) has the elements

L∗
i1i2

= L∗
i2i3

= · · · = L∗
ir−1ir = L∗

iri1
= +1,

L∗
i2i1

= L∗
i3i2

= · · · = L∗
irir−1

= L∗
i1ir = −1,

and all the other elements are zero. Specifically, we call degree 3 loop L∗
3(i1, i2, i3) a basic move.

Theorem 3.4.2 The set of the loops described in Definition 3.4.4 of degree r = 3, . . . , I con-
stitutes a unique minimal Markov basis for I × I contingency tables under the quasi-symmetry
hypothesis.

The set of all loops described above constitutes a Markov basis for the following reason. Suppose
x, x′ ∈ F({xi·}, {x·j}, {xij + xji}). Then the difference x−x′ can be expressed as a finite sum

x − x′ =
∑

k

akL
∗
r(k)(i1(k), . . . , ir(k)),

where ak is a positive integer, r(k) ≤ I and there is no cancellation of signs in any cell. Hence
to move from x to x′, we can add a sequence of loops in Definition 3.4.4 to x, without forcing
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negative entries on the way. Uniqueness and minimality is due to the fact that L∗
r(i1, . . . , ir) can

be written as the difference of the elements of F({xi·}, {x·j}, {xij +xji}) which is a two-elements
set.

We have the relations

L∗
r(i1, . . . , ir) = L∗

r(i2, i3, . . . , ir, i1) = −L∗
r(i1, ir, ir−1, . . . , i2)

and there are
I∑

r=3

I(I − 1)(I − 2) · · · (I − r + 1)

2r

loops in the minimal Markov basis for I × I case. Hence the algorithm can be constructed
simply by generating a sequence i1 · · · ir, 3 ≤ r ≤ I randomly.

Similarly as in Section 3.4.7, a basis reduction is also possible if all the sufficient statistics
are positive.

Lemma 3.4.4 If xi·, x·j > 0 for all i, j and xij + xji > 0 for all i 6= j, the set of basic moves
L∗

3(i1, i2, i3) constitutes a connected chain.

This lemma follows from the decomposition

L∗
r(i1, . . . , ir) = L∗

a(i1, . . . , ia) + L∗
r−a+2(ia, ia+1, . . . , ir, i1),

because the two loops of the right hand side have only two nonzero cells L∗
iai1

, L∗
i1ia in common

and at least one of xi1ia and xiai1 is positive for every element in F({xi·}, {x·j}, {xij + xji})
since xij + xji > 0.

3.4.9 Discussion

In our analysis of an example data displayed in Table 3.6, the asymptotic goodness-of-fit test
overemphasizes the significance of the data and is misleading. Indeed, for many sparse tables
where large-sample theory does not work well, a Markov chain Monte Carlo method is a valuable
tool to calculate p values for various test statistics. To construct a connected chain, a concept
of the Markov basis described in this thesis is essential. In this section, we give an explicit
characterization of the elements of the unique minimal Markov basis for arbitrary configurations
of structural zero cells. Using the algorithm described in Section 3.4.5, we can easily obtain all
the elements of the minimal basis for various problems, and we can implement a Markov chain
Monte Carlo program for calculating exact p values for various test statistics. Moreover, the
basis reduction described in Section 3.4.7 makes the algorithm very brief for many problems.
Our experience shows that there are many problems where the set of basic moves constitutes
a connected chain. For these problems, a Markov chain Monte Carlo algorithm is simply
implemented by choosing pairs of rows and columns randomly.

3.5 Characterizations of a minimal Markov basis and its

uniqueness

In the previous sections, we have derived closed form expressions of minimal Markov bases for
some problems, i.e., no three-factor interaction model for some three-way contingency tables
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and independence and quasi-independence models for two-way contingency tables. These re-
sults are important since, in general, the Gröbner basis computation proposed by Diaconis and
Sturmfels (1998) produces large number of redundant basis elements due to the lack of sym-
metry and minimality in Gröbner basis. In this section, we give some basic characterizations
of a minimal Markov basis in general settings. Our arguments are totally elementary. We also
give a necessary and sufficient condition for the uniqueness of a minimal Markov basis. Our
approach is basically constructive and it clarifies a partially ordered structure of a minimal
Markov basis. At present our result is not powerful enough to completely characterize a min-
imal Markov basis for a given problem, but with further refinement it might be possible to
implement an alternative algorithm for constructing a Markov basis for a connected Markov
chain over a given sample space.

First we give necessary notations and definitions on a Markov basis in Section 3.5.1, and
then derive our characterization of a minimal Markov basis in Section 3.5.2 and Section 3.5.3.
Relevant examples of discrete exponential families are studied in Section 3.5.4.

3.5.1 Notations and definitions

Let I be a finite set. With contingency tables in mind, an element of I is called a cell and
denoted by i ∈ I. |I| denotes the number of cells. In the case of I1×· · ·×Ik k-way contingency
tables, i represents a multi-index i = (i1, . . . , ik) and |I| = I1 × · · · × Ik. This typical situation
is further considered in Section 3.6. A non-negative integer x(i) denotes the frequency of cell
i. For the case of two-way or three-way contingency tables, we occasionally write xij or xijk

instead of x(i) for simplicity as we have seen in the previous sections. n =
∑

i∈I

x(i) denotes the

sample size.
a(i) ∈ Z

ν
≥0, i ∈ I, denote ν-dimensional fixed column vectors consisting of non-negative

integers. A ν-dimensional sufficient statistic t is given by

t =
∑

i∈I

a(i)x(i).

In the case of hierarchical model for k-way contingency tables t consists of appropriate marginal
totals.

Let the cells and the vectors a(i) be appropriately ordered. For k-way contingency tables,
we may order the multi-indices lexicographically. Let

x = {x(i)}i∈I ∈ Z
|I|
≥0

denote an |I|-dimensional column vector of cell frequencies and let

A = {a(i)}i∈I
denote a ν × |I| matrix. Then the sufficient statistic t is written as

t = Ax.

We sometimes call x a frequency vector, while we call it a contingency table at the same time.

We also use the notation |x| = n =
∑

i∈I

x(i) to denote the sample size and the notation x ≥ 0
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to denote that the elements of x are non-negative integers, i.e., x ∈ Z
|I|
≥0. We write x ≥ y if

x − y ≥ 0. The reference set of x’s for a given t is denoted by

F � = {x ≥ 0 | Ax = t}.

Concerning the matrix A we make the following assumption.

Assumption 3.5.1 The |I|-dimensional row vector (1, 1, . . . , 1) is a linear combination of
the rows of A.

Assumption 3.5.1 is satisfied in all the examples in this thesis. Assumption 3.5.1 implies
that the sample size n is determined from the sufficient statistic t and all elements of F � have
the same sample size. Somewhat abusing the notation, we write n = |t| to denote the sample
size of elements of F � . Another consequence of this assumption is that each a(i), i ∈ I, is a
non-zero vector, because otherwise each linear combination of the rows of A has 0 in the i-th
position.

For the case of I × J contingency tables with fixed one-dimensional marginals and with
lexicographical ordering of cells, A is written as

A =

[
1′I ⊗ EJ

EI ⊗ 1′J

]
, (3.31)

where 1I is the I-dimensional vector consisting of 1’s, EJ is the J × J identity matrix and
⊗ denotes the Kronecker product. Similarly for I × J × K contingency tables with fixed
two-dimensional marginals and with lexicographical ordering of cells, A is written as

A =




1′I ⊗ EJ ⊗ EK

EI ⊗ 1′J ⊗ EK

EI ⊗ EJ ⊗ 1′K


 . (3.32)

An |I|-dimensional vector of integers z ∈ Z
|I| is called a move if it is in the kernel of A:

Az = 0.

Adding a move z to x does not change the sufficient statistic

t = Ax = A(x + z).

Therefore z can be interpreted as a move within F � for any t. By definition the zero frequency
vector z = 0 is also a move, although it does not move anything. For a move z = {z(i)}i∈I ,
the positive part z+ = {z+(i)}i∈I and the negative part z− = {z−(i)}i∈I are defined by

z+(i) = max(z(i), 0), z−(i) = −min(z(i), 0),

respectively. Then z = z+ − z−. Note that if z is a move, then −z is also a move with
(−z)+ = z− and (−z)− = z+. Note also that non-zero elements of z+ and z− do not share a
common cell. The positive part z+ and the negative part z− have the same value of sufficient
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statistic t = Az+ = Az−. The sample size of z+ (or z−) is called the degree of z and denoted
by

deg(z) = |z+| = |z−|.

Occasionally we also write |z| =
∑

i∈I

|z(i)| = 2 deg(z).

We say that a move z is applicable to x ∈ F � if x + z ∈ F � , i.e., adding z to x does not
produce a negative cell. Since

x + z = x + z+ − z−,

z is applicable to x if and only if
x ≥ z−. (3.33)

Note also that z is applicable to x if and only if −z is applicable to x + z.
Let B = {z1, . . . , zL} be a finite set of moves. Let x, y ∈ F � . We say that y is accessible

from x by B and denote it by
x ∼ y (mod B),

if there exists a sequence of moves zi1 , . . . , zik from B and εj = ±1, j = 1, . . . , k, such that

y = x +
∑k

j=1 εjzij and

x +
h∑

j=1

εjzij ∈ F � , h = 1, . . . , k − 1, (3.34)

i.e., we can move from x to y by moves from B without causing negative cells on the way.
Obviously the notion of accessibility is symmetric and transitive:

x ∼ y ⇒ y ∼ x (mod B),

x1 ∼ x2, x2 ∼ x3 ⇒ x1 ∼ x3 (mod B).

Therefore accessibility by B is an equivalence relation and each F � is partitioned into disjoint
equivalence classes by moves of B. We call these equivalence classes B-equivalence classes of F � .
Since the notion of accessibility is symmetric, we also say that x and y are mutually accessible
by B if x ∼ y (mod B). Let x and y be elements from two different B-equivalence classes of
F � . We say that a move

z = x − y

connects these two equivalence classes. Diaconis, Eisenbud and Sturmfels (1998) gives results
on properties of a B-equivalence class from algebraic viewpoint.

Particular sets of moves we consider below are

B � = {z | t = Az+ = Az−},

which is a set of moves z with the same value of the sufficient statistic t = Az+, and

Bn = {z | deg(z) ≤ n},

which is a set of moves with degree less than or equal to n.
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A set of finite moves B = {z1, . . . , zL} is a Markov basis if for all t, F � itself constitutes one
B-equivalence class, i.e., for every t and for every x, y ∈ F � , y and x are mutually accessible by
B. Logically important point here is the existence of a finite Markov basis, which is guaranteed
by the Hilbert basis theorem (see Section 3.1 of Diaconis and Sturmfels, 1998). In fact Diaconis
and Sturmfels (1998) gave an algorithm to produce a finite Markov basis. A Markov basis B
is minimal if no proper subset of B is a Markov basis. A minimal Markov basis always exists,
because from any Markov basis, we can remove redundant elements one by one, until none of
the remaining elements can be removed any further. From the definition, a minimal Markov
basis is not symmetric, i.e. for each z ∈ B, −z is not a member of B when B is a minimal
Markov basis.

It should be noted that a Markov basis B is common for all t. Suppose that a data frequency
vector x is given and we are concerned only with connecting frequency vectors of F � for the
given t = Ax. Then we may not need all of the moves from B. It is a subtle problem to
determine which moves of B are needed for connecting F � for a given t from the viewpoint
of minimality. We discuss this point further in Section 3.5.5. We have also investigated this
problem for the case of two-way contingency tables with structural zeros in Section 3.4.7.

Having prepared adequate notations and definitions, we now proceed to characterize struc-
ture of the minimal Markov basis.

3.5.2 Characterization of a minimal Markov basis

For each t, let n = |t| be the sample size of elements of F � and let Bn−1 be the set of moves
with degree less than n. Write the Bn−1-equivalence classes of F � as

F � = F �
,1 ∪ · · · ∪ F �

,K � . (3.35)

Let xj ∈ F �
,j, j = 1, . . . , K � , be representative elements of the equivalence classes and

zj1,j2 = xj1 − xj2, j1 6= j2

be a move connecting F �
,j1 and F �

,j2. Note that we can connect all equivalence classes with
K � − 1 moves of this type, by forming a tree, where the equivalence classes are interpreted as
vertices and connecting moves are interpreted as edges of an undirected graph. Now we state
our main theorem. The following result is already known to algebraists. See Theorem 2.5 of
Briales et al. (1998).

Theorem 3.5.1 Let B be a minimal Markov basis. For each t, B ∩ B � consists of K � − 1
moves connecting different B|

�
|−1-equivalence classes of F � , in such a way that the equivalence

classes are connected into a tree by these moves.
Conversely choose any K � − 1 moves z �

,1, . . . , z �
,K � −1 connecting different B|

�
|−1-equivalence

classes of F � , in such a way that the equivalence classes are connected into a tree by these
moves. Then

B =
⋃

�
:K � ≥2

{z �
,1, . . . , z �

,K � −1} (3.36)

is a minimal Markov basis.
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Note that no move is needed from F � with K � = 1, including the case where F � is a one-
element set. If F � = {x} is a one-element set, no non-zero move is applicable to x, but at the
same time we do not need to move from x at all for such a t.

In principle this theorem can be used to construct a minimal Markov basis from below as
follows. As the initial step we consider t with the sample size n = |t| = 1. Because B0 consists
only of the zero move B0 = {0}, each point x ∈ F � , |t| = 1, is isolated and forms an equivalence
class by itself. For each t with |t| = 1, we choose K � − 1 degree 1 moves to connect K � points
of F � into a tree. Let B̃1 be the set of chosen moves. B̃1 is a subset of the set B1 of all degree
1 moves. Since every degree 1 move can be expressed by non-negative integer combination of
chosen degree 1 moves, it follows that B̃1 and B1 induce same equivalence classes for each F �

with |t| = 2. Therefore as the second step we consider B̃1-equivalence classes of F � for each
t with |t| = 2 and choose representative elements from each equivalence class to form degree
2 moves connecting the equivalence classes into a tree. We add the chosen moves to B̃1 and
form a set B̃2. We can repeat this process for n = |t| = 3, 4, . . .. By the Hilbert basis theorem
there exists some n0 such that for n ≥ n0 no new moves need to be added. Then a minimal
Markov basis B of (3.36) is written as B = B̃n0

. Obviously there is a considerable difficulty in
implementing this procedure. We will discuss this point further in Section 3.5.5.

Theorem 3.5.1 clarifies to what extent minimal Markov basis is unique. If an equivalence
class consists of more than one element, then any element can be chosen as the representative
element of the equivalence class. Another indeterminacy is how to form a tree of the equivalence
classes. In addition there exists a trivial indeterminacy of a Markov basis B in changing the
signs of its elements. We say that a minimal basis is unique if all minimal bases differ only by
sign changes of the elements. Considering the indeterminacies except for the sign changes and
in view of Lemma 3.5.3 below, we have the following corollary to Theorem 3.5.1.

Corollary 3.5.1 Minimal Markov basis is unique if and only if for each t, F � itself consti-
tutes one B|

�
|−1-equivalence class or F � is a two element set.

In this corollary, the two cases are not necessarily exclusive, namely, there are cases where
F � is a two element set forming a single B|

�
|−1-equivalence class. In this corollary the importance

of two element set F � = {x, y} is suggested. When F � = {x, y} is a two element set, then we
call z = x−y an indispensable move. Now we state another corollary, which is more convenient
to use.

Corollary 3.5.2 The unique minimal Markov basis exists if and only if the set of indispens-
able moves forms a Markov basis. In this case, the set of indispensable moves is the unique
Markov basis.

From these corollaries it seems that minimal Markov basis is unique only under special
conditions. It is therefore of great interest that minimal Markov basis is unique for some
standard problems in k-way (k ≥ 2) contingency tables with fixed marginals. On the other
hand for the simplest case of one-way contingency tables, minimal Markov basis is not unique.
These facts will be confirmed in Section 3.5.4.
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3.5.3 Proofs and some additional facts

Here we give a proof of Theorem 3.5.1 and its corollaries. We also state some lemmas, which
is of some independent interest.

Lemma 3.5.1 If a move z is applicable to at least one element of F � , then

deg z ≤ |t|, (3.37)

where the equality holds if and only if t = Az+ = Az−.

Proof. Let z be applicable to x ∈ F � . Then by (3.33) x(i) ≥ z−(i), ∀i ∈ I. Summing over
I yields (3.37).

Concerning the equality, if z be applicable to x ∈ F � and the equality holds in (3.37), then
x(i) = z−(i), ∀i ∈ I and

t = Ax =
∑

i∈I

a(i)x(i) =
∑

i∈I

a(i)z−(i) = Az−.

Conversely if t = Az+ = Az−, then deg z = |t| by definition of deg z and |t|. Q.E.D.

Lemma 3.5.1 implies that in considering mutual accessibility between x, y ∈ F � , we only
need to consider moves of degree smaller than |t| or moves z with t = Az+ = Az−.

Recall that, for a frequency vector x = {x(i)}i∈I, its support is defined by

supp(x) = {i | x(i) > 0},

which is the set of positive cells of x. Lemma 3.5.1 also implies the following simple but useful
fact.

Lemma 3.5.2 Suppose that F � = {x, y} is a two-element set and suppose that the supports
of x and y are disjoint. Then K � = 2 and x, y are B|

�
|−1-equivalence classes by themselves.

Furthermore z = y − x belongs to each Markov basis.

Proof. Suppose that y is accessible from x by B|
�
|−1. Then there exists a non-zero move z

with deg z ≤ |t|−1 such that z is applicable to x. If x+z = y, then z = y−x and deg z = |t|
because the supports of x and y are disjoint. Therefore x + z 6= y and F � contains a third
element x + z, which is a contradiction. Therefore y and x are in different B|

�
|−1-equivalence

classes, implying that y and x are B|
�
|−1-equivalence classes by themselves.

Now consider moving from x to y. Since they are B|
�
|−1-equivalence classes by themselves,

no non-zero move z of degree deg z < |t| is applicable to x. By Lemma 3.5.1, only moves z

with t = Az+ = Az− are applicable to x. If any such move is different from y − x, then as
above F � contains a third element. It follows that in order to move from x to y, we have to
move by exactly one step using the move z = y −x. Therefore z has to belong to any Markov
basis. Q.E.D.
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Define min(x, y), the minimum of x and y, elementwise

min(x, y)(i) = min(x(i), y(i)).

Lemma 3.5.2 can be slightly modified to yield the following result for the case, where supports
of x and y are not necessarily disjoint.

Lemma 3.5.3 Suppose that F � = {x, y} is a two-element set. Then z = y − x belongs to
each Markov basis.

Proof. If the supports of x and y are disjoint, then the result is already contained in Lemma
3.5.2. Otherwise let v = min(x, y) and consider y − v and x− v. Then the supports of y − v

and x − v are disjoint and by Lemma 3.5.2 again

z = (y − v) − (x − v) = y − x

belongs to each Markov basis. Q.E.D.

The following lemma concerns replacing a move by series of moves.

Lemma 3.5.4 Let B be a set of moves and let z0 6∈ B be another non-zero move. Assume
that z+

0 is accessible from z−
0 by B. Then for each x, to which z0 is applicable, x + z0 is

accessible from x by B.

This lemma shows that if z+
0 is accessible from z−

0 by B, then we can always replace z0 by
a series of moves from B.

Proof. Suppose that z0 is applicable to x. Then x − z−
0 ≥ 0 by (3.33). By the definition of

accessibility (cf. (3.34)), we can move from z−
0 to z+

0 by moves from B without causing negative
cells on the way. Then the same sequence of moves can be applied to x without causing negative
cells on the way, leading from x to x + z0. Q.E.D.

Now we are ready to prove Theorem 3.5.1 and is corollaries.

Proof of Theorem 3.5.1. Let B be a minimal Markov basis. For each z ∈ Bn \ (B ∩ Bn),
z+ is accessible from z− by B ∩ Bn, because no move of degree greater than n is applicable to
z+ as stated in Lemma 1. Considering this fact and Lemma 5, it follows that Bn and B ∩ Bn

induces the same equivalence classes in F � , |t| = n + 1. Fix a particular t. Write

{z1, . . . , zL} = B ∩ B � .

For any j = 1, . . . , L, let
x = z+

j , y = z−
j .

If x and y are in the same B|
�
|−1-equivalence class, then by Lemma 3.5.4, zj can be replaced

by a series of moves of lower degree from B and B \ {zj} remains to be a Markov basis. This
contradicts the minimality of B. Therefore z+

j and z−
j are in two different B|

�
|−1-equivalence

classes connecting them. Now we consider an undirected graph, whose vertices are B|
�
|−1-

equivalence classes of F � and whose edges are moves z1, . . . , zL. Considering that B is a
Markov basis, and no move of degree greater than |t| is applicable to each element of F � as
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stated in Lemma 1, this graph is connected. On the other hand if the graph contains a cycle,
then there exits zj, such that z+

j and z−
j are mutually accessible by B \ {zj}. By Lemma 3.5.4

again, this contradicts the minimality of B. It follows that the graph is a tree. Since any tree
with K � vertices has K � − 1 edges, L = K � − 1.

Reversing the above argument, it is now easy to see that if K � − 1 moves z �
,1, . . . , z �

,K � −1

connecting different B|
�
|−1-equivalence classes of F � are chosen in such a way that the equivalence

classes are connected into a tree by these moves, then

B =
⋃

�
:K � ≥2

{z �
,1, . . . , z �

,K � −1}

is a minimal Markov basis. Q.E.D.

Proof of Corollary 3.5.1. From our argument preceding Corollary 3.5.1, it follows that if
minimal Markov basis is unique then for each t, F � itself constitutes one B|

�
|−1-equivalence class

or F � is a two element set {x �
,1, x �

,2}, such that x �
,1 6∼ x �

,2 (mod B|
�
|−1). Therefore we only

need to prove the converse. Suppose that for each t, F � itself constitutes one B|
�
|−1-equivalence

class or F � is a two element set. By Lemma 3.5.3, for each two-element set F � = {x, y} the
move z = y−x belongs to each Markov basis. However by Theorem 3.5.1 each minimal Markov
basis consists only of these moves. Therefore minimal Markov basis is unique. Q.E.D.

Proof of Corollary 3.5.2. By Lemma 3.5.3, indispensable moves belong to each Markov
basis. Therefore if the set of indispensable moves forms a Markov basis, then it is the unique
Markov basis.

On the other hand if the set of indispensable moves do not constitute a Markov basis, then
there is a term with K � ≥ 3 in (3.36) and in this case a minimal Markov basis B is not unique
as discussed after Theorem 3.5.1.

From these considerations it is obvious that if the unique Markov basis exists, it coincides
with the set of indispensable moves. Q.E.D.

Finally we derive an additional lemma, which is of some independent interest. For some set
F of frequency vectors, define its support by

supp(F) =
⋃

x∈F

supp(x) = {i | x(i) > 0 for some x ∈ F}.

Then we have the following lemma.

Lemma 3.5.5 Consider the B|
�
|−1-equivalence classes of (3.35). The supports of the equiv-

alence classes supp(F �
,1), . . . , supp(F �

,K � ) are disjoint.

Proof. Suppose that there exist x ∈ F �
,j1, y ∈ F �

,j2, j1 6= j2, such that the supports of x and
y are not disjoint. Let v = min(x, y) and consider y − v and x − v. Because v is a non-zero
vector, the sample size becomes smaller

|x − v| = |y − v| < n = |x| = |y|.
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Then

z = y − x = (y − v) − (x − v)

has degree deg z = |x − v| < n. Now y = x + z is accessible from x by a single move z. This
is a contradiction, because x and y belong to different Bn−1-equivalence classes. Q.E.D.

3.5.4 Some examples of minimal Markov bases

In this section we verify Theorem 3.5.1 for various problems. First we investigate standard
contingency tables with fixed marginals. Then we investigate some other models including a
simple case of Poisson regression model and the Hardy-Weinberg model.

One-way contingency tables. We start with the simplest case of one-way contingency
tables. Let x = {xi}i∈[I] be an I dimensional frequency vector and A = 1′I . In this case, t is the
sample size n. This situation corresponds to testing the homogeneity of mean parameters for
I independent Poisson variables conditional on the total sample size n. See also the example
of Poisson regression below. In this case, a minimal Markov basis is formed as a set of I − 1
degree 1 moves, but is not unique. A minimal Markov basis is constructed as follows. First
consider the case of n = |t| = 1. There are I elements in F � as

F � = {(1, 0, . . . , 0)′, (0, 1, 0, . . . , 0)′, . . . , (0, . . . , 0, 1)′}.

Each element x ∈ F � forms an equivalence class by itself. To connect these points into a tree,
there are II−2 ways of choosing I − 1 degree 1 moves by Cayley’s theorem (see e.g. Chapter 4
of Wilson, 1985). One example is

B = {(1,−1, 0, . . . , 0)′, (0, 1,−1, 0, . . . , 0)′, . . . , (0, . . . , 0, 1,−1)′}.

It is easily verified that no move of degree larger than 1 is needed.

Two-way contingency tables. Next example is a standard two-way contingency table with
fixed row and column sums. As is already seen, x = {xij}i∈[I],j∈[J ] and

A =

[
1′I ⊗ EJ

EI ⊗ 1′J

]
.

This is an elementary example of testing the hypothesis that the rows and the columns are
independent. In this case, it is well known that the set of degree 2 moves displayed as

+1 −1
−1 +1

is a Markov basis. In addition, this is the unique minimal Markov basis from the discussion in
the previous section. Indeed, for every t with |t| = 2, except for a trivial case of one-element
set #F � = 1, there are only two elements in F � and the above move is the difference of these
two elements.
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Three-way contingency tables with fixed two-dimensional marginals. Next we con-
sider three-way contingency tables with fixed two-dimensional marginals. As we have seen in
Section 3.5.1, x = {xijk}i∈[I],j∈[J ],k∈[K] is the frequency vector of I × J × K contingency table
with lexicographical ordering of cells and A is written as

A =




1′I ⊗ EJ ⊗ EK

EI ⊗ 1′J ⊗ EK

EI ⊗ EJ ⊗ 1′K


 .

This corresponds to testing no three-way interactions of the log-linear model. As is already
stated, it is surprisingly difficult to construct a connected Markov chain. Although an algebraic
algorithm to calculate a Markov basis is given by Diaconis and Sturmfels (1998), any explicit
characterization of a Markov basis is not known at present, except for some special cases. For
the case of 2×J×K tables, an explicit form of a Markov basis is given in Diaconis and Sturmfels
(1998). Their basis is a set of degree 4, 6, . . . , min{J, K} moves, where a typical degree 2n move
is the following 2 × n × n move displayed as

+1 −1 0 0 · · · 0
0 +1 −1 0 · · · 0
...

. . .
. . .

...
0 +1 −1 0
0 0 · · · 0 +1 −1
−1 0 · · · 0 0 +1

−1 +1 0 0 · · · 0
0 −1 +1 0 · · · 0
...

. . .
. . .

...
0 −1 +1 0
0 0 · · · 0 −1 +1

+1 0 · · · 0 0 −1

.

All the other degree 2n moves are obtained from this by permutations of indices or axes.
For the case of 3× 3×K tables, we proves in Section 3.2 that a Markov basis is given as a

set of the following four types of moves (and permutation of their indices and axes).

degree 4 move :

degree 6 move :

degree 8 move :

degree 10 move :

+1 −1 0 0 0
−1 +1 0 0 0
0 0 0 0 0

+1 −1 0 0 0
−1 0 +1 0 0
0 +1 −1 0 0

+1 −1 0 0 0
−1 +1 0 0 0
0 0 0 0 0

+1 −1 0 0 0
−1 +1 0 −1 +1
0 0 0 +1 −1

−1 +1 0 0 0
+1 −1 0 0 0
0 0 0 0 0

−1 +1 0 0 0
+1 0 −1 0 0
0 −1 +1 0 0

−1 0 +1 0 0
+1 0 0 −1 0
0 0 −1 +1 0

−1 0 +1 0 0
+1 0 0 0 −1
0 0 −1 0 +1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 +1 −1 0 0
0 −1 0 +1 0
0 0 +1 −1 0

0 +1 −1 0 0
0 −1 0 +1 0
0 0 +1 −1 0

It is observed that F � is a two element set for each t = Az of the above moves z for the 2×J×K
case and for the 3 × 3 × K case. Hence these moves constitute the unique minimal basis for
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respective cases. In addition, for the cases of 3 × 4 × K and 4 × 4 × 4, we proves that the set
of indispensable moves listed in Section 3.3 constitutes the unique minimal Markov basis for
each cases. However, for general I × J × K case, we do not know whether a unique minimal
Markov basis exists or not. This is one of very attractive open problems.

Three-way contingency tables with fixed one-dimensional marginals. We now con-
sider general three-way tables with fixed one-dimensional marginals. This corresponds to test-
ing the independence model for three-way tables. Recently Dobra and Sullivant (2002) gave
a general construction of Markov basis for decomposable and reducible models. The three-
way independence model is a special case of decomposable models and can be treated in the
framework of Dobra and Sullivant (2002). However our main concern here is the question of
minimality of the Markov basis given in Proposition 3.5.1 below.

With lexicographic ordering of indices, the matrix A is written as

A =




1′I ⊗ 1′J ⊗ EK

1′I ⊗ EJ ⊗ 1′K
EI ⊗ 1′J ⊗ 1′K


 .

In this case, we construct a minimal Markov basis as follows.
There are two obvious patterns of moves of degree 2. An example of moves of type I is

z111 = z222 = 1, z211 = z122 = −1,

with other elements being 0. For the case of 2 × 2 × 2 table, this move can be displayed as
follows

+1 0
0 −1

−1 0
0 +1

.

All the other moves of type I are obtained by permutation of indices or the axes.
An example of moves of type II is

z111 = z122 = 1, z112 = z121 = −1,

with other elements being 0. For the case of 2 × 2 × 2 table, this move can be displayed as
follows

+1 −1
−1 +1

0 0
0 0

.

All the other moves of type II are obtained by permutation of indices or the axes. Let B∗ be
the set of type I and type II degree 2 moves. Then we have the following proposition.

Proposition 3.5.1 B∗ is a Markov basis for three-way contingency tables with fixed one-
dimensional marginals.

Proof. In this problem it is obvious that no degree 1 move is applicable to any frequency
vector. Furthermore it is easy to verify that every degree 2 move is either of type I or type II.
It remains to verify that for |t| ≥ 3, F � itself constitutes one B∗-equivalence class. We can now
apply the same argument used for 3 × 3 × K tables with fixed two-dimensional marginals in
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Section 3.2. Suppose that for some t, F � consists of more than one B∗-equivalence classes. Let
F1,F2 denote two different B∗-equivalence classes. Choose x ∈ F1, y ∈ F2 such that

|z| = |x − y| =
∑

i,j,k

|xijk − yijk|

is minimized. Because x and y are chosen from different B∗-equivalence classes, this minimum
has to be positive. In the following we let z111 > 0 without loss of generality.
Case 1: Suppose that there exists a negative cell zi011 < 0, i0 ≥ 2. Then because

∑
j,k zi0jk =

0, there exists (j, k), j + k > 2, with zi0jk > 0. Then the four cells

(1, 1, 1), (i0, 1, 1), (i0, j, k), (1, j, k)

are in the positions of either type I move or type II move. In either case we can apply a type
I move or a type II move to x or y and make |z| = |x − y| smaller, which is a contradiction.
This argument shows that z can not contain both positive and negative elements in any one-
dimensional slice.
Case 2: Now we consider the remaining case, where no one-dimensional slice of z contains
both positive and negative elements. Since

∑
j,k z1jk = 0, there exists (j1, k1), j1, k1 ≥ 2, such

that z1j1k1
< 0. Similarly there exists (i1, k2), i1, k2 ≥ 2, such that zi11k2

< 0. Then the four
cells

(1, j1, k1), (1, 1, k1), (i1, 1, k2), (i1, j1, k2)

are in the positions of a type II move (if k1 = k2) or a type I move (if k1 6= k2) and we can apply
a degree 2 move. By doing this |z| = |x − y| may remain the same, but now z11k1

becomes
negative and this case reduces to Case 1. Therefore Case 2 itself is a contradiction. Q.E.D.

We show in the following that B∗ is not a minimal Markov basis. Let z be a degree
2 move and let t = Az+. If z is a type II move, it is easy to verify that F � is a two-
element set {z+, z−}. Therefore degree 2 moves of type II belong to each Markov basis. On
the other hand, if z is a type I move, F � is a four-element set. For the 2 × 2 × 2 case, let
t = (z1··, z2··, z·1·, z·2·, z··1, z··2)

′ = (1, 1, 1, 1, 1, 1)′. Then it follows

F(1,1,1,1,1,1)′ =

{
1 0
0 0

0 0
0 1

,
0 1
0 0

0 0
1 0

,
0 0
1 0

0 1
0 0

,
0 0
0 1

1 0
0 0

}
.

To connect these elements to a tree, only three moves of type I are needed. In the 2 × 2 × 2
case, there are 44−2 = 16 possibilities, such as

+1 −1
0 0

0 0
−1 +1

,
0 +1
−1 0

0 −1
+1 0

,
0 0

+1 −1
−1 +1
0 0

or
+1 −1
0 0

0 0
−1 +1

,
+1 0
−1 0

0 −1
0 +1

,
+1 0
0 −1

−1 0
0 +1

and so on. From these considerations, a minimal Markov basis for I × J ×K tables consists of

3

(
I
2

)(
J
2

)(
K
2

)
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degree 2 moves of type I and

I

(
J
2

)(
K
2

)
+ J

(
I
2

)(
K
2

)
+ K

(
I
2

)(
J
2

)

degree 2 moves of type II.

Poisson regression. Here we consider a simple example of Poisson regression discussed in
Diaconis, Eisenbud and Sturmfels (1998). Let x = (x0, x1, . . . , x4)

′ and

A =

[
1 1 1 1 1
0 1 2 3 4

]
.

Diaconis, Eisenbud and Sturmfels (1998) states that the set of degree 2 moves,

B = {(1,−1,−1, 1, 0)′, (1,−1, 0,−1, 1)′, (0, 1,−1,−1, 1)′,

(1,−2, 1, 0, 0)′, (0, 1,−2, 1, 0)′, (0, 0, 1,−2, 1)′}

enables a connected chain. Indeed, the above basis is a minimal Markov basis but is not unique.
To see this, consider F � with |t| = 2. There are 9 possible values of t as

t′ = (2, 0), (2, 1), . . . , (2, 8).

For the case of t′ = (2, 0), (2, 1), (2, 7), (2, 8), there is only one element in F � and we need not
any move. For the case of t′ = (2, 2), (2, 3), (2, 5), (2, 6), there are two elements in F � , but for
the case of t′ = (2, 4) there are three elements in F � as

F(2,4)′ = {(1, 0, 0, 0, 1)′, (0, 1, 0, 1, 0)′, (0, 0, 2, 0, 0)′}.

The elements of the above B corresponds to the difference of the two elements in F � , t′ =
(2, 2), (2, 3), (2, 5), (2, 6), and {(1,−1, 0,−1, 1)′, (0, 1,−2, 1, 0)′}, which connects the three ele-
ments in F(2,4)′ into a tree. This is not the only pair of moves to connect the three elements in
F(2,4)′ to form a tree. There are three possibilities, i.e.,

B∗ = {(1,−1,−1, 1, 0)′, (1,−1, 0,−1, 1)′, (0, 1,−1,−1, 1)′,

(1,−2, 1, 0, 0)′, (1, 0,−2, 0, 1)′, (0, 0, 1,−2, 1)′}

and

B∗∗ = {(1,−1,−1, 1, 0)′, (1, 0, 2, 0, 1)′, (0, 1,−1,−1, 1)′,

(1,−2, 1, 0, 0)′, (0, 1,−2, 1, 0)′, (0, 0, 1,−2, 1)′}

are also minimal Markov bases.
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Hardy-Weinberg model. Consider the case of

x = (x11, x12, . . . , x1I , x22, x23, . . . , x2I , x33, . . . , xII)
′

and t = (t1, . . . , tI)
′ defined as

ti = 2xii +
∑

j 6=i

xij , i = 1, . . . , I,

where xij = xji for i > j. In this case, A is written as

A = (AI AI−1 · · · A1), Ak =
(
Ok×(I−k) B′

k

)′
,

where Bk is the following k × k square matrix

Bk =




2 1 1 · · · 1
0 1 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 · · · 0 1




.

This corresponds to the conditional test of the Hardy-Weinberg proportion. For this problem,
Guo and Thompson (1992) construct a connected Markov chain. Their basis consists of three
types of degree 2 moves, namely, type 0, type 1 and type 2. Here the term type refers to the
number of nonzero diagonal cells in the move. The examples of the moves are displayed as

type 0:

0 +1 −1 0
0 0 −1

0 +1
0

, type 1:

+1 −1 −1 0
0 +1 0

0 0
0

, type 2:

+1 0 −2 0
0 0 0

+1 0
0

.

We show in the following that their basis is not minimal, and a minimal basis is not unique.
Consider F � with |t| = 2 for the above three types of moves. If t = Az+ = Az− for moves
z of type 1 or type 2, there are two elements in F � and the move of type 1 or type 2 is the
difference of these two elements. But if t = Az+ = Az− for a move z of type 0, there are three
elements in F � . Then to connect these three elements to form a tree, we can chose two moves to
construct a minimal Markov basis. (There are three ways of doing this.) For example, consider
the case of I = 4 and t = (1, 1, 1, 1)′. F(1,1,1,1)′ is written as

F(1,1,1,1)′ =





0 1 0 0
0 0 0

0 1
0

,

0 0 1 0
0 0 1

0 0
0

,

0 0 0 1
0 1 0

0 0
0





.

To connect these three elements to a tree, any two of the following type 0 moves of degree 2,

0 +1 −1 0
0 0 −1

0 +1
0

,

0 +1 0 −1
0 −1 0

0 +1
0

,

0 0 −1 +1
0 +1 −1

0 0
0

122



can be included in a minimal Markov basis. Accordingly, I(I − 1)(I − 2)(I − 3)/12 moves of
type 0, I(I − 1)(I − 2)/2 moves of type 1 and I(I − 1)/2 moves of type 2 constitute a minimal
Markov basis. The basis by Guo and Thompson (1992) is not minimal in the sense that all of
I(I − 1)(I − 2)(I − 3)/8 moves of type 0 are used in the algorithm proposed by them.

3.5.5 Discussion

In the examples above we saw that for some problems minimal Markov basis is unique and
for other problems it is not unique. Clearly this depends only on the properties of matrix A.
But it seems very difficult to give a simple necessary and sufficient condition on A such that
minimal Markov basis is unique. In integer programming literature (e.g. Schrijver, 1986), an
important condition is the total unimodularity of the matrix A. We have seen that in the
case of two-way contingency tables minimal Markov basis is unique and it is well known that
A in (3.31) is totally unimodular. However in the simplest case of one-way tables minimal
Markov basis is not unique and yet A = (1, . . . , 1) is obviously totally unimodular. This shows
that total unimodularity is not directly related to uniqueness of minimal Markov basis. We
should also mention that A for three-way tables with fixed two-dimensional marginals in (3.32)
is not totally unimodular in general. In fact we have found a submatrix of A in (3.32) with
determinant 2 by simple computer search.

As mentioned in Section 3.5.2, Theorem 3.5.1 is conceptually constructive, building up a
minimal Markov basis from below. However it is computationally difficult to characterize the
B|

�
|−1-equivalence classes of F � for large |t| as discussed in Diaconis, Eisenbud and Sturmfels

(1998). If we could easily select representative elements from B|
�
|−1-equivalence classes F � for

each t, then a minimal Markov basis could be constructed as described in Theorem 3.5.1.
Another question is to find a theoretical upper bound for n0 such that F � itself constitutes one
B|

�
|−1-equivalence class for all t with |t| ≥ n0. By the Hilbert basis theorem existence of such

an n0 is guaranteed, but if we do not know some upper bound for n0 we can not actually stop
forming B|

�
|−1-equivalence classes of F � .

As mentioned at the end of Section 3.5.1, it is a subtle question to determine which moves
of a minimal Markov basis B are needed for connecting F � for a given t. Obviously we only
need those elements of B, that are applicable to at least one frequency vector of F � . However
the set of these move may not be minimal for connecting F � for a given t. See the discussion
on corner minors for two-way tables in Section 3 of Diaconis, Eisenbud and Sturmfels (1998).
We study this question on two-way tables with structural zeros in Section 3.4.7.

3.6 Characterizations of an invariant minimal Markov

basis and its uniqueness

In this section we define an invariant Markov basis for a connected Markov chain over the set
of contingency tables with fixed marginals and derive some characterizations of minimality of
the invariant basis. We also give a necessary and sufficient condition for uniqueness of invariant
minimal Markov basis. The invariance here refers to permutation of indices of each axis of the
contingency tables. If the categories of each axis do not have any order relations among them,
it is natural to consider the action of the symmetric group on each axis of the contingency
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table. Logically important point is that if a unique minimal Markov basis exists then it is
also the unique invariant Markov basis. On the other hand, if a minimal Markov basis is
not unique, an invariant minimal Markov basis is important, since a minimal Markov basis is
usually not symmetric (see Section 3.5). In Section 3.5, we derived some characterizations of a
minimal Markov basis and gave a necessary and sufficient condition for uniqueness of a minimal
Markov basis. We combine this approach with the theory of transformation groups to study
minimality of invariant Markov bases and give some characterizations of invariant Markov basis
and its minimality. We also give a necessary and sufficient condition for uniqueness of invariant
minimal Markov basis.

The construction of this section is as follows. Definitions and notations of contingency
tables and invariant Markov basis are given in Section 3.6.1. Structures of an invariant minimal
Markov basis are derived in Section 3.6.2. Examples of all hierarchical 2× 2× 2× 2 models are
studied in Section 3.6.3.

3.6.1 Preliminaries

Notations and definitions

First we give some additional notations and definitions on contingency tables to the notations
given in Section 3.5.1. In Section 3.6 we focus our attention on the ordinary k-way contingency
tables. Then we consider an I1 × · · · × Ik k-way contingency table x. We denote a cell of
the contingency table by i = (i1, . . . , ik) or i = (i1 . . . ik). The set of cells is denoted by
I = I1 × · · · × Ik, where I` = [I`], ` ∈ [k]. We write x = {x(i)}i∈I where x(i) is a frequency
of cell i. Let X denote the set of all k-way contingency tables given by

X =
{
x = {x(i)}i∈I | x(i) ∈ Z≥0 for i ∈ I

}
.

X is partitioned as

X =
∞⋃

n=0

Xn, Xn = {x ∈ X | |x| = n},

where we have already defined as |x| =
∑

i∈I

x(i).

Let K = [k] and let D denote a subset of K. The D-marginal xD = {xD(iD)}iD∈ID
of x is

the contingency table with marginal cells iD ∈
∏

`∈D

I` and entries given by

xD(iD) =
∑

jK\D∈IK\D

x(iD, jK\D) .

Note that xD is an m-way contingency table if D = {i1, . . . , im}.
Let D1, . . . , Dr ⊂ K. Throughout this section we assume that D1 ∪ · · · ∪ Dr = K and

there does not exist i 6= j such that Di ⊆ Dj. Note that {D1, . . . , Dr} corresponds to the
generating class of a hierarchical log-linear model for the contingency table. The set of D-
marginal frequencies

t = t(x) = (xD1
, . . . , xDr)
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is the sufficient statistic under the hierarchical log-linear model. Note that if the cells and the
elements of the sufficient statistic are ordered appropriately, we can write t in matrix form
as t = Ax as in Section 3.5.1. We prefer the D-marginal expressions rather than the matrix
expressions in this section, to represent the hierarchical models that we consider clearly. We
also write the reference set of all the contingency tables having the same (D1, . . . , Dr)-marginals
as

F � = F � (D1, . . . , Dr) = {x ∈ X | t(x) = t} .

Recall that we have defined the sample size of t by the sample size of x in F � since all the
contingency tables in the same reference set have the same sample size. Then the set T of
possible values of the sufficient statistic t, i.e., T = {t(x) | x ∈ X}, is partitioned as

T =

∞⋃

n=0

Tn, Tn = {t | |t| = n} .

Let Z ⊃ X be the set of k-way arrays z = {z(i)}i∈I containing integer entries

Z =
{
z = {z(i)}i∈I | z(i) ∈ Z for i ∈ I

}
.

The set of moves is an important subset of Z defined as

M(D1, . . . , Dr) = {z ∈ Z | zDj
= 0, j ∈ [r]} ⊂ Z,

where zD is the D-marginal of z. z ∈ M(D1, . . . , Dr) is sometimes called as a move for
D1, . . . , Dr. We also define a set of moves with degree less than or equal to n as

Mn(D1, . . . , Dr) = {z ∈ M(D1, . . . , Dr) | deg(z) ≤ n}, (3.38)

where deg(z) is defined as the sample size of the positive or negative part of z as we have
defined in Section 3.5.1. We occasionally write simply Mn for convenience.

As we have defined in Section 3.5.1, a finite set B ⊂ M(D1, . . . , Dr) is called a Markov basis
for D1, . . . , Dr if for all t ∈ T , F � (D1, . . . , Dr) itself constitutes one B-equivalence class. Note
that, in this definition, if B is a Markov basis and z,−z ∈ B, then B \ {z} and B \ {−z} are
also Markov bases, respectively. Moreover, if we replace any element z of a Markov basis B
with −z, the remaining set is still a Markov basis. In other words, there is a freedom of the
signs of the elements of a Markov basis. In this section, we identify an element z of a Markov
basis with its sign change −z for convenience.

Our moves contain many zero cells. Furthermore often the non-zero cells of a move contain
either 1 or −1. Therefore a move can be concisely denoted by locations of its non-zero cells.
We express a move z of degree n as

z = [{i1, . . . , in} ‖ {j1, . . . , jn}],

where i1, . . . , in are the cells of positive frequencies of z and j1, . . . , jn are the cells of negative
frequencies of z. In the case z(i) > 1, i is repeated z(i) times. Similarly j is repeated −z(j)
times if z(j) < −1. We use similar notation for contingency tables as well. x ∈ Xn is simply
denoted as

x = [{i1, . . . , in}] = [i1, . . . , in] .
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Symmetric group and its action

Here we define an action of a direct product of symmetric groups on cells. From the action
on cells, further actions are induced on contingency tables, marginal cells, marginal frequencies
and moves.

First we give a brief list of definitions and notations of group action. Let a group G act on
a set X . G(x) = {gx | g ∈ G} is the orbit through x. For a subset A of X , G(A) = {gx | x ∈
A, g ∈ G}. X /G denotes the orbit space, i.e. the set of orbits. Gx = {g | gx = x} denotes the
isotropy subgroup of x in G. If G acts on X , the action of G on the set of functions f on X
is induced by gf(x) = f(g−1x). Let h : X → Y be a surjection. If h(x) = h(x′) ⇒ h(gx′) =
h(gx), ∀g ∈ G, then the action of G on Y is induced by defining gy = h(gx), where y = h(x).
Throughout the rest of this paper, the number of elements of a finite set A is denoted by |A|.

In our problem G is the direct product of symmetric groups, which acts on the index set I.
Let G` denote the symmetric group of order I` for ` ∈ [k] and let

G = G1 × G2 × · · · × Gk

be the direct product. We write an element of g ∈ G as

g = g1 × · · · × gk =

(
1 · · · I1

σ1(1) · · · σ1(I1)

)
× · · · ×

(
1 · · · Ik

σk(1) · · · σk(Ik)

)
.

G acts on I by
i′ = gi

= (g1i1, . . . , gkik)
= (σ1(i1), . . . , σk(ik)) .

Then the action of G on X is induced by

x′ = gx

= {x(g−1i)}i∈I .
G also acts on the marginal cells by

i′D = giD

= (gs1
is1

, . . . , gsmism)
= (σs1

(is1
), . . . , σsm(ism)),

where D = {s1, . . . , sm}. Hence G acts on marginal tables by

x′
D = gxD

= {xD(g−1iD)}iD∈ID
.

Considering this action simultaneously for D1, . . . , Dr, the action of G on the sufficient statistic
t = (xD1

, . . . , xDr) is defined by

gt = (gxD1
, . . . , gxDr).

An important point here is that the action of G on t is induced from the action of G on
x, because the the calculation of D-marginals and the action of G on X are commutative.
Although this is intuitively clear, we state this as a lemma and give a proof.

Lemma 3.6.1 (gx)D = gxD for all g ∈ G and x ∈ X.
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Proof. Write x̃ = gx. From the definitions, it follows that

x̃D(iD) =
∑

jK\D∈IK\D

x̃(iD, jK\D)

=
∑

jK\D∈IK\D

x(g−1(iD, jK\D))

=
∑

jK\D∈IK\D

x(g−1iD, g−1jK\D)

= xD(g−1iD)
= (gxD)(iD) .

Q.E.D.

By this lemma, if xDi
= yDi

, i ∈ [r], then (gx)Di
= (gy)Di

, i ∈ [r], ∀g ∈ G. In terms of the
sufficient statistic this can be equivalently written as t(x) = t(y) ⇒ t(gx) = t(gy), ∀g ∈ G.
Therefore the action of G on T is induced from the action of G on X . Also it is important to
note that the isotropy subgroup G � of t acts on the reference set F � .

So far we have only considered non-negative frequencies. However clearly the above consid-
eration can also be applied to the set Z of integer arrays. In particular, Lemma 3.6.1 holds for
the action of G on Z, i.e., taking marginals of integer arrays commutes with the action of G.
Therefore if z is a move, then gz is a move as well. Therefore

G(M(D1, . . . , Dr)) = M(D1, . . . , Dr).

and G acts on M(D1, . . . , Dr). More concretely, in terms of the positive part and the negative
part we can write

z′ = gz

= gz+ − gz− .

We also define that a move z = z+ −z− is symmetric if z+ = gz− for some g ∈ G. Conversely,
a move z is asymmetric if G(z+) 6= G(z−).

Now we can define an invariant set of moves. B ⊂ M(D1, . . . , Dr) is G-invariant if G(B) =
B. Note that here we are identifying a move z ∈ B with its sign change −z. Therefore B is
G-invariant if and only if

∀g ∈ G, ∀z ∈ B =⇒ gz ∈ B or − gz ∈ B .

In other words, B is G-invariant if and only if it is a union of orbits B =
⋃

z∈A G(z) for some
subset A ⊂ M(D1, . . . , Dr) of moves.

A finite set B ⊂ M(D1, . . . , Dr) is an invariant Markov basis for D1, . . . , Dr if it is a Markov
basis and it is G-invariant. An invariant Markov basis is minimal if no proper G-invariant
subset of B is a Markov basis. A minimal invariant Markov basis always exists, because from
any invariant Markov basis, we can remove orbits one by one, until none of the remaining orbits
can be removed any further.
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3.6.2 Characterizations of an invariant Markov basis and its unique-
ness

In this section, we first study the relationships between the orbits and Mn−1(D1, ..., Dr)-
equivalence classes of Xn and then derive some characterizations of an invariant minimal Markov
basis and its uniqueness.

Some properties of orbits of contingency tables and marginal frequencies

Here we derive some basic properties of orbits of G acting on X and T . First we note that
|x| = |gx|, ∀g ∈ G, and hence G(Xn) = Xn. Therefore we consider the action of G on each Xn

separately. Similarly we consider the action of G on each Tn separately.

Consider a particular sufficient statistic t ∈ Tn. Let G(t) ∈ Tn/G be the orbit through t.
Let

FG(
�
) =

⋃
� ′∈G(

�
)

F � ′

denote the union of reference sets over the orbit G(t) through t. Let x ∈ F � . Because t(gx) =
gt, it follows that

gx ∈ Fg
� ⊂ FG(

�
).

Therefore G(FG(
�
)) = FG(

�
). This implies that Xn is partitioned as

Xn =
⋃

α∈Tn/G

Fα, (3.39)

where α runs over the set of different orbits and we can consider the action of G on each FG(
�
)

separately.

Example 3.6.1 Consider the case of k = 3 and D1 = {1}, D2 = {2}, D3 = {3}. This is the
complete independence model of the three-way tables. The decomposition (3.39) of X1 for this
case is trivial since T1 itself is one G-orbit. We consider the decomposition of X2. For this
case there are eight G-orbits in T2 as

T2/G = {G(t1), . . . , G(t8)},
ti = t(xi), i = 1, . . . , 8,
x1 = [(111), (111)], x2 = [(111), (112)],
x3 = [(111), (121)], x4 = [(111), (211)],
x5 = [(111), (122)], x6 = [(111), (212)],
x7 = [(111), (221)], x8 = [(111), (222)]

(3.40)

and we have

X2 = FG(
�
1) ∪ · · · ∪ FG(

�
8). (3.41)

128



The numbers of elements of the orbits G(t1), . . . , G(t8) are calculated as follows.

|G(t1)| = I1I2I3, |G(t2)| = I1I2

(
I3

2

)
,

|G(t3)| = I1

(
I2

2

)
I3, |G(t4)| =

(
I1

2

)
I2I3,

|G(t5)| = I1

(
I2

2

)(
I3

2

)
, |G(t6)| =

(
I1

2

)
I2

(
I3

2

)
,

|G(t7)| =

(
I1

2

)(
I2

2

)
I3, |G(t8)| =

(
I1

2

)(
I2

2

)(
I3

2

)
.

(3.42)

Furthermore we have

|F � | =





1 for t ∈ G(t1) ∪ G(t2) ∪ G(t3) ∪ G(t4),
2 for t ∈ G(t5) ∪ G(t6) ∪ G(t7),
4 for t ∈ G(t8).

(3.43)

Consider a particular FG(
�
). An important observation is that there is a direct product

structure in FG(
�
). Write

G(t) = {t1, . . . , ta},
where a = a(t) = |G(t)| is the number of elements of the orbit G(t) ⊂ Tn. Let b = b(t) =
|FG(

�
)/G| be the number of orbits of G acting on FG(

�
) and let x1, . . . , xb be representative

elements of different orbits, i.e., FG(
�
) = G(x1) ∪ · · · ∪ G(xb) gives a partition of FG(

�
). Then

we have the following lemma.

Lemma 3.6.2 FG(
�
) is partitioned as

FG(
�
) =

a⋃

i=1

b⋃

j=1

F �
i
∩ G(xj), (3.44)

where each F �
i
∩ G(xj) is non-empty. Furthermore if t′i = gti, then x ∈ F �

i
7→ gx ∈ F � ′

i
gives

a bijection between F �
i
∩ G(x) and F � ′

i
∩ G(x).

Proof. FG(
�
) = F �

1
∪ · · · ∪ F �

a is a partition. Intersecting this partition with FG(
�
) =⋃b

j=1 G(xj) gives the partition (3.44). Let x ∈ F � . Then the orbit G(x) intersects each
reference set, i.e. G(x) ∩ F �

i
6= ∅ for i ∈ [a].

Since every g ∈ G is a bijection of FG(
�
) to itself and

g(F � ∩ G(x)) = Fg
� ∩ G(x),

g gives a bijection between F �
i
∩ G(x) and F � ′

i
∩ G(x). Q.E.D.

In particular for each j, F �
i
∩ G(xj), i ∈ [a], have the same number of elements

|F �
1
∩ G(xj)| = · · · = |F �

a ∩ G(xj)|.
In addition, for ti, t

′
i ∈ G(t) such that t′i = gti, the map g : G �

i
→ gG �

i
g−1 gives an isomorphism

between G �
i
and G � ′

i
= gG �

i
g−1, where G �

i
and G � ′

i
are the the isotropy subgroup of ti and t′i

in G, respectively. Therefore there are the following isomorphic structures in F �
i
,

(G �
i
,F �

i
) ' (G � ′

i
,F � ′

i
). (3.45)
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Example 3.6.2 (Example 3.6.1 continued.) In the decomposition (3.41), we have |FG(
�
i)/G| =

b(ti) = 1 and FG(
�
i) = G(xi) for i = 1, . . . , 8. Therefore the right hand side of (3.44) is simply⋃a

i=1 F �
i
in this case. To see the isomorphic structure (3.45), consider FG(

�
8), for example. The

isotropy subgroup of t8 is given by

G �
8

= G̃1
12,12 × G̃2

12,12 × G̃3
12,12,

where we define

G̃`
i1i2,j1j2 = {g ∈ G` | (σ`(i1), σ`(i2)) ∈ {(j1, j2), (j2, j1)}}, i1 6= i2, j1 6= j2.

We also define

G`
i1i2,j1j2 = {g ∈ G` | (σ`(i1), σ`(i2)) = (j1, j2)} ⊂ G̃`

i1i2,j1j2

for later use. Since G` is the symmetric group of order I`, we have |G̃`
i1i2,j1j2

| = 2(I` − 2)! and
|G`

i1i2,j1j2
| = (I` − 2)!. The reference set F �

8
is written as

F �
8

= {[(111), (222)], [(112), (221)], [(121), (212)], [(122), (211)]}.
Consider another element x′ = [(111), (223)] ∈ FG(

�
8) and write t′ = t(x′). The isotropy

subgroup of t′ is given by
G � ′ = G̃1

12,12 × G̃2
12,12 × G̃3

13,13

and the reference set F � ′ is written as

F � ′ = {[(111), (223)], [(113), (221)], [(121), (213)], [(123), (211)]}.
We see the relations t′ = gt8 and gG �

8
g−1 = G � ′ for g ∈ G̃1

12,12 × G̃2
12,12 × G̃3

12,13. In particular
x′ = gx8 holds if g ∈ G1

12,12 × G2
12,12 × G3

12,13 ∪ G1
12,21 × G2

12,21 × G3
12,31.

Next we present examples of b = 2 and b = 3.

Example 3.6.3 Consider the case of k = 4 and D1 = {1, 2}, D2 = {1, 3}, D3 = {2, 3}, D4 =
{3, 4}. This is an example of reducible models. Consider a particular t ∈ T4 such that

t = (xD1
, xD2

, xD3
, xD4

),

where
xD1

= [(i1i2), (i1i
′
2), (i

′
1i2), (i

′
1i

′
2)],

xD2
= [(i1i3), (i1i

′
3), (i

′
1i3), (i

′
1i

′
3)],

xD3
= [(i2i3), (i2i

′
3), (i

′
2i3), (i

′
2i

′
3)],

xD4
= [(i3i4), (i3i

′
4), (i

′
3i4), (i

′
3i

′
4)].

For each im 6= i′m, m = 1, . . . , 4, there are eights elements in F � as

F � = {x1, . . . , x8},
x1 = [(i1i2i3i4), (i1i

′
2i

′
3i4), (i

′
1i2i

′
3i

′
4), (i

′
1i

′
2i3i

′
4)],

x2 = [(i1i2i3i4), (i1i
′
2i

′
3i

′
4), (i

′
1i2i

′
3i4), (i

′
1i

′
2i3i

′
4)],

x3 = [(i1i2i3i
′
4), (i1i

′
2i

′
3i4), (i

′
1i2i

′
3i

′
4), (i

′
1i

′
2i3i4)],

x4 = [(i1i2i3i
′
4), (i1i

′
2i

′
3i

′
4), (i

′
1i2i

′
3i4), (i

′
1i

′
2i3i4)],

x5 = [(i1i2i
′
3i4), (i1i

′
2i3i4), (i

′
1i2i3i

′
4), (i

′
1i

′
2i

′
3i

′
4)],

x6 = [(i1i2i
′
3i4), (i1i

′
2i3i

′
4), (i

′
1i2i3i4), (i

′
1i

′
2i

′
3i

′
4)],

x7 = [(i1i2i
′
3i

′
4), (i1i

′
2i3i4), (i

′
1i2i3i

′
4), (i

′
1i

′
2i

′
3i4)],

x8 = [(i1i2i
′
3i

′
4), (i1i

′
2i3i

′
4), (i

′
1i2i3i4), (i

′
1i

′
2i

′
3i4)].
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We see that

G � = G̃1
i1i′

1
,i1i′

1

× G̃2
i2i′

2
,i2i′

2

× G̃3
i3i′

3
,i3i′

3

× G̃4
i4i′

4
,i4i′

4

(3.46)

for this case, and each F � contains two G � -orbits, i.e.,

F � = {x1, x4, x5, x8} ∪ {x2, x3, x6, x7} = G � (x1) ∪ G � (x2).

Extending t to G(t), we see the direct product structure (3.44) of FG(
�
), where b = |FG(

�
)/G| =

|F � /G � | = 2,

a = |G(t)| =

(
I1

2

)(
I2

2

)(
I3

2

)(
I4

2

)

and

|F � ′ ∩ G(x1)| = |F � ′ ∩ G(x2)| = 4

for each t′ ∈ G(t).

Example 3.6.4 Consider the case of k = 4 and D1 = {1, 2}, D2 = {1, 3}, D3 = {2, 3}, D4 =
{4}. Again this is an example of reducible models. Consider a particular t ∈ T4 such that

t = (xD1
, xD2

, xD3
, xD4

),

where xD1
, xD2

, xD3
are the same as in Example 3.6.3, and xD4

= [(i4), (i4), (i
′
4), (i

′
4)]. For each

im 6= i′m, m = 1, . . . , 4, there are twelve elements in F � as

F � = {x1, . . . , x12},
x9 = [(i1i2i3i4), (i1i

′
2i

′
3i

′
4), (i

′
1i2i

′
3i

′
4), (i

′
1i

′
2i3i4)],

x10 = [(i1i2i3i
′
4), (i1i

′
2i

′
3i4), (i

′
1i2i

′
3i4), (i

′
1i

′
2i3i

′
4)],

x11 = [(i1i2i
′
3i4), (i1i

′
2i3i

′
4), (i

′
1i2i3i

′
4), (i

′
1i

′
2i

′
3i4)],

x12 = [(i1i2i
′
3i

′
4), (i1i

′
2i3i4), (i

′
1i2i3i4), (i

′
1i

′
2i

′
3i

′
4)]

and x1, . . . , x8 are the same as in Example 3.6.3. We see that G � is defined by (3.46) again,
and each F � contains three G � -orbits, i.e.,

F � = {x1, x4, x5, x8} ∪ {x2, x3, x6, x7} ∪ {x9, x10, x11, x12} = G � (x1) ∪ G � (x2) ∪ G � (x9).

Extending t to G(t), we see the direct product structure (3.44) of FG(
�
), where b = |FG(

�
)/G| =

|F � /G � | = 3,

a = |G(t)| =

(
I1

2

)(
I2

2

)(
I3

2

)(
I4

2

)

and

|F � ′ ∩ G(x1)| = |F � ′ ∩ G(x2)| = |F � ′ ∩ G(x9)| = 4

for each t′ ∈ G(t).

The following example of b = 2 is somewhat complicated but it is important in showing an
asymmetric indispensable move.
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Example 3.6.5 Consider the case of k = 3 and D1 = {1, 2}, D2 = {1, 3}, D3 = {2, 3}. This
model is considered extensively for I1 = I2 = 3 in Section 3.2 and Section 3.3. Here we study
the case of I1 = 3, I2 = 5, I3 = 6 and a sufficient statistic t = (xD1

, xD2
, xD3

) ∈ T14, where

xD1
= [(11), (13), (14), (15), (22), (23), (24), (25), (31), (32), (33), (34), (35), (35)],

xD2
= [(11), (12), (13), (16), (23), (24), (25), (26), (31), (32), (34), (35), (36), (36)],

xD3
= [(11), (16), (24), (26), (32), (33), (34), (41), (43), (45), (52), (55), (56), (56)].

In this case, F � = {x1, x2}, where

x1 = [(111), (132), (143), (156), (224), (233), (245), (256), (316), (326), (334), (341), (352), (355)],
x2 = [(116), (133), (141), (152), (226), (234), (243), (255), (311), (324), (332), (345), (356), (356)].

Furthermore, there is no g ∈ G satisfying x1 = gx2, i.e., G(x1) ∩ G(x2) = ∅. (This is obvious
since only x2 contains 2 as a cell frequency.) Therefore x1−x2 is an asymmetric indispensable
move. Extending t to G(t), we see that

|F � ′ ∩ G(x1)| = |F � ′ ∩ G(x2)| = 1

for each t′ ∈ G(t).

A direct product structure of each reference set

Considering the isomorphic structures of (3.45), now we can focus our attention on each refer-
ence set. Consider a particular reference set F � . Here we can restrict our attention to the action
of G � on F � . In characterizing a Markov basis and its minimality, we showed in Section 3.5 that
it is essential to consider M|

�
|−1(D1, . . . , Dr)-equivalence classes of F � , where Mn−1(D1, . . . , Dr)

is given in (3.38). Therefore we have to confirm the relation between the action of G � and
Mn−1(D1, . . . , Dr)-equivalence classes of F � , |t| = n.

Let K � denote the number of Mn−1(D1, . . . , Dr)-equivalence classes of F � as in Theorem
3.5.1. In this section, we write the set of Mn−1(D1, . . . , Dr)-equivalence classes of F � as H � for
simplicity, i.e.,

H � = F � /Mn−1(D1, . . . , Dr) = {X1, . . . , XK � }, K � = |H � |, |t| = n,

in the notation of Theorem 3.5.1. In the sequel let Xγ ∈ H � denote each equivalence class.

Example 3.6.6 (Example 3.6.3 continued.) Consider the model considered in Example 3.6.3.
Now we can restrict our attention to I1 = I2 = I3 = I4 = 2 case, i.e., im = 1, i′m = 2 for
m = 1, . . . , 4 and consider M3(D1, . . . , D4)-equivalence classes of F � . In this case, we see that
|H � | = 2 and

H � = F � /Mn−1(D1, . . . , Dr) = {{x1, x2, x3, x4}, {x5, x6, x7, x8}}

since

x1 − x2 = [(1111), (1221), (2122), (2212)]− [(1111), (1222), (2121), (2212)]
= [{(1221), (2122)} ‖ {(1222), (2121)}] ∈ M2(D1, . . . , D4),

for example.
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Example 3.6.7 (Example 3.6.4 continued.) Similar result to Example 3.6.6 is derived for the
model in Example 3.6.4. Again we can restrict our attention to I1 = I2 = I3 = I4 = 2 case and
consider M3(D1, . . . , D4)-equivalence classes of F � . In this case, we see that |H � | = 2 and

H � = F � /Mn−1(D1, . . . , Dr) = {{x1, x2, x3, x4, x9, x10}, {x5, x6, x7, x8, x11, x12}}.

We now have the following important lemma.

Lemma 3.6.3 If x′ is accessible from x by Mn−1(D1, . . . , Dr), then gx′ is accessible from gx

by Mn−1(D1, . . . , Dr).

Proof. Note that deg(z) ≤ n − 1 if and only if deg(gz) ≤ n − 1. If x′ is accessible from x,
then by (3.34)

x′ = x +

A∑

s=1

εszs,

x +
a∑

s=1

εszs ∈ F � (D1, . . . , Dr) for 1 ≤ a ≤ A .

Applying g to the both sides of the equations we get

gx′ = gx +

A∑

s=1

εsgzs,

gx +
a∑

s=1

εsgzs ∈ Fg
� (D1, . . . , Dr) for 1 ≤ a ≤ A .

Q.E.D.
This lemma holds for all g ∈ G. In particular, gx ∈ F �

(x) if g ∈ G � . This implies that an
action of G � is induced on H � . In fact if π : x 7→ Xγ denotes the natural projection of x to its
equivalence class, then Lemma 3.6.3 states

π(x) = π(x′) ⇒ π(gx) = π(gx′).

Let x ∈ Xγ and g ∈ G � . Then gx belongs to some Mn−1(D1, . . . , Dr)-equivalence class Xγ′ .
By Lemma 3.6.3, this γ′ does not depend on the choice of x ∈ Xγ and we may write γ′ = gγ.
Since by definition a group action is bijective we have the following lemma.

Lemma 3.6.4
g ∈ G � : Xγ 7→ Xγ′

is a bijection of H � to itself.

Combining this result and the isomorphic structure of (3.45), we see that the structure of H � ′

and in particular |H � ′| are common for all t′ ∈ G(t).
Now consider the orbit space H � /G � . Write each element of H � /G � as Γ, and write

XΓ =
⋃

Xγ∈Γ

Xγ. (3.47)
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Then we have the decomposition

F � =
⋃

Γ∈H � /G �

XΓ.

By definition, XΓ is G � -invariant for each Γ and G � acts on XΓ. Therefore we consider each
XΓ separately. An important observation is that there is a direct product structure in XΓ,
which is similar to Lemma 3.6.2. Let ∆ = ∆(Γ) = XΓ/G � be the G � -orbit space of XΓ and
xδ ∈ XΓ, δ ∈ ∆, be the representative elements of different orbits. Then we have the following
lemma.

Lemma 3.6.5 F � is partitioned as

F � =
⋃

Γ∈H � /G �

XΓ

=
⋃

Γ∈H � /G �


 ⋃

Xγ∈Γ

⋃

δ∈∆

Xγ ∩ G � (xδ)


 ,

(3.48)

where each Xγ∩G � (xδ) is non-empty. Furthermore if γ′ = gγ, g ∈ G � , then x ∈ Xγ 7→ gx ∈ Xgγ

gives a bijection between Xγ ∩ G � (x) and Xγ′ ∩ G � (x).

Proof. Similarly to the proof of Lemma 3.6.2, intersecting the partition (3.47) with XΓ =⋃

δ∈∆

G � (xδ) gives the partition (3.48). For each x ∈ XΓ, the orbit G � (x) intersects each equiva-

lence class Xγ , i.e. G � (x) ∩ Xγ 6= ∅ for all Xγ ∈ Γ.
From Lemma 3.6.4 and the definition of XΓ, every g ∈ G � is a bijection of XΓ to itself and

g(Xγ ∩ G � (x)) = Xgγ ∩ G � (x).

Therefore g ∈ G � gives a bijection between Xγ ∩ G � (x) and Xγ′ ∩ G � (x). Q.E.D.

Example 3.6.8 (Examples 3.6.3, 3.6.6 continued.) Combining the results of Example 3.6.3
and Example 3.6.6, a direct product structure for this model is obtained. We see that |Γ| =
|∆| = 2 and |Xγ ∩ G � (x)| = 2 for each Xγ ∈ Γ. Since G � (Xγ) = F � , |H � /G � | = 1 for this
model.

Example 3.6.9 (Examples 3.6.4, 3.6.7 continued.) Similarly, combining the results of Ex-
ample 3.6.4 and Example 3.6.7 yields a direct product structure for this model. We see that
|Γ| = 2, |∆| = 3 and |Xγ ∩ G � (x)| = 2 for each Xγ ∈ Γ. Since G � (Xγ) = F � , |H � /G � | = 1 for
this model.

We see that |H � /G � | = 1 in the above two examples. We present an example of |H � /G � | = 2
by considering the asymmetric indispensable move of Example 3.6.5.

Example 3.6.10 (Extension of Example 3.6.5.) Consider the case of k = 6 and D1 =
{1, 2}, D2 = {1, 3}, D3 = {2, 3}, D4 = {4, 5}, D5 = {4, 6}, D6 = {5, 6}. This is a direct product
model of two three-way models with all two-dimensional marginals fixed. As for the 1, 2, 3 axes,
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we consider I1 = 3, I2 = 5, I3 = 6 and define xD1
, xD2

, xD3
in the same way as Example 3.6.5.

Therefore the possible patterns of x{1,2,3} are either x1 or x2 of Example 3.6.5. As for the 4, 5, 6
axes, we consider I1 = 2, I2 = 7, I3 = 7 and define xD4

, xD5
, xD6

as

xD4
= xD5

= [(11), (12), (13), (14), (15), (16), (17), (21), (22), (23), (24), (25), (26), (27)],
xD6

= [(11), (12), (21), (23), (32), (34), (43), (45), (54), (56), (65), (67), (76), (77)].

In this case, again there are two possible patterns of x{4,5,6} as

x′
1 = [(111), (123), (132), (145), (154), (167), (176), (212), (221), (234), (243), (256), (265), (277)],

x′
2 = [(112), (121), (134), (143), (156), (165), (177), (211), (223), (232), (245), (254), (267), (276)].

x′
1 − x′

2 is a symmetric indispensable move in (4, 5, 6)-marginal tables.
For the sufficient statistic t defined above, consider the structure of F � . F � is written as

F � = {x | x{1,2,3} = x1 or x2 and x{4,5,6} = x′
1 or x′

2}.

We have |F � | = 3 · 14! since

|{x | x{1,2,3} = x1, x{4,5,6} = x′
1}| = 14!,

|{x | x{1,2,3} = x1, x{4,5,6} = x′
2}| = 14!,

|{x | x{1,2,3} = x2, x{4,5,6} = x′
1}| = 14!/2,

|{x | x{1,2,3} = x2, x{4,5,6} = x′
2}| = 14!/2.

Consider the M13-equivalence classes of F � . Note that the above four sets are M2-equivalence
classes of F � since each set contains all combinations of permutations of (1, 2, 3)- and (4, 5, 6)-
marginal patterns. Furthermore any two elements in the different sets are not accessible each
other by M13 since x1 − x2 and x′

1 − x′
2 are indispensable moves in (1, 2, 3)- and (4, 5, 6)-

marginal tables, respectively. From these considerations, we see that |H � | = 4. Write H � =
{X11, X12, X21, X22}, where

Xij = {x | x{1,2,3} = xi, x{4,5,6} = x′
j}.

Considering the G � -orbit space of H � , we have

H � /G � = {{X11, X12}, {X21, X22}}

since x1−x2 is an asymmetric move in (1, 2, 3)-marginal tables, whereas x′
1−x′

2 is a symmetric
move in (4, 5, 6)-marginal tables. Therefore |H � /G � | = 2 and |Γ| = 2 for each Γ ∈ H � /G � , and
we have the union of direct product structure in (3.48).

Structure of an invariant minimal Markov basis and conditions for its uniqueness

Here we investigate the action of G on the moves. Let z = z+ − z− ∈ M(D1, . . . , Dr) be a
move. By the identification

z ↔ (z+, z−) (3.49)

we can regard z as an element of F � × F � , where t = t(z+) = t(z−). Let M
�

(D1, . . . , Dr)
denote the set of moves z such that t = t(z+) = t(z−).
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In order to be more precise, we define

F �
,

� = {(x1, x2) | x1, x2 ∈ F � , supp(x1) ∩ supp(x2) = ∅},
where supp(x) denotes the set of positive cells of x. Then by the identification (3.49), M

�

(D1, . . . , Dr)
and F �

,
� are in 1-to-1 correspondence. We identify M

�

(D1, . . . , Dr) and F �
,

� hereafter. For
α ∈ Tn/G we define

Fα,α = ∪ �
∈αF �

,
� .

Then G(Fα,α) = Fα,α and we can consider action of G on each Fα,α separately. It is then clear
that Lemma 3.6.2 holds also for the moves, i.e.

FG(
�
),G(

�
) =

a⋃

i=1

b′⋃

j=1

F �
i,

�
i
∩ G(zj),

where z1, . . . , zb′ are representative moves of the orbits FG(
�
),G(

�
)/G.

Let B ⊂ M(D1, . . . , Dr) be a finite set of moves and define

Bn,α = B ∩ Fα,α, α ∈ Tn/G.

Then B is partitioned as

B =
⋃

n

⋃

α∈Tn/G

Bn,α. (3.50)

Since B is invariant if and only if it is a union of orbits G(z), the following lemma holds.

Lemma 3.6.6 B is invariant if and only if Bn,α is invariant for each n and α ∈ Tn/G.

This lemma shows that we can restrict our attention to a particular Fα,α in studying the
invariance of a Markov basis.

We now use our argument in Section 3.5 to construct an invariant minimal Markov basis.
Fix n and α ∈ Tn/G. We shows in Section 3.5 that the essential ingredient in the construction
of a minimal Markov basis is the Mn−1(D1, . . . , Dr)-equivalence classes of F � , t ∈ α.

Let B be an invariant set of moves and consider the partition (3.50). Let z = z+−z− ∈ Bn,α

be a move connecting Xγ ∈ H � and Xγ′ ∈ H � , i.e., z+ ∈ Xγ and z− ∈ Xγ′ . Then gz = gz+−gz−

is a move connecting Xgγ and Xgγ′ . Applying g−1 the converse is also true. This implies that
the way Bn,α ∩ F �

,
� connects the Mn−1(D1, . . . , Dr)-equivalence classes H � is the same for all

t ∈ α.
Now we are in a position to state the following theorem

Theorem 3.6.1 Let B be a G-invariant minimal Markov basis and Let B =
⋃

n

⋃
α∈Tn/G Bn,α

be the partition in (3.50). Then each Bn,α ∩ F �
,

� , t ∈ α, α ∈ Tn/G, is a minimal invariant set
of moves, which connects M|

�
|−1(D1, . . . , Dr)-equivalence classes of F �

Conversely, from each α ∈ Tn/G with |Hα| ≥ 2 choose a representative sufficient statistic
t ∈ α and choose a G � -invariant minimal set of moves B � connecting M|

�
|−1(D1, . . . , Dr)-

equivalence classes of F � , where G � ⊂ G is the isotropy subgroup of t, and extend B � to G(B � ).
Then

B =
⋃

n

⋃

� ∈Tn/G
|H � |≥2

G(B � )

is a G-invariant minimal Markov basis.
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This theorem only adds a statement of minimal G-invariance to the structure of a minimal
Markov basis considered in Theorem 3.5.1. The reason why B is minimal G-invariant is stated
above, and the reason why B is a Markov basis is included in the proof of Theorem 3.5.1.

In principle this theorem can be used to construct an invariant minimal Markov basis

by considering
⋃

α∈Tn/G

Bn,α, n = 1, 2, 3, . . . step by step. By the Hilbert basis theorem, there

exists some n0 such that for n ≥ n0 no new moves need to be added. Then an invariant

minimal Markov basis is written as

n0⋃

n=1

⋃

α∈Tn/G

Bn,α. Obviously, there is a considerable difficulty

in implementing this procedure directly. To see this, we apply Theorem 3.6.1 directly to the
complete independence model of the three-way contingency tables.

Example 3.6.11 (Examples 3.6.1, 3.6.2 continued.) Consider the complete independence
model of the three-way contingency tables, i.e., k = 3, D1 = {1}, D2 = {2}, D3 = {3}. We
apply Theorem 3.6.1 directly to this case and derive an invariant minimal Markov basis.

First consider the case n = 1. As is stated in Example 3.6.1, T1 itself is one G-orbit.
Further, F � is one element set for each t ∈ T1 and is itself an M0-equivalence class. Therefore
we can conclude that no degree 1 move is needed for Markov basis.

Next consider the case n = 2. As we derived in Example 3.6.1, the orbit space T2/G is
written as (3.40). Considering (3.43), we need not consider the case t ∈ G(t1)∪G(t2)∪G(t3)∪
G(t4) since F � is one element set (and is itself an M1-equivalence class). We have to consider
all t such that t ∈ G(t5) ∪G(t6) ∪G(t7) ∪G(t8). Consider the case t ∈ G(t5) ∪G(t6) ∪G(t7).
We know that |F � | = 2 for these t. Representative reference sets are written as

F �
5

= {x5, x
′
5}, x′

5 = [(112), (121)],
F �

6
= {x6, x

′
6}, x′

6 = [(112), (211)],
F �

7
= {x7, x

′
7}, x′

7 = [(121), (211)].

Since each element of F � is itself an M1-equivalence class of F � , we have to connect these
elements to construct a Markov basis. Obviously, the move that connects two elements of F �

has to be the difference of these, and is an indispensable move. It is also shown that such move
is G � -invariant. Therefore we have

B �
j

= {zj} = {xj − x′
j}, j = 5, 6, 7 (3.51)

and G(B �
5
) ∪ G(B �

6
) ∪ G(B �

7
) is included in all G-invariant minimal Markov basis. Finally

consider the case t ∈ G(t8). The representative reference set is written as

F �
8

= {x8, x
′
8, x

′′
8, x

′′′
8 },

x′
8 = [(112), (221)], x′′

8 = [(121), (212)], x′′′
8 = [(211), (122)].

and each element of F �
8

is itself an M1-equivalence class. We have to construct a set of moves
which is G �

8
-invariance and connects these four equivalence classes. Here we have the following

proposition.
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Proposition 3.6.1 G �
8
-invariant minimal set of moves B �

8
which connects the four elements

of F �
8

is either of the following three sets.

{x8 − x′
8, x

′′
8 − x′′′

8 , x8 − x′′
8, x

′
8 − x′′′

8 },
{x8 − x′

8, x
′′
8 − x′′′

8 , x8 − x′′′
8 , x′

8 − x′′
8},

{x8 − x′′
8, x

′
8 − x′′′

8 , x8 − x′′′
8 , x′

8 − x′′
8}.

(3.52)

Proof. This proposition is directly shown from the fact that the following three sets of moves,

{x8 − x′
8, x

′′
8 − x′′′

8 }, {x8 − x′′
8, x

′
8 − x′′′

8 }, {x8 − x′′′
8 , x′

8 − x′′
8} (3.53)

are G �
8
-orbits in M(D1, D2, D3), respectively. Q.E.D.

We consider the action of group G �
8

to the reference set F �
8

in detail. We have shown in

Example 3.6.2 that G �
8

= G̃1
12,12 × G̃2

12,12 × G̃3
12,12. Let g1 ∈ G1

12,12 ×G2
12,12 ×G3

12,12 ⊂ G �
8
. Then

it follows that {e, g1} is an isotropy subgroup either of x8, x
′
8, x

′′
8, x

′′′
8 . The pair of (G �

8
,F �

8
) is

isomorphic to (G �
8
, G �

8
/{e, g1}), and G �

8
/{e, g1} is isomorphic to Klein four-group.

Next consider the case n = 3. But in this case, it is observed that no move of degree 3 is
needed. In fact, no move of degree n ≥ 3 is needed in this model as shown in Proposition 3.5.1.
From these considerations, an invariant minimal Markov basis for this model is summarized as
follows.

Proposition 3.6.2 A G-invariant minimal Markov basis for the complete independent model
of the three-way contingency tables is written as

B = G(B �
5
) ∪ G(B �

6
) ∪ G(B �

7
) ∪ G(B �

8
),

where B �
5
,B �

6
,B �

7
are sets of indispensable moves given in (3.51) and B �

8
is either of the three

sets of dispensable moves in (3.52).

The number of the G-invariant minimal Markov basis elements is derived as

|B| =

8∑

j=5

|G(B �
j
)| =

8∑

j=5

|G(tj)| · |B �
j
| =

7∑

j=5

|G(tj)| + 2|G(t8)|

where |G(tj)| is given in (3.42).

In this example, we see that an invariant minimal Markov basis for this model is not unique.
It should be noted that a minimal Markov basis is not unique either for this model as is shown
in Section 3.5.4. Since the set of the indispensable moves is G-invariant, an invariant minimal
Markov basis and a minimal Markov basis differ only in dispensable moves. This is always true
and here we also state the following obvious fact.

Lemma 3.6.7 If there exists a unique minimal Markov basis, then it is a unique invariant
minimal Markov basis.
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Now we derive a necessary and sufficient condition for the existence of a unique invariant
minimal Markov basis. As a direct consequence of Theorem 3.6.1, first we give the following
corollary to Theorem 3.6.1 without a proof.

Corollary 3.6.1 An invariant minimal Markov basis is unique if and only if for each n and
α ∈ Tn/G with |Hα| ≥ 2 B � , t ∈ α, is a unique minimal G � -invariant set of moves connecting
M|

�
|−1(D1, . . . , Dr)-equivalence classes of F � .

Therefore we consider F � for each t separately. Recall that there is an union of direct
products structure in F � as shown in (3.48). Since each XΓ is G � -invariant, first we summarize
the structure of a minimal invariant set of moves connecting different XΓ’s, Γ ∈ H � /G � .

Lemma 3.6.8 B is a G � -invariant minimal set of moves that connects XΓ, Γ ∈ H � /G � if and
only if B is written as

B = G � (z1) ∪ · · · ∪ G � (z|H � /G � |−1), (3.54)

where the set of the representative moves z1, . . . , z|H � /G � |−1 connects XΓ, Γ ∈ H � /G � into a tree.

Proof. Let z = z+ − z− is a move that connects XΓ and XΓ′, Γ 6= Γ′, i.e., z+ ∈ XΓ and
z− ∈ XΓ′ . Then gz also connects XΓ and XΓ′ for any g ∈ G � , since gz+ ∈ XΓ, gz− ∈ XΓ′ .

Q.E.D.
This lemma implies the following necessarily condition for existing an unique invariant

minimal Markov basis.

Corollary 3.6.2 If an invariant minimal Markov basis is unique, then the following conditions
hold for all t such that |H � | ≥ 2.

(i) |H � /G � | is at most 2.
(ii) For F � such that |H � /G � | = 2, G � (z) is the same for all z = z+ − z−, z+ ∈ Xγ, z

− ∈ Xγ′ ,
where F � = Xγ ∪ Xγ′ .

Next we consider the structure of a minimal invariant set of moves connecting the equivalence
classes in each XΓ. Consider a move z = z+ − z− connecting different Xγ ∈ XΓ, i.e., z+ ∈
Xγ, z

− ∈ Xγ′ , Xγ 6= Xγ′. Since the action of G � on XΓ is transitive, without loss of generality
we fix Xγ to be a particular equivalence set Xγ0

and let z+ ∈ Xγ0
when we consider G � (z). For

each γ′ 6= γ0, we define an orbit graph Gγ′ = G(XΓ, Eγ′), where the edge set Eγ′ is defined as

Eγ′ = {(Xγ1
, Xγ2

) | (gz+, gz−) ∈ (Xγ1
, Xγ2

) for some g ∈ G � where z+ ∈ Xγ0
, z− ∈ Xγ′}.

It should be noted that Eγ′ (and hence Gγ′) does not depend on the choice of z+ ∈ Xγ0

and z− ∈ Xγ′, whereas the orbits G � (z) differ for the different choice of (δ1, δ2), where z+ ∈
Xγ0

∩ G � (xδ1), z− ∈ Xγ′ ∩ G � (xδ2) when |∆| = |XΓ/G � | ≥ 2. Furthermore

Eγ1
∩ Eγ2

= ∅ for all γ1 6= γ2
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by definition. We also define that the orbit graph Gγ′ is indispensable if the graph G(XΓ,
⋃

γ 6=γ′

Eγ)

is not connected. An important point here is that if the set of indispensable orbit graphs
connects all the equivalence classes in XΓ, then this corresponds to the unique minimal invariant
set of moves for XΓ. Combining this result and Corollary 3.6.2, we have the following result.

Theorem 3.6.2 A minimal invariant Markov basis is unique if and only if the following con-
ditions hold for all t such that |H � | ≥ 2, in addition to (i) and (ii) of Corollary 3.6.2.

(iii) |∆| = |XΓ/G � | = 1 for all Γ.
(iv) The set of indispensable orbit graphs connects all Xγ ∈ XΓ for all Γ.
(v) For all indispensable orbit graphs of (iv), there is only one orbit G � (z) that derives it.

In Section 3.5.4, minimal Markov bases and their uniqueness are shown for some examples.
We see that for some examples a minimal Markov basis is unique, and for other examples
it is not unique. Since a unique minimal Markov basis is also the unique invariant minimal
Markov basis, logically interesting case is that, an invariant minimal Markov basis is unique,
nevertheless a minimal Markov basis is not unique. The Hardy-Weinberg model is such an
example, if we define a symmetric group acting to the upper triangular tables appropriately.
Except for this peculiar example, the only example that we have found so far is a one-way
contingency tables.

Example 3.6.12 Consider the case of k = 1 and D = {1}. As is stated in Section 3.5.4, a
minimal Markov basis for this case is not unique, and consists of I1 − 1 degree 1 moves that
connect I elements in X1 into a tree. By Cayley’s theorem, there are II1−2

1 ways of choosing a
minimal Markov basis. On the other hand, the set of all degree 1 moves,

B = {x − x′ | x, x′ ∈ X1, x 6= x′}

is a G-orbit in M(D). Therefore B is the unique invariant minimal Markov basis. B consists

of

(
I1

2

)
degree 1 moves.

We show that three examples considered so far do not have unique invariant minimal Markov
basis.

Example 3.6.13 (Examples 3.6.3, 3.6.6, 3.6.8 continued.) Consider B4,
� where t ∈ T4/G

is given in Example 3.6.3. In this case, the conditions of Corollary 3.6.2 is satisfied since
|H � /G � | = 1. However, the ways of connecting two equivalence classes, {x1, x2, x3, x4}, {x5, x6,
x7, x8} are not unique. In fact, though the orbit graph (i.e., connected two vertices) is unique
and indispensable, there are the following five G � -invariant minimal set of moves that derives
it.

{x1 − x5, x4 − x8}, {x1 − x8, x4 − x5},
{x2 − x6, x3 − x7}, {x2 − x7, x3 − x6},
{x1 − x6, x1 − x7, x2 − x5, x2 − x8, x3 − x5, x3 − x8, x4 − x6, x4 − x7}.
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Example 3.6.14 (Examples 3.6.4, 3.6.7, 3.6.9 continued.) Consider B4,
� where t ∈ T4/G

is given in Example 3.6.4. Similarly to Example 3.6.13, the conditions of Corollary 3.6.2 is
satisfied in this case since |H � /G � | = 1. However, the ways of connecting two equivalence
classes, {x1, x2, x3, x4, x9, x10}, {x5, x6, x7, x8, x11, x12} are not unique. In this case, the orbit
graph also consists of connected two vertices, and is unique and indispensable. However, there
are the following nine G � -invariant minimal set of moves that derives it.

{x1 − x5, x4 − x8}, {x1 − x8, x4 − x5},
{x2 − x6, x3 − x7}, {x2 − x7, x3 − x6},
{x9 − x11, x10 − x12}, {x9 − x12, x10 − x11},
{x1 − x6, x1 − x7, x2 − x5, x2 − x8, x3 − x5, x3 − x8, x4 − x7, x4 − x6},
{x1 − x11, x1 − x12, x9 − x5, x9 − x8, x4 − x11, x4 − x12, x10 − x5, x10 − x8},
{x2 − x11, x2 − x12, x9 − x6, x9 − x7, x3 − x11, x3 − x12, x10 − x6, x10 − x7}.

Example 3.6.15 (Examples 3.6.1, 3.6.2, 3.6.11 continued.) We have seen that an invariant
minimal Markov basis is not unique for the complete independence model of the three-way con-
tingency tables. In fact, three sets of moves (3.53) in Proposition 3.6.1 correspond to different
orbit graphs, respectively. Therefore in this case, each orbit graph is dispensable.

3.6.3 Invariant minimal Markov basis for all hierarchical 24 models

In this section, we give a complete list of a minimal and an invariant minimal Markov basis for
all hierarchical 2× 2× 2 × 2 models. Though our list is restricted to the case of 2× 2 × 2 × 2,
if a set of moves whose supports are contained in 2 × 2 × 2 × 2 array constitutes a Markov
basis for a general I1 × I2 × I3 × I4 case, we can derive a minimal and an invariant minimal
Markov basis for the general case, by considering the orbits Tn/G. For example, a minimal
and an invariant minimal Markov basis for the complete independence model of the three-way
contingency tables are derived in Examples 3.6.1, 3.6.2 and 3.6.11. These results are extensions
of the results for the 2×2×2 case, since the moves with supports contained in 2×2×2 arrays
constitute a Markov basis for general case.

To derive the following list, we used several methods. If the model is decomposable, it
is known that Markov bases consist of degree 2 moves only (Dobra, 2003). If the model is
reducible, an algorithm proposed by Dobra and Sullivant (2002) can be used. We also perform
a primitive consideration of the sign patterns, which is similar to Section 3.2.

What the list means is as follows. The models that we consider are hierarchical 24 models.
There are 20 different models. Figure 3.12 is the list of independence graphs of these models.

We specify each model by their generating set. For example, a model 123/24/34 means
D1 = {1, 2, 3}, D2 = {2, 4}, D3 = {3, 4}. The degree of freedom is a number of independent
cells in 24 tables under the models. For each model, we give a minimal and an invariant minimal
Markov basis. As stated in Theorem 3.6.1, an invariant minimal Markov basis is written as

B =
n0⋃

n=1

⋃

� ∈Tn/G
|H � |≥2

G(B � ).

In our models, n0 is at most 8. We give a list of B � for all t ∈ Tn/G, |H � | ≥ 2. To specify
each move, we use symbols x and y to denote representative elements x ∈ X4 and y ∈ X2
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Figure 3.12: Independence graphs for four-way contingency tables
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in this section. Though some of these representative elements are already used in Examples
in the previous section, we newly number these elements to avoid confusion. We give sets of
indispensable moves, i.e., B � such that |H � | = 2, with their representative elements. For
example, there are 6 indispensable moves of degree 4 with representative elements x1, x2, x3

for the model 123/124/34. This means that, for i = 1, 2, 3, each reference set with the same
sufficient statistic t(xi) has two elements, i.e., F �

(xi) = {xi,1, xi,2}, and the representative
move is written as B �

(xi) = {xi,1 − xi,2}. A complete list of the indispensable moves is given
by extending each B �

(xi) to G(B �
(xi)), i.e.,

G(B �
(x1)) ∪ G(B �

(x2)) ∪ G(B �
(x3)),

and there are

6 =
3∑

i=1

|G(B �
(xi))| =

3∑

i=1

|B �
(xi)| · |G(t(xi))| =

3∑

i=1

|G(t(xi))|

elements of indispensable moves. In our examples, |G(t)| is equal for each n such that t ∈ Tn

when |H � | = 2 and given as

|G(t)| =





1, t ∈ T8,
8, t ∈ T6,
2, t ∈ T4,
4, t ∈ T2.

Uniqueness of a minimal Markov basis is also shown. As we have stated, if the set of in-
dispensable moves constitutes a Markov basis, this is a unique (invariant) minimal Markov
basis. On the other hand, if a minimal Markov basis is not unique, uniqueness of an invariant
minimal Markov basis is important. In all of 24 hierarchical models, however, we found that
an invariant minimal Markov basis is also not unique when a minimal Markov basis is not
unique. We discuss this point in Section 3.6.4. When a minimal basis is not unique, there is
at least one reference set which itself does not constitute one B-equivalence class, where B is
the set of indispensable moves. Furthermore, if F � is such a reference set, all the reference sets
in FG(

�
) have the isomorphic structures as stated in Lemma 3.6.2. We give this isomorphic

structures of reference sets with representative elements, |G(t)|, |FG(
�
)/G| and |F � |. Then

we give a direct product structure for each reference set F � ∈ FG(
�
) as shown in Lemma

3.6.5, with |∆| and |Λ|. We omit |H � /G � | since for all our models |H � /G � | = 1. Finally we
give a minimal basis, orbit graphs and an invariant minimal basis for each reference
set. As for a minimal basis, we only show the number of different set of dispensable moves and
number of its elements, which are calculated from the number of equivalence classes and the
number of their elements. As is stated in Section 3.5, if a reference set consists of t equivalence
classes and each equivalence class has u elements, there are utt−2

different set of t − 1 moves
for this reference set in a minimal basis. On the other hand, for an invariant minimal basis, we
show the orbit graphs and the orbits of moves that derive them. Table 3.8 shows the numbers
of elements in each minimal basis and invariant minimal basis.
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Table 3.8: List of minimal basis and invariant minimal basis for 24 hierarchical models
graph generating set number of basis
(a) 1234 ∅

123/124/134/234 unique minimal basis (1 move of deg 8)
123/124/134 unique minimal basis (2 moves of deg 4)
123/124/34 unique minimal basis (6 moves of deg 4)

123/14/24/34 unique minimal basis (12 moves of deg 4 and 8 moves of deg 6)
12/13/14/23/24/34 unique minimal basis (20 moves of deg 4 and 40 moves of deg 6)

(b) 123/234 unique minimal basis (4 moves of deg 2)
123/24/34 unique minimal basis (4 moves of deg 2 and 16 moves of deg 4)

12/13/23/24/34 indispensable moves: 4 moves of deg 2 and 28 moves of deg 4
dispensable moves of a minimal basis:
16 kinds of 3 moves of deg 4

dispensable moves of an invariant minimal basis:
3 kinds of 4 moves of deg 4

(c) 12/13/24/34 unique minimal basis (8 moves of deg 2 and 8 moves of deg 4)
(d) 123/34 unique minimal basis (12 moves of deg 2)

12/13/23/34 indispensable moves: 12 moves of deg 2 and 4 moves of deg 4
dispensable moves of a minimal basis:
4096 kinds of 5 moves of deg 4

dispensable moves of an invariant minimal basis:
8 kinds of 10 moves of deg 4 or 2 kinds of 16 moves of deg 4

(e) 123/4 unique minimal basis (28 moves of deg 2)
12/13/23/4 indispensable moves: 28 moves of deg 2 and 2 moves of deg 4

dispensable moves of a minimal basis:
9216 kinds of 3 moves of deg 4

dispensable moves of an invariant minimal basis:
24 kinds of 10 moves of deg 4 or 12 kinds of 16 moves of deg 4

(f) 12/13/24 unique minimal basis (20 moves of deg 2)
(g) 12/13/14 indispensable moves: 12 moves of deg 2

dispensable moves of a minimal basis:
256 kinds of 6 moves of deg 2

dispensable moves of an invariant minimal basis:
3 kinds of 8 moves of deg 2

(h) 12/13/4 indispensable moves: 28 moves of deg 2
dispensable moves of a minimal basis:
256 kinds of 6 moves of deg 2

dispensable moves of an invariant minimal basis:
3 kinds of 8 moves of deg 2

(i) 12/34 unique minimal basis (36 moves of deg 2)
(j) 12/3/4 indispensable moves: 28 moves of deg 2

dispensable moves of a minimal basis:
166 = 16777216 kinds of 18 moves of deg 2

dispensable moves of an invariant minimal basis:
27 kinds of 24 moves of deg 2

(k) 1/2/3/4 indispensable moves: 24 moves of deg 2
dispensable moves of a minimal basis:
168 × 86 = 1.1259 × 1015 kinds of 31 moves of deg 2

dispensable moves of an invariant minimal basis:
2268 kinds of 44 moves of deg 2

144



Models with the independence graph (a)

• Model 1234 (saturated, graphical model)
degree of freedom: 0

• Model 123/124/134/234
degree of freedom: 1
indispensable move: 1 move of degree 8 with representative element

[(1111)(1122)(1212)(1221)(2112)(2121)(2211)(2222)].

uniqueness: unique minimal basis exists.

• Model 123/124/134
degree of freedom: 2
indispensable moves: 2 moves of degree 4 with representative element

x1 = [(1111)(1122)(1212)(1221)].

uniqueness: unique minimal basis exists.

• Model 123/124/34
degree of freedom: 3
indispensable moves: 6 moves of degree 4 with representative elements

x1, x2 = [(1111)(1122)(2112)(2121)], x3 = [(1111)(1122)(2212)(2221)].

uniqueness: unique minimal basis exists.

• Model 123/14/24/34
degree of freedom: 4
indispensable moves: 12 moves of degree 4 with representative elements

x1, x2, x3, x4 = [(1111)(1212)(2112)(2211)],
x5 = [(1111)(1212)(2122)(2221)], x6 = [(1111)(1222)(2112)(2221)]

and 8 moves of degree 6 with representative element

[(1111)(1111)(1122)(1212)(2112)(2221)].

uniqueness: unique minimal basis exists.

• Model 12/13/14/23/24/34
degree of freedom: 5
indispensable moves: 20 moves of degree 4 with representative elements

x1, x2, x3, x4, x5, x6,
x7 = [(1111)(1221)(2121)(2211)], x8 = [(1111)(1221)(2122)(2212)],
x9 = [(1111)(1222)(2121)(2212)], x10 = [(1111)(1222)(2122)(2211)]
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and 40 moves of degree 6 with representative elements

[(1111)(1111)(1122)(1212)(2112)(2221)],
[(1111)(1111)(1222)(2122)(2212)(2221)],
[(1111)(1111)(1122)(1221)(2121)(2212)],
[(1111)(1111)(1212)(1221)(2122)(2211)],
[(1111)(1111)(1222)(2112)(2121)(2211)].

uniqueness: unique minimal basis exists.

Models with the independence graph (b)

• Model 123/234 (graphical, decomposable model)
degree of freedom: 4
indispensable moves: 4 moves of degree 2 with representative element

y1 = [(1111)(2112)].

uniqueness: unique minimal basis exists.

• Model 123/24/34
degree of freedom: 5
indispensable moves: 4 moves of degree 2 with representative element y1,

and 16 moves of degree 4 with representative elements

x1, x3,
x11 = [(1111)(1122)(1212)(2221)], x12 = [(1111)(1122)(1221)(2212)],
x13 = [(1111)(1212)(1221)(2122)], x14 = [(1111)(1212)(2122)(2221)],
x15 = [(1111)(1221)(2122)(2212)], x16 = [(1111)(2122)(2212)(2221)].

uniqueness: unique minimal basis exists.

• Model 12/13/23/24/34
degree of freedom: 6
indispensable moves: 4 moves of degree 2 with representative element y1,

and 28 moves of degree 4 with representative elements

x1, x3, x7, x9, x11, x12, x13, x14, x16,
x17 = [(1111)(1221)(2121)(2212)], x18 = [(1111)(1221)(2122)(2211)],
x19 = [(1112)(1221)(2122)(2212)], x20 = [(1111)(1222)(2122)(2212)],
x21 = [(1111)(1222)(2122)(2211)].

uniqueness: unique minimal basis does not exist.
isomorphic structures of reference set:

F �
(x8) = G(x8), |G(t(x8))| = 1, |F �

(x8)| = 4.
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direct product structure for F �
(x8):

F �
(x8) = Xγ1

∪ Xγ2
∪ Xγ3

∪ Xγ4
= G(x8),

Xγ1
= {x8}, Xγ2

= {x8,2}, Xγ3
= {x8,3}, Xγ4

= {x8,4},
|Γ| = 4, |Λ| = 1,

|Xγ1
∩ G(x8)| = |{x8}| = 1,

x8,2 = [(1121)(1211)(2112)(2222)],
x8,3 = [(1112)(1222)(2121)(2211)],
x8,4 = [(1122)(1212)(2111)(2221)].

minimal basis for F �
(x8): 16 kinds of 3 moves.

orbit graphs for F �
(x8): 3 kinds of dispensable orbit graphs,

Eγ2
= {(Xγ1

, Xγ2
), (Xγ3

, Xγ4
)},

Eγ3
= {(Xγ1

, Xγ3
), (Xγ2

, Xγ4
)},

Eγ4
= {(Xγ1

, Xγ4
), (Xγ2

, Xγ3
)},

which correspond to
Bγ2

= {x8 − x8,2, x8,3 − x8,4},
Bγ3

= {x8 − x8,3, x8,2 − x8,4},
Bγ4

= {x8 − x8,4, x8,2 − x8,3},
respectively.
invariant minimal basis for F �

(x8): 3 kinds of 4 moves,

{Bγ2
,Bγ3

}, {Bγ2
,Bγ4

}, {Bγ3
,Bγ4

}.

Models with the independence graph (c)

• Model 12/13/24/34 (graphical model)
degree of freedom: 7
indispensable moves: 8 moves of degree 2 with representative elements

y1, y2 = [(1111)(1221)],

and 8 moves of degree 4 with representative elements x3, x5, x9, x10.
uniqueness: unique minimal basis exists.

Models with the independence graph (d)

• Model 123/34 (graphical, decomposable model)
degree of freedom: 6
indispensable moves: 12 moves of degree 2 with representative elements

y1, y3 = [(1111)(1212)], y4 = [(1111)(2212)].

uniqueness: unique minimal basis exists.
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• Model 12/13/23/34
degree of freedom: 7
indispensable moves: 12 moves of degree 2 with representative elements y1, y3, y4,

and 4 moves of degree 4 with representative elements x7, x10.
uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG(
�
(x17)) = F �

(x17) ∪ F �
(x18) ∪ F �

(x19) ∪ F �
(x20) = G(x17),

|G(t(x17))| = 4, |FG(
�
(x17))/G| = 1, |F �

(x17)| = 4,

F �
(x8) = G(x8) ∪ G(x9),

|G(t(x8))| = 1, |FG(
�
(x8))/G| = 2, |F �

(x8)| = 8.

direct product structure for F �
(x17):

F �
(x17) = Xγ1

∪ Xγ2
= G �

(x17)(x17),
Xγ1

= {x17, x20,3}, Xγ2
= {x18,2, x19,4},

|Γ| = 2, |Λ| = 1,
|Xγ1

∩ G �
(x17)(x17)| = |{x17, x20,3}| = 2,

x18,2 = [(1121)(1211)(2112)(2221)],
x19,4 = [(1121)(1212)(2111)(2221)],
x20,3 = [(1112)(1221)(2121)(2211)].

direct product structure for F �
(x8):

F �
(x8) = Xγ1

∪ Xγ2
= G �

(x8)(x8) ∪ G �
(x8)(x9),

Xγ1
= {x8, x8,3, x9, x9,3}, Xγ2

= {x8,2, x8,4, x9,2, x9,4},
|Γ| = 2, |Λ| = 2,

|Xγ1
∩ G �

(x8)(x8)| = |{x8, x8,3}| = 2,
x9,2 = [(1121)(1212)(2111)(2222)],
x9,3 = [(1112)(1221)(2122)(2211)],
x9,4 = [(1122)(1211)(2112)(2221)].

minimal basis for F �
(x17): 4 kinds of 1 move.

minimal basis for F �
(x8): 16 kinds of 1 move.

orbit graph for F �
(x17): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}

which either of
B1 = {x17 − x18,2, x20,3 − x19,4},
B2 = {x17 − x19,4, x20,3 − x18,2}

derives.
invariant minimal basis for F �

(x17): 2 kinds of 2 moves, B1 or B2.
orbit graph for F �

(x8): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}
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which either of

B1 = {x8 − x8,2, x8,3 − x8,4}, B2 = {x8 − x8,4, x8,2 − x8,3},
B3 = {x9 − x9,2, x9,3 − x9,4}, B4 = {x9 − x9,4, x9,2 − x9,3},

B5 = {x8 − x9,2, x8 − x9,4, x9 − x8,2, x9 − x8,4, x9,3 − x8,2, x9,3 − x8,4, x8,3 − x9,2, x8,3 − x9,4}

derives.
invariant minimal basis for F �

(x8): 5 kinds, i.e., 4 kinds of 2 moves, B1, . . . ,B4, or 1
kind of 8 moves, B5.

Models with the independence graph (e)

• Model 123/4 (graphical, decomposable model)
degree of freedom: 7
indispensable moves: 28 moves of degree 2 with representative elements

y1, y3, y4,
y5 = [(1111)(1122)], y6 = [(1111)(1222)],
y7 = [(1111)(2122)], y8 = [(1111)(2222)].

uniqueness: unique minimal basis exists.

• Model 12/13/23/4
degree of freedom: 8
indispensable moves: 28 moves of degree 2 with representative elements

y1, y3, y4, y5, y6, y7, y8,

and 2 moves of degree 4 with representative element x7.
uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG(
�
(x17)) = F �

(x17) ∪ F �
(x19) = G(x17),

|G(t(x17))| = 2, |FG(
�
(x17))/G| = 1, |F �

(x17)| = 8,

F �
(x8) = G(x8) ∪ G(x9) ∪ G(x10),

|G(t(x8))| = 1, |FG(
�
(x8))/G| = 3, |F �

(x8)| = 12.

direct product structure for F �
(x17):

F �
(x17) = Xγ1

∪ Xγ2
= G �

(x17)(x17),
Xγ1

= {x17, x18, x19,3, x20,3}, Xγ2
= {x17,2, x18,2, x19,4, x20,4},

|Γ| = 2, |Λ| = 1,
|Xγ1

∩ G �
(x17)(x17)| = |{x17, x18, x19,3, x20,3}| = 4,

x17,2 = [(1121)(1211)(2111)(2222)],
x19,3 = [(1111)(1222)(2121)(2211)],
x20,4 = [(1122)(1211)(2111)(2221)].
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direct product structure for F �
(x8):

F �
(x8) = Xγ1

∪ Xγ2
= G �

(x8)(x8) ∪ G �
(x8)(x9) ∪ G �

(x8)(x10),
Xγ1

= {x8, x8,3, x9, x9,3, x10, x10,3},
Xγ2

= {x8,2, x8,4, x9,2, x9,4, x10,2, x10,4},
|Γ| = 2, |Λ| = 3,

|Xγ1
∩ G �

(x8)(x8)| = |{x8, x8,3}| = 2,
x10,2 = [(1122)(1211)(2111)(2222)],
x10,3 = [(1112)(1221)(2121)(2212)],
x10,4 = [(1121)(1212)(2112)(2221)].

minimal basis for F �
(x17): 16 kinds of 1 move.

minimal basis for F �
(x8): 36 kinds of 1 move.

orbit graph for F �
(x17): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}
which either of

B1 = {x20,3 − x20,4, x19,3 − x19,4, x18 − x18,2, x17 − x17,2},
B2 = {x20,3 − x18,2, x19,3 − x17,2, x18 − x20,4, x17 − x19,4},
B3 = {x20,3 − x19,4, x19,3 − x20,4, x18 − x17,2, x17 − x18,2},
B4 = {x20,3 − x17,2, x19,3 − x18,2, x18 − x19,4, x17 − x20,4}

derives.
invariant minimal basis for F �

(x17): 4 kinds of 4 moves, B1, . . . ,B4.
orbit graph for F �

(x8): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}
which either of

B1 = {x8 − x8,2, x8,3 − x8,4}, B2 = {x8 − x8,4, x8,3 − x8,2},
B3 = {x9 − x9,2, x9,3 − x9,4}, B4 = {x9 − x9,4, x9,3 − x9,2},

B5 = {x10 − x10,2, x10,3 − x10,4}, B6 = {x10 − x10,4, x10,3 − x10,2},
B7 = {x8 − x9,2, x8 − x9,4, x8,3 − x9,2, x8,3 − x9,4,

x9 − x8,2, x9 − x8,4, x9,3 − x8,2, x9,3 − x8,4},
B8 = {x8 − x10,2, x8 − x10,4, x8,3 − x10,2, x8,3 − x10,4,

x10 − x8,2, x10 − x8,4, x10,3 − x8,2, x10,3 − x8,4},
B9 = {x9 − x10,2, x9 − x10,4, x9,3 − x10,2, x9,3 − x10,4,

x10 − x9,2, x10 − x9,4, x10,3 − x9,2, x10,3 − x9,4}
derives.
invariant minimal basis for F �

(x8): 9 kinds, i.e., 6 kinds of 2 moves, B1, . . . ,B6, or 3
kinds of 8 moves, B7, . . . ,B9.

Models with the independence graph (f)

• Model 123/4 (graphical, decomposable model)
degree of freedom: 8
indispensable moves: 20 moves of degree 2 with representative elements y1, y2, y5, y6, y7.
uniqueness: unique minimal basis exists.
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Models with the independence graph (g)

• Model 12/13/14 (graphical, decomposable model)
degree of freedom: 8
indispensable moves: 12 moves of degree 2 with representative elements y2, y3, y5.
uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG(
�
(y

6
)) = F �

(y
6
) ∪ F �

(y′
6
) = G(y6),

|G(t(y6))| = 2, |FG(
�
(y

6
))/G| = 1, |F �

(y
6
)| = 4,

y′
6 = [(2111)(2222)].

direct product structure for F �
(y

6
):

F �
(y

6
) = Xγ1

∪ Xγ2
∪ Xγ3

∪ Xγ4
= G �

(y
6
)(y6),

Xγ1
= {y6}, Xγ2

= {y6,2}, Xγ3
= {y6,3}, Xγ4

= {y6,4},
|Γ| = 4, |Λ| = 1,

|Xγ1
∩ G �

(y
6
)(y6)| = |{y6}| = 1,

y6,2 = [(1112)(1221)],
y6,3 = [(1121)(1212)],
y6,4 = [(1122)(1211)].

minimal basis for F �
(y

6
): 16 kinds of 3 moves.

orbit graphs for F �
(y

6
): 3 kinds of dispensable orbit graphs,

Eγ2
= {(Xγ1

, Xγ2
), (Xγ3

, Xγ4
)},

Eγ3
= {(Xγ1

, Xγ3
), (Xγ2

, Xγ4
)},

Eγ4
= {(Xγ1

, Xγ4
), (Xγ2

, Xγ3
)},

which correspond to
Bγ2

= {y6 − y6,2, y6,3 − y6,4},
Bγ3

= {y6 − y6,3, y6,2 − y6,4},
Bγ4

= {y6 − y6,4, y6,2 − y6,3},
respectively.
invariant minimal basis for F �

(y
6
): 3 kinds of 4 moves,

{Bγ2
,Bγ3

}, {Bγ2
,Bγ4

}, {Bγ3
,Bγ4

}.

Models with the independence graph (h)

• Model 12/13/4 (graphical, decomposable model)
degree of freedom: 9
indispensable moves: 28 moves of degree 2 with representative elements

y1, y2, y3, y4, y5, y7, y8.

uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG(
�
(y

6
)) = F �

(y
6
) ∪ F �

(y′
6
) = G(y6),

|G(t(y6))| = 2, |FG(
�
(y

6
))/G| = 1, |F �

(y
6
)| = 4.
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direct product structure for F �
(y

6
): same as model 12/13/14.

minimal basis for F �
(y

6
): 16 kinds of 3 moves.

orbit graphs for F �
(y

6
): 3 kinds of dispensable orbit graphs (same as model 12/13/14).

invariant minimal basis for F �
(y

6
): 3 kinds of 4 moves (same as model 12/13/14).

Models with the independence graph (i)

• Model 12/34 (graphical, decomposable model)
degree of freedom: 9
indispensable moves: 36 moves of degree 2 with representative elements

y1, y2, y3, y4, y6, y7, y8,
y9 = [(1111)(2121)], y10 = [(1111)(2221)].

uniqueness: unique minimal basis exists.

Models with the independence graph (j)

• Model 12/3/4 (graphical, decomposable model)
degree of freedom: 10
indispensable moves: 28 moves of degree 2 with representative elements

y1, y2, y3, y4, y5, y9, y10.

uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG(
�
(y

6
)) = F �

(y
6
) ∪ F �

(y′
6
) = G(y6),

|G(t(y6))| = 2, |FG(
�
(y

6
))/G| = 1, |F �

(y
6
)| = 4,

FG(
�
(y

7
)) = F �

(y
7
) ∪ F �

(y′
7
) = G(y7),

|G(t(y7))| = 2, |FG(
�
(y

7
))/G| = 1, |F �

(y
7
)| = 4,

y′
7 = [(1211)(2222)],

FG(
�
(y

8
)) = F �

(y
8
) ∪ F �

(y′
8
) = G(y8),

|G(t(y8))| = 2, |FG(
�
(y

8
))/G| = 1, |F �

(y
8
)| = 4,

y′
8 = [(1211)(2122)].

direct product structure for F �
(y

6
): same as model 12/13/14.

direct product structure for F �
(y

7
):

F �
(y

7
) = Xγ1

∪ Xγ2
∪ Xγ3

∪ Xγ4
= G �

(y
7
)(y7),

Xγ1
= {y7}, Xγ2

= {y7,2}, Xγ3
= {y7,3}, Xγ4

= {y7,4},
|Γ| = 4, |Λ| = 1,

|Xγ1
∩ G �

(y
7
)(y7)| = |{y7}| = 1,

y7,2 = [(1112)(2121)],
y7,3 = [(1121)(2112)],
y7,4 = [(1122)(2111)].
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direct product structure for F �
(y

8
):

F �
(y

8
) = Xγ1

∪ Xγ2
∪ Xγ3

∪ Xγ4
= G �

(y
8
)(y8),

Xγ1
= {y8}, Xγ2

= {y8,2}, Xγ3
= {y8,3}, Xγ4

= {y8,4},
|Γ| = 4, |Λ| = 1,

|Xγ1
∩ G �

(y
8
)(y8)| = |{y8}| = 1,

y8,2 = [(1112)(2221)],
y8,3 = [(1121)(2212)],
y8,4 = [(1122)(2211)].

minimal basis for F �
(y

6
),F �

(y
7
),F �

(y
8
): 16 kinds of 3 moves, respectively.

orbit graphs for F �
(y

6
),F �

(y
7
),F �

(y
8
): 3 kinds of dispensable orbit graphs, respectively

(same as model 12/13/14).
invariant minimal basis for F �

(y
6
),F �

(y
7
),F �

(y
8
): 3 kinds of 4 moves, respectively

(same as model 12/13/14).

Models with the independence graph (k)

• Model 12/3/4 (graphical, decomposable model)
degree of freedom: 11
indispensable moves: 24 moves of degree 2 with representative elements

y1, y2, y3, y5, y9, y11 = [(1111)(2211)].

uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG(
�
(y

4
)) = F �

(y
4
) ∪ F �

(y′
4
) = G(y4),

|G(t(y4))| = 2, |FG(
�
(y

4
))/G| = 1, |F �

(y
4
)| = 4,

y′
4 = [(1121)(2222)],

FG(
�
(y

6
)) = F �

(y
6
) ∪ F �

(y′
6
) = G(y6),

|G(t(y6))| = 2, |FG(
�
(y

6
))/G| = 1, |F �

(y
6
)| = 4,

FG(
�
(y

7
)) = F �

(y
7
) ∪ F �

(y′
7
) = G(y7),

|G(t(y7))| = 2, |FG(
�
(y

7
))/G| = 1, |F �

(y
7
)| = 4,

FG(
�
(y

10
)) = F �

(y
10

) ∪ F �
(y′

10
) = G(y10),

|G(t(y10))| = 2, |FG(
�
(y

10
))/G| = 1, |F �

(y
10

)| = 4,
y′

10 = [(1112)(2222)],

F �
(y

8
) = G(y8),

|G(t(y8))| = 1, |FG(
�
(y

8
))/G| = 1, |F �

(y
8
)| = 8.

direct product structure for F �
(y

4
):

F �
(y

4
) = Xγ1

∪ Xγ2
∪ Xγ3

∪ Xγ4
= G �

(y
4
)(y4),

Xγ1
= {y4}, Xγ2

= {y4,2}, Xγ3
= {y4,3}, Xγ4

= {y4,4},
|Γ| = 4, |Λ| = 1,

|Xγ1
∩ G �

(y
4
)(y4)| = |{y4}| = 1,

y4,2 = [(1112)(2211)],
y4,3 = [(1211)(2112)],
y4,4 = [(1212)(2111)].
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direct product structure for F �
(y

6
): same as model 12/13/14.

direct product structure for F �
(y

7
): same as model 12/3/4.

direct product structure for F �
(y

10
):

F �
(y

10
) = Xγ1

∪ Xγ2
∪ Xγ3

∪ Xγ4
= G �

(y
10

)(y10),
Xγ1

= {y10}, Xγ2
= {y10,2}, Xγ3

= {y10,3}, Xγ4
= {y10,4},

|Γ| = 4, |Λ| = 1,
|Xγ1

∩ G �
(y

10
)(y10)| = |{y10}| = 1,

y10,2 = [(1121)(2211)],
y10,3 = [(1211)(2121)],
y10,4 = [(1221)(2111)].

direct product structure for F �
(y

8
):

F �
(y

8
) = Xγ1

∪ Xγ2
∪ Xγ3

∪ Xγ4
∪ Xγ5

∪ Xγ6
∪ Xγ7

∪ Xγ8
= G �

(y
8
)(y8),

Xγ1
= {y8}, Xγ2

= {y8,2}, Xγ3
= {y8,3}, Xγ4

= {y8,4},
Xγ5

= {y8,5}, Xγ6
= {y8,6}, Xγ7

= {y8,7}, Xγ8
= {y8,8},

|Γ| = 8, |Λ| = 1,
|Xγ1

∩ G �
(y

8
)(y8)| = |{y8}| = 1,

y8,2 = [(1112)(2221)],
y8,3 = [(1121)(2212)],
y8,4 = [(1122)(2211)],
y8,5 = [(1211)(2122)],
y8,6 = [(1212)(2121)],
y8,7 = [(1221)(2112)],
y8,8 = [(1222)(2111)].

minimal basis for F �
(y

4
),F �

(y
6
),F �

(y
7
),F �

(y
10

): 16 kinds of 3 moves, respectively.
minimal basis for F �

(y
8
): 88−2 = 262144 kinds of 7 moves.

orbit graphs for F �
(y

4
),F �

(y
6
),F �

(y
7
),F �

(y
10

): 3 kinds of dispensable orbit graphs, re-
spectively (same as model 12/13/14).
invariant minimal basis for F �

(y
4
),F �

(y
6
),F �

(y
7
),F �

(y
10

): 3 kinds of 4 moves, respec-
tively (same as model 12/13/14).
orbit graphs for F �

(y
8
): 7 kinds of dispensable orbit graphs,

Eγ2
= {(Xγ1

, Xγ2
), (Xγ3

, Xγ4
), (Xγ5

, Xγ6
), (Xγ7

, Xγ8
)},

Eγ3
= {(Xγ1

, Xγ3
), (Xγ2

, Xγ4
), (Xγ5

, Xγ7
), (Xγ6

, Xγ8
)},

Eγ4
= {(Xγ1

, Xγ4
), (Xγ2

, Xγ3
), (Xγ5

, Xγ8
), (Xγ6

, Xγ7
)},

Eγ5
= {(Xγ1

, Xγ5
), (Xγ2

, Xγ6
), (Xγ3

, Xγ7
), (Xγ4

, Xγ8
)},

Eγ6
= {(Xγ1

, Xγ6
), (Xγ2

, Xγ5
), (Xγ3

, Xγ8
), (Xγ4

, Xγ7
)},

Eγ7
= {(Xγ1

, Xγ7
), (Xγ2

, Xγ8
), (Xγ3

, Xγ5
), (Xγ4

, Xγ6
)},

Eγ8
= {(Xγ1

, Xγ8
), (Xγ2

, Xγ7
), (Xγ3

, Xγ6
), (Xγ4

, Xγ5
)},

which correspond to Bγ2
, . . . ,Bγ8

, respectively.
invariant minimal basis for F �

(y
8
): 7 kinds of 12 moves,

{Bγ2
,Bγ3

,Bγ4
}, {Bγ2

,Bγ5
,Bγ6

}, {Bγ2
,Bγ7

,Bγ8
}, {Bγ3

,Bγ5
,Bγ7

},
{Bγ3

,Bγ6
,Bγ8

}, {Bγ4
,Bγ5

,Bγ8
}, {Bγ4

,Bγ6
,Bγ7

}.
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3.6.4 Discussion

In this section we define an invariant minimal Markov basis and derive its basic characteristics.
Of course, we can construct an invariant Markov basis from any Markov basis as the union
of all orbits of the basis elements. However, even if we start with a minimal Markov basis,
the union of all orbits of the basis elements is not necessarily an invariant minimal basis. For
example, consider again the complete independence model of the three-way case of Example
3.6.11. A set of moves

{x8 − x′
8, x8 − x′′

8, x8 − x′′′
8 }

connects the four elements x8, x
′
8, x

′′
8, x

′′′
8 into a tree, and thus is a minimal basis elements for

{x8, x
′
8, x

′′
8, x

′′′
8 }. However, it is seen that the union of the orbits of these three moves contains

6 moves, and hence not minimal invariant. From these considerations, structure of an invariant
minimal Markov basis is important.

Theorem 3.6.1 states how to construct an invariant minimal Markov basis. This theorem
is an extension of Theorem 3.5.1. To construct a minimal Markov basis, we can add basis
elements step by step from low degree, by considering all reference sets as stated in Theorem
3.5.1. On the other hand, to construct an invariant minimal Markov basis, we have to add the
orbit of moves step by step from low degree. Similar to the construction of a minimal Markov
basis, it is difficult to construct an invariant minimal Markov basis by applying Theorem 3.6.1
directly. But if a minimal Markov basis is available, we can construct an invariant minimal
Markov basis relatively easily, by considering all the reference sets one by one, which is covered
by the dispensable moves in the minimal Markov basis. The results of Section 3.6.3 is obtained
in such a way.

It seems also difficult to give a simple necessary and sufficient conditions on D1, . . . , Dr

such that an invariant minimal Markov basis is unique. It is of interest to derive conditions
such that an invariant minimal Markov basis is unique even if a minimal Markov basis is not
unique. As stated in Section 3.6.2, such an example we have found so far is the obvious one-way
contingency table, except for the peculiar case of the Hardy-Weinberg model.
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Chapter 4

Concluding remarks

This thesis focuses on the conditional inference for contingency tables. To compute the con-
ditional expectation expressed as (1.3), two approaches, i.e., exact methods (Chapter 2) and
Markov chain Monte Carlo methods (Chapter 3), are treated in this thesis. Each chapter in-
cludes several sections, which contain their own discussion parts, respectively. In this final
chapter, we give some additional remarks.

In exact methods part, we have considered two topics of computing exact p values by the
network algorithms. In both topics, the test statistic that we have treated is the Freeman-
Halton exact test statistic, which are sometimes known as the generalized Fisher’s exact test
statistic. Of course, this is not the only statistic which the network algorithm can be adapted.
For example, the likelihood ratio statistic and the Pearson χ2 statistic, which we consider in
Section 2.2.5, are also commonly used measures. To compute the exact p values for these test
statistics, different optimization problems must be solved to evaluate bounds of LP and SP for
each measure. If these bounds can be evaluated in efficient ways, the network algorithm also
becomes a valuable tool for these test statistics. Note that the LP and SP can be calculated
exactly by a dynamic programming in a single backward pass through the network, regardless
of the test statistic. Whether this technique is feasible or not relies on the number of nodes
in the network. In addition, some techniques of the discrete convex analysis can be used. See
Section 10 of Murota (2003), for example.

Conversely, our idea of evaluating an approximate optimal solution of LP as the value at the
maximum likelihood estimator can be applied to any Freeman-Halton type exact test statistic
in calculating exact p value by the network algorithm, regardless of the model that we consider.
Then for Freeman-Halton type exact test statistics, we only have to consider the evaluation
of SP to adapt the network algorithm. The problem of Hardy-Weinberg exact test in Section
2.2 is an ideal problem to adapt the network algorithm since the closed form expression of the
optimal solution of SP can be derived.

In the network representation of the reference set of all the two-way tables having the
same row and column sums in Section 2.1, each arc expresses the fixed values of each column.
Similarly, in the network representation of the reference set of all the genotype frequencies
having the same allele counts in Section 2.2, each arc expresses the fixed value of each allele
count. These correspondences, which completely characterize the structure of each network,
are not the only ways. For example, if each cell count is fixed step by step, another network
representation of the reference set can be derived. The choice of the network representations
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has to depend on several factors, such as, the number of nodes, whether the set of next nodes
which are connected to the current node can be easily determined, and whether the efficient
bounds for LP and SP of corresponding optimization problems can be evaluated. In the two
problems that we have considered, the network representations described in this thesis seem
to be optimal. However, in the problem of higher dimensional tables, e.g., three-way problem
discussed in Section 2.1.5, the choice of the network representation is an important topic.

In Markov chain Monte Carlo part, we focus on the Markov basis defined by Diaconis and
Sturmfels (1998). Of course, to construct a connected Markov chain for some given data set,
all the elements of a minimal Markov basis are not necessarily needed. In fact, for many
three-way data sets, we can construct a connected Markov chain over the reference set of fixed
two-dimensional marginals only by basic moves. We also consider the similar basis reduction for
two-way problem with structural zero cells in Section 3.4.7. However, it is difficult to determine
whether a Markov chain constructed only by the basic moves is connected or not for given data
set. This is one of the reasons and justifications that we consider a Markov basis. Other related
problems to the connectivity by the basic moves are the problems concerning the extensions
of the reference sets. In the three-way setting, for example, the following problem seems to be
attractive and interesting.

Problem If we permit one cell frequency to be −1 at each transition of the chain,
does the set of basic moves connect all the elements in the reference set of I×J ×K
contingency tables with any fixed two-dimensional marginals ?

In fact, this is another open problem at present, though we have found some indispensable
moves contain ±2. To see this, consider the following 3 × 4 × 6 indispensable move of degree
14.

z =

+1 −1 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 0 0 −1
−1 0 0 0 0 +1

0 +1 0 −1 0 0
0 −1 0 0 +1 0
0 0 0 +1 0 −1
0 0 0 0 −1 +1

−1 0 0 +1 0 0
0 0 +1 0 −1 0
0 0 −1 −1 0 +2

+1 0 0 0 +1 −2

= [(111, 122, 133, 146, 212, 225, 234, 246, 314, 323, 336, 336, 341, 345) ‖
(112, 123, 136, 141, 214, 222, 236, 245, 311, 325, 333, 334, 346, 346)]

= z+ − z−

This is indispensable in the sense that z+ and z− are mutually accessible only by using z.
However, if we permit one cell frequency to be −1 at each transition of the chain, z+ and z−

are mutually accessible by basic moves as follows.

z+ = [(111, 122, 133, 146, 212, 225, 234, 246, 314, 323, 336, 336, 341, 345)]
−→ [(116, 122, 133, 141, 212, 225, 234, 246, 311, 314, 323, 336, 336, 345, 346) ‖ (316)]
−→ [(114, 122, 133, 136, 141, 212, 225, 234, 246, 311, 323, 334, 336, 345, 346) ‖ (134)]
−→ [(112, 122, 133, 136, 141, 214, 225, 232, 246, 311, 323, 334, 336, 345, 346) ‖ (132)]
−→ [(112, 123, 136, 141, 214, 222, 225, 233, 246, 311, 323, 334, 336, 345, 346) ‖ (223)]
−→ [(112, 123, 136, 141, 214, 222, 225, 236, 246, 311, 326, 333, 334, 345, 346) ‖ (226)]
−→ [(112, 123, 136, 141, 214, 222, 236, 245, 311, 325, 333, 334, 346, 346)] = z−.

If it is assured that the answer for the above problem is yes, we can easily construct a Markov
chain Monte Carlo algorithm only by the basic moves.
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Our contribution includes various topics and all these results are concerning a minimality
and uniqueness of a Markov basis. Our study is motivated by the fact that the outputs of
the algebraic algorithms are in general not minimal and not unique since they depend on the
particular term order. Especially, we are interested in the no three-way interaction model for the
three-way contingency tables since it is the simplest example of non-decomposable hierarchical
models. As is shown in Section 3.2 and Section 3.3, we have found that a minimal Markov basis
is uniquely determined for 3×4×K and 4×4×4 cases. This finding is very attractive, and the
general problem we have given in Section 3.3.4 is one of the most interesting open problems.

As we have stated, the main contributions in the first half of Chapter 3 are for actually per-
forming the Markov chain Monte Carlo method, rather than in new theoretical developments.
In fact, to calculate the exact p value for given problem which the large-sample approximations
are poor, we want to use exact methods if possible, and the Markov chain Monte Carlo meth-
ods become powerful tools only when exact calculations are infeasible. These days, algorithms
such as the network algorithm can practically handle analyses for most I × J and 2 × 2 × K
problems of moderate sizes (Agresti, 1992). However, it is believed at present that it is still
difficult to calculate the p values efficiently by some exact computation algorithms for the no
three-factor interaction problems. For these reasons, it is also important to consider the topics
of the actual computation. However, our investigation for this area is not enough at present.
As the first contribution, we exhibit the list of indispensable moves for three-way contingency
tables obtained in this thesis in the author’s web page:

http://www.stat.t.u-tokyo.ac.jp/~aoki/list-of-indispensable-moves.html

We hope that this database actually serves many statisticians who intend to use the Markov
chain Monte Carlo methods to test the hypothesis of no three-factor interactions for three-way
contingency tables.

On the other hand, the latter half of Chapter 3 gives some basic characterization of a
minimal Markov basis. Though it is computationally difficult at present to actually construct
a minimal and an invariant minimal Markov basis following our theorems, we believe that,
with further refinement, it might be possible to implement an alternative efficient algorithm
for constructing a minimal and an invariant minimal Markov basis. This is another attractive
topic to be considered.
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Appendix A

List of indispensable moves for larger
tables produced by the separations and
combinations of two-dimensional slices
of 3 × 4 × K and 4 × 4 × 4 indispensable
moves

We list indispensable moves of larger sizes. All the indispensable moves listed below are pro-
duced by the separations and combinations of two-dimensional slices of 3×4×K and 4×4×4
indispensable moves (Section 3.3.1) and themselves. We specify each indispensable move by its
size, degree and slice degree. We also give a simplified information as the form (3.9). All the
informations in the list are available from the author’s web page.

A.1 Indispensable moves of degree 11

• 3 × 5 × 5 move of degree 11 with slice degree {3, 4, 4} × {2, 2, 2, 2, 3} × {2, 2, 2, 2, 3}
((3, 5, 5), (11), ((3, 4, 4), (2, 2, 2, 2, 3), (2, 2, 2, 2, 3)), (fcs), ∅,
((111, 125, 152, 215, 234, 243, 251, 322, 335, 344, 353), (115, 122, 151, 211, 235, 244, 253, 325, 334, 343, 352)))

+1 0 0 0 −1
0 −1 0 0 +1
0 0 0 0 0
0 0 0 0 0
−1 +1 0 0 0

−1 0 0 0 +1
0 0 0 0 0
0 0 0 +1 −1
0 0 +1 −1 0

+1 0 −1 0 0

0 0 0 0 0
0 +1 0 0 −1
0 0 0 −1 +1
0 0 −1 +1 0
0 −1 +1 0 0

• 4 × 4 × 5 move of degree 11 with slice degree {2, 2, 3, 4} × {2, 3, 3, 3} × {2, 2, 2, 2, 3}
((4, 4, 5), (11), ((2, 2, 3, 4), (2, 3, 3, 3), (2, 2, 2, 2, 3)), (fcs), ∅,
((121, 135, 225, 242, 314, 333, 345, 413, 422, 431, 444), (125, 131, 222, 245, 313, 335, 344, 414, 421, 433, 442)))

0 0 0 0 0
+1 0 0 0 −1
−1 0 0 0 +1
0 0 0 0 0

0 0 0 0 0
0 −1 0 0 +1
0 0 0 0 0
0 +1 0 0 −1

0 0 −1 +1 0
0 0 0 0 0
0 0 +1 0 −1
0 0 0 −1 +1

0 0 +1 −1 0
−1 +1 0 0 0
+1 0 −1 0 0
0 −1 0 +1 0
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• 4 × 4 × 5 move of degree 11 with slice degree {2, 3, 3, 3} × {2, 3, 3, 3} × {2, 2, 2, 2, 3}
((4, 4, 5), (11), ((2, 3, 3, 3), (2, 3, 3, 3), (2, 2, 2, 2, 3)), (fcs), ∅,
((121, 145, 222, 233, 241, 314, 325, 332, 415, 434, 443), (125, 141, 221, 232, 243, 315, 322, 334, 414, 433, 445)))

0 0 0 0 0
+1 0 0 0 −1
0 0 0 0 0
−1 0 0 0 +1

0 0 0 0 0
−1 +1 0 0 0
0 −1 +1 0 0

+1 0 −1 0 0

0 0 0 +1 −1
0 −1 0 0 +1
0 +1 0 −1 0
0 0 0 0 0

0 0 0 −1 +1
0 0 0 0 0
0 0 −1 +1 0
0 0 +1 0 −1

A.2 Indispensable moves of degree 12

• 3 × 5 × 6 move of degree 12 with slice degree {3, 4, 5} × {2, 2, 2, 3, 3} × {2, 2, 2, 2, 2, 2}
((3, 5, 6), (12), ((3, 4, 5), (2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 143, 152,
214, 235, 246, 253, 315, 322, 336, 341, 354), (122, 141, 153, 215, 236, 243, 254, 314, 321, 335, 346, 352)))

0 0 0 0 0 0
+1 −1 0 0 0 0
0 0 0 0 0 0
−1 0 +1 0 0 0
0 +1 −1 0 0 0

0 0 0 +1 −1 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 −1 0 0 +1
0 0 +1 −1 0 0

0 0 0 −1 +1 0
−1 +1 0 0 0 0
0 0 0 0 −1 +1

+1 0 0 0 0 −1
0 −1 0 +1 0 0

• 3 × 5 × 6 move of degree 12 with slice degree {4, 4, 4} × {2, 2, 2, 3, 3} × {2, 2, 2, 2, 2, 2}
((3, 5, 6), (12), ((4, 4, 4), (2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 123, 144,
152, 212, 235, 241, 256, 324, 336, 345, 353), (112, 124, 141, 153, 211, 236, 245, 252, 323, 335, 344, 356)))

+1 −1 0 0 0 0
0 0 +1 −1 0 0
0 0 0 0 0 0
−1 0 0 +1 0 0
0 +1 −1 0 0 0

−1 +1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1

+1 0 0 0 −1 0
0 −1 0 0 0 +1

0 0 0 0 0 0
0 0 −1 +1 0 0
0 0 0 0 −1 +1
0 0 0 −1 +1 0
0 0 +1 0 0 −1

• 4 × 4 × 5 move(1) of degree 12 with slice degree {2, 2, 4, 4} × {3, 3, 3, 3} × {2, 2, 2, 2, 4}
((4, 4, 5), (12), ((2, 2, 4, 4), (3, 3, 3, 3), (2, 2, 2, 2, 4)), (fcs), ∅, ((111, 125, 232,
245, 313, 321, 334, 342, 415, 424, 435, 443), (115, 121, 235, 242, 311, 324, 332, 343, 413, 425, 434, 445)))

+1 0 0 0 −1
−1 0 0 0 +1
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 +1 0 0 −1
0 −1 0 0 +1

−1 0 +1 0 0
+1 0 0 −1 0
0 −1 0 +1 0
0 +1 −1 0 0

0 0 −1 0 +1
0 0 0 +1 −1
0 0 0 −1 +1
0 0 +1 0 −1

• 4 × 4 × 5 move(2) of degree 12 with slice degree {2, 2, 4, 4} × {3, 3, 3, 3} × {2, 2, 2, 2, 4}
(not fundamental, circuit)
((4, 4, 5), (12), ((2, 2, 4, 4), (3, 3, 3, 3), (2, 2, 2, 2, 4)), (Fcs), (315, 325, 435, 445), ((111, 125, 232, 245, 313, 321, 335,
344, 415, 424, 433, 442), (115, 121, 235, 242, 311, 324, 333, 345, 413, 425, 432, 444)))

+1 0 0 0 −1
−1 0 0 0 +1
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 +1 0 0 −1
0 −1 0 0 +1

−1 0 +1 0 (0)
+1 0 0 −1 (0)
0 0 −1 0 +1
0 0 0 +1 −1

0 0 −1 0 +1
0 0 0 +1 −1
0 −1 +1 0 (0)
0 +1 0 −1 (0)
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• 4 × 4 × 5 move of degree 12 with slice degree {2, 3, 3, 4} × {2, 3, 3, 4} × {2, 2, 2, 3, 3}
(not fundamental, circuit)
((4, 4, 5), (12), ((2, 3, 3, 4), (2, 3, 3, 4), (2, 2, 2, 3, 3)), (Fcs), (244, 445), ((135, 144, 221, 234, 242,
313, 324, 345, 415, 423, 432, 441), (134, 145, 224, 232, 241, 315, 323, 344, 413, 421, 435, 442)))

0 0 0 0 0
0 0 0 0 0
0 0 0 −1 +1
0 0 0 +1 −1

0 0 0 0 0
+1 0 0 −1 0
0 −1 0 +1 0
−1 +1 0 (0) 0

0 0 +1 0 −1
0 0 −1 +1 0
0 0 0 0 0
0 0 0 −1 +1

0 0 −1 0 +1
−1 0 +1 0 0
0 +1 0 0 −1

+1 −1 0 0 (0)

• 4 × 4 × 5 move of degree 12 with slice degree {2, 3, 3, 4} × {3, 3, 3, 3} × {2, 2, 2, 3, 3}
((4, 4, 5), (12), ((2, 3, 3, 4), (3, 3, 3, 3), (2, 2, 2, 3, 3)), (fcs), (435), ((111, 124, 214, 235,
242, 325, 333, 344, 415, 421, 432, 443), (114, 121, 215, 232, 244, 324, 335, 343, 411, 425, 433, 442)))

+1 0 0 −1 0
−1 0 0 +1 0
0 0 0 0 0
0 0 0 0 0

0 0 0 +1 −1
0 0 0 0 0
0 −1 0 0 +1
0 +1 0 −1 0

0 0 0 0 0
0 0 0 −1 +1
0 0 +1 0 −1
0 0 −1 +1 0

−1 0 0 0 +1
+1 0 0 0 −1
0 +1 −1 0 (0)
0 −1 +1 0 0

• 4 × 4 × 6 move of degree 12 with slice degree {2, 2, 4, 4} × {2, 3, 3, 4} × {2, 2, 2, 2, 2, 2}
((4, 4, 6), (12), ((2, 2, 4, 4), (2, 3, 3, 4), (2, 2, 2, 2, 2, 2)), (fcs), ∅, ((122, 141, 233,
244, 315, 321, 336, 343, 416, 425, 434, 442), (121, 142, 234, 243, 316, 325, 333, 341, 415, 422, 436, 444)))

0 0 0 0 0 0
−1 +1 0 0 0 0
0 0 0 0 0 0

+1 −1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 −1 0 0
0 0 −1 +1 0 0

0 0 0 0 +1 −1
+1 0 0 0 −1 0
0 0 −1 0 0 +1
−1 0 +1 0 0 0

0 0 0 0 −1 +1
0 −1 0 0 +1 0
0 0 0 +1 0 −1
0 +1 0 −1 0 0

• 4 × 4 × 6 move of degree 12 with slice degree {2, 2, 4, 4} × {3, 3, 3, 3} × {2, 2, 2, 2, 2, 2}
((4, 4, 6), (12), ((2, 2, 4, 4), (3, 3, 3, 3), (2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 122, 233,
244, 315, 321, 336, 343, 412, 426, 434, 445), (112, 121, 234, 243, 311, 326, 333, 345, 415, 422, 436, 444)))

+1 −1 0 0 0 0
−1 +1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 −1 0 0
0 0 −1 +1 0 0

−1 0 0 0 +1 0
+1 0 0 0 0 −1
0 0 −1 0 0 +1
0 0 +1 0 −1 0

0 +1 0 0 −1 0
0 −1 0 0 0 +1
0 0 0 +1 0 −1
0 0 0 −1 +1 0

• 4 × 4 × 6 move of degree 12 with slice degree {2, 3, 3, 4} × {2, 3, 3, 4} × {2, 2, 2, 2, 2, 2}
((4, 4, 6), (12), ((2, 3, 3, 4), (2, 3, 3, 4), (2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 142, 223,
234, 241, 316, 335, 344, 415, 422, 433, 456), (122, 141, 221, 233, 244, 315, 334, 346, 416, 423, 435, 442)))

0 0 0 0 0 0
+1 −1 0 0 0 0
0 0 0 0 0 0
−1 +1 0 0 0 0

0 0 0 0 0 0
−1 0 +1 0 0 0
0 0 −1 +1 0 0

+1 0 0 −1 0 0

0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 0 −1 +1 0
0 0 0 +1 0 −1

0 0 0 0 +1 −1
0 +1 −1 0 0 0
0 0 +1 0 −1 0
0 −1 0 0 0 +1

• 4 × 5 × 5 move of degree 12 with slice degree {3, 3, 3, 3} × {2, 2, 2, 2, 4} × {2, 2, 2, 2, 4}
((4, 5, 5), (12), ((3, 3, 3, 3), (2, 2, 2, 2, 4), (2, 2, 2, 2, 4)), (fcs), ∅, ((111, 125, 152,
215, 233, 251, 322, 345, 354, 435, 444, 453), (115, 122, 151, 211, 235, 253, 325, 344, 352, 433, 445, 454)))

+1 0 0 0 −1
0 −1 0 0 +1
0 0 0 0 0
0 0 0 0 0
−1 +1 0 0 0

−1 0 0 0 +1
0 0 0 0 0
0 0 +1 0 −1
0 0 0 0 0

+1 0 −1 0 0

0 0 0 0 0
0 +1 0 0 −1
0 0 0 0 0
0 0 0 −1 +1
0 −1 0 +1 0

0 0 0 0 0
0 0 0 0 0
0 0 −1 0 +1
0 0 0 +1 −1
0 0 +1 −1 0

163



• 4 × 5 × 5 move of degree 12 with slice degree {3, 3, 3, 3} × {2, 2, 2, 3, 3} × {2, 2, 2, 3, 3}
((4, 5, 5), (12), ((3, 3, 3, 3), (2, 2, 2, 3, 3), (2, 2, 2, 3, 3)), (fcs), ∅, ((111, 125, 144,
214, 221, 255, 333, 342, 354, 432, 445, 453), (114, 121, 145, 211, 225, 254, 332, 344, 353, 433, 442, 455)))

+1 0 0 −1 0
−1 0 0 0 +1
0 0 0 0 0
0 0 0 +1 −1
0 0 0 0 0

−1 0 0 +1 0
+1 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 +1

0 0 0 0 0
0 0 0 0 0
0 −1 +1 0 0
0 +1 0 −1 0
0 0 −1 +1 0

0 0 0 0 0
0 0 0 0 0
0 +1 −1 0 0
0 −1 0 0 +1
0 0 +1 0 −1

A.3 Indispensable moves of degree 13

• 3 × 5 × 6 move of degree 13 with slice degree {4, 4, 5} × {2, 2, 2, 3, 4} × {2, 2, 2, 2, 2, 3}
((3, 5, 6), (13), ((4, 4, 5), (2, 2, 2, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 126, 143, 152, 216, 234, 241, 255, 322, 336, 345,
353, 354), (116, 122, 141, 153, 211, 236, 245, 254, 326, 334, 343, 352, 355)))

+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
−1 0 +1 0 0 0
0 +1 −1 0 0 0

−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 +1 0 −1

+1 0 0 0 −1 0
0 0 0 −1 +1 0

0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 0 −1 0 +1
0 0 −1 0 +1 0
0 −1 +1 +1 −1 0

• 3 × 5 × 6 move of degree 13 with slice degree {4, 4, 5} × {2, 2, 3, 3, 3} × {2, 2, 2, 2, 2, 3}
((3, 5, 6), (13), ((4, 4, 5), (2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 3)), (fcs), (356), ((111, 133, 142, 156, 226, 234, 243, 255, 316, 324,
331, 345, 352), (116, 131, 143, 152, 224, 233, 245, 256, 311, 326, 334, 342, 355)))

+1 0 0 0 0 −1
0 0 0 0 0 0
−1 0 +1 0 0 0
0 +1 −1 0 0 0
0 −1 0 0 0 +1

0 0 0 0 0 0
0 0 0 −1 0 +1
0 0 −1 +1 0 0
0 0 +1 0 −1 0
0 0 0 0 +1 −1

−1 0 0 0 0 +1
0 0 0 +1 0 −1

+1 0 0 −1 0 0
0 −1 0 0 +1 0
0 +1 0 0 −1 (0)

• 3 × 6 × 6 move of degree 13 with slice degree {3, 5, 5} × {2, 2, 2, 2, 2, 3}× {2, 2, 2, 2, 2, 3}
((3, 6, 6), (13), ((3, 5, 5), (2, 2, 2, 2, 2, 3), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 126, 162, 216, 234, 243, 255, 261, 322, 336,
345, 354, 363), (116, 122, 161, 211, 236, 245, 254, 263, 326, 334, 343, 355, 362)))

+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 +1 0 0 0 0

−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 +1 0 −1 0
0 0 0 −1 +1 0

+1 0 −1 0 0 0

0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 0 −1 0 +1
0 0 −1 0 +1 0
0 0 0 +1 −1 0
0 −1 +1 0 0 0

• 3 × 6 × 6 move of degree 13 with slice degree {4, 4, 5} × {2, 2, 2, 2, 2, 3}× {2, 2, 2, 2, 2, 3}
((3, 6, 6), (13), ((4, 4, 5), (2, 2, 2, 2, 2, 3), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 126, 133, 162, 216, 245, 254, 261, 323, 332,
346, 355, 364), (116, 123, 132, 161, 211, 246, 255, 264, 326, 333, 345, 354, 362)))

+1 0 0 0 0 −1
0 0 −1 0 0 +1
0 −1 +1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 +1 0 0 0 0

−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 +1 −1 0

+1 0 0 −1 0 0

0 0 0 0 0 0
0 0 +1 0 0 −1
0 +1 −1 0 0 0
0 0 0 0 −1 +1
0 0 0 −1 +1 0
0 −1 0 +1 0 0
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• 4 × 4 × 5 move(1) of degree 13 with slice degree {3, 3, 3, 4} × {3, 3, 3, 4} × {2, 2, 3, 3, 3}
((4, 4, 5), (13), ((3, 3, 3, 4), (3, 3, 3, 4), (2, 2, 3, 3, 3)), (fcs), (443, 444), ((111, 135, 144, 225, 233, 242, 315, 324, 343,
413, 422, 434, 441), (115, 134, 141, 222, 235, 243, 313, 325, 344, 411, 424, 433, 442)))

+1 0 0 0 −1
0 0 0 0 0
0 0 0 −1 +1
−1 0 0 +1 0

0 0 0 0 0
0 −1 0 0 +1
0 0 +1 0 −1
0 +1 −1 0 0

0 0 −1 0 +1
0 0 0 +1 −1
0 0 0 0 0
0 0 +1 −1 0

−1 0 +1 0 0
0 +1 0 −1 0
0 0 −1 +1 0

+1 −1 (0) (0) 0

• 4 × 4 × 5 move(2) of degree 13 with slice degree {3, 3, 3, 4} × {3, 3, 3, 4} × {2, 2, 3, 3, 3}
(not fundamental, circuit)
((4, 4, 5), (13), ((3, 3, 3, 4), (3, 3, 3, 4), (2, 2, 3, 3, 3)), (Fcs), (244, 323, 415, 443), ((111, 135, 144, 223, 234, 242, 315,
324, 343, 413, 425, 432, 441), (115, 134, 141, 224, 232, 243, 313, 325, 344, 411, 423, 435, 442)))

+1 0 0 0 −1
0 0 0 0 0
0 0 0 −1 +1
−1 0 0 +1 0

0 0 0 0 0
0 0 +1 −1 0
0 −1 0 +1 0
0 +1 −1 (0) 0

0 0 −1 0 +1
0 0 (0) +1 −1
0 0 0 0 0
0 0 +1 −1 0

−1 0 +1 0 (0)
0 0 −1 0 +1
0 +1 0 0 −1

+1 −1 (0) 0 0

• 4 × 4 × 6 move of degree 13 with slice degree {2, 3, 3, 5} × {3, 3, 3, 4} × {2, 2, 2, 2, 2, 3}
((4, 4, 6), (13), ((2, 3, 3, 5), (3, 3, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 126, 216, 233, 242, 325, 336, 344, 412, 421, 434,
443, 445), (116, 121, 212, 236, 243, 326, 334, 345, 411, 425, 433, 442, 444)))

+1 0 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 +1 0 0 −1
0 +1 −1 0 0 0

0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 −1 0 +1
0 0 0 +1 −1 0

−1 +1 0 0 0 0
+1 0 0 0 −1 0
0 0 −1 +1 0 0
0 −1 +1 −1 +1 0

• 4 × 4 × 6 move(1) of degree 13 with slice degree {2, 3, 4, 4} × {3, 3, 3, 4} × {2, 2, 2, 2, 2, 3}
((4, 4, 6), (13), ((2, 3, 4, 4), (3, 3, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), (446), ((111, 146, 223, 236, 242, 314, 325, 333, 341, 416,
422, 434, 445), (116, 141, 222, 233, 246, 311, 323, 334, 345, 414, 425, 436, 442)))

+1 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1

0 0 0 0 0 0
0 −1 +1 0 0 0
0 0 −1 0 0 +1
0 +1 0 0 0 −1

−1 0 0 +1 0 0
0 0 −1 0 +1 0
0 0 +1 −1 0 0

+1 0 0 0 −1 0

0 0 0 −1 0 +1
0 +1 0 0 −1 0
0 0 0 +1 0 −1
0 −1 0 0 +1 (0)

• 4 × 4 × 6 move(2) of degree 13 with slice degree {2, 3, 4, 4} × {3, 3, 3, 4} × {2, 2, 2, 2, 2, 3}
((4, 4, 6), (13), ((2, 3, 4, 4), (3, 3, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 126, 222, 233, 246, 315, 321, 332, 344, 416, 434,
443, 445), (116, 121, 226, 232, 243, 311, 322, 334, 345, 415, 433, 444, 446)))

+1 0 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 +1 0 0 0 −1
0 −1 +1 0 0 0
0 0 −1 0 0 +1

−1 0 0 0 +1 0
+1 −1 0 0 0 0
0 +1 0 −1 0 0
0 0 0 +1 −1 0

0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 −1 +1 0 0
0 0 +1 −1 +1 −1

• 4 × 4 × 6 move of degree 13 with slice degree {3, 3, 3, 4} × {3, 3, 3, 4} × {2, 2, 2, 2, 2, 3}
((4, 4, 6), (13), ((3, 3, 3, 4), (3, 3, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), (416), ((111, 126, 142, 222, 234, 243, 316, 333, 345, 415,
424, 436, 441), (116, 122, 141, 224, 233, 242, 315, 336, 343, 411, 426, 434, 445)))

+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
−1 +1 0 0 0 0

0 0 0 0 0 0
0 +1 0 −1 0 0
0 0 −1 +1 0 0
0 −1 +1 0 0 0

0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 +1 0 0 −1
0 0 −1 0 +1 0

−1 0 0 0 +1 (0)
0 0 0 +1 0 −1
0 0 0 −1 0 +1

+1 0 0 0 −1 0
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• 4 × 5 × 5 move of degree 13 with slice degree {2, 3, 3, 5} × {2, 2, 2, 3, 4} × {2, 2, 3, 3, 3}
((4, 5, 5), (13), ((2, 3, 3, 5), (2, 2, 2, 3, 4), (2, 2, 3, 3, 3)), (fcs), ∅, ((113, 144, 221, 245, 254, 335, 343, 352, 414, 425, 432,
451, 453), (114, 143, 225, 244, 251, 332, 345, 353, 413, 421, 435, 452, 454)))

0 0 +1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 +1 0
0 0 0 0 0

0 0 0 0 0
+1 0 0 0 −1
0 0 0 0 0
0 0 0 −1 +1
−1 0 0 +1 0

0 0 0 0 0
0 0 0 0 0
0 −1 0 0 +1
0 0 +1 0 −1
0 +1 −1 0 0

0 0 −1 +1 0
−1 0 0 0 +1
0 +1 0 0 −1
0 0 0 0 0

+1 −1 +1 −1 0

• 4 × 5 × 5 move of degree 13 with slice degree {2, 3, 4, 4} × {2, 2, 2, 3, 4} × {2, 2, 3, 3, 3}
((4, 5, 5), (13), ((2, 3, 4, 4), (2, 2, 2, 3, 4), (2, 2, 3, 3, 3)), (fcs), ∅, ((113, 154, 235, 241, 252, 314, 325, 331, 343, 424, 442,
453, 455), (114, 153, 231, 242, 255, 313, 324, 335, 341, 425, 443, 452, 454)))

0 0 +1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 +1 0

0 0 0 0 0
0 0 0 0 0
−1 0 0 0 +1
+1 −1 0 0 0
0 +1 0 0 −1

0 0 −1 +1 0
0 0 0 −1 +1

+1 0 0 0 −1
−1 0 +1 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 +1 −1
0 0 0 0 0
0 +1 −1 0 0
0 −1 +1 −1 +1

• 4 × 5 × 5 move of degree 13 with slice degree {3, 3, 3, 4} × {2, 2, 2, 3, 4} × {2, 2, 2, 3, 4}
((4, 5, 5), (13), ((3, 3, 3, 4), (2, 2, 2, 3, 4), (2, 2, 2, 3, 4)), (fcs), ∅, ((114, 135, 152, 225, 241, 253, 334, 343, 355, 412, 421,
444, 455), (112, 134, 155, 221, 243, 255, 335, 344, 353, 414, 425, 441, 452)))

0 −1 0 +1 0
0 0 0 0 0
0 0 0 −1 +1
0 0 0 0 0
0 +1 0 0 −1

0 0 0 0 0
−1 0 0 0 +1
0 0 0 0 0

+1 0 −1 0 0
0 0 +1 0 −1

0 0 0 0 0
0 0 0 0 0
0 0 0 +1 −1
0 0 +1 −1 0
0 0 −1 0 +1

0 +1 0 −1 0
+1 0 0 0 −1
0 0 0 0 0
−1 0 0 +1 0
0 −1 0 0 +1

• 4 × 5 × 5 move of degree 13 with slice degree {3, 3, 3, 4} × {2, 2, 2, 3, 4} × {2, 2, 3, 3, 3}
((4, 5, 5), (13), ((3, 3, 3, 4), (2, 2, 2, 3, 4), (2, 2, 3, 3, 3)), (fcs), ∅, ((113, 125, 134, 214, 243, 251, 323, 342, 355, 435, 441,
452, 454), (114, 123, 135, 213, 241, 254, 325, 343, 352, 434, 442, 451, 455)))

0 0 +1 −1 0
0 0 −1 0 +1
0 0 0 +1 −1
0 0 0 0 0
0 0 0 0 0

0 0 −1 +1 0
0 0 0 0 0
0 0 0 0 0
−1 0 +1 0 0
+1 0 0 −1 0

0 0 0 0 0
0 0 +1 0 −1
0 0 0 0 0
0 +1 −1 0 0
0 −1 0 0 +1

0 0 0 0 0
0 0 0 0 0
0 0 0 −1 +1

+1 −1 0 0 0
−1 +1 0 +1 −1

• 4 × 5 × 6 move of degree 13 with slice degree {2, 3, 3, 5} × {2, 2, 3, 3, 3} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((2, 3, 3, 5), (2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((131, 146, 212, 236, 253, 324, 345, 356, 413, 425,
432, 441, 454), (136, 141, 213, 232, 256, 325, 346, 354, 412, 424, 431, 445, 453)))

0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 0 0 0

0 +1 −1 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 +1 0 0 −1

0 0 0 0 0 0
0 0 0 +1 −1 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 −1 0 +1

0 −1 +1 0 0 0
0 0 0 −1 +1 0
−1 +1 0 0 0 0
+1 0 0 0 −1 0
0 0 −1 +1 0 0

• 4 × 5 × 6 move(1) of degree 13 with slice degree {2, 3, 4, 4} × {2, 2, 2, 3, 4} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((2, 3, 4, 4), (2, 2, 2, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((141, 152, 213, 226, 254, 324, 336, 345, 351, 416,
435, 442, 453), (142, 151, 216, 224, 253, 326, 335, 341, 354, 413, 436, 445, 452)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 −1 0 0 0 0
−1 +1 0 0 0 0

0 0 +1 0 0 −1
0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 +1 0 0

0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 0 0 −1 +1
−1 0 0 0 +1 0
+1 0 0 −1 0 0

0 0 −1 0 0 +1
0 0 0 0 0 0
0 0 0 0 +1 −1
0 +1 0 0 −1 0
0 −1 +1 0 0 0
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• 4 × 5 × 6 move(2) of degree 13 with slice degree {2, 3, 4, 4} × {2, 2, 2, 3, 4} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((2, 3, 4, 4), (2, 2, 2, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((141, 152, 213, 246, 251, 325, 336, 342, 354, 416,
424, 435, 453), (142, 151, 216, 241, 253, 324, 335, 346, 352, 413, 425, 436, 454)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 −1 0 0 0 0
−1 +1 0 0 0 0

0 0 +1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1
+1 0 −1 0 0 0

0 0 0 0 0 0
0 0 0 −1 +1 0
0 0 0 0 −1 +1
0 +1 0 0 0 −1
0 −1 0 +1 0 0

0 0 −1 0 0 +1
0 0 0 +1 −1 0
0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 +1 −1 0 0

• 4 × 5 × 6 move(1) of degree 13 with slice degree {2, 3, 4, 4} × {2, 2, 3, 3, 3} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((2, 3, 4, 4), (2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((136, 141, 216, 234, 253, 322, 331, 345, 354, 413,
425, 446, 452), (131, 146, 213, 236, 254, 325, 334, 341, 352, 416, 422, 445, 453)))

0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1
+1 0 0 0 0 −1
0 0 0 0 0 0

0 0 −1 0 0 +1
0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 0 0 0 0
0 0 +1 −1 0 0

0 0 0 0 0 0
0 +1 0 0 −1 0

+1 0 0 −1 0 0
−1 0 0 0 +1 0
0 −1 0 +1 0 0

0 0 +1 0 0 −1
0 −1 0 0 +1 0
0 0 0 0 0 0
0 0 0 0 −1 +1
0 +1 −1 0 0 0

• 4 × 5 × 6 move(2) of degree 13 with slice degree {2, 3, 4, 4} × {2, 2, 3, 3, 3} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((2, 3, 4, 4), (2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((131, 142, 213, 226, 254, 324, 336, 341, 355, 416,
432, 445, 453), (132, 141, 216, 224, 253, 326, 331, 345, 354, 413, 436, 442, 455)))

0 0 0 0 0 0
0 0 0 0 0 0

+1 −1 0 0 0 0
−1 +1 0 0 0 0
0 0 0 0 0 0

0 0 +1 0 0 −1
0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 +1 0 0

0 0 0 0 0 0
0 0 0 +1 0 −1
−1 0 0 0 0 +1
+1 0 0 0 −1 0
0 0 0 −1 +1 0

0 0 −1 0 0 +1
0 0 0 0 0 0
0 +1 0 0 0 −1
0 −1 0 0 +1 0
0 0 +1 0 −1 0

• 4 × 5 × 6 move of degree 13 with slice degree {3, 3, 3, 4} × {2, 2, 2, 3, 4} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((3, 3, 3, 4), (2, 2, 2, 3, 4), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 126, 152, 222, 246, 253, 335, 343, 354, 416,
434, 445, 451), (116, 122, 151, 226, 243, 252, 334, 345, 353, 411, 435, 446, 454)))

+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
−1 +1 0 0 0 0

0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 0 0 0 0
0 0 −1 0 0 +1
0 −1 +1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 +1 0
0 0 +1 0 −1 0
0 0 −1 +1 0 0

−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 +1 −1 0
0 0 0 0 +1 −1

+1 0 0 −1 0 0

• 4 × 5 × 6 move(1) of degree 13 with slice degree {3, 3, 3, 4} × {2, 2, 3, 3, 3} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((3, 3, 3, 4), (2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((131, 143, 152, 216, 234, 241, 325, 346, 353, 414,
426, 432, 455), (132, 141, 153, 214, 231, 246, 326, 343, 355, 416, 425, 434, 452)))

0 0 0 0 0 0
0 0 0 0 0 0

+1 −1 0 0 0 0
−1 0 +1 0 0 0
0 +1 −1 0 0 0

0 0 0 −1 0 +1
0 0 0 0 0 0
−1 0 0 +1 0 0
+1 0 0 0 0 −1
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 −1 0 0 +1
0 0 +1 0 −1 0

0 0 0 +1 0 −1
0 0 0 0 −1 +1
0 +1 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 +1 0

• 4 × 5 × 6 move(2) of degree 13 with slice degree {3, 3, 3, 4} × {2, 2, 3, 3, 3} × {2, 2, 2, 2, 2, 3}
((4, 5, 6), (13), ((3, 3, 3, 4), (2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 136, 152, 223, 244, 256, 326, 335, 343, 412,
431, 445, 454), (112, 131, 156, 226, 243, 254, 323, 336, 345, 411, 435, 444, 452)))

+1 −1 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1
0 0 0 0 0 0
0 +1 0 0 0 −1

0 0 0 0 0 0
0 0 +1 0 0 −1
0 0 0 0 0 0
0 0 −1 +1 0 0
0 0 0 −1 0 +1

0 0 0 0 0 0
0 0 −1 0 0 +1
0 0 0 0 +1 −1
0 0 +1 0 −1 0
0 0 0 0 0 0

−1 +1 0 0 0 0
0 0 0 0 0 0

+1 0 0 0 −1 0
0 0 0 −1 +1 0
0 −1 0 +1 0 0
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• 5 × 5 × 5 move of degree 13 with slice degree {2, 2, 2, 3, 4} × {2, 2, 2, 3, 4}× {2, 2, 3, 3, 3}
((5, 5, 5), (13), ((2, 2, 2, 3, 4), (2, 2, 2, 3, 4), (2, 2, 3, 3, 3)), (fcs), ∅, ((113, 155, 224, 253, 345, 351, 432, 441, 454, 515,
523, 534, 542), (115, 153, 223, 254, 341, 355, 434, 442, 451, 513, 524, 532, 545)))

0 0 +1 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 +1

0 0 0 0 0
0 0 −1 +1 0
0 0 0 0 0
0 0 0 0 0
0 0 +1 −1 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 +1
+1 0 0 0 −1

0 0 0 0 0
0 0 0 0 0
0 +1 0 −1 0

+1 −1 0 0 0
−1 0 0 +1 0

0 0 −1 0 +1
0 0 +1 −1 0
0 −1 0 +1 0
0 +1 0 0 −1
0 0 0 0 0

• 5 × 5 × 5 move(1) of degree 13 with slice degree {2, 2, 2, 3, 4} × {2, 2, 3, 3, 3}× {2, 2, 3, 3, 3}
((5, 5, 5), (13), ((2, 2, 2, 3, 4), (2, 2, 3, 3, 3), (2, 2, 3, 3, 3)), (fcs), ∅, ((135, 153, 231, 245, 313, 354, 424, 442, 455, 514,
522, 533, 541), (133, 155, 235, 241, 314, 353, 422, 445, 454, 513, 524, 531, 542)))

0 0 0 0 0
0 0 0 0 0
0 0 −1 0 +1
0 0 0 0 0
0 0 +1 0 −1

0 0 0 0 0
0 0 0 0 0

+1 0 0 0 −1
−1 0 0 0 +1
0 0 0 0 0

0 0 +1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 +1 0

0 0 0 0 0
0 −1 0 +1 0
0 0 0 0 0
0 +1 0 0 −1
0 0 0 −1 +1

0 0 −1 +1 0
0 +1 0 −1 0
−1 0 +1 0 0
+1 −1 0 0 0
0 0 0 0 0

• 5 × 5 × 5 move(2) of degree 13 with slice degree {2, 2, 2, 3, 4} × {2, 2, 3, 3, 3}× {2, 2, 3, 3, 3}
((5, 5, 5), (13), ((2, 2, 2, 3, 4), (2, 2, 3, 3, 3), (2, 2, 3, 3, 3)), (fcs), ∅, ((133, 144, 245, 254, 315, 343, 421, 434, 452, 513,
522, 531, 555), (134, 143, 244, 255, 313, 345, 422, 431, 454, 515, 521, 533, 552)))

0 0 0 0 0
0 0 0 0 0
0 0 +1 −1 0
0 0 −1 +1 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 +1
0 0 0 +1 −1

0 0 −1 0 +1
0 0 0 0 0
0 0 0 0 0
0 0 +1 0 −1
0 0 0 0 0

0 0 0 0 0
+1 −1 0 0 0
−1 0 0 +1 0
0 0 0 0 0
0 +1 0 −1 0

0 0 +1 0 −1
−1 +1 0 0 0
+1 0 −1 0 0
0 0 0 0 0
0 −1 0 0 +1

168



• 5 × 5 × 5 move(3) of degree 13 with slice degree {2, 2, 2, 3, 4} × {2, 2, 3, 3, 3}× {2, 2, 3, 3, 3}
((5, 5, 5), (13), ((2, 2, 2, 3, 4), (2, 2, 3, 3, 3), (2, 2, 3, 3, 3)), (fcs), ∅, ((131, 143, 233, 252, 315, 324, 425, 444, 453, 514,
532, 541, 555), (133, 141, 232, 253, 314, 325, 424, 443, 455, 515, 531, 544, 552)))

0 0 0 0 0
0 0 0 0 0

+1 0 −1 0 0
−1 0 +1 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 −1 +1 0 0
0 0 0 0 0
0 +1 −1 0 0

0 0 0 −1 +1
0 0 0 +1 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 −1 +1
0 0 0 0 0
0 0 −1 +1 0
0 0 +1 0 −1

0 0 0 +1 −1
0 0 0 0 0
−1 +1 0 0 0
+1 0 0 −1 0
0 −1 0 0 +1

A.4 Indispensable moves of degree 14

• 3 × 5 × 6 move of degree 14 with slice degree {4, 4, 6} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 4}
((3, 5, 6), (14), ((4, 4, 6), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 4)), (fcS), ∅, ((111, 132, 143, 156, 224, 235, 242, 256, 316, 326,
331, 344, 353, 355), (116, 131, 142, 153, 226, 232, 244, 255, 311, 324, 335, 343, 356, 356)))

+1 0 0 0 0 −1
0 0 0 0 0 0
−1 +1 0 0 0 0
0 −1 +1 0 0 0
0 0 −1 0 0 +1

0 0 0 0 0 0
0 0 0 +1 0 −1
0 −1 0 0 +1 0
0 +1 0 −1 0 0
0 0 0 0 −1 +1

−1 0 0 0 0 +1
0 0 0 −1 0 +1

+1 0 0 0 −1 0
0 0 −1 +1 0 0
0 0 +1 0 +1 −2

• 3 × 5 × 6 move of degree 14 with slice degree {4, 5, 5} × {2, 3, 3, 3, 3} × {2, 2, 2, 2, 2, 4}
((3, 5, 6), (14), ((4, 5, 5), (2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((121, 132, 143, 154, 215, 226, 233, 246, 251, 316,
322, 335, 344, 356), (122, 133, 144, 151, 216, 221, 235, 243, 256, 315, 326, 332, 346, 354)))

0 0 0 0 0 0
+1 −1 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 −1 0 0
−1 0 0 +1 0 0

0 0 0 0 +1 −1
−1 0 0 0 0 +1
0 0 +1 0 −1 0
0 0 −1 0 0 +1

+1 0 0 0 0 −1

0 0 0 0 −1 +1
0 +1 0 0 0 −1
0 −1 0 0 +1 0
0 0 0 +1 0 −1
0 0 0 −1 0 +1

• 3 × 5 × 7 move(1) of degree 14 with slice degree {4, 4, 6} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((3, 5, 7), (14), ((4, 4, 6), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 132, 143, 154, 227, 235, 242, 256, 314,
326, 331, 347, 353, 355), (114, 131, 142, 153, 226, 232, 247, 255, 311, 327, 335, 343, 354, 356)))

+1 0 0 −1 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 −1 +1 0 0 0 0
0 0 −1 +1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 −1 +1
0 −1 0 0 +1 0 0
0 +1 0 0 0 0 −1
0 0 0 0 −1 +1 0

−1 0 0 +1 0 0 0
0 0 0 0 0 +1 −1

+1 0 0 0 −1 0 0
0 0 −1 0 0 0 +1
0 0 +1 −1 +1 −1 0

• 3 × 5 × 7 move(2) of degree 14 with slice degree {4, 4, 6} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((3, 5, 7), (14), ((4, 4, 6), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 132, 143, 154, 226, 235, 242, 257, 314,
325, 331, 347, 353, 356), (114, 131, 142, 153, 225, 232, 247, 256, 311, 326, 335, 343, 354, 357)))

+1 0 0 −1 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 −1 +1 0 0 0 0
0 0 −1 +1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 −1 +1 0
0 −1 0 0 +1 0 0
0 +1 0 0 0 0 −1
0 0 0 0 0 −1 +1

−1 0 0 +1 0 0 0
0 0 0 0 +1 −1 0

+1 0 0 0 −1 0 0
0 0 −1 0 0 0 +1
0 0 +1 −1 0 +1 −1
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• 3 × 5 × 7 move(1) of degree 14 with slice degree {4, 5, 5} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((3, 5, 7), (14), ((4, 5, 5), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 133, 142, 154, 212, 226, 231, 247, 255,
325, 336, 344, 353, 357), (112, 131, 144, 153, 211, 225, 236, 242, 257, 326, 333, 347, 354, 355)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

−1 +1 0 0 0 0 0
0 0 0 0 −1 +1 0

+1 0 0 0 0 −1 0
0 −1 0 0 0 0 +1
0 0 0 0 +1 0 −1

0 0 0 0 0 0 0
0 0 0 0 +1 −1 0
0 0 −1 0 0 +1 0
0 0 0 +1 0 0 −1
0 0 +1 −1 −1 0 +1

• 3 × 5 × 7 move (2) of degree 14 with slice degree {4, 5, 5} × {2, 2, 3, 3, 4}× {2, 2, 2, 2, 2, 2, 2}
((3, 5, 7), (14), ((4, 5, 5), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 144, 152, 153, 215, 226, 237, 243, 251,
316, 327, 332, 345, 354), (132, 143, 151, 154, 216, 227, 231, 245, 253, 315, 326, 337, 344, 352)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
0 0 −1 +1 0 0 0
−1 +1 +1 −1 0 0 0

0 0 0 0 +1 −1 0
0 0 0 0 0 +1 −1
−1 0 0 0 0 0 +1
0 0 +1 0 −1 0 0

+1 0 −1 0 0 0 0

0 0 0 0 −1 +1 0
0 0 0 0 0 −1 +1
0 +1 0 0 0 0 −1
0 0 0 −1 +1 0 0
0 −1 0 +1 0 0 0

• 3 × 5 × 7 move of degree 14 with slice degree {4, 5, 5} × {2, 3, 3, 3, 3} × {2, 2, 2, 2, 2, 2, 2}
((3, 5, 7), (14), ((4, 5, 5), (2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 133, 142, 154, 216, 222, 237, 245, 253,
315, 326, 331, 344, 357), (122, 131, 144, 153, 215, 226, 233, 242, 257, 316, 321, 337, 345, 354)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

0 0 0 0 −1 +1 0
0 +1 0 0 0 −1 0
0 0 −1 0 0 0 +1
0 −1 0 0 +1 0 0
0 0 +1 0 0 0 −1

0 0 0 0 +1 −1 0
−1 0 0 0 0 +1 0
+1 0 0 0 0 0 −1
0 0 0 +1 −1 0 0
0 0 0 −1 0 0 +1

• 3 × 6 × 6 move(1) of degree 14 with slice degree {4, 4, 6} × {2, 2, 2, 2, 3, 3}× {2, 2, 2, 2, 2, 4}
((3, 6, 6), (14), ((4, 4, 6), (2, 2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 126, 152, 163, 234, 246, 253, 265, 316,
322, 336, 345, 354, 361), (116, 122, 153, 161, 236, 245, 254, 263, 311, 326, 334, 346, 352, 365)))

+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 +1 −1 0 0 0
−1 0 +1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 0 0 −1 +1
0 0 +1 −1 0 0
0 0 −1 0 +1 0

−1 0 0 0 0 +1
0 +1 0 0 0 −1
0 0 0 −1 0 +1
0 0 0 0 +1 −1
0 −1 0 +1 0 0

+1 0 0 0 −1 0

• 3 × 6 × 6 move(2) of degree 14 with slice degree {4, 4, 6} × {2, 2, 2, 2, 3, 3}× {2, 2, 2, 2, 2, 4}
(not fundamental, circuit)
((3, 6, 6), (14), ((4, 4, 6), (2, 2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 4)), (Fcs), (156), ((111, 126, 152, 163, 234, 246, 253, 265,
316, 322, 335, 344, 356, 361), (116, 122, 153, 161, 235, 244, 256, 263, 311, 326, 334, 346, 352, 365)))

+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 +1 −1 0 0 (0)
−1 0 +1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 +1 −1 0
0 0 0 −1 0 +1
0 0 +1 0 0 −1
0 0 −1 0 +1 0

−1 0 0 0 0 +1
0 +1 0 0 0 −1
0 0 0 −1 +1 0
0 0 0 +1 0 −1
0 −1 0 0 0 +1

+1 0 0 0 −1 0
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• 3 × 6 × 7 move of degree 14 with slice degree {4, 4, 6} × {2, 2, 2, 2, 3, 3}× {2, 2, 2, 2, 2, 2, 2}
((3, 6, 7), (14), ((4, 4, 6), (2, 2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 122, 153, 164, 236, 247, 254, 265, 312,
323, 335, 346, 357, 361), (112, 123, 154, 161, 235, 246, 257, 264, 311, 322, 336, 347, 353, 365)))

+1 −1 0 0 0 0 0
0 +1 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
−1 0 0 +1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 +1 0
0 0 0 0 0 −1 +1
0 0 0 +1 0 0 −1
0 0 0 −1 +1 0 0

−1 +1 0 0 0 0 0
0 −1 +1 0 0 0 0
0 0 0 0 +1 −1 0
0 0 0 0 0 +1 −1
0 0 −1 0 0 0 +1

+1 0 0 0 −1 0 0

• 3 × 6 × 7 move of degree 14 with slice degree {4, 5, 5} × {2, 2, 2, 2, 3, 3}× {2, 2, 2, 2, 2, 2, 2}
((3, 6, 7), (14), ((4, 5, 5), (2, 2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 123, 154, 162, 212, 235, 246, 251, 267,
324, 336, 347, 355, 363), (112, 124, 151, 163, 211, 236, 247, 255, 262, 323, 335, 346, 354, 367)))

+1 −1 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 +1 0 0 0
0 +1 −1 0 0 0 0

−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 +1 −1 0
0 0 0 0 0 +1 −1

+1 0 0 0 −1 0 0
0 −1 0 0 0 0 +1

0 0 0 0 0 0 0
0 0 −1 +1 0 0 0
0 0 0 0 −1 +1 0
0 0 0 0 0 −1 +1
0 0 0 −1 +1 0 0
0 0 +1 0 0 0 −1

• 4 × 4 × 5 move(1) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 3, 5} × {2, 2, 3, 3, 4}
(not fundamental, circuit)
((4, 4, 5), (14), ((3, 3, 3, 5), (3, 3, 3, 5), (2, 2, 3, 3, 4)), (FcS), (335, 444), ((111, 123, 144, 222, 233, 245, 313,
334, 345, 415, 424, 435, 441, 442), (113, 124, 141, 223, 235, 242, 315, 333, 344, 411, 422, 434, 445, 445)))

+1 0 −1 0 0
0 0 +1 −1 0
0 0 0 0 0
−1 0 0 +1 0

0 0 0 0 0
0 +1 −1 0 0
0 0 +1 0 −1
0 −1 0 0 +1

0 0 +1 0 −1
0 0 0 0 0
0 0 −1 +1 (0)
0 0 0 −1 +1

−1 0 0 0 +1
0 −1 0 +1 0
0 0 0 −1 +1

+1 +1 0 (0) −2

• 4 × 4 × 5 move(2) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 3, 5} × {2, 2, 3, 3, 4}
(not fundamental, circuit)
((4, 4, 5), (14), ((3, 3, 3, 5), (3, 3, 3, 5), (2, 2, 3, 3, 4)), (FcS), (244, 413), ((111, 133, 144, 222, 234, 245, 313,
324, 345, 415, 423, 435, 441, 442), (113, 134, 141, 224, 235, 242, 315, 323, 344, 411, 422, 433, 445, 445)))

−1 0 +1 0 0
0 0 0 0 0
0 0 −1 +1 0

+1 0 0 −1 0

0 0 0 0 0
0 −1 0 +1 0
0 0 0 −1 +1
0 +1 0 (0) −1

0 0 −1 0 +1
0 0 +1 −1 0
0 0 0 0 0
0 0 0 +1 −1

+1 0 (0) 0 −1
0 +1 −1 0 0
0 0 +1 0 −1
−1 −1 0 0 +2

• 4 × 4 × 5 move(1) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 4, 4} × {2, 3, 3, 3, 3}
(not fundamental, circuit)
((4, 4, 5), (14), ((3, 3, 3, 5), (3, 3, 4, 4), (2, 3, 3, 3, 3)), (Fcs), (132, 245, 424), ((112, 124, 133, 213, 225, 244,
315, 332, 341, 422, 431, 434, 443, 445), (113, 122, 134, 215, 224, 243, 312, 331, 345, 425, 432, 433, 441, 444)))

0 +1 −1 0 0
0 −1 0 +1 0
0 (0) +1 −1 0
0 0 0 0 0

0 0 +1 0 −1
0 0 0 −1 +1
0 0 0 0 0
0 0 −1 +1 (0)

0 −1 0 0 +1
0 0 0 0 0
−1 +1 0 0 0
+1 0 0 0 −1

0 0 0 0 0
0 +1 0 (0) −1

+1 −1 −1 +1 0
−1 0 +1 −1 +1
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• 4 × 4 × 5 move(2) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 4, 4} × {2, 3, 3, 3, 3}
((4, 4, 5), (14), ((3, 3, 3, 5), (3, 3, 4, 4), (2, 3, 3, 3, 3)), (fcs), ∅, ((112, 124, 133, 213, 225, 244, 315, 331, 342,
422, 434, 435, 441, 443), (113, 122, 134, 215, 224, 243, 312, 335, 341, 425, 431, 433, 442, 444)))

0 +1 −1 0 0
0 −1 0 +1 0
0 0 +1 −1 0
0 0 0 0 0

0 0 +1 0 −1
0 0 0 −1 +1
0 0 0 0 0
0 0 −1 +1 0

0 −1 0 0 +1
0 0 0 0 0

+1 0 0 0 −1
−1 +1 0 0 0

0 0 0 0 0
0 +1 0 0 −1
−1 0 −1 +1 +1
+1 −1 +1 −1 0

• 4 × 4 × 6 move of degree 14 with slice degree {2, 3, 4, 5} × {3, 3, 3, 5} × {2, 2, 2, 2, 2, 4}
((4, 4, 6), (14), ((2, 3, 4, 5), (3, 3, 3, 5), (2, 2, 2, 2, 2, 4)), (fcS), ∅, ((111, 146, 225, 233, 246, 312, 323, 334, 341,
416, 422, 436, 444, 445), (116, 141, 223, 236, 245, 311, 322, 333, 344, 412, 425, 434, 446, 446)))

+1 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1

0 0 0 0 0 0
0 0 −1 0 +1 0
0 0 +1 0 0 −1
0 0 0 0 −1 +1

−1 +1 0 0 0 0
0 −1 +1 0 0 0
0 0 −1 +1 0 0

+1 0 0 −1 0 0

0 −1 0 0 0 +1
0 +1 0 0 −1 0
0 0 0 −1 0 +1
0 0 0 +1 +1 −2

• 4 × 4 × 6 move of degree 14 with slice degree {2, 4, 4, 4} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 4}
((4, 4, 6), (14), ((2, 4, 4, 4), (3, 3, 4, 4), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((131, 142, 213, 226, 236, 241, 314, 323, 332,
345, 416, 425, 434, 446), (132, 141, 216, 223, 231, 246, 313, 325, 334, 342, 414, 426, 436, 445)))

0 0 0 0 0 0
0 0 0 0 0 0

+1 −1 0 0 0 0
−1 +1 0 0 0 0

0 0 +1 0 0 −1
0 0 −1 0 0 +1
−1 0 0 0 0 +1
+1 0 0 0 0 −1

0 0 −1 +1 0 0
0 0 +1 0 −1 0
0 +1 0 −1 0 0
0 −1 0 0 +1 0

0 0 0 −1 0 +1
0 0 0 0 +1 −1
0 0 0 +1 0 −1
0 0 0 0 −1 +1

• 4 × 4 × 6 move(1) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 3, 5} × {2, 2, 2, 2, 3, 3}
((4, 4, 6), (14), ((3, 3, 3, 5), (3, 3, 3, 5), (2, 2, 2, 2, 3, 3)), (fcs), (446), ((111, 125, 142, 215, 233, 246, 326, 335,
344, 416, 422, 434, 441, 443), (115, 122, 141, 216, 235, 243, 325, 334, 346, 411, 426, 433, 442, 444)))

+1 0 0 0 −1 0
0 −1 0 0 +1 0
0 0 0 0 0 0
−1 +1 0 0 0 0

0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 +1 0 −1 0
0 0 −1 0 0 +1

0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 −1 +1 0
0 0 0 +1 0 −1

−1 0 0 0 0 +1
0 +1 0 0 0 −1
0 0 −1 +1 0 0

+1 −1 +1 −1 0 (0)

• 4 × 4 × 6 move(2) of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 3, 5} × {2, 2, 2, 2, 3, 3}
(not fundamental, circuit)
((4, 4, 6), (14), ((3, 3, 3, 5), (3, 3, 3, 5), (2, 2, 2, 2, 3, 3)), (Fcs), (436), ((111, 125, 142, 215, 236, 243, 326, 334,
345, 416, 422, 433, 441, 444), (115, 122, 141, 216, 233, 245, 325, 336, 344, 411, 426, 434, 442, 443)))

+1 0 0 0 −1 0
0 −1 0 0 +1 0
0 0 0 0 0 0
−1 +1 0 0 0 0

0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 −1 0 0 +1
0 0 +1 0 −1 0

0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 +1 0 −1
0 0 0 −1 +1 0

−1 0 0 0 0 +1
0 +1 0 0 0 −1
0 0 +1 −1 0 (0)

+1 −1 −1 +1 0 0

• 4 × 4 × 6 move of degree 14 with slice degree {3, 3, 4, 4} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 4}
((4, 4, 6), (14), ((3, 3, 4, 4), (3, 3, 4, 4), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 136, 142, 223, 236, 244, 315, 324, 331,
346, 412, 425, 433, 446), (112, 131, 146, 224, 233, 246, 311, 325, 336, 344, 415, 423, 436, 442)))

+1 −1 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1
0 +1 0 0 0 −1

0 0 0 0 0 0
0 0 +1 −1 0 0
0 0 −1 0 0 +1
0 0 0 +1 0 −1

−1 0 0 0 +1 0
0 0 0 +1 −1 0

+1 0 0 0 0 −1
0 0 0 −1 0 +1

0 +1 0 0 −1 0
0 0 −1 0 +1 0
0 0 +1 0 0 −1
0 −1 0 0 0 +1
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• 4 × 4 × 7 move(1) of degree 14 with slice degree {2, 3, 4, 5} × {2, 3, 4, 5} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((2, 3, 4, 5), (2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((133, 145, 222, 231, 243, 314, 321, 337, 346,
416, 424, 435, 442, 447), (135, 143, 221, 233, 242, 316, 324, 331, 347, 414, 422, 437, 445, 446)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 0 −1 0 0
0 0 −1 0 +1 0 0

0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
+1 0 −1 0 0 0 0
0 −1 +1 0 0 0 0

0 0 0 +1 0 −1 0
+1 0 0 −1 0 0 0
−1 0 0 0 0 0 +1
0 0 0 0 0 +1 −1

0 0 0 −1 0 +1 0
0 −1 0 +1 0 0 0
0 0 0 0 +1 0 −1
0 +1 0 0 −1 −1 +1

• 4 × 4 × 7 move(2) of degree 14 with slice degree {2, 3, 4, 5} × {2, 3, 4, 5} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((2, 3, 4, 5), (2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 142, 223, 234, 245, 316, 324, 332, 347,
417, 426, 435, 441, 443), (132, 141, 224, 235, 243, 317, 326, 334, 342, 416, 423, 431, 445, 447)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 +1 −1 0 0
0 0 −1 0 +1 0 0

0 0 0 0 0 +1 −1
0 0 0 +1 0 −1 0
0 +1 0 −1 0 0 0
0 −1 0 0 0 0 +1

0 0 0 0 0 −1 +1
0 0 −1 0 0 +1 0
−1 0 0 0 +1 0 0
+1 0 +1 0 −1 0 −1

• 4 × 4 × 7 move of degree 14 with slice degree {2, 3, 4, 5} × {2, 4, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((2, 3, 4, 5), (2, 4, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 132, 223, 231, 244, 315, 322, 337, 346,
416, 425, 434, 443, 447), (122, 131, 221, 234, 243, 316, 325, 332, 347, 415, 423, 437, 444, 446)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
−1 0 +1 0 0 0 0
+1 0 0 −1 0 0 0
0 0 −1 +1 0 0 0

0 0 0 0 +1 −1 0
0 +1 0 0 −1 0 0
0 −1 0 0 0 0 +1
0 0 0 0 0 +1 −1

0 0 0 0 −1 +1 0
0 0 −1 0 +1 0 0
0 0 0 +1 0 0 −1
0 0 +1 −1 0 −1 +1

• 4 × 4 × 7 move of degree 14 with slice degree {2, 3, 4, 5} × {3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((2, 3, 4, 5), (3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 142, 223, 235, 244, 312, 326, 333, 347,
416, 424, 437, 441, 445), (112, 141, 224, 233, 245, 316, 323, 337, 342, 411, 426, 435, 444, 447)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 −1 0 +1 0 0
0 0 0 +1 −1 0 0

0 +1 0 0 0 −1 0
0 0 −1 0 0 +1 0
0 0 +1 0 0 0 −1
0 −1 0 0 0 0 +1

−1 0 0 0 0 +1 0
0 0 0 +1 0 −1 0
0 0 0 0 −1 0 +1

+1 0 0 −1 +1 0 −1
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• 4 × 4 × 7 move of degree 14 with slice degree {2, 3, 4, 5} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((2, 3, 4, 5), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 132, 223, 234, 245, 317, 324, 331, 346,
412, 426, 435, 443, 447), (112, 131, 224, 235, 243, 311, 326, 334, 347, 417, 423, 432, 445, 446)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 +1 −1 0 0
0 0 −1 0 +1 0 0

−1 0 0 0 0 0 +1
0 0 0 +1 0 −1 0

+1 0 0 −1 0 0 0
0 0 0 0 0 +1 −1

0 +1 0 0 0 0 −1
0 0 −1 0 0 +1 0
0 −1 0 0 +1 0 0
0 0 +1 0 −1 −1 +1

• 4 × 4 × 7 move(1) of degree 14 with slice degree {2, 4, 4, 4} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((2, 4, 4, 4), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 132, 213, 224, 231, 245, 312, 323, 337,
346, 426, 435, 444, 447), (112, 131, 211, 223, 235, 244, 313, 326, 332, 347, 424, 437, 445, 446)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0

−1 0 +1 0 0 0 0
0 0 −1 +1 0 0 0

+1 0 0 0 −1 0 0
0 0 0 −1 +1 0 0

0 +1 −1 0 0 0 0
0 0 +1 0 0 −1 0
0 −1 0 0 0 0 +1
0 0 0 0 0 +1 −1

0 0 0 0 0 0 0
0 0 0 −1 0 +1 0
0 0 0 0 +1 0 −1
0 0 0 +1 −1 −1 +1

• 4 × 4 × 7 move(2) of degree 14 with slice degree {2, 4, 4, 4} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((2, 4, 4, 4), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 142, 213, 225, 234, 241, 316, 323, 332,
347, 414, 427, 436, 445), (132, 141, 214, 223, 231, 245, 313, 327, 336, 342, 416, 425, 434, 447)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 +1 −1 0 0 0
0 0 −1 0 +1 0 0
−1 0 0 +1 0 0 0
+1 0 0 0 −1 0 0

0 0 −1 0 0 +1 0
0 0 +1 0 0 0 −1
0 +1 0 0 0 −1 0
0 −1 0 0 0 0 +1

0 0 0 +1 0 −1 0
0 0 0 0 −1 0 +1
0 0 0 −1 0 +1 0
0 0 0 0 +1 0 −1

• 4 × 4 × 7 move of degree 14 with slice degree {3, 3, 3, 5} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((3, 3, 3, 5), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 123, 132, 212, 235, 244, 326, 333, 347,
414, 421, 437, 445, 446), (112, 121, 133, 214, 232, 245, 323, 337, 346, 411, 426, 435, 444, 447)))

+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 −1 0 0 0 0
0 0 0 0 0 0 0

0 +1 0 −1 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 +1 0 0
0 0 0 +1 −1 0 0

0 0 0 0 0 0 0
0 0 −1 0 0 +1 0
0 0 +1 0 0 0 −1
0 0 0 0 0 −1 +1

−1 0 0 +1 0 0 0
+1 0 0 0 0 −1 0
0 0 0 0 −1 0 +1
0 0 0 −1 +1 +1 −1
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• 4 × 4 × 7 move of degree 14 with slice degree {3, 3, 4, 4} × {3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 4, 7), (14), ((3, 3, 4, 4), (3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 133, 142, 224, 236, 245, 317, 325, 331,
343, 412, 427, 434, 446), (112, 131, 143, 225, 234, 246, 311, 327, 333, 345, 417, 424, 436, 442)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 −1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 0 −1 0 +1 0
0 0 0 0 +1 −1 0

−1 0 0 0 0 0 +1
0 0 0 0 +1 0 −1

+1 0 −1 0 0 0 0
0 0 +1 0 −1 0 0

0 +1 0 0 0 0 −1
0 0 0 −1 0 0 +1
0 0 0 +1 0 −1 0
0 −1 0 0 0 +1 0

• 4 × 5 × 5 move of degree 14 with slice degree {2, 3, 4, 5} × {2, 2, 2, 4, 4} × {2, 3, 3, 3, 3}
((4, 5, 5), (14), ((2, 3, 4, 5), (2, 2, 2, 4, 4), (2, 3, 3, 3, 3)), (fcs), ∅, ((142, 153, 214, 245, 251, 322, 335, 343, 344,
411, 424, 433, 452, 455), (143, 152, 211, 244, 255, 324, 333, 342, 345, 414, 422, 435, 451, 453)))

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 +1 −1 0 0
0 −1 +1 0 0

−1 0 0 +1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 +1

+1 0 0 0 −1

0 0 0 0 0
0 +1 0 −1 0
0 0 −1 0 +1
0 −1 +1 +1 −1
0 0 0 0 0

+1 0 0 −1 0
0 −1 0 +1 0
0 0 +1 0 −1
0 0 0 0 0
−1 +1 −1 0 +1

• 4 × 5 × 5 move(1) of degree 14 with slice degree {3, 3, 3, 5} × {2, 2, 3, 3, 4} × {2, 3, 3, 3, 3}
(not fundamental, circuit)
((4, 5, 5), (14), ((3, 3, 3, 5), (2, 2, 3, 3, 4), (2, 3, 3, 3, 3)), (Fcs), (353, 445), ((111, 132, 153, 225, 234, 242, 333,
345, 354, 412, 424, 443, 451, 455), (112, 133, 151, 224, 232, 245, 334, 343, 355, 411, 425, 442, 453, 454)))

+1 −1 0 0 0
0 0 0 0 0
0 +1 −1 0 0
0 0 0 0 0
−1 0 +1 0 0

0 0 0 0 0
0 0 0 −1 +1
0 −1 0 +1 0
0 +1 0 0 −1
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 +1 −1 0
0 0 −1 0 +1
0 0 (0) +1 −1

−1 +1 0 0 0
0 0 0 +1 −1
0 0 0 0 0
0 −1 +1 0 (0)

+1 0 −1 −1 +1

• 4 × 5 × 5 move(2) of degree 14 with slice degree {3, 3, 3, 5} × {2, 2, 3, 3, 4} × {2, 3, 3, 3, 3}
((4, 5, 5), (14), ((3, 3, 3, 5), (2, 2, 3, 3, 4), (2, 3, 3, 3, 3)), (fcs), (445), ((111, 132, 153, 224, 233, 245, 334, 342,
355, 412, 425, 443, 451, 454), (112, 133, 151, 225, 234, 243, 332, 345, 354, 411, 424, 442, 453, 455)))

+1 −1 0 0 0
0 0 0 0 0
0 +1 −1 0 0
0 0 0 0 0
−1 0 +1 0 0

0 0 0 0 0
0 0 0 +1 −1
0 0 +1 −1 0
0 0 −1 0 +1
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 −1 0 +1 0
0 +1 0 0 −1
0 0 0 −1 +1

−1 +1 0 0 0
0 0 0 −1 +1
0 0 0 0 0
0 −1 +1 0 (0)

+1 0 −1 +1 −1

• 4 × 5 × 5 move(1) of degree 14 with slice degree {3, 3, 4, 4} × {2, 3, 3, 3, 3} × {2, 3, 3, 3, 3}
((4, 5, 5), (14), ((3, 3, 4, 4), (2, 3, 3, 3, 3), (2, 3, 3, 3, 3)), (fcs), (322, 455), ((122, 135, 153, 224, 242, 255, 314,
323, 332, 341, 413, 431, 445, 454), (123, 132, 155, 222, 245, 254, 313, 324, 331, 342, 414, 435, 441, 453)))

0 0 0 0 0
0 +1 −1 0 0
0 −1 0 0 +1
0 0 0 0 0
0 0 +1 0 −1

0 0 0 0 0
0 −1 0 +1 0
0 0 0 0 0
0 +1 0 0 −1
0 0 0 −1 +1

0 0 −1 +1 0
0 (0) +1 −1 0
−1 +1 0 0 0
+1 −1 0 0 0
0 0 0 0 0

0 0 +1 −1 0
0 0 0 0 0

+1 0 0 0 −1
−1 0 0 0 +1
0 0 −1 +1 (0)
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• 4 × 5 × 5 move(2) of degree 14 with slice degree {3, 3, 4, 4} × {2, 3, 3, 3, 3} × {2, 3, 3, 3, 3}
((4, 5, 5), (14), ((3, 3, 4, 4), (2, 3, 3, 3, 3), (2, 3, 3, 3, 3)), (fcs), ∅, ((122, 135, 153, 224, 242, 255, 314, 323, 331,
345, 413, 432, 441, 454), (123, 132, 155, 222, 245, 254, 313, 324, 335, 341, 414, 431, 442, 453)))

0 0 0 0 0
0 +1 −1 0 0
0 −1 0 0 +1
0 0 0 0 0
0 0 +1 0 −1

0 0 0 0 0
0 −1 0 +1 0
0 0 0 0 0
0 +1 0 0 −1
0 0 0 −1 +1

0 0 −1 +1 0
0 0 +1 −1 0

+1 0 0 0 −1
−1 0 0 0 +1
0 0 0 0 0

0 0 +1 −1 0
0 0 0 0 0
−1 +1 0 0 0
+1 −1 0 0 0
0 0 −1 +1 0

• 4 × 5 × 6 move(1) of degree 14 with slice degree {2, 3, 4, 5} × {2, 3, 3, 3, 3} × {2, 2, 2, 2, 2, 4}
((4, 5, 6), (14), ((2, 3, 4, 5), (2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((121, 136, 216, 242, 253, 324, 331, 343, 355,
412, 426, 435, 444, 456), (126, 131, 212, 243, 256, 321, 335, 344, 353, 416, 424, 436, 442, 455)))

0 0 0 0 0 0
+1 0 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 0 0 −1

0 0 0 0 0 0
−1 0 0 +1 0 0
+1 0 0 0 −1 0
0 0 +1 −1 0 0
0 0 −1 0 +1 0

0 +1 0 0 0 −1
0 0 0 −1 0 +1
0 0 0 0 +1 −1
0 −1 0 +1 0 0
0 0 0 0 −1 +1

• 4 × 5 × 6 move(2) of degree 14 with slice degree {2, 3, 4, 5} × {2, 3, 3, 3, 3} × {2, 2, 2, 2, 2, 4}
((4, 5, 6), (14), ((2, 3, 4, 5), (2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((121, 136, 212, 246, 253, 326, 335, 344, 356,
413, 424, 431, 442, 455), (126, 131, 213, 242, 256, 324, 336, 346, 355, 412, 421, 435, 444, 453)))

0 0 0 0 0 0
+1 0 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 +1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 +1 0 0 −1

0 0 0 0 0 0
0 0 0 −1 0 +1
0 0 0 0 +1 −1
0 0 0 +1 0 −1
0 0 0 0 −1 +1

0 −1 +1 0 0 0
−1 0 0 +1 0 0
+1 0 0 0 −1 0
0 +1 0 −1 0 0
0 0 −1 0 +1 0

• 4 × 5 × 6 move(3) of degree 14 with slice degree {2, 3, 4, 5} × {2, 3, 3, 3, 3} × {2, 2, 2, 2, 2, 4}
(not fundamental, circuit)
((4, 5, 6), (14), ((2, 3, 4, 5), (2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 4)), (Fcs), (326, 336, 446, 456), ((121, 136, 212, 246, 253,
324, 331, 345, 356, 413, 426, 435, 442, 454), (126, 131, 213, 242, 256, 321, 335, 346, 354, 412, 424, 436, 445, 453)))

0 0 0 0 0 0
+1 0 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 +1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 +1 0 0 −1

0 0 0 0 0 0
−1 0 0 +1 0 (0)
+1 0 0 0 −1 (0)
0 0 0 0 +1 −1
0 0 0 −1 0 +1

0 −1 +1 0 0 0
0 0 0 −1 0 +1
0 0 0 0 +1 −1
0 +1 0 0 −1 (0)
0 0 −1 +1 0 (0)

• 4 × 5 × 6 move of degree 14 with slice degree {3, 3, 3, 5} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 4}
((4, 5, 6), (14), ((3, 3, 3, 5), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 136, 152, 232, 243, 254, 326, 344, 355,
416, 425, 433, 446, 451), (116, 132, 151, 233, 244, 252, 325, 346, 354, 411, 426, 436, 443, 455)))

+1 0 0 0 0 −1
0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 0 0 0 0
−1 +1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 −1 0 0
0 −1 0 +1 0 0

0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 0 −1 +1 0

−1 0 0 0 0 +1
0 0 0 0 +1 −1
0 0 +1 0 0 −1
0 0 −1 0 0 +1

+1 0 0 0 −1 0
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• 4 × 5 × 6 move of degree 14 with slice degree {3, 3, 3, 5} × {2, 3, 3, 3, 3} × {2, 2, 2, 2, 3, 3}
((4, 5, 6), (14), ((3, 3, 3, 5), (2, 3, 3, 3, 3), (2, 2, 2, 2, 3, 3)), (fcs), (456), ((111, 125, 132, 226, 245, 253, 335, 344,
356, 412, 421, 436, 443, 454), (112, 121, 135, 225, 243, 256, 336, 345, 354, 411, 426, 432, 444, 453)))

+1 −1 0 0 0 0
−1 0 0 0 +1 0
0 +1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 −1 0 +1 0
0 0 +1 0 0 −1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 +1 −1 0
0 0 0 −1 0 +1

−1 +1 0 0 0 0
+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 +1 −1 0 0
0 0 −1 +1 0 (0)

• 4 × 5 × 6 move of degree 14 with slice degree {3, 3, 4, 4} × {2, 2, 2, 4, 4} × {2, 2, 2, 2, 2, 4}
((4, 5, 6), (14), ((3, 3, 4, 4), (2, 2, 2, 4, 4), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 146, 153, 226, 243, 252, 316, 335, 344,
351, 422, 434, 446, 455), (116, 143, 151, 222, 246, 253, 311, 334, 346, 355, 426, 435, 444, 452)))

+1 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 +1
−1 0 +1 0 0 0

0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 +1 0 0 −1
0 +1 −1 0 0 0

−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 −1 +1 0
0 0 0 +1 0 −1

+1 0 0 0 −1 0

0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 0 +1 −1 0
0 0 0 −1 0 +1
0 −1 0 0 +1 0

• 4 × 5 × 6 move of degree 14 with slice degree {3, 3, 4, 4} × {2, 2, 2, 4, 4} × {2, 2, 2, 2, 3, 3}
((4, 5, 6), (14), ((3, 3, 4, 4), (2, 2, 2, 4, 4), (2, 2, 2, 2, 3, 3)), (fcs), ∅, ((111, 142, 155, 226, 243, 254, 315, 323, 336,
341, 435, 444, 452, 456), (115, 141, 152, 223, 244, 256, 311, 326, 335, 343, 436, 442, 454, 455)))

+1 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 +1 0 0 0 0
0 −1 0 0 +1 0

0 0 0 0 0 0
0 0 −1 0 0 +1
0 0 0 0 0 0
0 0 +1 −1 0 0
0 0 0 +1 0 −1

−1 0 0 0 +1 0
0 0 +1 0 0 −1
0 0 0 0 −1 +1

+1 0 −1 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 −1 0 +1 0 0
0 +1 0 −1 −1 +1

• 4 × 5 × 6 move of degree 14 with slice degree {3, 3, 4, 4} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 4}
((4, 5, 6), (14), ((3, 3, 4, 4), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 132, 156, 223, 244, 256, 316, 331, 345,
354, 426, 435, 443, 452), (116, 131, 152, 226, 243, 254, 311, 335, 344, 356, 423, 432, 445, 456)))

−1 0 0 0 0 +1
0 0 0 0 0 0

+1 −1 0 0 0 0
0 0 0 0 0 0
0 +1 0 0 0 −1

0 0 0 0 0 0
0 0 −1 0 0 +1
0 0 0 0 0 0
0 0 +1 −1 0 0
0 0 0 +1 0 −1

+1 0 0 0 0 −1
0 0 0 0 0 0
−1 0 0 0 +1 0
0 0 0 +1 −1 0
0 0 0 −1 0 +1

0 0 0 0 0 0
0 0 +1 0 0 −1
0 +1 0 0 −1 0
0 0 −1 0 +1 0
0 −1 0 0 0 +1

• 4 × 5 × 7 move(1) of degree 14 with slice degree {2, 3, 4, 5} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 5, 7), (14), ((2, 3, 4, 5), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 152, 213, 244, 255, 327, 336, 345, 351,
414, 426, 432, 447, 453), (132, 151, 214, 245, 253, 326, 331, 347, 355, 413, 427, 436, 444, 452)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 +1 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 −1 0 +1 0 0

0 0 0 0 0 0 0
0 0 0 0 0 −1 +1
−1 0 0 0 0 +1 0
0 0 0 0 +1 0 −1

+1 0 0 0 −1 0 0

0 0 −1 +1 0 0 0
0 0 0 0 0 +1 −1
0 +1 0 0 0 −1 0
0 0 0 −1 0 0 +1
0 −1 +1 0 0 0 0

177



• 4 × 5 × 7 move(2) of degree 14 with slice degree {2, 3, 4, 5} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 5, 7), (14), ((2, 3, 4, 5), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((132, 151, 231, 243, 254, 316, 327, 344, 355,
415, 426, 433, 447, 452), (131, 152, 233, 244, 251, 315, 326, 347, 354, 416, 427, 432, 443, 455)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 −1 0 0 0 0
0 0 +1 −1 0 0 0
−1 0 0 +1 0 0 0

0 0 0 0 −1 +1 0
0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 0 +1 0 0 −1
0 0 0 −1 +1 0 0

0 0 0 0 +1 −1 0
0 0 0 0 0 +1 −1
0 −1 +1 0 0 0 0
0 0 −1 0 0 0 +1
0 +1 0 0 −1 0 0

• 4 × 5 × 7 move of degree 14 with slice degree {2, 3, 4, 5} × {2, 3, 3, 3, 3} × {2, 2, 2, 2, 2, 2, 2}
((4, 5, 7), (14), ((2, 3, 4, 5), (2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 132, 214, 243, 255, 326, 331, 345, 357,
413, 422, 437, 446, 454), (122, 131, 213, 245, 254, 321, 337, 346, 355, 414, 426, 432, 443, 457)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 −1 +1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 0 −1 0 0
0 0 0 −1 +1 0 0

0 0 0 0 0 0 0
−1 0 0 0 0 +1 0
+1 0 0 0 0 0 −1
0 0 0 0 +1 −1 0
0 0 0 0 −1 0 +1

0 0 +1 −1 0 0 0
0 +1 0 0 0 −1 0
0 −1 0 0 0 0 +1
0 0 −1 0 0 +1 0
0 0 0 +1 0 0 −1

• 4 × 5 × 7 move of degree 14 with slice degree {2, 4, 4, 4} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 5, 7), (14), ((2, 4, 4, 4), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 152, 213, 235, 244, 251, 326, 332, 345,
357, 414, 427, 446, 453), (132, 151, 214, 231, 245, 253, 327, 335, 346, 352, 413, 426, 444, 457)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 +1 −1 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 +1 0 0
0 0 0 +1 −1 0 0

+1 0 −1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 +1 −1
0 +1 0 0 −1 0 0
0 0 0 0 +1 −1 0
0 −1 0 0 0 0 +1

0 0 −1 +1 0 0 0
0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 0 −1 0 +1 0
0 0 +1 0 0 0 −1
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• 4 × 5 × 7 move of degree 14 with slice degree {3, 3, 3, 5} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 5, 7), (14), ((3, 3, 3, 5), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 133, 152, 232, 245, 254, 327, 344, 356,
413, 426, 435, 447, 451), (113, 132, 151, 235, 244, 252, 326, 347, 354, 411, 427, 433, 445, 456)))

+1 0 −1 0 0 0 0
0 0 0 0 0 0 0
0 −1 +1 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 +1 0 0 −1 0 0
0 0 0 −1 +1 0 0
0 −1 0 +1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 0 +1 0 0 −1
0 0 0 −1 0 +1 0

−1 0 +1 0 0 0 0
0 0 0 0 0 +1 −1
0 0 −1 0 +1 0 0
0 0 0 0 −1 0 +1

+1 0 0 0 0 −1 0

• 4 × 5 × 7 move of degree 14 with slice degree {3, 3, 4, 4} × {2, 2, 2, 4, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 5, 7), (14), ((3, 3, 4, 4), (2, 2, 2, 4, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 143, 152, 225, 244, 253, 312, 336, 341,
357, 424, 437, 446, 455), (112, 141, 153, 224, 243, 255, 311, 337, 346, 352, 425, 436, 444, 457)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 −1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 −1 +1 0 0
0 0 0 0 0 0 0
0 0 −1 +1 0 0 0
0 0 +1 0 −1 0 0

−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 +1 −1

+1 0 0 0 0 −1 0
0 −1 0 0 0 0 +1

0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 0 0 0 −1 +1
0 0 0 −1 0 +1 0
0 0 0 0 +1 0 −1

• 4 × 5 × 7 move of degree 14 with slice degree {3, 3, 4, 4} × {2, 2, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2}
((4, 5, 7), (14), ((3, 3, 4, 4), (2, 2, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 132, 153, 224, 245, 256, 312, 337, 346,
351, 425, 433, 447, 454), (112, 133, 151, 225, 246, 254, 311, 332, 347, 356, 424, 437, 445, 453)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 +1 −1 0 0 0 0
0 0 0 0 0 0 0
−1 0 +1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 +1 −1 0
0 0 0 −1 0 +1 0

−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1
0 0 0 0 0 +1 −1

+1 0 0 0 0 −1 0

0 0 0 0 0 0 0
0 0 0 −1 +1 0 0
0 0 +1 0 0 0 −1
0 0 0 0 −1 0 +1
0 0 −1 +1 0 0 0
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• 4 × 6 × 6 move of degree 14 with slice degree {3, 3, 4, 4} × {2, 2, 2, 2, 3, 3}× {2, 2, 2, 2, 2, 4}
((4, 6, 6), (14), ((3, 3, 4, 4), (2, 2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 126, 152, 233, 246, 264, 322, 336, 355,
363, 416, 444, 451, 465), (116, 122, 151, 236, 244, 263, 326, 333, 352, 365, 411, 446, 455, 464)))

+1 0 0 0 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
−1 +1 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 0 0 −1
0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 −1 +1 0 0

0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 −1 0 0 +1
0 0 0 0 0 0
0 −1 0 0 +1 0
0 0 +1 0 −1 0

−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 +1 0 −1

+1 0 0 0 −1 0
0 0 0 −1 +1 0

• 5 × 5 × 5 move of degree 14 with slice degree {2, 2, 2, 4, 4} × {2, 2, 3, 3, 4}× {2, 3, 3, 3, 3}
((5, 5, 5), (14), ((2, 2, 2, 4, 4), (2, 2, 3, 3, 4), (2, 3, 3, 3, 3)), (fcs), ∅, ((131, 145, 242, 255, 313, 354, 424, 435, 452,
453, 514, 522, 533, 541), (135, 141, 245, 252, 314, 353, 422, 433, 454, 455, 513, 524, 531, 542)))

0 0 0 0 0
0 0 0 0 0

+1 0 0 0 −1
−1 0 0 0 +1
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 +1 0 0 −1
0 −1 0 0 +1

0 0 +1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 +1 0

0 0 0 0 0
0 −1 0 +1 0
0 0 −1 0 +1
0 0 0 0 0
0 +1 +1 −1 −1

0 0 −1 +1 0
0 +1 0 −1 0
−1 0 +1 0 0
+1 −1 0 0 0
0 0 0 0 0

• 5 × 5 × 5 move(1) of degree 14 with slice degree {2, 2, 3, 3, 4} × {2, 3, 3, 3, 3}× {2, 3, 3, 3, 3}
((5, 5, 5), (14), ((2, 2, 3, 3, 4), (2, 3, 3, 3, 3), (2, 3, 3, 3, 3)), (fcs), (555), ((112, 123, 231, 244, 322, 334, 355, 424,
445, 453, 513, 535, 541, 552), (113, 122, 234, 241, 324, 335, 352, 423, 444, 455, 512, 531, 545, 553)))

0 +1 −1 0 0
0 −1 +1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

+1 0 0 −1 0
−1 0 0 +1 0
0 0 0 0 0

0 0 0 0 0
0 +1 0 −1 0
0 0 0 +1 −1
0 0 0 0 0
0 −1 0 0 +1

0 0 0 0 0
0 0 −1 +1 0
0 0 0 0 0
0 0 0 −1 +1
0 0 +1 0 −1

0 −1 +1 0 0
0 0 0 0 0
−1 0 0 0 +1
+1 0 0 0 −1
0 +1 −1 0 (0)
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• 5 × 5 × 5 move(2) of degree 14 with slice degree {2, 2, 3, 3, 4} × {2, 3, 3, 3, 3}× {2, 3, 3, 3, 3}
((5, 5, 5), (14), ((2, 2, 3, 3, 4), (2, 3, 3, 3, 3), (2, 3, 3, 3, 3)), (fcs), ∅, ((112, 123, 231, 244, 322, 345, 354, 425, 434,
453, 513, 535, 541, 552), (113, 122, 234, 241, 325, 344, 352, 423, 435, 454, 512, 531, 545, 553)))

0 +1 −1 0 0
0 −1 +1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

+1 0 0 −1 0
−1 0 0 +1 0
0 0 0 0 0

0 0 0 0 0
0 +1 0 0 −1
0 0 0 0 0
0 0 0 −1 +1
0 −1 0 +1 0

0 0 0 0 0
0 0 −1 0 +1
0 0 0 +1 −1
0 0 0 0 0
0 0 +1 −1 0

0 −1 +1 0 0
0 0 0 0 0
−1 0 0 0 +1
+1 0 0 0 −1
0 +1 −1 0 0

• 5 × 5 × 5 move(3) of degree 14 with slice degree {2, 2, 3, 3, 4} × {2, 3, 3, 3, 3}× {2, 3, 3, 3, 3}
((5, 5, 5), (14), ((2, 2, 3, 3, 4), (2, 3, 3, 3, 3), (2, 3, 3, 3, 3)), (fcs), ∅, ((121, 135, 213, 252, 334, 345, 353, 425, 442,
454, 512, 524, 531, 543), (125, 131, 212, 253, 335, 343, 354, 424, 445, 452, 513, 521, 534, 542)))

0 0 0 0 0
+1 0 0 0 −1
−1 0 0 0 +1
0 0 0 0 0
0 0 0 0 0

0 −1 +1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 +1 −1 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 +1 −1
0 0 −1 0 +1
0 0 +1 −1 0

0 0 0 0 0
0 0 0 −1 +1
0 0 0 0 0
0 +1 0 0 −1
0 −1 0 +1 0

0 +1 −1 0 0
−1 0 0 +1 0
+1 0 0 −1 0
0 −1 +1 0 0
0 0 0 0 0

• 5 × 5 × 6 move of degree 14 with slice degree {2, 2, 3, 3, 4} × {2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 4}
((5, 5, 6), (14), ((2, 2, 3, 3, 4), (2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 4)), (fcs), ∅, ((121, 136, 232, 246, 316, 344, 353, 413, 426,
455, 525, 531, 542, 554), (126, 131, 236, 242, 313, 346, 354, 416, 425, 453, 521, 532, 544, 555)))

0 0 0 0 0 0
−1 0 0 0 0 +1
+1 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 +1
0 +1 0 0 0 −1
0 0 0 0 0 0

0 0 +1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 +1
0 0 −1 +1 0 0

0 0 −1 0 0 +1
0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 0 −1 0

0 0 0 0 0 0
+1 0 0 0 −1 0
−1 +1 0 0 0 0
0 −1 0 +1 0 0
0 0 0 −1 +1 0
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• 5 × 5 × 6 move of degree 14 with slice degree {2, 3, 3, 3, 3} × {2, 3, 3, 3, 3}× {2, 2, 2, 2, 3, 3}
((5, 5, 6), (14), ((2, 3, 3, 3, 3), (2, 3, 3, 3, 3), (2, 2, 2, 2, 3, 3)), (fcs), ∅, ((121, 132, 213, 245, 254, 314, 343, 356, 425,
431, 446, 522, 536, 555), (122, 131, 214, 243, 255, 313, 346, 354, 421, 436, 445, 525, 532, 556)))

0 0 0 0 0 0
+1 −1 0 0 0 0
−1 +1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 +1 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 +1 0
0 0 0 +1 −1 0

0 0 −1 +1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 0 0 −1
0 0 0 −1 0 +1

0 0 0 0 0 0
−1 0 0 0 +1 0
+1 0 0 0 0 −1
0 0 0 0 −1 +1
0 0 0 0 0 0

0 0 0 0 0 0
0 +1 0 0 −1 0
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 +1 −1

A.5 Indispensable moves of degree 15

• 3 × 5 × 7 move of degree 15 with slice degree {4, 5, 6} × {2, 3, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 3}
(not fundamental, circuit)
((3, 5, 7), (15), ((4, 5, 6), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (Fcs), (257, 337), ((121, 137, 142, 153, 217, 222, 236,
244, 255, 314, 325, 331, 343, 356, 357), (122, 131, 143, 157, 214, 225, 237, 242, 256, 317, 321, 336, 344, 353, 355)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
−1 0 0 0 0 0 +1
0 +1 −1 0 0 0 0
0 0 +1 0 0 0 −1

0 0 0 −1 0 0 +1
0 +1 0 0 −1 0 0
0 0 0 0 0 +1 −1
0 −1 0 +1 0 0 0
0 0 0 0 +1 −1 (0)

0 0 0 +1 0 0 −1
−1 0 0 0 +1 0 0
+1 0 0 0 0 −1 (0)
0 0 +1 −1 0 0 0
0 0 −1 0 −1 +1 +1

• 4 × 4 × 7 move of degree 15 with slice degree {2, 4, 4, 5} × {3, 3, 4, 5} × {2, 2, 2, 2, 2, 2, 3}
(not fundamental, circuit)
((4, 4, 7), (15), ((2, 4, 4, 5), (3, 3, 4, 5), (2, 2, 2, 2, 2, 2, 3)), (Fcs), (347, 437), ((131, 147, 213, 222, 234, 241, 312,
326, 337, 345, 417, 424, 435, 443, 446), (137, 141, 212, 224, 231, 243, 317, 322, 335, 346, 413, 426, 434, 445, 447)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
+1 0 0 0 0 0 −1

0 +1 −1 0 0 0 0
0 −1 0 +1 0 0 0

+1 0 0 −1 0 0 0
−1 0 +1 0 0 0 0

0 −1 0 0 0 0 +1
0 +1 0 0 0 −1 0
0 0 0 0 +1 0 −1
0 0 0 0 −1 +1 (0)

0 0 +1 0 0 0 −1
0 0 0 −1 0 +1 0
0 0 0 +1 −1 0 (0)
0 0 −1 0 +1 −1 +1
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• 4 × 4 × 7 move(1) of degree 15 with slice degree {3, 3, 4, 5} × {3, 3, 4, 5} × {2, 2, 2, 2, 2, 2, 3}
(not fundamental, circuit)
((4, 4, 7), (15), ((3, 3, 4, 5), (3, 3, 4, 5), (2, 2, 2, 2, 2, 2, 3)), (Fcs), (147, 437), ((111, 137, 142, 223, 234, 247, 315,
324, 336, 341, 417, 425, 432, 443, 446), (117, 132, 141, 224, 237, 243, 311, 325, 334, 346, 415, 423, 436, 442, 447)))

+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1
−1 +1 0 0 0 0 (0)

0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 +1 0 0 −1
0 0 −1 0 0 0 +1

−1 0 0 0 +1 0 0
0 0 0 +1 −1 0 0
0 0 0 −1 0 +1 0

+1 0 0 0 0 −1 0

0 0 0 0 −1 0 +1
0 0 −1 0 +1 0 0
0 +1 0 0 0 −1 (0)
0 −1 +1 0 0 +1 −1

• 4 × 4 × 7 move(2) of degree 15 with slice degree {3, 3, 4, 5} × {3, 3, 4, 5} × {2, 2, 2, 2, 2, 2, 3}
(not fundamental, circuit)
((4, 4, 7), (15), ((3, 3, 4, 5), (3, 3, 4, 5), (2, 2, 2, 2, 2, 2, 3)), (Fcs), (247, 437), ((111, 137, 142, 227, 234, 243, 315,
323, 331, 346, 412, 425, 436, 444, 447), (112, 131, 147, 223, 237, 244, 311, 325, 336, 343, 415, 427, 434, 442, 446)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
0 +1 0 0 0 0 −1

0 0 0 0 0 0 0
0 0 −1 0 0 0 +1
0 0 0 +1 0 0 −1
0 0 +1 −1 0 0 (0)

−1 0 0 0 +1 0 0
0 0 +1 0 −1 0 0

+1 0 0 0 0 −1 0
0 0 −1 0 0 +1 0

0 +1 0 0 −1 0 0
0 0 0 0 +1 0 −1
0 0 0 −1 0 +1 (0)
0 −1 0 +1 0 −1 +1

• 4 × 5 × 6 move of degree 15 with slice degree {3, 3, 4, 5} × {2, 2, 3, 3, 5} × {2, 2, 2, 2, 3, 4}
((4, 5, 6), (15), ((3, 3, 4, 5), (2, 2, 3, 3, 5), (2, 2, 2, 2, 3, 4)), (fcS), ∅, ((111, 125, 156, 234, 243, 256, 315, 333, 342,
351, 426, 435, 446, 452, 454), (115, 126, 151, 233, 246, 254, 311, 335, 343, 352, 425, 434, 442, 456, 456)))

+1 0 0 0 −1 0
0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 +1 0 0
0 0 +1 0 0 −1
0 0 0 −1 0 +1

−1 0 0 0 +1 0
0 0 0 0 0 0
0 0 +1 0 −1 0
0 +1 −1 0 0 0

+1 −1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 −1 +1 0
0 −1 0 0 0 +1
0 +1 0 +1 0 −2

• 4 × 5 × 7 move(1) of degree 15 with slice degree {2, 4, 4, 5} × {2, 3, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 3}
((4, 5, 7), (15), ((2, 4, 4, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), (457), ((121, 157, 222, 234, 243, 251, 316, 337,
344, 355, 415, 427, 432, 446, 453), (127, 151, 221, 232, 244, 253, 315, 334, 346, 357, 416, 422, 437, 443, 455)))

0 0 0 0 0 0 0
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1

0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 −1 0 +1 0 0 0
0 0 +1 −1 0 0 0

+1 0 −1 0 0 0 0

0 0 0 0 −1 +1 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 +1
0 0 0 +1 0 −1 0
0 0 0 0 +1 0 −1

0 0 0 0 +1 −1 0
0 −1 0 0 0 0 +1
0 +1 0 0 0 0 −1
0 0 −1 0 0 +1 0
0 0 +1 0 −1 0 (0)
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• 4 × 5 × 7 move(2) of degree 15 with slice degree {2, 4, 4, 5} × {2, 3, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 3}
((4, 5, 7), (15), ((2, 4, 4, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), (457), ((121, 157, 222, 234, 243, 251, 317, 335,
344, 356, 415, 427, 432, 446, 453), (127, 151, 221, 232, 244, 253, 315, 334, 346, 357, 417, 422, 435, 443, 456)))

0 0 0 0 0 0 0
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1

0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 −1 0 +1 0 0 0
0 0 +1 −1 0 0 0

+1 0 −1 0 0 0 0

0 0 0 0 −1 0 +1
0 0 0 0 0 0 0
0 0 0 −1 +1 0 0
0 0 0 +1 0 −1 0
0 0 0 0 0 +1 −1

0 0 0 0 +1 0 −1
0 −1 0 0 0 0 +1
0 +1 0 0 −1 0 0
0 0 −1 0 0 +1 0
0 0 +1 0 0 −1 (0)

• 4 × 5 × 7 move of degree 15 with slice degree {3, 3, 4, 5} × {2, 2, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 3}
((4, 5, 7), (15), ((3, 3, 4, 5), (2, 2, 3, 3, 5), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 127, 152, 233, 245, 254, 317, 336, 343,
351, 422, 434, 447, 455, 456), (117, 122, 151, 234, 243, 255, 311, 333, 347, 356, 427, 436, 445, 452, 454)))

+1 0 0 0 0 0 −1
0 −1 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 −1 0 +1 0 0
0 0 0 +1 −1 0 0

−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 −1 0 0 +1 0
0 0 +1 0 0 0 −1

+1 0 0 0 0 −1 0

0 0 0 0 0 0 0
0 +1 0 0 0 0 −1
0 0 0 +1 0 −1 0
0 0 0 0 −1 0 +1
0 −1 0 −1 +1 +1 0

• 4 × 5 × 7 move(1) of degree 15 with slice degree {3, 3, 4, 5} × {2, 3, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 3}
((4, 5, 7), (15), ((3, 3, 4, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), (457), ((111, 122, 157, 233, 247, 254, 326, 335,
343, 352, 417, 421, 434, 456, 455), (117, 121, 152, 234, 243, 257, 322, 333, 346, 355, 411, 426, 435, 447, 454)))

+1 0 0 0 0 0 −1
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 −1 0 0 0 +1
0 0 0 +1 0 0 −1

0 0 0 0 0 0 0
0 −1 0 0 0 +1 0
0 0 −1 0 +1 0 0
0 0 +1 0 0 −1 0
0 +1 0 0 −1 0 0

−1 0 0 0 0 0 +1
+1 0 0 0 0 −1 0
0 0 0 +1 −1 0 0
0 0 0 0 0 +1 −1
0 0 0 −1 +1 0 (0)
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• 4 × 5 × 7 move(2) of degree 15 with slice degree {3, 3, 4, 5} × {2, 3, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 3}
((4, 5, 7), (15), ((3, 3, 4, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), (457), ((111, 122, 157, 233, 245, 254, 326, 337,
343, 352, 417, 421, 434, 446, 455), (117, 121, 152, 234, 243, 255, 322, 333, 346, 357, 411, 426, 437, 445, 454)))

+1 0 0 0 0 0 −1
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 −1 0 +1 0 0
0 0 0 +1 −1 0 0

0 0 0 0 0 0 0
0 −1 0 0 0 +1 0
0 0 −1 0 0 0 +1
0 0 +1 0 0 −1 0
0 +1 0 0 0 0 −1

−1 0 0 0 0 0 +1
+1 0 0 0 0 −1 0
0 0 0 +1 0 0 −1
0 0 0 0 −1 +1 0
0 0 0 −1 +1 0 (0)

• 4 × 5 × 7 move of degree 15 with slice degree {3, 3, 4, 5} × {3, 3, 3, 3, 3} × {2, 2, 2, 2, 2, 2, 3}
((4, 5, 7), (15), ((3, 3, 4, 5), (3, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 3)), (fcs), (437), ((111, 127, 132, 237, 243, 254, 315, 321,
346, 353, 412, 426, 434, 447, 455), (112, 121, 137, 234, 247, 253, 311, 326, 343, 355, 415, 427, 432, 446, 454)))

+1 −1 0 0 0 0 0
−1 0 0 0 0 0 +1
0 +1 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 +1
0 0 +1 0 0 0 −1
0 0 −1 +1 0 0 0

−1 0 0 0 +1 0 0
+1 0 0 0 0 −1 0
0 0 0 0 0 0 0
0 0 −1 0 0 +1 0
0 0 +1 0 −1 0 0

0 +1 0 0 −1 0 0
0 0 0 0 0 +1 −1
0 −1 0 +1 0 0 (0)
0 0 0 0 0 −1 +1
0 0 0 −1 +1 0 0

• 4 × 5 × 7 move of degree 15 with slice degree {3, 4, 4, 4} × {2, 3, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 3}
((4, 5, 7), (15), ((3, 4, 4, 4), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), (457), ((122, 131, 157, 221, 234, 243, 255, 317,
323, 346, 352, 416, 437, 445, 454), (121, 137, 152, 223, 231, 245, 254, 316, 322, 343, 357, 417, 434, 446, 455)))

0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1

0 0 0 0 0 0 0
+1 0 −1 0 0 0 0
−1 0 0 +1 0 0 0
0 0 +1 0 −1 0 0
0 0 0 −1 +1 0 0

0 0 0 0 0 −1 +1
0 −1 +1 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 +1 0
0 +1 0 0 0 0 −1

0 0 0 0 0 +1 −1
0 0 0 0 0 0 0
0 0 0 −1 0 0 +1
0 0 0 0 +1 −1 0
0 0 0 +1 −1 0 (0)
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• 4 × 6 × 6 move of degree 15 with slice degree {2, 4, 4, 5} × {2, 2, 2, 3, 3, 3}× {2, 2, 2, 2, 3, 4}
((4, 6, 6), (15), ((2, 4, 4, 5), (2, 2, 2, 3, 3, 3), (2, 2, 2, 2, 3, 4)), (fcs), ∅, ((141, 156, 215, 243, 251, 262, 312, 325, 336,
364, 426, 434, 446, 455, 463), (146, 151, 212, 241, 255, 263, 315, 326, 334, 362, 425, 436, 443, 456, 464)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 0 0 0

0 −1 0 0 +1 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 +1 0 0 0
+1 0 0 0 −1 0
0 +1 −1 0 0 0

0 +1 0 0 −1 0
0 0 0 0 +1 −1
0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 +1 0 0

0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 +1 0 −1
0 0 −1 0 0 +1
0 0 0 0 +1 −1
0 0 +1 −1 0 0

• 4 × 6 × 6 move of degree 15 with slice degree {3, 3, 3, 6} × {2, 2, 2, 2, 3, 4}× {2, 2, 2, 3, 3, 3}
(not fundamental, circuit)
((4, 6, 6), (15), ((3, 3, 3, 6), (2, 2, 2, 2, 3, 4), (2, 2, 2, 3, 3, 3)), (Fcs), (456), ((111, 125, 164, 236, 253, 262, 324, 345,
356, 415, 432, 446, 454, 461, 463), (115, 124, 161, 232, 256, 263, 325, 346, 354, 411, 436, 445, 453, 462, 464)))

+1 0 0 0 −1 0
0 0 0 −1 +1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 +1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 +1 0 0 −1
0 +1 −1 0 0 0

0 0 0 0 0 0
0 0 0 +1 −1 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 −1 0 +1
0 0 0 0 0 0

−1 0 0 0 +1 0
0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 0 0 −1 +1
0 0 −1 +1 0 (0)

+1 −1 +1 −1 0 0

• 4 × 6 × 6 move of degree 15 with slice degree {3, 3, 4, 5} × {2, 2, 2, 2, 3, 4}× {2, 2, 2, 3, 3, 3}
((4, 6, 6), (15), ((3, 3, 4, 5), (2, 2, 2, 2, 3, 4), (2, 2, 2, 3, 3, 3)), (fcs), ∅, ((142, 151, 164, 216, 225, 263, 315, 336, 344,
352, 423, 434, 455, 461, 466), (144, 152, 161, 215, 223, 266, 316, 334, 342, 355, 425, 436, 451, 463, 464)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 +1 0 −1 0 0

+1 −1 0 0 0 0
−1 0 0 +1 0 0

0 0 0 0 −1 +1
0 0 −1 0 +1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 0 0 −1

0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 0 −1 0 +1
0 −1 0 +1 0 0
0 +1 0 0 −1 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 +1 0 −1 0
0 0 0 +1 0 −1
0 0 0 0 0 0
−1 0 0 0 +1 0
+1 0 −1 −1 0 +1

• 4 × 6 × 7 move of degree 15 with slice degree {2, 4, 4, 5} × {2, 2, 2, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 3}
((4, 6, 7), (15), ((2, 4, 4, 5), (2, 2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((151, 162, 213, 224, 237, 245, 335, 346, 357,
361, 417, 423, 444, 452, 466), (152, 161, 217, 223, 235, 244, 337, 345, 351, 366, 413, 424, 446, 457, 462)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 +1 0 0 0 −1
0 0 −1 +1 0 0 0
0 0 0 0 −1 0 +1
0 0 0 −1 +1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 +1 0 −1
0 0 0 0 −1 +1 0
−1 0 0 0 0 0 +1
+1 0 0 0 0 −1 0

0 0 −1 0 0 0 +1
0 0 +1 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 +1 0 −1 0
0 +1 0 0 0 0 −1
0 −1 0 0 0 +1 0
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• 4 × 6 × 7 move of degree 15 with slice degree {3, 3, 4, 5} × {2, 2, 2, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 3}
((4, 6, 7), (15), ((3, 3, 4, 5), (2, 2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 127, 142, 233, 255, 264, 317, 341, 356,
365, 422, 434, 446, 453, 467), (117, 122, 141, 234, 253, 265, 311, 346, 355, 367, 427, 433, 442, 456, 464)))

+1 0 0 0 0 0 −1
0 −1 0 0 0 0 +1
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 +1 0 0
0 0 0 +1 −1 0 0

−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 0 0 0 −1 0
0 0 0 0 −1 +1 0
0 0 0 0 +1 0 −1

0 0 0 0 0 0 0
0 +1 0 0 0 0 −1
0 0 −1 +1 0 0 0
0 −1 0 0 0 +1 0
0 0 +1 0 0 −1 0
0 0 0 −1 0 0 +1

• 4 × 6 × 7 move of degree 15 with slice degree {3, 4, 4, 4} × {2, 2, 2, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 3}
((4, 6, 7), (15), ((3, 4, 4, 4), (2, 2, 2, 3, 3, 3), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 147, 152, 217, 223, 251, 264, 336, 342,
354, 365, 427, 435, 446, 463), (117, 142, 151, 211, 227, 254, 263, 335, 346, 352, 364, 423, 436, 447, 465)))

−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 +1 0 0 0 0 −1

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 0 0 0 0 −1
0 0 −1 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 +1 0 0 0
0 0 +1 −1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 +1 −1 0
0 −1 0 0 0 +1 0
0 +1 0 −1 0 0 0
0 0 0 +1 −1 0 0

0 0 0 0 0 0 0
0 0 +1 0 0 0 −1
0 0 0 0 −1 +1 0
0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 −1 0 +1 0 0

• 5 × 5 × 6 move(1) of degree 15 with slice degree {2, 2, 3, 3, 5} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 3, 4}
((5, 5, 6), (15), ((2, 2, 3, 3, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 3, 4)), (fcs), ∅, ((121, 155, 225, 246, 316, 333, 352, 434, 445,
453, 512, 526, 536, 544, 551), (125, 151, 226, 245, 312, 336, 353, 433, 444, 455, 516, 521, 534, 546, 552)))

0 0 0 0 0 0
+1 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 +1 0

0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 0 0 0

0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 +1 0 0 −1
0 0 0 0 0 0
0 +1 −1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 +1 0 0
0 0 0 −1 +1 0
0 0 +1 0 −1 0

0 +1 0 0 0 −1
−1 0 0 0 0 +1
0 0 0 −1 0 +1
0 0 0 +1 0 −1

+1 −1 0 0 0 0
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• 5 × 5 × 6 move(2) of degree 15 with slice degree {2, 2, 3, 3, 5} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 3, 4}
((5, 5, 6), (15), ((2, 2, 3, 3, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 3, 4)), (fcs), ∅, ((121, 156, 232, 255, 323, 345, 351, 416, 435,
444, 514, 526, 536, 543, 552), (126, 151, 235, 252, 321, 343, 355, 414, 436, 445, 516, 523, 532, 544, 556)))

0 0 0 0 0 0
+1 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 +1

0 0 0 0 0 0
0 0 0 0 0 0
0 +1 0 0 −1 0
0 0 0 0 0 0
0 −1 0 0 +1 0

0 0 0 0 0 0
−1 0 +1 0 0 0
0 0 0 0 0 0
0 0 −1 0 +1 0

+1 0 0 0 −1 0

0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 +1 −1 0
0 0 0 0 0 0

0 0 0 +1 0 −1
0 0 −1 0 0 +1
0 −1 0 0 0 +1
0 0 +1 −1 0 0
0 +1 0 0 0 −1

• 5 × 5 × 6 move of degree 15 with slice degree {2, 3, 3, 3, 4} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 3, 4}
((5, 5, 6), (15), ((2, 3, 3, 3, 4), (2, 3, 3, 3, 4), (2, 2, 2, 2, 3, 4)), (fcs), ∅, ((141, 156, 222, 245, 251, 324, 333, 352, 416,
425, 434, 515, 536, 546, 553), (146, 151, 225, 241, 252, 322, 334, 353, 415, 424, 436, 516, 533, 545, 556)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 0 0 −1
−1 0 0 0 0 +1

0 0 0 0 0 0
0 +1 0 0 −1 0
0 0 0 0 0 0
−1 0 0 0 +1 0
+1 −1 0 0 0 0

0 0 0 0 0 0
0 −1 0 +1 0 0
0 0 +1 −1 0 0
0 0 0 0 0 0
0 +1 −1 0 0 0

0 0 0 0 −1 +1
0 0 0 −1 +1 0
0 0 0 +1 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 −1 0 0 +1
0 0 0 0 −1 +1
0 0 +1 0 0 −1

• 5 × 5 × 7 move(1) of degree 15 with slice degree {2, 2, 3, 3, 5} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 2, 2, 3}
((5, 5, 7), (15), ((2, 2, 3, 3, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((127, 131, 222, 257, 337, 343, 354, 416, 444,
455, 515, 521, 533, 546, 552), (121, 137, 227, 252, 333, 344, 357, 415, 446, 454, 516, 522, 531, 543, 555)))

0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 +1 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 +1
0 0 +1 −1 0 0 0
0 0 0 +1 0 0 −1

0 0 0 0 −1 +1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 +1 0 −1 0
0 0 0 −1 +1 0 0

0 0 0 0 +1 −1 0
+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 0 −1 0 0 +1 0
0 +1 0 0 −1 0 0
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• 5 × 5 × 7 move(2) of degree 15 with slice degree {2, 2, 3, 3, 5} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 2, 2, 3}
((5, 5, 7), (15), ((2, 2, 3, 3, 5), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((121, 152, 233, 257, 324, 347, 351, 415, 437,
446, 516, 522, 535, 544, 553), (122, 151, 237, 253, 321, 344, 357, 416, 435, 447, 515, 524, 533, 546, 552)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 0 0 0 −1
0 0 0 0 0 0 0
0 0 −1 0 0 0 +1

0 0 0 0 0 0 0
−1 0 0 +1 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 +1

+1 0 0 0 0 0 −1

0 0 0 0 +1 −1 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 +1
0 0 0 0 0 +1 −1
0 0 0 0 0 0 0

0 0 0 0 −1 +1 0
0 +1 0 −1 0 0 0
0 0 −1 0 +1 0 0
0 0 0 +1 0 −1 0
0 −1 +1 0 0 0 0

• 5 × 5 × 7 move(1) of degree 15 with slice degree {2, 2, 3, 4, 4} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 2, 2, 3}
((5, 5, 7), (15), ((2, 2, 3, 4, 4), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((141, 157, 232, 247, 316, 325, 354, 424, 433,
442, 451, 515, 523, 537, 556), (147, 151, 237, 242, 315, 324, 356, 423, 432, 441, 454, 516, 525, 533, 557)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
+1 0 0 0 0 0 −1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1
0 +1 0 0 0 0 −1
0 0 0 0 0 0 0

0 0 0 0 +1 −1 0
0 0 0 +1 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 +1 0

0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 +1 −1 0 0 0 0

+1 −1 0 0 0 0 0
−1 0 0 +1 0 0 0

0 0 0 0 −1 +1 0
0 0 −1 0 +1 0 0
0 0 +1 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 −1 +1

• 5 × 5 × 7 move(2) of degree 15 with slice degree {2, 2, 3, 4, 4} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 2, 2, 3}
((5, 5, 7), (15), ((2, 2, 3, 4, 4), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((121, 157, 232, 253, 314, 327, 345, 425, 433,
446, 451, 517, 536, 544, 552), (127, 151, 233, 252, 317, 325, 344, 421, 436, 445, 453, 514, 532, 546, 557)))

0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 0 0 0 0 −1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 +1 0 0 0 0
0 0 0 0 0 0 0
0 +1 −1 0 0 0 0

0 0 0 −1 0 0 +1
0 0 0 0 +1 0 −1
0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
+1 0 0 0 −1 0 0
0 0 −1 0 0 +1 0
0 0 0 0 +1 −1 0
−1 0 +1 0 0 0 0

0 0 0 +1 0 0 −1
0 0 0 0 0 0 0
0 +1 0 0 0 −1 0
0 0 0 −1 0 +1 0
0 −1 0 0 0 0 +1
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• 5 × 5 × 7 move(1) of degree 15 with slice degree {2, 3, 3, 3, 4} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 2, 2, 3}
((5, 5, 7), (15), ((2, 3, 3, 3, 4), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((121, 152, 223, 237, 251, 316, 345, 357, 417,
434, 446, 522, 533, 544, 555), (122, 151, 221, 233, 257, 317, 346, 355, 416, 437, 444, 523, 534, 545, 552)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 0 0 0 0 0
−1 0 +1 0 0 0 0
0 0 −1 0 0 0 +1
0 0 0 0 0 0 0

+1 0 0 0 0 0 −1

0 0 0 0 0 +1 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 +1 −1 0
0 0 0 0 −1 0 +1

0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 0 +1 0 0 −1
0 0 0 −1 0 +1 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 +1 −1 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 +1 −1 0 0
0 −1 0 0 +1 0 0

• 5 × 5 × 7 move(2) of degree 15 with slice degree {2, 3, 3, 3, 4} × {2, 3, 3, 3, 4}× {2, 2, 2, 2, 2, 2, 3}
((5, 5, 7), (15), ((2, 3, 3, 3, 4), (2, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((121, 152, 234, 245, 253, 327, 343, 351, 416,
435, 447, 517, 522, 536, 554), (122, 151, 235, 243, 254, 321, 347, 353, 417, 436, 445, 516, 527, 534, 552)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 −1 0 +1 0 0
0 0 +1 −1 0 0 0

0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 +1 0 0 0 −1

+1 0 −1 0 0 0 0

0 0 0 0 0 +1 −1
0 0 0 0 0 0 0
0 0 0 0 +1 −1 0
0 0 0 0 −1 0 +1
0 0 0 0 0 0 0

0 0 0 0 0 −1 +1
0 +1 0 0 0 0 −1
0 0 0 −1 0 +1 0
0 0 0 0 0 0 0
0 −1 0 +1 0 0 0

• 5 × 5 × 7 move of degree 15 with slice degree {2, 3, 3, 3, 4} × {3, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 3}
((5, 5, 7), (15), ((2, 3, 3, 3, 4), (3, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 3)), (fcs), ∅, ((111, 127, 217, 233, 242, 326, 337, 355, 435,
443, 454, 512, 521, 544, 556), (117, 121, 212, 237, 243, 327, 335, 356, 433, 444, 455, 511, 526, 542, 554)))

+1 0 0 0 0 0 −1
−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 −1 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 +1 0 0 0 −1
0 +1 −1 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 +1 −1
0 0 0 0 −1 0 +1
0 0 0 0 0 0 0
0 0 0 0 +1 −1 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 +1 0 0
0 0 +1 −1 0 0 0
0 0 0 +1 −1 0 0

−1 +1 0 0 0 0 0
+1 0 0 0 0 −1 0
0 0 0 0 0 0 0
0 −1 0 +1 0 0 0
0 0 0 −1 0 +1 0
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• 5 × 6 × 6 move of degree 15 with slice degree {2, 2, 3, 4, 4} × {2, 2, 2, 2, 3, 4}× {2, 2, 2, 3, 3, 3}
((5, 6, 6), (15), ((2, 2, 3, 4, 4), (2, 2, 2, 2, 3, 4), (2, 2, 2, 3, 3, 3)), (fcs), ∅, ((151, 164, 214, 265, 326, 345, 362, 415, 433,
446, 454, 522, 536, 553, 561), (154, 161, 215, 264, 322, 346, 365, 414, 436, 445, 453, 526, 533, 551, 562)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 −1 0 0
−1 0 0 +1 0 0

0 0 0 +1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 +1 0

0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 0 0 0
0 +1 0 0 −1 0

0 0 0 −1 +1 0
0 0 0 0 0 0
0 0 +1 0 0 −1
0 0 0 0 −1 +1
0 0 −1 +1 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 −1 0 0 +1
0 0 0 0 0 0
−1 0 +1 0 0 0
+1 −1 0 0 0 0

• 5 × 6 × 6 move(1) of degree 15 with slice degree {2, 3, 3, 3, 4} × {2, 2, 2, 2, 3, 4}× {2, 2, 2, 3, 3, 3}
((5, 6, 6), (15), ((2, 3, 3, 3, 4), (2, 2, 2, 2, 3, 4), (2, 2, 2, 3, 3, 3)), (fcs), ∅, ((151, 164, 212, 255, 261, 326, 344, 363, 435,
446, 454, 515, 523, 536, 562), (154, 161, 215, 251, 262, 323, 346, 364, 436, 444, 455, 512, 526, 535, 563)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 −1 0 0
−1 0 0 +1 0 0

0 +1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 +1 0
+1 −1 0 0 0 0

0 0 0 0 0 0
0 0 −1 0 0 +1
0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 0 0 0 0
0 0 +1 −1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 −1 0 +1
0 0 0 +1 −1 0
0 0 0 0 0 0

0 −1 0 0 +1 0
0 0 +1 0 0 −1
0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 +1 −1 0 0 0

• 5 × 6 × 6 move(2) of degree 15 with slice degree {2, 3, 3, 3, 4} × {2, 2, 2, 2, 3, 4}× {2, 2, 2, 3, 3, 3}
((5, 6, 6), (15), ((2, 3, 3, 3, 4), (2, 2, 2, 2, 3, 4), (2, 2, 2, 3, 3, 3)), (fcs), ∅, ((114, 165, 221, 252, 264, 335, 346, 363, 443,
456, 462, 515, 524, 536, 551), (115, 164, 224, 251, 262, 336, 343, 365, 446, 452, 463, 514, 521, 535, 556)))

0 0 0 +1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 +1 0

0 0 0 0 0 0
+1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 +1 0 0 0 0
0 −1 0 +1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 −1 0 0 +1
0 0 0 0 0 0
0 0 +1 0 −1 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 0 0 −1
0 −1 0 0 0 +1
0 +1 −1 0 0 0

0 0 0 −1 +1 0
−1 0 0 +1 0 0
0 0 0 0 −1 +1
0 0 0 0 0 0

+1 0 0 0 0 −1
0 0 0 0 0 0
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• 5 × 6 × 6 move(3) of degree 15 with slice degree {2, 3, 3, 3, 4} × {2, 2, 2, 2, 3, 4}× {2, 2, 2, 3, 3, 3}
((5, 6, 6), (15), ((2, 3, 3, 3, 4), (2, 2, 2, 2, 3, 4), (2, 2, 2, 3, 3, 3)), (fcs), ∅, ((114, 165, 222, 251, 264, 335, 346, 363, 415,
436, 454, 521, 543, 556, 562), (115, 164, 221, 254, 262, 336, 343, 365, 414, 435, 456, 522, 546, 551, 563)))

0 0 0 +1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 +1 0

0 0 0 0 0 0
−1 +1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 −1 0 0
0 −1 0 +1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 −1 0 0 +1
0 0 0 0 0 0
0 0 +1 0 −1 0

0 0 0 −1 +1 0
0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 0 +1 0 −1
0 0 0 0 0 0

0 0 0 0 0 0
+1 −1 0 0 0 0
0 0 0 0 0 0
0 0 +1 0 0 −1
−1 0 0 0 0 +1
0 +1 −1 0 0 0

A.6 Indispensable moves of degree 16

• 3 × 5 × 7 move(1) of degree 16 with slice degree {4, 6, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 4}
((3, 5, 7), (16), ((4, 6, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 4)), (fcS), ∅, ((121, 133, 142, 154, 217, 222, 237, 245, 253,
256, 315, 326, 331, 344, 357, 357), (122, 131, 144, 153, 215, 226, 233, 242, 257, 257, 317, 321, 337, 345, 354, 356)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

0 0 0 0 −1 0 +1
0 +1 0 0 0 −1 0
0 0 −1 0 0 0 +1
0 −1 0 0 +1 0 0
0 0 +1 0 0 +1 −2

0 0 0 0 +1 0 −1
−1 0 0 0 0 +1 0
+1 0 0 0 0 0 −1
0 0 0 +1 −1 0 0
0 0 0 −1 0 −1 +2

• 3 × 5 × 7 move(2) of degree 16 with slice degree {4, 6, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 4}
(not fundamental, not circuit)
((3, 5, 7), (16), ((4, 6, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 4)), (FCs), ∅, ((121, 133, 142, 154, 216, 222, 237, 247, 253,
255, 317, 325, 331, 344, 356, 357), (122, 131, 144, 153, 217, 225, 233, 242, 256, 257, 316, 321, 337, 347, 354, 355)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

0 0 0 0 0 +1 −1
0 +1 0 0 −1 0 0
0 0 −1 0 0 0 +1
0 −1 0 0 0 0 +1
0 0 +1 0 +1 −1 −1

0 0 0 0 0 −1 +1
−1 0 0 0 +1 0 0
+1 0 0 0 0 0 −1
0 0 0 +1 0 0 −1
0 0 0 −1 −1 +1 +1

• 3 × 5 × 8 move of degree 16 with slice degree {4, 6, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
((3, 5, 8), (16), ((4, 6, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 133, 142, 154, 216, 222, 238, 245, 253,
257, 315, 327, 331, 344, 356, 358), (122, 131, 144, 153, 215, 227, 233, 242, 256, 258, 316, 321, 338, 345, 354, 357)))

0 0 0 0 0 0 0 0
+1 −1 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 +1 0 −1 0 0 0 0
0 0 −1 +1 0 0 0 0

0 0 0 0 −1 +1 0 0
0 +1 0 0 0 0 −1 0
0 0 −1 0 0 0 0 +1
0 −1 0 0 +1 0 0 0
0 0 +1 0 0 −1 +1 −1

0 0 0 0 +1 −1 0 0
−1 0 0 0 0 0 +1 0
+1 0 0 0 0 0 0 −1
0 0 0 +1 −1 0 0 0
0 0 0 −1 0 +1 −1 +1
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• 3 × 6 × 7 move of degree 16 with slice degree {4, 6, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
((3, 6, 7), (16), ((4, 6, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((131, 143, 152, 164, 217, 226, 232, 245, 257,
263, 315, 327, 337, 341, 354, 366), (132, 141, 154, 163, 215, 227, 237, 243, 252, 266, 317, 326, 331, 345, 357, 364)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 −1 0 0 0
0 0 −1 +1 0 0 0

0 0 0 0 −1 0 +1
0 0 0 0 0 +1 −1
0 +1 0 0 0 0 −1
0 0 −1 0 +1 0 0
0 −1 0 0 0 0 +1
0 0 +1 0 0 −1 0

0 0 0 0 +1 0 −1
0 0 0 0 0 −1 +1
−1 0 0 0 0 0 +1
+1 0 0 0 −1 0 0
0 0 0 +1 0 0 −1
0 0 0 −1 0 +1 0

• 4 × 4 × 7 move of degree 16 with slice degree {2, 4, 4, 6} × {3, 3, 5, 5} × {2, 2, 2, 2, 2, 2, 4}
((4, 4, 7), (16), ((2, 4, 4, 6), (3, 3, 5, 5), (2, 2, 2, 2, 2, 2, 4)), (fcS), ∅, ((131, 147, 212, 224, 233, 241, 315, 322, 336,
347, 413, 426, 437, 437, 444, 445), (137, 141, 213, 222, 231, 244, 312, 326, 337, 345, 415, 424, 433, 436, 447, 447)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 0 0 0 0 −1
−1 0 0 0 0 0 +1

0 +1 −1 0 0 0 0
0 −1 0 +1 0 0 0
−1 0 +1 0 0 0 0
+1 0 0 −1 0 0 0

0 −1 0 0 +1 0 0
0 +1 0 0 0 −1 0
0 0 0 0 0 +1 −1
0 0 0 0 −1 0 +1

0 0 +1 0 −1 0 0
0 0 0 −1 0 +1 0
0 0 −1 0 0 −1 +2
0 0 0 +1 +1 0 −2

• 4 × 4 × 7 move of degree 16 with slice degree {3, 3, 4, 6} × {3, 3, 5, 5} × {2, 2, 2, 2, 2, 2, 4}
((4, 4, 7), (16), ((3, 3, 4, 6), (3, 3, 5, 5), (2, 2, 2, 2, 2, 2, 4)), (fcS), ∅, ((111, 137, 142, 223, 237, 244, 315, 324, 331,
346, 412, 425, 433, 436, 447, 447), (112, 131, 147, 224, 233, 247, 311, 325, 336, 344, 415, 423, 437, 437, 442, 446)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
0 +1 0 0 0 0 −1

0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 −1 0 0 0 +1
0 0 0 +1 0 0 −1

−1 0 0 0 +1 0 0
0 0 0 +1 −1 0 0

+1 0 0 0 0 −1 0
0 0 0 −1 0 +1 0

0 +1 0 0 −1 0 0
0 0 −1 0 +1 0 0
0 0 +1 0 0 +1 −2
0 −1 0 0 0 −1 +2

• 4 × 4 × 8 move of degree 16 with slice degree {2, 4, 4, 6} × {3, 3, 5, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 4, 8), (16), ((2, 4, 4, 6), (3, 3, 5, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 142, 213, 225, 234, 241, 316, 323, 337,
348, 414, 427, 432, 438, 445, 446), (132, 141, 214, 223, 231, 245, 313, 327, 338, 346, 416, 425, 434, 437, 442, 448)))

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 −1 0 0 0 0 0 0
−1 +1 0 0 0 0 0 0

0 0 +1 −1 0 0 0 0
0 0 −1 0 +1 0 0 0
−1 0 0 +1 0 0 0 0
+1 0 0 0 −1 0 0 0

0 0 −1 0 0 +1 0 0
0 0 +1 0 0 0 −1 0
0 0 0 0 0 0 +1 −1
0 0 0 0 0 −1 0 +1

0 0 0 +1 0 −1 0 0
0 0 0 0 −1 0 +1 0
0 +1 0 −1 0 0 −1 +1
0 −1 0 0 +1 +1 0 −1
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• 4 × 4 × 8 move of degree 16 with slice degree {3, 3, 4, 6} × {3, 3, 5, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 4, 8), (16), ((3, 3, 4, 6), (3, 3, 5, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 133, 142, 224, 236, 245, 317, 325, 331,
348, 412, 427, 434, 438, 443, 446), (112, 131, 143, 225, 234, 246, 311, 327, 338, 345, 417, 424, 433, 436, 442, 448)))

+1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 +1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 +1 −1 0 0 0
0 0 0 −1 0 +1 0 0
0 0 0 0 +1 −1 0 0

−1 0 0 0 0 0 +1 0
0 0 0 0 +1 0 −1 0

+1 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 +1

0 +1 0 0 0 0 −1 0
0 0 0 −1 0 0 +1 0
0 0 −1 +1 0 −1 0 +1
0 −1 +1 0 0 +1 0 −1

• 4 × 5 × 7 move of degree 16 with slice degree {2, 4, 4, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 4}
((4, 5, 7), (16), ((2, 4, 4, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 4)), (fcS), ∅, ((121, 157, 222, 233, 244, 251, 316, 335, 343,
357, 417, 427, 432, 446, 454, 455), (127, 151, 221, 232, 243, 254, 317, 333, 346, 355, 416, 422, 435, 444, 457, 457)))

0 0 0 0 0 0 0
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1

0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 −1 +1 0 0 0 0
0 0 −1 +1 0 0 0

+1 0 0 −1 0 0 0

0 0 0 0 0 +1 −1
0 0 0 0 0 0 0
0 0 −1 0 +1 0 0
0 0 +1 0 0 −1 0
0 0 0 0 −1 0 +1

0 0 0 0 0 −1 +1
0 −1 0 0 0 0 +1
0 +1 0 0 −1 0 0
0 0 0 −1 0 +1 0
0 0 0 +1 +1 0 −2

• 4 × 5 × 7 move of degree 16 with slice degree {3, 3, 4, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 4}
((4, 5, 7), (16), ((3, 3, 4, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 4)), (fcS), ∅, ((111, 122, 157, 233, 244, 257, 325, 336, 343,
352, 417, 421, 437, 445, 454, 456), (117, 121, 152, 237, 243, 254, 322, 333, 345, 356, 411, 425, 436, 444, 457, 457)))

+1 0 0 0 0 0 −1
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 0 0 0 −1
0 0 −1 +1 0 0 0
0 0 0 −1 0 0 +1

0 0 0 0 0 0 0
0 −1 0 0 +1 0 0
0 0 −1 0 0 +1 0
0 0 +1 0 −1 0 0
0 +1 0 0 0 −1 0

−1 0 0 0 0 0 +1
+1 0 0 0 −1 0 0
0 0 0 0 0 −1 +1
0 0 0 −1 +1 0 0
0 0 0 +1 0 +1 −2
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• 4 × 5 × 7 move of degree 16 with slice degree {3, 3, 5, 5} × {2, 3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 4}
((4, 5, 7), (16), ((3, 3, 5, 5), (2, 3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((121, 143, 152, 234, 245, 253, 316, 327, 337,
341, 354, 417, 422, 435, 446, 457), (122, 141, 153, 235, 243, 254, 317, 321, 334, 346, 357, 416, 427, 437, 445, 452)))

0 0 0 0 0 0 0
+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 −1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 −1 0 +1 0 0
0 0 +1 −1 0 0 0

0 0 0 0 0 +1 −1
−1 0 0 0 0 0 +1
0 0 0 −1 0 0 +1

+1 0 0 0 0 −1 0
0 0 0 +1 0 0 −1

0 0 0 0 0 −1 +1
0 +1 0 0 0 0 −1
0 0 0 0 +1 0 −1
0 0 0 0 −1 +1 0
0 −1 0 0 0 0 +1

• 4 × 5 × 8 move of degree 16 with slice degree {2, 3, 5, 6} × {2, 3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((2, 3, 5, 6), (2, 3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 142, 234, 245, 253, 317, 322, 338, 344,
356, 418, 426, 433, 441, 455, 457), (122, 141, 233, 244, 255, 318, 326, 334, 342, 357, 417, 421, 438, 445, 453, 456)))

0 0 0 0 0 0 0 0
+1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 +1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 +1 0 0 0 0
0 0 0 −1 +1 0 0 0
0 0 +1 0 −1 0 0 0

0 0 0 0 0 0 +1 −1
0 +1 0 0 0 −1 0 0
0 0 0 −1 0 0 0 +1
0 −1 0 +1 0 0 0 0
0 0 0 0 0 +1 −1 0

0 0 0 0 0 0 −1 +1
−1 0 0 0 0 +1 0 0
0 0 +1 0 0 0 0 −1

+1 0 0 0 −1 0 0 0
0 0 −1 0 +1 −1 +1 0

• 4 × 5 × 8 move(1) of degree 16 with slice degree {2, 4, 4, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((2, 4, 4, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 152, 223, 234, 245, 251, 316, 338, 344,
357, 417, 422, 433, 446, 455, 458), (122, 151, 221, 233, 244, 255, 317, 334, 346, 358, 416, 423, 438, 445, 452, 457)))

0 0 0 0 0 0 0 0
+1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 +1 0 0 0 0 0 0

0 0 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 0 −1 +1 0 0 0 0
0 0 0 −1 +1 0 0 0

+1 0 0 0 −1 0 0 0

0 0 0 0 0 +1 −1 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 +1
0 0 0 +1 0 −1 0 0
0 0 0 0 0 0 +1 −1

0 0 0 0 0 −1 +1 0
0 +1 −1 0 0 0 0 0
0 0 +1 0 0 0 0 −1
0 0 0 0 −1 +1 0 0
0 −1 0 0 +1 0 −1 +1
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• 4 × 5 × 8 move(2) of degree 16 with slice degree {2, 4, 4, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((2, 4, 4, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 152, 223, 234, 245, 251, 316, 338, 344,
357, 418, 422, 433, 447, 455, 456), (122, 151, 221, 233, 244, 255, 318, 334, 347, 356, 416, 423, 438, 445, 452, 457)))

0 0 0 0 0 0 0 0
−1 +1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0
+1 0 −1 0 0 0 0 0
0 0 +1 −1 0 0 0 0
0 0 0 +1 −1 0 0 0
−1 0 0 0 +1 0 0 0

0 0 0 0 0 −1 0 +1
0 0 0 0 0 0 0 0
0 0 0 +1 0 0 0 −1
0 0 0 −1 0 0 +1 0
0 0 0 0 0 +1 −1 0

0 0 0 0 0 +1 0 −1
0 −1 +1 0 0 0 0 0
0 0 −1 0 0 0 0 +1
0 0 0 0 +1 0 −1 0
0 +1 0 0 −1 −1 +1 0

• 4 × 5 × 8 move of degree 16 with slice degree {3, 3, 4, 6} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((3, 3, 4, 6), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 123, 152, 234, 246, 255, 327, 338, 344,
353, 412, 421, 435, 447, 456, 458), (112, 121, 153, 235, 244, 256, 323, 334, 347, 358, 411, 427, 438, 446, 452, 455)))

+1 −1 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 +1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 +1 −1 0 0 0
0 0 0 −1 0 +1 0 0
0 0 0 0 +1 −1 0 0

0 0 0 0 0 0 0 0
0 0 −1 0 0 0 +1 0
0 0 0 −1 0 0 0 +1
0 0 0 +1 0 0 −1 0
0 0 +1 0 0 0 0 −1

−1 +1 0 0 0 0 0 0
+1 0 0 0 0 0 −1 0
0 0 0 0 +1 0 0 −1
0 0 0 0 0 −1 +1 0
0 −1 0 0 −1 +1 0 +1

• 4 × 5 × 8 move of degree 16 with slice degree {3, 3, 4, 6} × {3, 3, 3, 3, 4} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((3, 3, 4, 6), (3, 3, 3, 3, 4), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 123, 152, 234, 246, 255, 313, 327, 336,
348, 418, 422, 437, 445, 451, 454), (113, 122, 151, 236, 245, 254, 318, 323, 337, 346, 411, 427, 434, 448, 452, 455)))

+1 0 −1 0 0 0 0 0
0 −1 +1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 +1 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 +1 0 −1 0 0
0 0 0 0 −1 +1 0 0
0 0 0 −1 +1 0 0 0

0 0 +1 0 0 0 0 −1
0 0 −1 0 0 0 +1 0
0 0 0 0 0 +1 −1 0
0 0 0 0 0 −1 0 +1
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 +1
0 +1 0 0 0 0 −1 0
0 0 0 −1 0 0 +1 0
0 0 0 0 +1 0 0 −1

+1 −1 0 +1 −1 0 0 0
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• 4 × 5 × 8 move(1) of degree 16 with slice degree {3, 3, 5, 5} × {2, 3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((3, 3, 5, 5), (2, 3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 133, 152, 224, 246, 255, 312, 327, 331,
348, 354, 426, 438, 445, 447, 453), (112, 131, 153, 226, 245, 254, 311, 324, 338, 347, 352, 427, 433, 446, 448, 455)))

+1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 +1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 +1 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 +1 0 0
0 0 0 −1 +1 0 0 0

−1 +1 0 0 0 0 0 0
0 0 0 −1 0 0 +1 0

+1 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 +1
0 −1 0 +1 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 +1 −1 0
0 0 −1 0 0 0 0 +1
0 0 0 0 +1 −1 +1 −1
0 0 +1 0 −1 0 0 0

• 4 × 5 × 8 move(2) of degree 16 with slice degree {3, 3, 5, 5} × {2, 3, 3, 4, 4} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((3, 3, 5, 5), (2, 3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 143, 152, 234, 245, 253, 317, 326, 338,
341, 354, 418, 422, 435, 447, 456), (122, 141, 153, 235, 243, 254, 318, 321, 334, 347, 356, 417, 426, 438, 445, 452)))

0 0 0 0 0 0 0 0
+1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 +1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 +1 −1 0 0 0
0 0 −1 0 +1 0 0 0
0 0 +1 −1 0 0 0 0

0 0 0 0 0 0 +1 −1
−1 0 0 0 0 +1 0 0
0 0 0 −1 0 0 0 +1

+1 0 0 0 0 0 −1 0
0 0 0 +1 0 −1 0 0

0 0 0 0 0 0 −1 +1
0 +1 0 0 0 −1 0 0
0 0 0 0 +1 0 0 −1
0 0 0 0 −1 0 +1 0
0 −1 0 0 0 +1 0 0

• 4 × 5 × 8 move of degree 16 with slice degree {3, 4, 4, 5} × {2, 3, 3, 3, 5} × {2, 2, 2, 2, 2, 2, 2, 2}
((4, 5, 8), (16), ((3, 4, 4, 5), (2, 3, 3, 3, 5), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 143, 152, 224, 236, 241, 255, 318, 327,
344, 353, 417, 425, 432, 456, 458), (132, 141, 153, 225, 231, 244, 256, 317, 324, 343, 358, 418, 427, 436, 452, 455)))

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 −1 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 +1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 +1 −1 0 0 0
−1 0 0 0 0 +1 0 0
+1 0 0 −1 0 0 0 0
0 0 0 0 +1 −1 0 0

0 0 0 0 0 0 −1 +1
0 0 0 −1 0 0 +1 0
0 0 0 0 0 0 0 0
0 0 −1 +1 0 0 0 0
0 0 +1 0 0 0 0 −1

0 0 0 0 0 0 +1 −1
0 0 0 0 +1 0 −1 0
0 +1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 −1 +1 0 +1
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• 4 × 6 × 6 move of degree 16 with slice degree {2, 4, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 4, 4}
((4, 6, 6), (16), ((2, 4, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 4, 4)), (fcs), ∅, ((135, 146, 231, 245, 255, 262, 313, 326, 354,
365, 416, 424, 436, 442, 451, 463), (136, 145, 235, 242, 251, 265, 316, 324, 355, 363, 413, 426, 431, 446, 454, 462)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 0 −1 0
0 −1 0 0 +1 0
−1 0 0 0 +1 0
0 +1 0 0 −1 0

0 0 +1 0 0 −1
0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 +1 −1 0
0 0 −1 0 +1 0

0 0 −1 0 0 +1
0 0 0 +1 0 −1
−1 0 0 0 0 +1
0 +1 0 0 0 −1

+1 0 0 −1 0 0
0 −1 +1 0 0 0

• 4 × 6 × 6 move(1) of degree 16 with slice degree {3, 3, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 4, 4}
((4, 6, 6), (16), ((3, 3, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 4, 4)), (fcs), ∅, ((115, 131, 146, 226, 255, 262, 334, 341, 352,
363, 416, 425, 435, 443, 454, 466), (116, 135, 141, 225, 252, 266, 331, 343, 354, 362, 415, 426, 434, 446, 455, 463)))

0 0 0 0 +1 −1
0 0 0 0 0 0

+1 0 0 0 −1 0
−1 0 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 +1 0
0 +1 0 0 0 −1

0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 +1 0 0
+1 0 −1 0 0 0
0 +1 0 −1 0 0
0 −1 +1 0 0 0

0 0 0 0 −1 +1
0 0 0 0 +1 −1
0 0 0 −1 +1 0
0 0 +1 0 0 −1
0 0 0 +1 −1 0
0 0 −1 0 0 +1

• 4 × 6 × 6 move(2) of degree 16 with slice degree {3, 3, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 4, 4}
((4, 6, 6), (16), ((3, 3, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 4, 4)), (fcs), ∅, ((111, 135, 146, 226, 252, 265, 334, 345, 355,
363, 416, 422, 431, 443, 454, 466), (116, 131, 145, 222, 255, 266, 335, 343, 354, 365, 411, 426, 434, 446, 452, 463)))

+1 0 0 0 0 −1
0 0 0 0 0 0
−1 0 0 0 +1 0
0 0 0 0 −1 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 0 0 0 0
0 0 0 0 0 0
0 +1 0 0 −1 0
0 0 0 0 +1 −1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 +1 −1 0
0 0 −1 0 +1 0
0 0 0 −1 +1 0
0 0 +1 0 −1 0

−1 0 0 0 0 +1
0 +1 0 0 0 −1

+1 0 0 −1 0 0
0 0 +1 0 0 −1
0 −1 0 +1 0 0
0 0 −1 0 0 +1

• 4 × 6 × 7 move(1) of degree 16 with slice degree {2, 4, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
((4, 6, 7), (16), ((2, 4, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((131, 147, 232, 241, 254, 263, 315, 327, 356,
364, 417, 426, 437, 443, 452, 465), (137, 141, 231, 243, 252, 264, 317, 326, 354, 365, 415, 427, 432, 447, 456, 463)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 0 0 0 0 −1
−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
+1 0 −1 0 0 0 0
0 −1 0 +1 0 0 0
0 0 +1 −1 0 0 0

0 0 0 0 +1 0 −1
0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 +1 0
0 0 0 +1 −1 0 0

0 0 0 0 −1 0 +1
0 0 0 0 0 +1 −1
0 −1 0 0 0 0 +1
0 0 +1 0 0 0 −1
0 +1 0 0 0 −1 0
0 0 −1 0 +1 0 0
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• 4 × 6 × 7 move(2) of degree 16 with slice degree {2, 4, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
((4, 6, 7), (16), ((2, 4, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((131, 147, 237, 243, 252, 267, 316, 325, 357,
364, 415, 424, 432, 441, 456, 463), (137, 141, 232, 247, 257, 263, 315, 324, 356, 367, 416, 425, 431, 443, 452, 464)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 +1 0 0 0 0 −1
0 0 −1 0 0 0 +1
0 −1 0 0 0 0 +1
0 0 +1 0 0 0 −1

0 0 0 0 +1 −1 0
0 0 0 +1 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 +1 −1
0 0 0 −1 0 0 +1

0 0 0 0 −1 +1 0
0 0 0 −1 +1 0 0

+1 −1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 +1 0 0 0 −1 0
0 0 −1 +1 0 0 0

• 4 × 6 × 7 move(3) of degree 16 with slice degree {2, 4, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
(not fundamental, circuit)
((4, 6, 7), (16), ((2, 4, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (Fcs), (437, 447), ((131, 147, 237, 243, 252, 264, 316,
327, 354, 365, 417, 425, 432, 441, 456, 463), (137, 141, 232, 247, 254, 263, 317, 325, 356, 364, 416, 427, 431, 443, 452, 465)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 +1 0 0 0 0 −1
0 0 −1 0 0 0 +1
0 −1 0 +1 0 0 0
0 0 +1 −1 0 0 0

0 0 0 0 0 −1 +1
0 0 0 0 +1 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 +1 0
0 0 0 +1 −1 0 0

0 0 0 0 0 +1 −1
0 0 0 0 −1 0 +1

+1 −1 0 0 0 0 (0)
−1 0 +1 0 0 0 (0)
0 +1 0 0 0 −1 0
0 0 −1 0 +1 0 0

• 4 × 6 × 7 move(1) of degree 16 with slice degree {3, 3, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
((4, 6, 7), (16), ((3, 3, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 132, 147, 227, 253, 264, 335, 342, 354,
366, 417, 423, 431, 446, 455, 467), (117, 131, 142, 223, 254, 267, 332, 346, 355, 364, 411, 427, 435, 447, 453, 466)))

+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 −1 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 −1 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 +1 0 0 −1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 +1 0 0
0 +1 0 0 0 −1 0
0 0 0 +1 −1 0 0
0 0 0 −1 0 +1 0

−1 0 0 0 0 0 +1
0 0 +1 0 0 0 −1

+1 0 0 0 −1 0 0
0 0 0 0 0 +1 −1
0 0 −1 0 +1 0 0
0 0 0 0 0 −1 +1
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• 4 × 6 × 7 move(2) of degree 16 with slice degree {3, 3, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
((4, 6, 7), (16), ((3, 3, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 132, 147, 223, 254, 267, 335, 342, 356,
364, 417, 427, 431, 446, 453, 465), (117, 131, 142, 227, 253, 264, 332, 346, 354, 365, 411, 423, 435, 447, 456, 467)))

−1 0 0 0 0 0 +1
0 0 0 0 0 0 0

+1 −1 0 0 0 0 0
0 +1 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 −1 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 +1 0 0 −1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 +1 0 0 −1 0 0
0 −1 0 0 0 +1 0
0 0 0 +1 0 −1 0
0 0 0 −1 +1 0 0

+1 0 0 0 0 0 −1
0 0 +1 0 0 0 −1
−1 0 0 0 +1 0 0
0 0 0 0 0 −1 +1
0 0 −1 0 0 +1 0
0 0 0 0 −1 0 +1

• 4 × 6 × 7 move(3) of degree 16 with slice degree {3, 3, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
((4, 6, 7), (16), ((3, 3, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((111, 137, 142, 223, 257, 264, 336, 347, 355,
367, 412, 424, 431, 445, 453, 466), (112, 131, 147, 224, 253, 267, 337, 345, 357, 366, 411, 423, 436, 442, 455, 464)))

+1 −1 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
0 +1 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 +1 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 +1
0 0 0 +1 0 0 −1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 +1 −1
0 0 0 0 −1 0 +1
0 0 0 0 +1 0 −1
0 0 0 0 0 −1 +1

−1 +1 0 0 0 0 0
0 0 −1 +1 0 0 0

+1 0 0 0 0 −1 0
0 −1 0 0 +1 0 0
0 0 +1 0 −1 0 0
0 0 0 −1 0 +1 0

• 4 × 6 × 8 move of degree 16 with slice degree {2, 4, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 2, 2}
((4, 6, 8), (16), ((2, 4, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((131, 142, 233, 241, 255, 264, 316, 328, 357,
365, 417, 426, 432, 444, 453, 468), (132, 141, 231, 244, 253, 265, 317, 326, 355, 368, 416, 428, 433, 442, 457, 464)))

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 −1 0 0 0 0 0 0
−1 +1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
+1 0 0 −1 0 0 0 0
0 0 −1 0 +1 0 0 0
0 0 0 +1 −1 0 0 0

0 0 0 0 0 +1 −1 0
0 0 0 0 0 −1 0 +1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 +1 0
0 0 0 0 +1 0 0 −1

0 0 0 0 0 −1 +1 0
0 0 0 0 0 +1 0 −1
0 +1 −1 0 0 0 0 0
0 −1 0 +1 0 0 0 0
0 0 +1 0 0 0 −1 0
0 0 0 −1 0 0 0 +1
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• 4 × 6 × 8 move of degree 16 with slice degree {3, 3, 4, 6} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 2, 2}
((4, 6, 8), (16), ((3, 3, 4, 6), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((111, 133, 142, 224, 256, 265, 337, 343, 358,
366, 412, 425, 431, 448, 454, 467), (112, 131, 143, 225, 254, 266, 333, 348, 356, 367, 411, 424, 437, 442, 458, 465)))

+1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 +1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 +1 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 +1 0 0
0 0 0 0 +1 −1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 +1 0
0 0 +1 0 0 0 0 −1
0 0 0 0 0 −1 0 +1
0 0 0 0 0 +1 −1 0

−1 +1 0 0 0 0 0 0
0 0 0 −1 +1 0 0 0

+1 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 +1
0 0 0 +1 0 0 0 −1
0 0 0 0 −1 0 +1 0

• 5 × 5 × 7 move(1) of degree 16 with slice degree {2, 3, 3, 3, 5} × {2, 3, 3, 4, 4}× {2, 2, 2, 2, 2, 2, 4}
((5, 5, 7), (16), ((2, 3, 3, 3, 5), (2, 3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((121, 147, 222, 241, 253, 334, 343, 355, 417,
435, 456, 516, 527, 537, 544, 552), (127, 141, 221, 243, 252, 335, 344, 353, 416, 437, 455, 517, 522, 534, 547, 556)))

0 0 0 0 0 0 0
+1 0 0 0 0 0 −1
0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
0 0 0 0 0 0 0

0 0 0 0 0 0 0
−1 +1 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 −1 0 0 0 0
0 −1 +1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 +1 −1 0 0
0 0 +1 −1 0 0 0
0 0 −1 0 +1 0 0

0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 0 0 +1 0 −1
0 0 0 0 0 0 0
0 0 0 0 −1 +1 0

0 0 0 0 0 +1 −1
0 −1 0 0 0 0 +1
0 0 0 −1 0 0 +1
0 0 0 +1 0 0 −1
0 +1 0 0 0 −1 0

• 5 × 5 × 7 move(2) of degree 16 with slice degree {2, 3, 3, 3, 5} × {2, 3, 3, 4, 4}× {2, 2, 2, 2, 2, 2, 4}
(not fundamental, circuit)
((5, 5, 7), (16), ((2, 3, 3, 3, 5), (2, 3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 4)), (Fcs), (527, 547), ((121, 147, 233, 244, 252, 327, 342,
355, 416, 437, 453, 517, 525, 534, 541, 556), (127, 141, 234, 242, 253, 325, 347, 352, 417, 433, 456, 516, 521, 537, 544, 555)))

0 0 0 0 0 0 0
−1 0 0 0 0 0 +1
0 0 0 0 0 0 0

+1 0 0 0 0 0 −1
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 +1 0 0 0
0 +1 0 −1 0 0 0
0 −1 +1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 +1 0 −1
0 0 0 0 0 0 0
0 −1 0 0 0 0 +1
0 +1 0 0 −1 0 0

0 0 0 0 0 −1 +1
0 0 0 0 0 0 0
0 0 +1 0 0 0 −1
0 0 0 0 0 0 0
0 0 −1 0 0 +1 0

0 0 0 0 0 +1 −1
+1 0 0 0 −1 0 (0)
0 0 0 −1 0 0 +1
−1 0 0 +1 0 0 (0)
0 0 0 0 +1 −1 0
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• 5 × 5 × 8 move of degree 16 with slice degree {2, 3, 3, 3, 5} × {2, 3, 3, 4, 4}× {2, 2, 2, 2, 2, 2, 2, 2}
((5, 5, 8), (16), ((2, 3, 3, 3, 5), (2, 3, 3, 4, 4), (2, 2, 2, 2, 2, 2, 2, 2)), (fcs), ∅, ((121, 142, 223, 241, 254, 335, 344, 356, 418,
436, 457, 517, 522, 538, 545, 553), (122, 141, 221, 244, 253, 336, 345, 354, 417, 438, 456, 518, 523, 535, 542, 557)))

0 0 0 0 0 0 0 0
+1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 +1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
−1 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 0 0 −1 0 0 0 0
0 0 −1 +1 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 +1 −1 0 0
0 0 0 +1 −1 0 0 0
0 0 0 −1 0 +1 0 0

0 0 0 0 0 0 −1 +1
0 0 0 0 0 0 0 0
0 0 0 0 0 +1 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 +1 0

0 0 0 0 0 0 +1 −1
0 +1 −1 0 0 0 0 0
0 0 0 0 −1 0 0 +1
0 −1 0 0 +1 0 0 0
0 0 +1 0 0 0 −1 0

• 5 × 6 × 6 move(1) of degree 16 with slice degree {2, 3, 3, 4, 4} × {2, 2, 2, 2, 4, 4}× {2, 2, 3, 3, 3, 3}
((5, 6, 6), (16), ((2, 3, 3, 4, 4), (2, 2, 2, 2, 4, 4), (2, 2, 3, 3, 3, 3)), (fcs), ∅, ((153, 164, 211, 225, 263, 334, 346, 362, 415,
442, 456, 461, 523, 536, 554, 555), (154, 163, 215, 223, 261, 336, 342, 364, 411, 446, 455, 462, 525, 534, 553, 556)))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 −1 0 0
0 0 −1 +1 0 0

+1 0 0 0 −1 0
0 0 −1 0 +1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 +1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 +1 0 −1
0 −1 0 0 0 +1
0 0 0 0 0 0
0 +1 0 −1 0 0

−1 0 0 0 +1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 +1 0 0 0 −1
0 0 0 0 −1 +1

+1 −1 0 0 0 0

0 0 0 0 0 0
0 0 +1 0 −1 0
0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 −1 +1 +1 −1
0 0 0 0 0 0

• 5 × 6 × 6 move(2) of degree 16 with slice degree {2, 3, 3, 4, 4} × {2, 2, 2, 2, 4, 4}× {2, 2, 3, 3, 3, 3}
((5, 6, 6), (16), ((2, 3, 3, 4, 4), (2, 2, 2, 2, 4, 4), (2, 2, 3, 3, 3, 3)), (fcs), ∅, ((113, 164, 225, 251, 263, 344, 356, 362, 414,
423, 435, 446, 536, 552, 555, 561), (114, 163, 223, 255, 261, 346, 352, 364, 413, 425, 436, 444, 535, 551, 556, 562)))

0 0 +1 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 +1 0 0

0 0 0 0 0 0
0 0 −1 0 +1 0
0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 0 −1 0
−1 0 +1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 +1 0 −1
0 −1 0 0 0 +1
0 +1 0 −1 0 0

0 0 −1 +1 0 0
0 0 +1 0 −1 0
0 0 0 0 +1 −1
0 0 0 −1 0 +1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 +1
0 0 0 0 0 0
−1 +1 0 0 +1 −1
+1 −1 0 0 0 0
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• 5 × 6 × 6 move(3) of degree 16 with slice degree {2, 3, 3, 4, 4} × {2, 2, 2, 2, 4, 4}× {2, 2, 3, 3, 3, 3}
((5, 6, 6), (16), ((2, 3, 3, 4, 4), (2, 2, 2, 2, 4, 4), (2, 2, 3, 3, 3, 3)), (fcs), ∅, ((113, 164, 221, 255, 263, 346, 354, 362, 414,
435, 453, 456, 525, 536, 542, 561), (114, 163, 225, 253, 261, 342, 356, 364, 413, 436, 454, 455, 521, 535, 546, 562)))

0 0 +1 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 +1 0 0

0 0 0 0 0 0
+1 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 +1 0
−1 0 +1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 +1
0 0 0 +1 0 −1
0 +1 0 −1 0 0

0 0 −1 +1 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 0 0 0
0 0 +1 −1 −1 +1
0 0 0 0 0 0

0 0 0 0 0 0
−1 0 0 0 +1 0
0 0 0 0 −1 +1
0 +1 0 0 0 −1
0 0 0 0 0 0

+1 −1 0 0 0 0

• 5 × 6 × 7 move of degree 16 with slice degree {2, 3, 3, 4, 4} × {2, 2, 3, 3, 3, 3}× {2, 2, 2, 2, 2, 2, 4}
((5, 6, 7), (16), ((2, 3, 3, 4, 4), (2, 2, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2, 4)), (fcs), ∅, ((131, 147, 212, 237, 253, 327, 345, 364, 433,
441, 456, 465, 517, 524, 552, 566), (137, 141, 217, 233, 252, 324, 347, 365, 431, 445, 453, 466, 512, 527, 556, 564)))

0 0 0 0 0 0 0
0 0 0 0 0 0 0

+1 0 0 0 0 0 −1
−1 0 0 0 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 +1 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 −1 0 0 0 +1
0 0 0 0 0 0 0
0 −1 +1 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 −1 0 0 +1
0 0 0 0 0 0 0
0 0 0 0 +1 0 −1
0 0 0 0 0 0 0
0 0 0 +1 −1 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 +1 0 0 0 0
+1 0 0 0 −1 0 0
0 0 −1 0 0 +1 0
0 0 0 0 +1 −1 0

0 −1 0 0 0 0 +1
0 0 0 +1 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 +1 0 0 0 −1 0
0 0 0 −1 0 +1 0
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Grateau, G. and Amselem, S. (1999). MEFV-gene analysis in American patients with fa-
milial Mediterranean fever: Diagnostic value and unfavorable renal prognosis of the M694V
homozygous genotype — Genetic and therapeutic implications. American Journal of Hu-
man Genetics, 65, pp. 88–97.

[23] Crow, J. E. (1988). Eighty years ago: The beginnings of population genetics. Genetics,
119, pp. 473–476.

[24] Darroch, J. N., and Speed, T. P. (1983). Additive and multiplicative models and interac-
tions. Annals of Statistics, 11, pp. 724–738.

[25] Das, T. (1945). The Purums: An Old Kuki Tribe of Manipur. Calcutta, University of
Calcutta.

[26] Diaconis, P., Eisenbud, D. and Sturmfels, B. (1998). Lattice walks and primary decompo-
sition. in Mathematical Essays in Honor of Gian-Carlo Rota. Sagan, B. E. and Stanley, R.
P., editors, pp. 173–193, Birkhauser, Boston.

208



[27] Diaconis, P. and Saloff-Coste, L. (1995). Random walk on contingency tables with fixed
row and column sums. Technical Report, Department of Mathematics, Harvard University.

[28] Diaconis, P. and Sturmfels, B. (1998). Algebraic algorithms for sampling from conditional
distributions. Annals of Statistics 26, pp. 363–397.

[29] Dinwoodie, J. H. (1998). The Diaconis-Sturmfels algorithm and rules of succession.
Bernoulli, 4, pp. 401–410.

[30] Dobra, A. (2003). Markov bases for decomposable graphical models. Bernoulli, 9, pp.
1093–1108.

[31] Dobra, A. and Sullivant, S. (2002). A divide-and-conquer algorithm for generating Markov
bases of multi-way tables. National Institute of Statistical Sciences Technical Report No.
124. Available from http://www.niss.org/downloadabletechreports.html.

[32] Dyer, M. and Greenhill, C. (2000). Polynomial-time counting and sampling of two-rowed
contingency tables. Theoretical Computer Sciences, 246, pp. 265–278.

[33] Elston, R. C. and Forthofer, R. (1977). Testing for Hardy-Weinberg equilibrium in small
samples. Biometrics, 33, pp. 536–542.

[34] Emigh, T. H. (1980). A comparison of tests for Hardy-Weinberg equilibrium. Biometrics,
36, pp. 627–642.

[35] Emigh, T. H. and Kempthorne, O. (1975). A note on goodness-of-fit of a population to
Hardy-Weinberg structure. American Journal of Human Genetics, 27, pp. 778–783.

[36] Forster, J. J., McDonald, J. W. and Smith, P. W. F. (1996). Monte Carlo exact conditional
tests for log-linear and logistic models. Journal of the Royal Statistical Society, Series B,
58, pp. 445–453.

[37] Freeman, G. H., and Halton, J. H. (1951). Note on an exact treatment of contingency,
goodness of fit and other problems of significance, Biometrika, 38, pp. 141–149.

[38] Gail, M. H. and Mantel, N. (1977). Counting the number of r × c contingency tables with
fixed margins. Journal of the American Statistical Association, 72, pp. 859–862.

[39] Good, I. J. (1977). The enumeration of arrays and a generalization related to contingency
tables. Discrete Mathematics, 19, pp. 23–45.

[40] Goodman, L. A. (1968). The analysis of cross-classified data: Independence, quasi-
independence and interactions in contingency tables with or without missing entries. Jour-
nal of the American Statistical Association, 63, pp. 1091–1131.

[41] Guo, S. W., and Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg
proportion for multiple alleles. Biometrics, 48, pp. 361–372.

[42] Haberman, S. J. (1988). A warning on the use of chi-squared statistics with frequency
tables with small expected cell counts. Journal of the American Statistical Association,
83, pp. 555–560.

209



[43] Hadley, G. (1962). Linear Programming. Reading, Mass. : Addison-Wesley.

[44] Harris, J. A. (1910). On the selective elimination occurring during the development of the
fruits of Staphylea. Biometrika, 7, pp. 452–504.

[45] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57, pp. 97–109.

[46] Hernández, J. L. and Weir, B. S. (1989). A disequilibrium coefficient approach to Hardy-
Weinberg testing. Biometrics, 45, pp. 53–70.

[47] Hernek, D. (1998). Random generation of 2 × n contingency tables. Random Structures
and Algorithms, 13, pp. 71–79.

[48] Hilton, J. F., Mehta, C. R., and Patel, N. R. (1991). Exact Smirnov tests using a network
algorithm”, Technical Report 14, Dept. Epidemiology and Biostatistics, Univ. California,
San Francisco.

[49] Hirji, K. F., Mehta, C. R., and Patel, N. R. (1987). Computing distributions for exact
logistic gegression, Journal of the American Statistical Association, 82, pp. 1110–1117.

[50] Hirotsu, C., Aoki, S., Inada, T. and Kitao, Y. (2001). An exact test for the association
between the disease and alleles at highly polymorphic loci with particular interest in the
haplotype analysis. Biometrics, 57, pp. 769–778.

[51] Irving, R. W. and Jerrum, M. R. (1994). Three-dimensional statistical data security prob-
lems. SIAM Journal on Computing, 23, pp. 170–184.

[52] Lauritzen, S. L. (1996). Graphical Models. Oxford University Press, Oxford.

[53] Lehmann, E. L. (1986). Testing Statistical Hypotheses, 2nd ed. Wiley, New York.

[54] Levene, H. (1949). On a matching problem arising in genetics. Annals of Mathematical
Statistics, 20, pp. 91–94.

[55] Louis, E. J., and Dempster, E. R. (1987). An exact test for Hardy-Weinberg and multiple
alleles. Biometrics, 43, pp. 805–811.

[56] Mantel, N. (1970). Incomplete contingency tables. Biometrics, 26, pp. 291–304.

[57] March, D. L. (1972). Exact probabilities for R × C contingency tables. Communications
of the ACM, 15, pp. 991–992.

[58] McDonald, J. W. and Smith, P. W. F. (1995). Exact conditional tests of quasi-
independence for triangular contingency tables: Estimating attained significance levels.
Applied Statistics, 44, pp. 143–151.

[59] Mehta, C. R., and Patel, N. R. (1983). A network algorithm for performing Fisher’s exact
test in r × c contingency tables, Journal of the American Statistical Association, 78, pp.
427–434.

210



[60] Mehta, C. R., Patel, N. R., and Gray, R. (1985). Computing an exact confidence interval
for the common odds ratio in several 2 by 2 contingency tables, Journal of the American
Statistical Association, 80, pp. 969–973.

[61] Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1991). Exact stratified linear rank tests
for binary data, In Computing Science and Statistics: Proceedings of the 23rd Sympo-
sium on the Interface, (E. M. Keramidas, ed.), pp. 200–207, Interface Foundation, Fairfax
Station, VA.

[62] Mehta, C. R., Patel, N. R., and Tsiatis, A. A. (1984). Exact significance testing to establish
treatment equivalence with ordered categorical data, Biometrics, 40, pp. 819–825.

[63] Murota, K. (2003). Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics
and Applications, Vol. 10, Society for Industrial and Applied Mathematics, Philadelphia.

[64] Ohsugi, H. and Hibi, T. (1999a). Koszul bipartite graphs. Advances in Applied Mathemat-
ics, 22, pp. 25–28.

[65] Ohsugi, H. and Hibi, T. (1999b). Toric ideals generated by quadratic binomials. Journal
of Algebra, 218, pp. 509–527.

[66] Ohsugi, H. and Hibi, T. (2003). Indispensable binomials of toric ideals. submitted for
publication.

[67] Pagano, M. and Halvorsen, K. T. (1981). An algorithm for finding the exact significance
levels of r × c contingency tables. Journal of the American Statistical Association, 76, pp.
931–934.

[68] Plackett, R. L. (1981). The analysis of categorical data. 2nd ed. London: Griffin.

[69] Ripley, B. D. (1987). Stochastic simulation. New York, Wiley.

[70] Ploog, D. W. (1967). The behavior of squirrel monkeys (Saimiri sciureus) as revealed by so-
ciometry, bioacoustics, and brain stimulation. In Social Communication Among Primates,
edited by S. Altmann. pp. 149–184. Chicago. Univ. of Chicago Press.

[71] Rapallo, F. (2003). Algebraic Markov bases and MCMC for two-way contingency tables.
Scandinavian Journal of Statistics, 30, pp. 385–397.

[72] Ripley, B. D. (1987). Stochastic Simulation. New York, Wiley.

[73] Rosen, J. B. (1960), The gradient projection method for nonlinear programming, Part I,
Linear constraints, SIAM Journal on Applied Mathematics, 8, pp. 181–217.

[74] Sakata, T. and Sawae, R. (2000). Echelon form and conditional test for three way contin-
gency tables. in Proceedings of the 10-th Japan and Korea Joint Conference of Statistics,
pp. 333–338.

[75] Santos, F. and Sturmfels, B. (2003). Higher Lawrence configurations. Journal of Combi-
natorial Theory, Ser. A, 103, pp. 151–164.

211



[76] Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley, Chichester.

[77] Smith, C. A. B. (1986). Chi-squared tests with small numbers. Annals of Human Genetics,
50, pp. 163–167.

[78] Smith, P. W. F., Forster, J. J. and McDonald, J. W. (1996). Monte Carlo exact tests
for square contingency tables. Journal of the Royal Statistical Society, Series A, 159, pp.
309–321.
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