
Optimal Generation of Design-Specific

Cell Libraries

(設計固有セルライブラ リの最適生成手法)

A dissertation submitted in partial satisfaction of

the requirements for the degree of

Doctor of Philosophy in Electronic Engineering

in the

DEPARTMENT OF ELECTRONIC ENGINEERING

of the

UNIVERSITY OF TOKYO

by

Hiroaki Yoshida

Supervisor: Professor Kunihiro Asada

December 2006

Copyright C 2006 by Hiroaki Yoshida. All Rights Reserved.

Abstract

This dissertation focuses on optimal generation of design-specific cell libraries. In cell-based

integrated circuit design, a cell library defines the final quality of a design. Hence, use of a

general-purpose cell library may lead to a poor quality. We address various issues regarding

optimal generation of design-specific cell libraries, targeting high-performance digital circuit

design.

The goal of the first part of the dissertation is to provide the key components required to

successfully realize the automatic generation of design-specific cell libraries, which consists of

cell logic type selection and drive strength type selection.

Chapter 2 addresses feasibility issues on transistor-level optimization. During transistor-

level optimization, cell layout synthesis and characterization steps are the major bottlenecks

with respect to runtime. To resolve this drawback, we present a fast and accurate prelayout

estimation technique of cell characteristics. Our estimation technique is based on quick tran-

sistor placement. Given a transistor-level circuit of a cell, layout parasitics are estimated using

quick transistor placement. Then, the cell is characterized by simulating an estimated circuit

which is built according to the estimated layout parasitics. Experimental results on a 0.13ƒÊm

industrial standard cell library demonstrate that the proposed technique estimates the cell

characteristics with a reasonable accuracy in a negligibly small amount of time.

Chapter 3 addresses a cell logic type selection problem for design-specific cell libraries. Our

methodology consists of two steps: logic-rich cell library generation and cell logic type count

minimization. We propose a cell logic type count minimization method which minimizes the

logic type count iteratively under performance constraints. Experimental results on the ISCAS

85 benchmark suite in an industrial 90nm technology demonstrate that it is feasible to find the

minimal set of cell logic types under performance constraints.

Chapter 4 addresses a performance-constrained cell count minimization problem for

continuously-sized circuits. After providing a formal formulation of the problem, we pro-

pose an effective heuristic for the problem. The proposed hill-climbing heuristic iteratively

minimizes the number of cells under performance constraints such as area, delay and power.

Experimental results on the ISCAS 85 benchmark suite in an industrial 90nm technology

i

Abstract ii

demonstrate its effectiveness. We also discuss several implementation issues towards a prac-

tical application of the proposed method to large-scale circuits.

The second part of the dissertation focuses on transistor-level topology synthesis, which is an

important component in the manual generation phase where portions of a circuit are manually

identified and cells for the portions are synthesized at the transistor level. We present three

transistor-level topology synthesis methods. Although their objectives are to minimize the

transistor count, they have different solution spaces. Combining these methods, the minimum

solution in larger solution space can be obtained.

Chapter 5 presents a method for synthesis of minimal static CMOS circuits where the so-

lution space is restricted to the circuit structures which can be obtained by performing alge-

braic transformations on an arbitrary prime-and-irredundant two-level circuit. The circuit

structures are implicitly enumerated via structural transformations on a single graph struc-

ture, then a dynamic-programming based algorithm efficiently finds the minimum solution

among them. Experimental results on a benchmark suite targeting standard cell implemen-

tations demonstrate the feasibility of the proposed procedure. We also demonstrate the effi-

ciency of the proposed algorithm by a numerical analysis on randomly-generated problems. It

is also shown that the proposed procedure sometimes generates significantly smaller circuits

compared to conventional approach.

Chapter 6 presents an exact method for minimum logic factoring which can be viewed as the

synthesis of a static CMOS compound gate. We first introduce a novel graph structure, called

an X-B (eXchanger Binary) tree, which implicitly enumerates binary trees. Using this X-B tree,

the factoring problem is compactly transformed into a quantified Boolean formula (QBF) and

is solved by general-purpose QBF solver. Experimental results on artificially-created bench-

mark functions show that the proposed method successfully finds the exact minimum solu-

tions to the problems with up to 12 literals.

Chapter 7 studies the synthesis of read-once switch networks in which every variable ap-

pears only once. The proposed procedure is based on the notions of prime implicants and

unateness, which establish a basis for Boolean expression synthesis. We also propose a prun-

ing technique for an efficient search. Experimental results on randomly-generated problems

with up to 20 switches demonstrate that the proposed procedure successfully solves about 90%

of the problems in 10 minutes each and the resulting read-once switch networks are up to 78%

smaller compared to series-parallel switch networks.

Abstract iii

Chapter 8 conducts an experimental study using a circuit consisting of C432 and C499 from

the ISCAS 85 benchmark suite as a design example. We compare the circuits synthesized with

a typical cell library and optimal design-specific libraries in an industrial 90nm technology,

and demonstrate that using the design-specific cell libraries, the area-delay tradeoff curve is

shifted to the left-bottom from that using the typical library. Comparing between the area-

optimal circuits, the area is improved by 27.3%. And, comparing between the delay-optimal

circuits, the maximum delay is improved by 22.4%. These results clearly prove the effectiveness

of the flow and the key components for optimal generation of design-specific cell libraries.

Acknowledgments

I would never have been able to write this dissertation without the support by many of my

family members, friends and colleagues.

I would like to express my greatest gratitude to Prof. Kunihiro Asada, my supervisor for

eight years since I was an undergraduate student, for his guidance, encouragement , support

and constant belief in me. His deep insights into research problems and his incredibly broad

vision have been invaluable in my development as a researcher. I also learned from him how to

conduct a research independently; everything from the ability to identify a potential research

area to technical writing and presentation skills. I feel truly fortunate to have studied under

him.

I am deeply grateful to Prof. Makoto Ikeda for his guidance and support over the years . His

in-depth knowledge on integrated circuit design helped me develop my research work further ,

and his devoted and continued effort to provide a comfortable environment was essential to

make my research activities successful.

I would like to thank Prof. Masahiro Fujita for generously sharing invaluable ideas and pro-

viding me advices and feedbacks throughout my graduate life. He offered me many precious

opportunities to work in the United States. Also, as my dissertation committee member , he

gave me constructive feedbacks on my research.

I would like to give my thanks to Dr. Yusuke Oike, who was my research colleague for many

years in my graduate student life. His determined attitude and enthusiasm for research has

been always motivating me. The discussions with him have been enjoyable and intellectually

stimulating. I have been fortunate to work closely with him.

I would like to thank Mr. Tetsuya Iizuka, who has been my recent research colleague after

returning from two-year absence from school, for meaningful discussions and feedbacks on

my research. I also owe tremendous gratitude to him for doing the thankless job at Asada&

Ikeda Laboratory.

I would also like to acknowledge the members of my dissertation committee , Prof. Tadashi

Shibata, Prof. Shuichi Sakai and Prof. Makoto Takamiya, for their constructive suggestions

and feedbacks on my research.

iv

Acknowledgments v

The interactions with the current and past members of Asada & Ikeda Laboratory have been

always stimulating. I would like to thank Ms. Nariko Yokochi, Ms. Naomi Yoshida, Prof.

Tohru Ishihara, Mr. Ruotong Zheng, Dr. Satoshi Komatsu, Dr. Masahiro Sasaki, Dr. Toru

Nakura, Dr. Tomohiro Nezuka, Dr. Hiroaki Yamaoka and other members at the laboratory.

Special thanks to Mr. Yusuke Yachide for helping me prepare this dissertation.

I would like to thank the current and past members of Zenasis Technologies, Inc. I am

deeply grateful to Dr. Vamsi Boppana, my supervisor at Zenasis, for having me play a key role

at Zenasis and understanding my research activities. I also learned from him how to tackle

practical problems in a systematic way. The work presented in Chapter 2 in this dissertation

is based on a research collaboration with him; to Dr. Rajeev Murgai, who was my supervisor

when I was working at Fujitsu Laboratories of America (FLA) for a summer internship and

was also my colleague at Zenasis, for his kind support and valuable advices; Special thanks to

Dr. Robert Carragher, who helped me adjust to the new environment when I was working at

FLA and Zenasis. He has also been my best teacher of dancing as well as English language.

I am grateful to Dr. Yuji Kukimoto for his extremely valuable advices and comments from

his professional perspective.

I would like to thank Prof. Tsutomu Sasao, Prof. Yusuke Matsunaga and Prof. Shigeru

Yamashita for their precious suggestions and interests on my research.

I am thankful to Fujitsu Laboratories of America for hiring me for a summer internship. I

also owe gratitude to all the members of VLSI Design and Education Center (VDEC), the Uni-

versity of Tokyo, for supporting industrial EDA tools. The work presented in this dissertation

is supported by VDEC in collaboration with Synopsys, Inc. and Cadence Design Systems, Inc.

Finally, I would like to express my gratitude to my parents, Naliaki and Reiko, and my sister

Naoko for their continual support and understanding throughout my life. Also thanks to my

friends, Ryo Osada and Hiroaki Kubo, who always encourage and support me in my hour of

need.

Contents

Abstract i

Acknowledgments iv

List of Figures ix

List of Tables xiii

Chapter 1 Introduction 1

1.1 Background 1

1.2 Objectives and Organization of This Thesis 3

Chapter 2 Cell Characteristics Estimation Using Quick Transistor Placement 7

2.1 Introduction 7

2.2 QuickTransistor Placement 9

2.2.1 Hierarchical Network Construction 9

2.2.2 StagePlacement 11

2.2.3 Intra Stage Placement 11

2.2.4 Detailed Placement 13

2.2.5 Runtime Complexity 14

2.3 Cell Characteristics Estimation 14

2.3.1 Timing/Power 14

2.3.2 Area 16

2.3.3 Input Capacitances 16

2.4 Experimental Results 17

2.5 Future Trends 20

2.6 Conclusions 22

vi

Contents vii

Chapter 3 Logic Type Selection for Design-Specific Cell Libraries 23

3.1 Introduction 23

3.2 Constructing a Logic-Rich Cell Library 25

3.2.1 Enumerating Transistor-level Topologies 25

3.2.2 Transistor Size Selection 28

3.3 Logic Type Count Minimization 30

3.4 Experimental Results 31

3.5 Conclusions 35

Chapter 4 Performance-Constrained Cell Count Minimization for Continuously-

Sized Circuits 36

4.1 Introduction 36

4.2 Preliminaries 38

4.2.1 Posynomial Cell Model 38

4.2.2 Optimal Continuous Transistor Sizing 39

4.3 Cell Count Minimization 41

4.3.1 Problem Formulation 41

4.3.2 Hill-Climbing Heuristic 42

4.3.3 Implementation Issues 45

4.4 Experimental Results 45

4.5 Conclusions 51

Chapter 5 Synthesis of Minimal Static CMOS Circuits 52

5.1 Introduction 52

5.2 Representing a Static CMOS Circuit 54

5.3 Problem Formulation 56

5.4 Implicitly Enumerating AND2/INV Networks 56

5.4.1 Mapping Graph 56

5.4.2 Constructing a Mapping Graph 57

5.5 Finding the Minimum Circuit 60

5.5.1 Naive Approach 60

5.5.2 Dynamic Programming Based Algorithm 61

5.6 Experimental Results 65

5.7 Conclusions 69

Contents viii

Chapter 6 Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 70

6.1 Introduction 70

6.2 X-B Tree and Its Generation 71

6.2.1 X-B Tree 71

6.2.2 Signatures of Binary Trees 73

6.2.3 Generating X-B Trees 73

6.2.4 Complexity of X-B Trees 75

6.3 Exact Minimum Factoring 75

6.3.1 Problem Formulation 75

6.3.2 Constructing a QBF 76

6.3.3 Finding the Minimum Factored Form 80

6.3.4 Complexity of QBFs 80

6.4 Experimental Results 81

6.5 Conclusions 83

Chapter 7 Synthesis of Read-Once Switch Networks 84

7.1 Introduction 84

7.2 Switch Network and Its Representation 85

7.3 Proposed Synthesis Method 86

7.3.1 Computing the Connectivity Function 86

7.3.2 Finding a Read-Once Network 88

7.4 Experimental Results 91

7.4.1 Generating Random Problems 91

7.4.2 Synthesis Results 91

7.5 Conclusions 93

Chapter 8 Optimal Generation of Design-Specific Cell Libraries: A Case Study 95

8.1 Introduction 95

8.2 Design Example•\ISCAS 85 benchmark circuits C432+C499 97

8.2.1 A Typical Cell Library 97

8.2.2 Design-Specific Cell Libraries 98

8.3 Discussions on Manual Cell Generation 100

8.4 Conclusions 102

Contents ix

Chapter 9 Conclusions 103

Bibliography 106

List of Publications 114

List of Figures

1.1 Clock frequencies of high-performance ASIC and custom processors[CK02] 2

1.2 Overall flow for optimal generation of design-specific cell libraries 3

1.3 A Venn diagram which informally illustrates the relationships between the

solution spaces of the proposed transistor-level synthesis methods where MS

stands for multiple-stage, SS for single-stage, SP for series-parallel, NSP for

non-series-parallel, ALG for algebraic and RO for read-once 5

2.1 Transistor-level optimization flow targeting standard cell based design flow 8

2.2 (a) Transistor-level circuit of 2-input OR gate and(b) its hierarchical network 10

2.3 Placement model 11

2.4 F-M algorithm 12

2.5 Proposed double-row F-M algorithm 13

2.6 Three types of distance between two adjacent transistors:(a) two transistors

with two contacts and a diffusion gap in between,(b) two transistors sharing

diffusion with a contact in between, and(c) two transistors sharing diffusion 14

2.7 An example of an estimated netlist 15

2.8 An example of steiner tree for metal wiring estimation 16

2.9 Comparisons of extracted and estimated capacitances 18

2.10 Comparison of actual and estimated cell areas 20

2.11 Comparison of actual and estimated input capacitances 20

2.12 Impacts of intra-cell parasitics on a 0.13ƒÊm industrial standard cell library 21

2.13 A circuit model for the analysis of the impact of layout parasitics.(a) two

consecutive inverters and(b) a corresponding RC-level circuit model 21

2.14 (a) Technology parameters based on ITRS and(b) impacts of intra-cell para-

sitics on cell delay 22

3.1 Overall flow for cell logic type selection 24

X

List of Figures xi

3.2 (a) A static CMOS compound gate where the number of inputs I is 6, the stack

height of P-type transistors Sp is 3 and the stack height of N-type transistors

SN is 4 and(b) its corresponding AND/OR tree. The logic expression for the

gate is a• (b•Ec+d)• e+f 25

3.3 (a) A static CMOS compound gate and(b) its corresponding AND/OR tree

such that its structure is equivalent to that of Figure 3.2 but the order of chil-

dren is different. The logic expression for the gate is a+ b• c• (d+e• f) 27

3.4 AND/OR tree enumeration procedure 29

3.5 Logic type count minimization procedure 31

3.6 Logic type count vs. area tradeoff curves on area-optimal circuits 34

3.7 Logic type count vs. area tradeoff curves on area-optimal circuits under the

delay constraint of 10% within optimal delay 34

3.8 Logic type count vs. delay tradeoff curves on delay-optimal circuits. 34

4.1 Cell size distribution of 2-input NOR gates after delay-optimal sizing in an

ISCAS 85 benchmark circuit C499 implemented in an industrial 90nm tech-

nology. A circle indicates the number of instances of the cell is 1, a triangle

indicates between 2 and 10, and a square indicates more than 10 37

4.2 Our continuous cell model where si is the input slew and CL is the output load

capacitance. A cell consists of 2 parameters: P-type transistor width ƒÖ and beta

ratio ƒÀ which is the ratio of N-type transistor width to P-type transistor width 38

4.3 An example circuit model for continuous transistor sizing 39

4.4 An illustration of hill-climbing heuristic. Three steps(a)(b)(c) are repeatedly

performed until no further change can be made 42

4.5 Cell count minimization procedure 44

4.6 Delay vs. cell count tradeoff curve on C432 49

4.7 Delay vs. cell count tradeoff curve on C499 49

4.8 Delay vs. cell count tradeoff curve on C880 49

4.9 Delay vs. cell count tradeoff curve on C1355 50

4.10 Delay vs. cell count tradeoff curve on C1908 50

4.11 Delay vs. cell count tradeoff curve on C2670 50

4.12 Cell size distributions of 2-input NOR gates in an ISCAS 85 benchmark circuit

C499 51

List of Figures xii

5.1 Static CMOS circuit(14 transistors) 53

5.2 Primitive patterns in equivalent AND2/INV network 54

5.3 Equivalent AND2/INV network corresponding to static CMOS circuit in Fig-

ure 5.1. There are 7 patterns in the network and hence the cost is 14 55

5.4 A mapping graph(lower left diagram) encoding different implementations

of f=abc. The highlighted portion in the mapping graph generates the

AND2/INV network shown in the upper right diagram. The number shown

next to each choice node is the label assigned to the choice node 57

5.5 Distributive transformation 58

5.6 An illustration of the proof of Theorem 4.2:(a) an AND2/INV decomposition

of two-level Boolean network where ƒ¿1 and ƒ¿2 are the AND2/INV networks

representing the logic-OR of the inputs and(b) a mapping graph constructed

from(a) 59

5.7 A Venn diagram which informally illustrates the relationships between the

circuit structures encoded in ƒÊƒ¢p and other circuit structures. Note that the

sets of non-prime and/or redundant circuits are infinite sets 60

5.8 A partially-covered mapping graph 61

5.9 A pseudo-code for the dynamic programming based algorithm. The frontiers

in a queue are sorted in ascending order of labels 63

5.10 A frontier expansion on the partially-covered mapping graph shown in Fig-

ure 5.8 64

5.11 Statistics on randomly generated problems 68

6.1 A static CMOS compound gate 71

6.2 An X-B tree with 7 leaf nodes. 72

6.3 An example of 3-input exchanger node 72

6.4 Basic procedure for signature computation 74

6.5 Inserting an exchanger node 75

6.6 A miter structure 77

6.7 (a) operator node and(b) its equivalent logic circuit 78

6.8 (a) literal node and(b) its equivalent logic circuit 78

6.9 Basic procedure for finding minimum factored form 80

7.1 A switch network representing x1x4+x2x5+x1x3x5+x2x3x4 85

List of Figures xiii

7.2 A network graph corresponding to the switch network in Figure 7.1 86

7.3 Top-level procedure FindReadOnceNetwork 89

7.4 Procedure AddPrimeImplicants which is called by FindReadOnceNetwork 90

7.5 A partial network graph 91

7.6 The subgraph of Figure 7.5 with respect to a prime implicant x1x3x4x7x8x9 92

7.7 Two example bridges(thick portion) of the subgraph in Figure 7.6 with respect

to a prime implicant x1x3x4x7x8x9 92

7.8 The resulting network graphs by adding the two bridges in Figure 7.7 to the

subgraph in Figure 7.6.(a) and(b) correspond to Figure 7.7(a) and(b), re-

spectively 92

7.9 An example subgraph such that there does not exist a bridge to implement a

prime implicant x1x3x4x7x8x9 93

7.10 Experimental results on randomly-generated problems 94

8.1 Overall flow for optimal generation of design-specific cell libraries 96

8.2 Area-delay tradeoff curve on the typical cell library 98

8.3 Cell size distributions for the delay-optimal circuit. A circle indicates the

number of instances of the cell is 1, a triangle indicates between 2 and 10,

and a square indicates more than 10 101

8.4 Area-delay tradeoff curves on the typical cell library and the optimal design-

specific cell library 102

List of Tables

1.1 Factors contributing to the gap between ASICs and custom [CK02] . 2

2.1 Summary of 0.13ƒÊm industrial standard cell library. All cells are single-output

cells 17

2.2 Timing error without layout parasitics 19

2.3 Timing error with estimated layout parasitics. 19

3.1 Number of AND/OR trees 28

3.2 ISCAS 85 benchmark circuits. 32

3.3 Cell logic type selection results on the ISCAS 85 benchmark circuits in an

industrial 90nm technology. 33

3.4 Statistics of logic types in the design-specific cell libraries for C1908 . 33

4.1 Fitting errors of posynomial gate delay models. 46

4.2 Statistics of ISCAS 85 benchmark circuits implemented in an industrial 90nm

technology. 48

4.3 Cell count minimization results on the ISCAS 85 benchmark circuits in an

industrial 90nm technology. 48

5.1 Comparison between SIS and the proposed algorithm. 66

5.2 Statistics of the mapping graphs. 67

6.1 Characteristics of minimum X-B trees 76

6.2 Upper bounds on QBF sizes. 81

6.3 Experimental results on benchmark functions 82

6.4 Statistics of the QBFs 83

8.1 Statistics of a typical cell library in an industrial 90nm technology . The num-

ber of logic types is 15 and the total number of cells is 50. 97

8.2 Statistics of cell logic types for the area-optimal circuit. 99

8.3 Statistics of cell logic types for the delay-optimal circuit 99

xiv

Chapter 1

Introduction

1.1 Background

In spite of the significant advances of computer-aided design tools for large-scale integrated

circuit (LSI) over the decades, there has been a large performance gap between application-

specific integrated circuit (ASIC) and custom LSI. Figure 1.1 compares the clock frequencies

of high-performance custom and ASIC processors. For instance, Intel Pentium 4 processor

was designed in custom design methodology and operates at 2GHz in 0.18ƒÊm technology. In

contrast, Sony/Toshiba Emotion Engine which was designed in ASIC methodology operates at

300MHz in 0.18ƒÊm technology. Although the clock frequency does not necessarily represent

the performance of a chip, examining the factors contributing this frequency gap may provide

a clue to improving the ASIC performance further and closing the gap between ASIC and

custom LSIs. Recently, a number of studies on the examination of the factors [CKOO, CNK01,

RPS01, CK02] have been presented. In summary, they claimed that there are various factors

contributing to the gap as shown in Table 1.1. Based on this background, many researchers in

various fields of computer-aided design have been tackling the problems. In particular, design

optimization at the transistor level has been gaining an attention because it can improve most

of the factors at a time.

Design optimization at the transistor level is well-known and has been successfully used

to achieve significant performance benefits above and beyond gate-level design optimization.

The approaches range from transformations such as sizing [FD85, CEWWM+99], all the way

to macro-cell based design methodologies [BF98]. More recently, transistor-level optimiza-

tion techniques targeting standard cell based design flow have also been proposed [PDE+98,

BB02]. The techniques aim to gain an equivalent performance improvement to transistor-level

optimization by enhancing the cell library. These optimization techniques take advantage of

the recent progress in automated cell-layout solutions [GH97, GMD+97, SS99, RS03, abr03] .

1

Introduction 2

Figure 1.1 Clock frequencies of high-performance ASIC and custom processors [CK02].

Table 1.1 Factors contributing to the gap between ASICs and custom [CK02].

This approach can also be viewed as an automation of the creation of design-specific macro-

cells which are typically manually crafted. However, due to several major drawbacks and lim-

itations, the practical use of this incremental optimization approach is restricted. The first

drawback is the limitation on the cell creation cost. The creation of cells consists of several

computationally-intensive processes including cell layout synthesis and characterization. In

an ideal circuit, every gate is optimized at the transistor level and hence the cell creation cost

can be considerable for large-scale circuits. The second drawback is that the approach requires

a complete set of a cell library as an initial cell library. If we could somehow construct a design-

specific cell library from scratch, it would not be necessary anymore. The last drawback is the

lack of optimal transistor-level synthesis methods. Although optimal sizing algorithms have

been extensively studied, optimal transistor-level synthesis is still a challenging problem. To

gain the maximum benefits from transistor-level optimization, the development of optimal

transistor-level synthesis methods is essential.

Introduction 3

Figure 1.2 Overall flow for optimal generation of design-specific cell libraries.

1.2 Objectives and Organization of This Thesis

The focus of this dissertation is optimal generation of design-specific cell libraries . Figure 1.2

illustrates the overall flow for generating optimal design-specific libraries. The flow is divided

into two phases: automatic generation phase and manual generation phase. The first phase is the

automatic generation phase. Given an initial circuit description and a set of design constraints,

an initial circuit is synthesized with a logic-rich cell library generated by the method described

in Section 3.2. The logic types are reduced under the design constraints (Section 3.3), and the

minimal set of logic types for the design-specific library is obtained. Next, the circuit is contin-

uously sized by an optimal continuous sizer (Section 4.2.2) and then the total number of cells is

Introduction 4

minimized under the design constraints by minimizing the drive strength count for each logic

type. Thus, the optimal design-specific library and the optimized circuit using the library are

automatically obtained. If the design requirements are not met at this point, the manual gen-

eration phase is performed as follows. A portion of the circuit is identified manually, and then

the optimal cell for the portion is synthesized by the transistor-level synthesis methods pro-

posed in Chapter 5, Chapter 6 and Chapter 7. This step is repeated until the requirements

are met. Every optimization step in this flow includes the cell characteristics evaluation upon

which the overall runtime and the final quality depend. The fast and accurate evaluation of

cell characteristics is accomplished by the prelayout cell characteristics estimation method in

Chapter 2. Thus, all components proposed in this dissertation are combined together in this

flow.

The goal of the first part of the dissertation is to provide the key components required to

successfully realize the automatic generation phase (the upper half part of the overall flow in

Figure 1.2).

Chapter 2 will present a fast and accurate prelayout estimation technique of cell characteris-

tics. During transistor-level optimization, the cell layout synthesis and characterization steps

are the major bottlenecks with respect to runtime. Besides, the convergence of the optimiza-

tion depends upon the accuracy of cell characteristics. Our estimation technique is based on

quick transistor placement. Given a transistor-level circuit of a cell, the layout parasitics are

estimated using quick transistor placement. Then, the cell is characterized by simulating an

estimated circuit which is built according to the estimated layout parasitics. The proposed

technique establishes a basis for the transistor-level optimization methods presented in the

following chapters.

Chapter 3 will present a methodology for optimal selection of logic types for design-specific

cell libraries. The proposed methodology can be used as the logic type selection in the auto-

matic generation phase. The methodology is divided into two major steps. The first step is to

prepare a cell library with a rich variation of logic types. The second step is to find a minimal

subset of the logic types subject to performance constraints such as area, delay and power.

Thus, the minimal set of logic types specific to a design is obtained. In this chapter, we will

provide an effective method for each step.

Chapter 4 will address a performance-constrained cell count minimization problem for

continuously-sized circuits. A continuously-sized circuit resulting from transistor sizing con-

sists of gates with large variety of sizes. This leads to an increase of the library creation cost,

Introduction 5

Figure 1.3 A Venn diagram which informally illustrates the relationships between the solution

spaces of the proposed transistor-level synthesis methods where MS stands for multiple-stage, SS

for single-stage, SP for series-parallel, NSP for non-series-parallel, ALG for algebraic and RO for read-

once.

which renders the approach to be impractical particularly for large-scale designs. After provid-

ing a formal formulation of the problem, we will propose an effective heuristic for the problem.

The proposed hill-climbing heuristic iteratively minimizes the number of cells under perfor-

mance constraints such as area, delay and power. The method can be used as the drive strength

type selection in the automatic generation phase.

The second part of the dissertation focuses on transistor-level topology synthesis, which is

an important component in the manual generation phase (the lower half portion of the flow in

Figure 1.2). In spite of the fact that exact transistor and gate sizing algorithms have been well

studied, few studies have been carried out on exact transistor-level synthesis. We will provide

exact transistor-level topology synthesis methods with different solution spaces. Figure 1.3

informally illustrates the relationships between the solution spaces of the proposed transistor-

level synthesis methods. In the figure, MS stands for multiple-stage, SS for single-stage, SP for

series-parallel, NSP for non-series-parallel. SS-SP is the set of single-stage series-parallel cir-

cuits. MS-SP-ALG is the set of multiple-stage series-parallel circuits obtained by performing

algebraic transformations on an arbitrary prime-and-irredundant two-level circuit. SS-NSP-

RO is the set of single-stage non-series-parallel read-once circuits in which every variable

appears only once. More detailed explanations on the solution spaces will be given in the

following chapters.

Chapter 5 will present a method for synthesis of minimal static CMOS circuits. To make the

problem tractable, the solution space is restricted to the circuit structures which can be ob-

Introduction 6

tained by performing algebraic transformations on an arbitrary prime-and-irredundant two-

level circuit. The circuit structures are implicitly enumerated via structural transformations

on a single graph structure, then a dynamic-programming based algorithm efficiently finds

the minimum solution among them.

Chapter 6 will present an exact method for minimum logic factoring. Logic factoring can

be viewed as the synthesis of a static CMOS compound gate. We will first introduce a novel

graph structure, called an X-B (eXchanger Binary) tree, which implicitly enumerates binary

tree structures. Using this X-B tree, the factoring problem is compactly transformed into a

quantified Boolean formula (QBF) and is solved by general-purpose QBF solver.

Chapter 7 will study the synthesis of read-once switch networks. The ultimate goal is to syn-

thesize a non-series-parallel switch network representing a given Boolean function with the

minimum number of switches. As a first step towards the goal, we will focus on the synthe-

sis of a read-once switch network in which every variable appears only once. The proposed

procedure is based on the notions of prime implicants and unateness, which establish a basis

for Boolean expression synthesis. We will also propose a pruning technique for an efficient

search.

Chapter 8 will conduct an experimental study using a benchmark circuit. The objective

of the case study is to demonstrate the effectiveness of the overall flow for generating optimal

design-specific cell libraries. We will compare the circuits synthesized with a typical cell library

and optimal design-specific libraries, and will demonstrate that using the design-specific cell

libraries, the area-delay tradeoff curve is shifted to the left-bottom from that using a typical

library. The results indicate that the intrinsic improvement can be achieved by the proposed

flow.

Finally, the dissertation will be concluded in Chapter 9.

Chapter 2

Cell Characteristics Estimation Using Quick

Transistor Placement

2.1 Introduction

Design optimization at the transistor level is well-known and has been successfully used

to achieve significant performance benefits above and beyond gate-level design optimiza-

tion. The approaches range from transformations such as sizing[FD85, CEWWM+99], all

the way to macro-cell based design methodologies [BF98]. More recently, transistor-level

optimization techniques targeting standard cell based design flow have also been proposed

[PDE+98, BB02]. These optimization techniques take advantage of the recent progress in au-

tomated cell-layout solutions [GH97, GMD+97, SS99, RS03, abr03]. Figure 2.1 illustrates the

basic flow of such a transistor-level optimization technique.

In this optimization flow, since a large number of transistor-level circuits are explored to find

an optimum solution, the overall runtime heavily depends on the cell characterization pro-

cess. Conventional transistor-level optimization techniques, such as [FD85, SRVK93], have

not attempted to account for the impact of layout parasitics, which has become increasingly

significant at the deep-submicron technologies [Sem04]. Due to the inaccuracy imposed by

disregarding the layout parasitics, the optimization may take a long time to converge, or just

doesn't converge. One naive approach to this problem is to incorporate the actual layout syn-

thesis and subsequent extraction processes into the flow. This approach is, in fact, infeasible

because the layout synthesis and extraction processes consume a significant amount of time.

Consequently, cell characteristics must be estimated without actually performing the detailed

layout and subsequent extraction steps.

In this chapter, we propose a novel approach based on a cell characteristics estimation. The

cell characteristics estimator based on this approach can be used at every decision step in the

flow for generating design-specific cell libraries illustrated in Figure 1.2. Given a transistor-

7

Cell Characteristics Estimation Using Quick Transistor Placement 8

Figure 2.1 Transistor-level optimization flow targeting standard cell based design flow.

level circuit of a cell, the layout parasitics are estimated using quick transistor placement.

Then, the cell is characterized by simulating an estimated netlist which is builtaccording to

the estimated layout parasitics. Our approach can be interpreted as an analogy tothe route

estimation technique at the inter-cell level which is commonly used in physical synthesis

[SID+99, CMC+01]. In this technique, a physical design space is divided into multiple bins

and each cell is assigned to one of the bins. The routing of each net is estimated by a steiner

tree connecting the bins which include the terminals of the net. The objective of this work is

to show that such an approach works even at the intra-cell level.

The rest of the chapter is organized as follows. Section 2.2 and Section 2.3 describe the

proposed quick transistor placement and the cell characteristics estimation techniques, re-

spectively. Section 2.4 presents experimental results on an industrial standard cell library in

0.13ƒÊm technology. In Section 2.5, the impact of intra-cell layout parasitics and its future

trends are discussed. Conclusions are drawn in Section 2.6.

Cell Characteristics Estimation Using Quick Transistor Placement 9

2.2 Quick Transistor Placement

The quick transistor placement algorithm is required to satisfy the following properties:(a)

simple and flexible and (b) the runtime is substantially small. Although the transistor placement

problem has been well studied up until now [GH97, GMD+97, SS99, RS03], we do not need

a complete placement but an estimate of placement.(a) implies that the algorithm must be

as independent as possible from real design constraints such as design rules and layout styles.

As a rule of thumb, a simple algorithm applies well to a wide range of technologies. As for

(b), more specifically, the runtime is required to be substantially small compared to that of the

simulation.

To achieve the requirements, the algorithm is designed utilizing the two techniques:

bi-partitioning based placement technique and hierarchical placement technique. The bi-

partitioning based placement technique [Bre77] is very simple and runs very fast if an effi-

cient partitioning algorithm is chosen. The hierarchical placement technique first divides a

transistor-level circuit into stages and builds a hierarchical network consisting of two levels:

stage level and transistor level. Then, the placement at the stage level is performed followed by

the placement at the intra-stage level. This hierarchical approach has three major advantages as

follows. First, it can lead to a reasonable placement. Typically, transistors in a stage are placed

closely each other to maximize the connections by diffusions. Second, the computation com-

plexity can be reduced, particularly, when a circuit has a large number of transistors. At each

level of hierarchy, the size of the placement problem is smaller than when the problem is solved

flatly. The third advantage is an incremental update of the placement. A typical transistor-level

optimizer changes very small portion of a circuit at a time. As long as the topology at the stage

level remains the same, it's sufficient to update the placement of transistors inside the touched

stages.

2.2.1 Hierarchical Network Construction

The construction of a hierarchical network starts with transistor folding. Since the height

of a cell is fixed, wide transistors in a pre-layout netlist are divided into smaller transistors to

meet the cell height. The folded transistors are connected in parallel to preserve the original

functionality. Our model allows two transistor folding styles, a fixed P/N ratio style and an

adaptive P/N ratio style. In the fixed P/N ratio style, the maximum widths of P-type and N-

type transistors are fixed for all cells. In the adaptive P/N ratio style, the maximum widths

for each cell are determined such that the width of the cell is minimized. In either style, each

Cell Characteristics Estimation Using Quick Transistor Placement 10

Figure 2.2 (a) Transistor-level circuit of 2-input OR gate and(b) its hierarchical network.

transistor is divided equally to meet the maximum width.

Next, a hierarchical network is constructed by dividing the netlist into stages. Anumber of

techniques for the stage recognition have been proposed as a part of gate-level extraction tech-

niques [Boe88, Bry91]. In this chapter, we define a stage as a Channel Connected Component

(CCC). A CCC is the maximum set of transistors connected at the sources and drains each

other. As an exception, a transmission gate is recognized as a distinct stage. If any unknown

structure is found in the netlist during the stage recognition, the hierarchization is canceled,

i.e., the netlist remains flat. In such a case, the stage placement phase will be skipped.

Finally, weighted nets are added in the hierarchical network as follows. Nets connecting two

or more drains/sources of the same transistor type are identified. The nets are weighted by

adding new nets connecting the corresponding drains and sources. This net-weighting is used

to pull transistors which share diffusions together, duplicating what a human designer does to

save area. Figure 2.2(a) shows a transistor-level circuit of 2-input OR gate and Figure 2.2(b)

shows the corresponding hierarchical network. In the figure, the weighted nets are drawn as

wiggle lines.

Cell Characteristics Estimation Using Quick Transistor Placement 11

Figure 2.3 Placement model.

2.2.2 Stage Placement

In a stage-level network, each node corresponds to a stage. The stage placement problem

can be viewed as a one-dimensional placement problem of a stage-level network. As already

mentioned, we use the bi-partitioning placement technique to solve this problem. Assuming

that the stages are placed horizontally, we are interested only in the horizontal order of nodes,

i.e., whether a node is on the left or right of another node. Figure 2.3 illustrates our placement

model. In the figure, the stage S1 is placed on the left, S2 on the middle, and S3 on the right.

At each partitioning step, the partitioned sets of nodes are simply assigned to either the left

set L or the right set R of nodes. As a bi-partitioning algorithm, we chose the well-known

F-M algorithm [FM82] due to its linear runtime complexity. A net is said to be a cut if it is

connected to at least one node in each set. The size of a cut is defined as the number of cuts.

The gain of a node is defined as the change in the cut size when the node is moved into the

other set. To balance the two sets of nodes, the following conditions must be satisfied:

(2.1)

The F-M algorithm finds a partition of nodes such that the cut size between the two sets is

minimized. Figure 2.4 shows a basic procedure of the F-M algorithm.

2.2.3 Intra-Stage Placement

This phase determines the placement of transistors in each stage. In a transistor-level net-

work, each node corresponds to either a transistor or an external stage. An external stage is

defined as a stage other than the enclosing stage. A transistor node is assigned to either the

upper or lower row depending on its transistor type. Every external stage node is placed and

fixed at either the left or right of the placement space for the intra-stage transistors.

Cell Characteristics Estimation Using Quick Transistor Placement 12

Figure 2.4 F-M algorithm.

In our placement model shown in Figure 2.3, a placement space is divided vertically into

two rows, upper row and lower row, and horizontally into a number of columns. Each divided

space is referred to as a slot. At most one transistor can be assigned to a single slot. P-type

transistors are assigned to the upper row, and N-type transistors to the lower row. The left most

and right most slots are reserved for external stages, and can accept two or more external stages.

Since the placement problem of a transistor-level network is not simply a one-dimensional

placement problem, the F-M algorithm cannot be used in a straightforward manner. There-

fore, we extend the algorithm for the double row placement style. A basic procedure is similar

to the original except the differences as follows. First, the partition is represented by the four

sets of nodes, Lu, LL, Ru and RL. Here, the subscript U denotes the upper row and L denotes

the lower row. Second, the balance between two sets of nodes is re-defined as follows:

(2.2)

where LD, LN, RD, RN are:

(2.3)

(2.4)

The subscript D indicates that the row is dominant, and N indicates that the row is non-

dominant. The procedure of this algorithm is shown in Figure 2.5.

Cell Characteristics Estimation Using Quick Transistor Placement 13

Figure 2.5 Proposed double-row F-M algorithm.

2.2.4 Detailed Placement

Up to this point, the horizontal order of transistors is known. In this phase, the X and Y

coordinates of the transistors are determined. The X coordinate of the left most transistors is

assumed to be zero. The distance between two adjacent transistors is categorized into three

types as illustrated in Figure 2.6. The distance value of each type is given as a technology

parameter specific to the cell layout architecture. Given two adjacent transistors, the type is

determined according to their connectivity. If the two transistors are not connected by drain(s)

and/or source(s), the type is of Figure 2.6(a). If the transistors are connected by drain(s)

and/or source(s) and the corresponding net is not connected to any other transistor, the type

is of Figure 2.6(b). Otherwise, the type is of Figure 2.6(c). Thus, the X coordinates of the

transistors are determined in a left-to-right manner. The Y coordinate of a transistor is Ytrans

if the transistor is P-type and -Ytrans otherwise, where Ytrans is a constant value specific to the

cell layout architecture.

Cell Characteristics Estimation Using Quick Transistor Placement 14

Figure 2.6 Three types of distance between two adjacent transistors:(a) two transistors with two

contacts and a diffusion gap in between,(b) two transistors sharing diffusion with a contact in

between, and(c) two transistors sharing diffusion.

2.2.5 Runtime Complexity

Let NN be the number of nodes and NT be the number of terminals in a network. According

to the original paper [FM82], the runtime complexity of F-M algorithm is O(NT). Likewise,

the complexity of the modified F-M algorithm is approximated by O(NT). Hence, the run-

time complexity of the bi-partitioning placement is O(NT logNN). The detailed placement

has a runtime complexity of O(NN). Since the number of transistors is at least twice of the

number of stages, the runtime complexity of the quick placement algorithm is approximated

by O(NTA logNTS) where NTA is the number of transistors and NTS is the typical number of

transistors in a stage.

2.3 Cell Characteristics Estimation

For the purpose of static timing analysis and design optimization, a cell is typically charac-

terized with respect to the following parameters: timing, power, area and input capacitances.

This section describes estimation techniques of these cell characteristics based on the place-

ment information obtained by the quick placement engine.

2.3.1 Timing/Power

The cell delay model most widely used now is the Non-Linear Delay Model (NLDM)[Lib03].

In NLDM, a cell timing is modeled by lookup tables with output load and input transition time

as indices. Likewise, a cell power is typically modeled in the same way. Each entry in a lookup

table is obtained by simulating a transistor-level netlist under a specific output load and input

slope. Note that the proposed technique can be applied for any other delay/power models as

Cell Characteristics Estimation Using Quick Transistor Placement 15

Figure 2.7 An example of an estimated netlist.

long as the model can be built based on simulated values.

A timing is estimated by simulating an estimated netlist, instead of an extracted netlist

which is not available at the pre-layout level. An estimated netlist consists of the following

elements: folded transistors, diffusion capacitances and wiring capacitances. For example, Fig-

ure 2.7 illustrates an example of an estimated netlist.

Diffusion Capacitances

Typical SPICE MOSFET models [L+98] calculate a diffusion capacitance according to the

area and perimeter of a diffusion region. Let us assume that a diffusion is in a rectangular

shape. The height is estimated as the width of the transistor associated with the diffusion. The

estimated width of the diffusion is available during the detailed placement phase described in

Section 2.2.4.

Wiring Capacitances

Given a wire connecting a set of transistors, a steiner tree is first constructed to estimate the

total length of the metal portion of the wire. The metal wire connects the transistors at drains

and/or sources and the contact points. Supposing that a wire is connected to a transistor t at

its gate, a contact point is defined as the intersecting point of the X axis (the center line of the

upper and lower rows) and the vertical line passing through the transistor t. Figure 2.8 shows

an example of steiner tree for the metal wiring estimation. A large number of steiner tree

construction algorithms have been proposed. In particular, we used [KR92] which is known

Cell Characteristics Estimation Usina Quick Transistor Placement 16

Figure 2.8 An example of sterner tree for metal wiring estimation.

as one of the state-of-the-art algorithms. Finally, the wiring capacitance is estimated as follows:

(2.5)

where ktutre is a technology-specific constant value, Cinetai is a metal-to-ground capacitance per

unit length, Ltree is the total length of the sterner tree, Cp„ly is the poly capacitance per an

individual gate, and Noate is the number of gates connected to the wire. kwire is introduced as a

scaling factor to take account of the effect of wire-to-wire capacitances and wiring resistance.

This needs to be calibrated according to the technology and cell layout architecture. Cpoly is

the poly capacitance of the wire except the portion of transistor gate.

2.3.2 Area

The area of a cell is estimated by the following formula:

(2.6)

where H,is the cell height,WLR is the distance from the left most transistor to the right most

transistor, Wedge is the distance from the left most(right most) transistor to the left(right) edge

of the cell boundary.

2.3.3 Input Capacitances

An input capacitance of a cell can be modeled as the sum of gate capacitance and wiring

capacitance. Thus, the input capacitance at an input i of a cell is estimated as follows:

(2.7)

where T (i) is the set of transistors connected to i, Cgate is a unit gate capacitance, and W trans (t)

is the width of the transistor t, and Cwire(i) is the capacitance of the wiring associated with i.

Cell Characteristics Estimation Using Quick Transistor Placement 17

Table 2.1 Summary of 0.13ƒÊm industrial standard cell library. All cells are single-output cells.

2.4 Experimental Results

The proposed quick transistor placement and cell characteristics estimation technique have

been implemented within the framework of a standard cell characterization flow. The frame-

work is built using HSPICE [HSP03] as a transistor-level simulator and Calibre xRC [Cal04]

as a parasitic extractor. Using this framework, we conducted experiments on a state-of-the-art

standard cell library implemented in 0.13ƒÊm technology. The summary of the library is shown

in Table 2.1. In the table, the number of logic levels is defined as the maximum number of

stages on any input-to-output path. The cells are categorized into three types: single-stage cells,

multi-stage cells and pass transistor logic (PTL) cells. A PTL cell is defined as a cell including

pass-transistor logic, e.g., multiplexer and XOR gates in this library are PTL cells. As can be

noticed, some single-stage cells have a large number of transistors. This is because such cells

have multiple gates connected in parallel to gain the drive strength. From the definition of the

CCC, such cells are recognized as single-stage cells.

First, we compared the estimated and extracted values of wiring capacitances inside the cells.

The extracted capacitances are obtained as follows. First, lumped C netlists are extracted us-

ing Calibre xRC. The capacitance of each wire is obtained by summing up all capacitances

associated with the wire, i.e., the sum of a wire-to-ground capacitance and wire-to-wire ca-

pacitances. Figure 2.9 shows the comparison of the extracted and estimated capacitances in

(a) the single-stage cells, (b) the multi-stage cells, and (c) the PTL cells. The average errors

and the standard deviations are shown in the figures. The table shows that the average error

is up to 24.1%. Since the impact of the wiring capacitance on the timing is comparably small

(•`10%), the estimation is accurate enough.

Next, we estimated the timing of the cells using the framework and compared them against

the timing obtained by simulating extracted netlists. The extracted netlists consist of folded

Cell Characteristics Estimation Using Quick Transistor Placement 18

Figure 2.9 Comparisons of extracted and estimated capacitances.

transistors, diffusion areas and perimeters, wiring resistances and capacitances. Originally,

the framework characterizes the cell timing for the non-linear delay model. We employed,

however, a linear model which is more suitable to understand the contributions of input tran-

sition time and output load to the total delay. The linear delay model calculates a cell delay as

follows:

(2.8)

where ttrans is an input transition time and CL is an output load. This translation from the

non-linear model to the linear model was done by the multiple regression analysis within

the typical ranges of output load and input transition time. A timing error is calculated as

Cell Characteristics Estimation Using Quick Transistor Placement 19

Table 2.2 Timing error without layout parasitics.

Table 2.3 Timing error with estimated layout parasitics.

the relative error against the extracted timing. Table 2.2 and Table 2.3 show the timing error

without and with layout parasitics estimated by the proposed technique, respectively. Without

considering layout parasitics, the intrinsic delay error of the PTL cells is 17.1% on average. The

error improved to 2.9% by the proposed estimation technique. Overall, the average error of

intrinsic delay improved from 10.7% to 2.7%, and the average errors ofktrans, and kload improved

to 1.6% and 1.5%, respectively. Again, note that the linear delay model is used only for the

comparison and any timing model can be used as long as the model can be built by simulating

transistor-level circuits with parasitics.

Figure 2.10 plots the actual and estimated cell areas and Figure 2.11 plots the actual and

estimated input capacitances. The average errors and the standard deviations are shown in

the figures. The CPU time required for the estimation of the entire library, excluding the

simulation, was less than one second, while the simulation time was on the order of hours.

The results show that the proposed technique is feasible to estimate cell characteristics with a

reasonable accuracy.

Cell Characteristics Estimation Using Quick Transistor Placement 20

Figure2.10 Comparison of actual and esti-

mated cell areas.

Figure2.11 Comparison of actual and esti-

mated input capacitances.

2.5 Future Trends

In the previous section, it has been shown that the proposed technique successfully estimates

the cell characteristics of a 0.13ƒÊm standard cell library. The impact of the layout parasitics are

expected to be more dominant in the future technologies. In this section, the future trends are

analyzed based on the latest ITRS prediction[Sem04].

As a starting point, we show the impact of each layout parasitic type using the same 0.13ƒÊm

standard cell library used in the previous section. 5 different types of netlists of the cells are

prepared:

(1) Folded transistors, wiring resistances and capacitances, and diffusion capacitances

(2) Folded transistors, wiring capacitances, and diffusion capacitances

(3) Folded transistors and diffusion capacitances

(4) Folded transistors

(5) No layout parasitics

Then, we calculated the timing error of each type of netlists against the timing of(1), as shown

in Figure 2.12.

Now we begin analyzing the future trends of the impacts. As a circuit for the analysis, we

use a circuit consisting of two consecutive inverters illustrated in Figure2.13(a). To analyze

the impacts of intra-cell layout parasitics, the circuit is modeled as an RC network shown in

Cell Characteristics Estimation Using Quick Transistor Placement 21

Figure2.12 Impacts of intra-cell parasitics on a 0.13ƒÊm industrial standard cell library.

Figure2.13 A circuit model for the analysis of the impact of layout parasitics.(a) two consecutive

inverters and(b) a corresponding RC-level circuit model.

Figure2.13(b). In the figure, Rdrive is the resistance of the driving inverter, Rwire and Cwire are

the resistance and capacitance of the wire connecting the two inverters, and Cgate is the gate

capacitance of the driven inverter. The delay of the inverter at the input side is given as follows:

(2.9)

The impacts are calculated as follows:

(2.10)

(2.11)

(2.12)

Cell Characteristics Estimation Using Quick Transistor Placement 22

Figure2.14(a) Technology parameters based on ITRS and(b) impacts of infra-cell parasitics on cell

delay.

where IRwire is the impact of wiring resistance,ICwire is the impact of wiring capacitance, and

IRwireCwire is the impact of both wiring resistance and capacitance. Figure2.14(a)shows the nor-

malized technology parameters based on ITRS prediction[Sem04] and Figure2.14(b) plots

the predicted impacts calculated by the above formulas. The wiring resistance and capaci-

tance, i.e. Rw and Cw, for the year 2003 are determined such that their impacts are 10% and

2% respectively. These values, 10% and 2%, are approximated from the impacts in 0.13ƒÊm

technology(Figure2.12). The graph shows that the impacts will keep increasing as the tech-

nology proceeds.

2.6 Conclusions

This chapter addressed an important issue of transistor-level optimization in the deep-

submicron technologies where the impact of intra-cell layout parasitics cannot be neglected

anymore. As a solution to this issue, we proposed a novel approach based on a cell charac-

teristics estimation. To realize this approach in a feasible way, we also proposed a technique

that estimates cell characteristics accurately in a short time using quick transistor placement.

The experimental results on a 0.13ƒÊm industrial standard cell library demonstrated that the

proposed technique estimated the cell characteristics with a reasonable accuracy in a negli-

gibly small amount of time. We also showed that the impact of intra-cell layout parasitics

will become more dominant in the future technologies. We hope that the proposed technique

successfully solves the issue which is expected to be more crucial in the future.

Chapter 3

Logic Type Selection for Design-Specific Cell

Libraries

3.1 Introduction

Cell library design at the transistor level is divided into two phases: logic type selection and

drive strength selection. In the logic type selection phase, Boolean functions and transistor-

level topologies are selected. The drive strength selection phase determines how many drive

strengths are provided for each logic type and also optimizes the transistor sizes of each drive

strength. In an ideal circuit, each gate is optimized at the transistor level with respect to its

topology and transistor sizes. However, due to the limitation on the number of cells in a library,

a sufficient number of logic types and drive strengths cannot be included. Only in a custom

design methodology, this ideal can be realized. Therefore, it is desirable to find the minimal

set of logic types and drive strengths specific to each design. This chapter focuses on the logic

type selection for design-specific cell libraries. The design-specific drive strength selection

problem will be studied in Chapter 4.

There are several studies available on the logic type selection for standard cell libraries. In

[KKL87], they demonstrated that using a library with a rich set of logic types can reduce area

considerably.[SK94] provided two principles(guidelines) for selecting cell sizes and logic

types. One is to provide multiple drive strength for each logic type and the other is to pro-

vide both polarities for each logic type. They demonstrated that simple modifications fol-

lowing these principles in a cell library could lead to 20-30% improvement in final circuit

speed.[GS96] performed an experiment-based study on how circuit area and performance

depends upon the number of stack height where stack height is defined as the number of series-

connected transistors in pullup/pulldown network in static CMOS gate. From the study, they

demonstrated that using cells with bigger stack heights of up to 7 could improve circuit area by

30% while it does not significantly affect circuit performance. These studies are primarily in-

23

Logic Type Selection for Design-Specific Cell Libraries 24

Figure3.1 Overall flow for cell logic type selection.

tended to provide guidelines for designing general-purpose cell libraries, but not to construct

the design-specific cell libraries.

This chapter presents a methodology for logic type selection for design-specific cell libraries.

The proposed methodology can be used as the first step in the flow for generating design-

specific cell libraries illustrated in Figure 1.2. Unlike the existing studies described above, the

objective of the proposed methodology is to find the minimal set of logictypes specific to a

design. The overall flow is illustrated in Figure 3.1. The flow is divided into two steps:(a)

preparing a cell library with a rich variation of logic types and(b) finding a minimal subset

of the logic types subject to circuit performance constraints such as area, delay and power.

Using the logic-rich library, an initial circuit is synthesized. Since the circuit may include a

large number of logic types, the logic types are reduced by iteratively removing logic types of

less importance and resynthesizing the circuit using the reduced cell library.

The rest of the chapter is organized as follows. Section 3.2 describes how to construct a logic-

rich cell library which is used in our methodology. Section 3.3 presents the proposed logic type

count minimization procedure. The method minimizes the logic type count iteratively under

performance constraints. Section 3.4 presents the experimental results ona benchmark suite

to demonstrate its effectiveness. Conclusions are drawn in Section 3.5.

Logic Type Selection for Design-Specific Cell Libraries 25

Figure 3.2 (a) A static CMOS compound gate where the number of inputs I is 6, the stack height of

P-type transistors S p is 3 and the stack height of N-type transistors SN is 4 and (b) its corresponding

AND/OR tree. The logic expression for the gate is a• (b• c+d)• e+f.

3.2 Constructing a Logic-Rich Cell Library

As explained in the previous section, transistor-level design of a cell library includes two

important decision steps: the selection of transistor-level topologies and transistor sizes. This

section explains how to construct a cell library with a rich variation of logic types.

In our cell library, every cell consists of a single-stage static CMOS compound gate under

the assumption that multiple-stage static CMOS gates can be implemented as a combination

of single-stage gates. A static CMOS compound gate is a channel connected component (CCC),

which is a set of transistors connected at the sources and drains. It consists of two parts, a part

of P-type transistors and a part of N-type transistors, which are structurally complementary.

By regarding transistors as switches, it can be viewed as a series-parallel (or parallel-series)

nested switch network which implements a Boolean function. An example of a static CMOS

compound gate is shown in Figure 3.2 (a). Note that a static CMOS compound gate always

implements a negative unate (i. e. monotonically decreasing) Boolean function.

3.2.1 Enumerating Transistor-level Topologies

Static CMOS compound gates can be categorized by the following characteristics: the num-

ber of inputs I, the stack height of P-type transistors S p and the stack height of N-type tran-

sistors SN where the stack height is defined as follows.

Logic Type Selection for Design-Specific Cell Libraries 26

Definition 3.1. The stack height of P(N)-type transistors is defined as the maximum number of

P(N)-type series-connected transistors in a static CMOS compound gate.

Thus, the set of transistor-level topologies for a logic-rich cell library can be specified by the

following structural constraints:

・ Maximum number of inputs: Imax

・ Maximum stack height of P-type transistors: SPrnax

・ Maximum stack height of N-type transistors: SNmax.

Under these structural constraints, all possible transistor-level topologies are enumerated.

First, an AND/OR tree representation is introduced as the representation of the transistor-level

topology of a static CMOS compound gate. Then, we propose a procedure for enumerating

AND/OR trees under these structural constraints.

AND/OR Tree Representation

To enumerate transistor-level topologies for cells, we use an AND/OR tree as the structural

representation of a static CMOS compound gate. An AND/OR tree is defined as follows.

Definition 3.2. An AND/OR tree is a rooted ordered tree where every leaf node corresponds to

an input and every internal node represents either a Boolean AND operator or OR operator.

An AND/OR tree can be mapped into a static CMOS compound gate in a unique way by

transforming the tree into the series-parallel nested network, and vice versa. For a P-type

transistor network, an OR node is transformed into the series connection of the subnetworks

and an AND node is transformed into the parallel connection of the subnetworks. Similarly,

for an N-type transistor network, an AND node is transformed into the series connection of

the subnetworks and an OR node is transformed into the parallel connection of the subnet-

works. Also, an AND/OR tree can be transformed into a logic expression by traversing the

tree in depth-first order. For instance, the logic expression for the AND/OR tree in Figure 3.2

is a・(b・c+d)・e+f. The complement of the logic expression is the function represented by

the corresponding static CMOS compound gate. The performance of a gate depends on how

far a transistor is placed from the output, i. e. the order of series-connected transistors. Hence

we distinguish AND/OR trees with different orders of children as different AND/OR trees.

Figure 3.3 shows a static CMOS compound gate and its corresponding AND/OR tree such

Logic Type Selection for Design-Specific Cell Libraries 27

Figure 3.3 (a) A static CMOS compound gate and (b) its corresponding AND/OR tree such that its
structure is equivalent to that of Figure 3.2 but the order of children is different. The logic expression
for the gate is a+b• c• (d+e• f).

that its structure is equivalent to that of Figure 3.2 but the order of children is different. Note

that leaf nodes are not distinguished since the inputs of a cell are indistinctive. The AND or

OR width of a tree is defined recursively as follows.

Definition 3.3. The AND width of a node n in an AND/OR tree is defined as

(3.1)

where Children(n) is the set of the children of n. Similarly, the OR width of a node n in an

AND/OR tree is defined as

(3.2)

Definition 3.4. The AND(OR) width W(t) of an AND/OR tree t is defined as the AND(OR)

width of the root node.

The AND(OR) width of an AND/OR tree t is equivalent to the stack height of N(P)-type tran-

sistors, i. e., Sp•ßWOR(t) and SN•ßWAND(t).

Logic Type Selection for Design-Specific Cell Libraries 28

Table 3.1 Number of AND/OR trees.

Enumerating AND/OR Trees

Given structural constraints Imax, Spmax and SNmax, all possible AND/OR trees satisfying the

structural constraints are enumerated. For AND/OR trees, Imax is the maximum number of

leafs, Spmax is the maximum OR width and SNmax is the maximum AND width. The procedure

for enumerating AND/OR trees is given in Figure 3.4. Starting from the set of AND/OR

trees, each of which consists only of a leaf node, it creates a new AND/OR tree by AND-ing

or OR-ing the subset of the AND/OR trees. If the new AND/OR tree satisfies the structural

constraints, the tree is added to the set. The procedure is repeated until no new tree can be

added. Table 3.1 shows the numbers of AND/OR trees under different constraints. Finally,

the set of transistor-level topologies is obtained by transforming each AND/OR tree in the

final set into the static CMOS compound gate.

3.2.2 Transistor Size Selection

As will be demonstrated in Chapter 4, transistor sizes in a cell have a big impact on the

circuit performance. Since we use discrete-sized cells in our library, the transistor sizes should

be selected carefully. In our cell library, every transistor in either P-type or N-type transistor

network in a cell has the same size. Given a transistor-level topology of a cell, the transistor

sizes of P-type and N-type networks are selected under the following constraints.

Logic Type Selection for Design-Specific Cell Libraries 29

Figure 3.4 AND/OR tree enumeration procedure.

Logic Type Selection for Design-Specific Cell Libraries 30

・ Set of drive strengths for each logic type:

・ P-type and N-type transistor widths in the smallest inverter:ωPINV and ωNINV

・ Beta ratio factor:kβ

The beta ratio for a cell is calculated as follows.

(3.3)

Then, the widths of P-type and N-type transistors, ƒÖP and ƒÖN, are calculated as follows.

(3.4)

Finally, for each drive strength di•¸D, the widths of P-type and N-type transistors, ƒÖPi and

ωNi, are calculated as

(3.5)

(3.6)

Note that the set of drive strengths may be different from a logic type to another.

3.3 Logic Type Count Minimization

The objective of the problem addressed in this section is to minimize the number of logic

types required to implement a circuit under performance constraints such as area, delay and

power. The proposed minimization procedure is based on hill-climbing heuristic[KV02].

Using the logic-rich library, an initial circuit is synthesized. Since the circuit may include a

large number of logic types, the logic types are reduced by iteratively removing logic types of

less importance and resynthesizing the circuit using the reduced cell library. The procedure

for minimizing the logic type count is presented in Figure 3.5.

The quality of this heuristic depends heavily upon the selection of a logic type to be removed.

In our procedure, the logic type with the largest slack is selected as a candidate for removal

where the slack of the logic type is defined as follows.

Definition 3.5. The slack of a pin is defined as the difference between the required time and the

arrival time at the pin. The slack of a gate is the worst (smallest) slack at the pins on the gate.

The slack of a logic type is the worst slack of the gates of the logic type. The total slack of a logic

type is the sum of the slacks of the gates of the logic type.

Logic Type Selection for Design-Specific Cell Libraries 31

Figure 3.5 Logic type count minimization procedure.

If there are two or more logic types with the largest slack, the logic type with the largest total

slack is selected. Thus, the logic type having the least impact on the circuit performance is

removed from the cell library. Note that the inverter and 2-input NAND gate are essential for

most synthesis tools and hence they are excluded from the candidates for removal.

3.4 Experimental Results

First, we constructed a logic-rich cell library under the maximum number of inputs of 6,

the maximum number of stack height of 4 for each transistor type. Each logic type has 7 drive

strengths: 1x, 2x, 4x, 6x, 8x, 12x and 16x, and the beta ratio factor is 0.1. The number of logic

types is 461 and the total number of cells is 1844 cells. The cell characteristics in an industrial

90nm technology were obtained using the prelayout cell characteristic estimator proposed in

Chapter 2 with HSPICE [HSP03].

Logic Type Selection for Design-Specific Cell Libraries 32

Table 3.2 ISCAS 85 benchmark circuits.

Next, we applied the proposed flow to 10 circuits from the ISCAS 85 benchmark cir-

cuits [BF85]. Table 3.2 provides the descriptions of the circuits [HYH99]. Cadence

PKS (Physically-Knowledgeable Synthesis)[PKS04] was used to synthesize circuits from the

register-transfer-level descriptions of the benchmark circuits. We performed cell logic type

selection on the benchmark circuits with three types of performance constraints. In the first

experiment, we performed cell logic type selection under the constraint of the maximum area

of 1% within the optimal area, i.e., (A a rea *1.01) where A area is the area of the area-optimal cir-

cuit. In the second experiment, the maximum area is limited to (A delay *1.1) and the maximum

path delay is limited to (D delay *1.1) where A delay and D delay are the area and the maximum path

delay of the delay-optimal circuit. In the last experiment, the maximum path delay is limited

to 1% within the optimal delay, i.e., (D delay *1.01). Table 3.3 shows the results of these three sets

of cell logic type selection. Overall, the area-optimal circuits require more logic types than the

delay-optimal circuits. This reconfirms the fact that complex cells are are beneficial for area

reduction.

Table 3.4 (a) and (b) show the statistics of the cell logic types in the design-specific cell

libraries for C1908. Table 3.4 (a) corresponds to the result under the constraint of the max-

imum area of 1% within the optimal area, and Table 3.4 (b) corresponds to the result under

the constraint of the maximum delay of 1% within the optimal delay. The design-specific li-

brary for the area-optimal circuit includes complex cells with up to 5 inputs. In contrast, the

design-specific library for the delay-optimal circuit includes simple cells. Besides, two dif-

ferent topologies, (A+B)・C and A・(B+C), of OAI21 are used. Since these two types have

different input-to-output delays, they are used according to the timing criticality of gate inputs.

In Figure 3.6, Figure 3.7 and Figure 3.8, we also present the logic type count vs. performance

Logic Type Selection for Design-Specific Cell Libraries 33

Table 3.3 Cell logic type selection results on the ISCAS 85 benchmark circuits in an industrial 90nm

technology.

Table 3.4 Statistics of logic types in the design-specific cell libraries for C1908.

Logic Type Selection for Design-Specific Cell Libraries 34

Figure 3.6 Logic type count vs. area tradeoff curves on area-optimal circuits.

Figure 3.7 Logic type count vs. area tradeoff curves on area-optimal circuits under the delay con-

straint of 10% within optimal delay.

Figure 3.8 Logic type count vs. delay tradeoff curves on delay-optimal circuits.

Logic Type Selection for Design-Specific Cell Libraries 35

tradeoff curves obtained in this experiment. As can be seen from Figure 3.7 and Figure 3.8,

the tradeoff curves are not smooth when the delay constraints exist. This is mainly due to the

sub-optimality of delay optimization of the logic synthesis tool and to the discreteness of cell

drive strengths.

3.5 Conclusions

This chapter addressed the cell logic type selection problem for design-specific cell libraries.

Our methodology consists of two steps: the construction of a logic-rich library and the cell

logic type count minimization. The proposed cell logic type count minimization method mini-

mizes the logic type count iteratively under performance constraints. The experimental results

on the ISCAS 85 benchmark suite in an industrial 90nm technology demonstrated that it is

feasible to find the minimal set of logic types under performance constraints.

Chapter 4

Performance-Constrained Cell Count

Minimization for Continuously-Sized Circuits

4.1 Introduction

As explained in Chapter 1, design optimization at the transistor level has been successfully

used to achieve significant performance benefits above and beyond gate-level design optimiza-

tion. In particular, continuous transistor sizing is known to have a significant impact on circuit

performance and hence has been extensively studied. Although early work does not guaran-

tee the optimality [FD85], Sapatnekar et al. first provided an exact sizing method based on an

interior-point algorithm [SRVK93]. More recently, Chen et al. showed an elegant formulation

of the sizing problem [CCW99] which can be optimally and efficiently solved by Lagrangian

relaxation method [Ber00].

A continuously-sized circuit resulting from transistor sizing consists of gates with large va-

riety of sizes. Figure 4.1 shows a cell size distribution of 2-input NOR gates after delay-optimal

sizing in an ISCAS 85 benchmark circuit C499 implemented in an industrial 90nm technology.

The cells are parameterized with two parameters: the drive strength and the beta ratio which is

the ratio of N-type transistor width to P-type transistor width. In the figure, a circle indicates

the number of instances of the cell is 1, a triangle indicates between 2 and 10, and a square in-

dicates more than 10. In the standard cell based design flow where every gate is implemented

by a cell, a large number of cells need to be prepared to implement a whole circuit. As the tech-

nology advances, the number of effects which need to be taken into account, e.g. performance

variability and manufacturability, is increasing. Reflecting this situation, the design and char-

acterization of cells are also becoming increasingly complex [BHSA03]. This drawback renders

any continuous sizing solution in the standard cell based design flow to be impractical. Also,

minimizing the cell count can directly improves the production throughput in the character

projection based electron beam direct writing (CP-EBDW) method [Pfe79, IMK+00] in which

36

Performance-Constrained Cell Count Minimization 37

Figure 4.1 Cell size distribution of 2-input NOR gates after delay-optimal sizing in an ISCAS 85

benchmark circuit C499 implemented in an industrial 90nm technology. A circle indicates the num-

ber of instances of the cell is 1, a triangle indicates between 2 and 10, and a square indicates more

than 10.

each gate is masklessly projected on a wafer at a time.

This chapter addresses a performance-constrained cell count minimization problem. Un-

like the gate size selection problem [BKKS98, KP99] whose objective is to build a general-

purpose cell library, the proposed method minimizes the number of cells of a circuit under

performance constraints such as area, delay and power. In the flow for optimal generation of

design-specific cell libraries illustrated in Figure 1.2, we first select a design-specific set of cell

logic types by the methodology for cell logic type selection proposed in the previous chapter.

Given the design-specific set of cell logic types, an optimal continuous sizing is performed.

Then, a design-specific set of cell sizes for each logic type is obtained by the method proposed

in this chapter. Thus, a design-specific cell library is obtained.

The rest of the chapter is organized as follows. Section 4.2 describes a posynomial cell model

which we use to model cell characteristics, and provides a quick overview of a geometric pro-

gramming based transistor sizing algorithm [CCW99]. In Section 4.3, we first formulate the

performance-constrained cell count minimization problem formally, and then propose a hill-

climbing heuristic for the problem. We also address several implementation issues towards a

practical application of the proposed method to large-scale circuits. Section 4.4 presents the

experimental results on a benchmark suite to demonstrate its effectiveness. Conclusions are

drawn in Section 4.5.

Performance-Constrained Cell Count Minimization 38

Figure 4.2 Our continuous cell model where si is the input slew and CL is the output load capac-

itance. A cell consists of 2 parameters: P-type transistor width w and beta ratioƒÀ which is the ratio

of N-type transistor width to P-type transistor width.

4.2 Preliminaries

4.2.1 Posynomial Cell Model

Our cell model is the posynomial cell model [FD85] which is most-commonly used by con-

vex optimization based transistor sizing. Each cell is a parameterized cell where the sizes of the

transistors in the cell are specified by a set of parameters (p1,•c,pm), e.g. beta ratio and taper

factor. Each parameter p, has its lower bound K and upper bound pi.

(4.1)

Figure 4.2 illustrates our continuous cell model. The model consists of 2 parameters: P-type

transistor width w and beta ratio ƒÀ which is the ratio of N-type transistor width to P-type tran-

sistor width. Note that other parameters such as taper factor can be incorporated to increase

the degree of freedom and/or to improve the accuracy.

A cell is characterized with respect to the following characteristics: timing, power, area and

input capacitances. A timing of a cell can be defined as a delay d or slew s of an arc of the cell

for a given input slew s, and an output load CL.

(4.2)

(4.3)

Likewise, a cell power is typically modeled in the same way. Also, an area A and an input

capacitance Ci of a cell are given as the functions of the parameters:

(4.4)

(4.5)

Performance-Constrained Cell Count Minimization 39

Figure 4.3 An example circuit model for continuous transistor sizing.

where Ci is the capacitance of i-th input.

A posynomial [Eck80] is a function g of a positive vector variable t E having the form:

(4.6)

where the exponents aij are arbitrary real numbers and the coefficients ci are positive. An

important property of a posynomial is that a posynomial is convex under a variable transfor-

mation [Eck80]:

(4.7)

For a convex function, any local minimum is also a global minimum.

The characteristics of a cell given by the equations 4.2-4.5 are modeled by posynomials. A

posynomial for a cell characteristic can be obtained by fitting a number of data points which

are obtained by a circuit simulation. There are several fitting techniques proposed for posyno-

mials [RC05, RC06]. In addition, more accurate cell models based on posynomials have been

proposed. [KKS00] proposed a generalized posynomial, and [TS05] presented piecewise con-

vex cell model by dividing the function domain into small regions and fitting a function per

region. In Section 4.4, we will demonstrate the accuracy of the posynomial cell model in an

industrial 90nm technology.

4.2.2 Optimal Continuous Transistor Sizing

This section overviews an optimal continuous transistor sizing algorithm [CCW99] which

we use in the proposed method. Figure 4.3 shows an example circuit model for continuous

Performance-Constrained Cell Count Minimization 40

transistor sizing. For ease of explanation, the following formulation does not take account of

slews and load capacitances, nor does it distinguish rise and fall delays.

Definition 4.1. A gate gi is an instance of a cell cgi•¸{c1, c2,...} with an associated set of

parameters(pil,..., pim)

(4.8)

A circuit consists of a set of gates G={g1,...,gn} and a set of wires W={ƒÖ1,...,ƒÖ0}. Each

wire ƒÖi has its associated arrival time ATi and each input-to-output arc in a gate has its associ-

ated delay d. Then, area minimization problem under delay constraints can be formulated as

follows:

(4.9)

where p=(pi1, pi2,...,pnm) is the set of all parameters,Ai(p) is the area of gi and ATmax is

the maximum arrival time at any output. Similarly, delay minimization problem under an area

constraint can be formulated as follows(throughout the remainder of this chapter, constraints

for parameters and arrival times at internal wires are omitted for ease of explanation):

(4.10)

where Amax is the maximum area. Since the convexity is preserved under sums and maxima,

a local optimum of these problems is the global optimum. Therefore, any nonlinear solver

which finds a local minimum can find the global optimum solution. In[CCW99], Chen et

al. showed that these constrained problems are efficiently and optimally solved by Lagrangian

relaxation method.

Performance-Constrained Cell Count Minimization 41

4.3 Cell Count Minimization

4.3.1 Problem Formulation

Informally speaking, the objective of the problem addressed in this chapter is to minimize

the number of cells required to implement a circuit under performance constraints such as

area, delay and power. Note that only the cell parameters are subject to this optimization prob-

lem, i.e., neither the topology of a circuit nor any cell logic type is changed. Before formulating

the problem formally, we start with the following series of definitions.

Definition 4.2. Two gates gi=(cgi,pil,...,pim) and gi=(cgj, pjl,...,pjm) are said to be

equivalent if and only if ci=cj and pik=pjk for all k, and are denoted by gi•`gj.

For example, consider a circuit consisting of the following gates.

g1=(c1,1,1)

g2=(c1,1,2)

g3=(c2,2,3)

g4=(c2,2,3)

g1 and g2 are not equivalent because the second parameters are different. Also, g2 and g3 are

not equivalent because the cells are different. Since all parameters are same, g3 and g4 are

equivalent.

Definition 4.3. A gate group ƒ¡ is defined as an equivalence class on the set of gates G, i.e.,

gi,gj∈ Γ ⇔gi～gj

Definition 4.4. A cell count N(p) is defined as |G/•`|, the size of the quotient set of G(the

number of all equivalence classes on G).

Definition 4.5. Two gate groups ƒ¡i=(cƒ¡i, pil,...,pim) and ƒ¡j=(cƒ¡j, pjl,...,pjm) are said to

be compatible if and only if cƒ¡i=cƒ¡j.

N(p) can also be viewed as the number of cells which are required to implement the circuit.

In the previous example, there are three gate groups:

Γ1={g1}

Γ2={g2}

Γ3={g3,g4}.

Performanre-Constrained Cell Count Minimization 42

Figure 4.4 An illustration of hill-climbing heuristic. Three steps(a)(b)(c) are repeatedly performed

until no further change can be made.

Therefore, N(p)=3 and hence three cells are required to implement the circuit. Also, ƒ¡1 and

Γ2 are compatible, and Γ1 and Γ3 are not.

Using these definitions, the problem addressed in this chapter is formulated as follows:

(4.11)

Other performance constraints such as maximum power can be incorporated in a straightfor-

ward manner. Obviously, N(p) is a non-smooth and non-convex function. Since the problem

is intrinsically the combination of nonlinear and discrete problems, it is unlikely that the con-

ventional nonlinear programming techniques solve this problem robustly. Also, the linear

programming approach is inapplicable due to the nonlinearity of the constraint functions.

Therefore, we propose an effective heuristic to solve this problem.

4.3.2 Hill-Climbing Heuristic

The proposed heuristic is based on hill-climbing method[KV02]. Starting from an

optimally-sized circuit which satisfies the constraints, it reduces N(p) by one at a time while

satisfying the constraints, and it is repeated until no further change can be made. The basic

Performance-Constrained Cell Count Minimization 43

idea of reducing N(p) by one is(a) finding two compatible gate groups ƒ¡i and ƒ¡j,(b) merging

them into a gate group ƒ¡k, and(c) finding the optimal set of parameters of ƒ¡k, as shown in

Figure 4.4.

The quality of this heuristic depends heavily upon the choice of two gate groups to be

merged. Basically, merging two gate groups reduces the degrees of freedom of sizing and

hence the resulting performance can also degrade. Therefore, two gate groups need to be cho-

sen such that merging them has the least impact on the circuit performance. The proposed

method uses the notions of slack and distance which are defined as follows.

Definition 4.6. The slack of a wire is defined as the difference between the required time and

the arrival time at the wire. The slack of a gate is the worst(smallest) slack of the wires connected

to the gate. The slack of a gate group is the worst slack of the gates in the gate group.

Definition 4.7. The distance between two compatible gate groups ƒ¡i=(cƒ¡i, pil,...,pim) and

Γj=(cΓj, pjl,...,pjm)is the Euclidean distance between two vectors of parameters:

(4.12)

where Ki is the weight factor for i-th parameter.

The weight factor Ki is determined based on the impact of the i-th parameter to the circuit

performance. Thus, the distance between two gate groups can be viewed as an estimate of the

impact on the circuit performance when the gate groups are merged. The basic criteria are to

choose two compatible groups such that(a) the distance between the gate groups is small and

(b) at least one of the slacks of the gate groups is large. To accurately analyze the slacks of gate

groups, the proposed method performs total slack maximization under the given performance
constraints:

(4.13)

where S(p) is the sum of the slacks of the wires. In the last constraint, the gates in each gate

group are forced to have the same set of parameters. Thus, the cell count remains the same

during the total slack maximization.

Performance-Constrained Cell Count Minimization 44

Figure 4.5 Cell count minimization procedure.

A pseudocode for the hill-climbing heuristic is presented in Figure 4.5. After the total

slack maximization, all gate groups are sorted in descending order of slack and the gate group

Γi with the largest slack is chosen. Next, the k-nearest neighbor compatible gate groups of

Γi are computed where k is a user-defined parameter which controls the runtime, and the

nearest gate group ƒ¡j, is chosen. After merging the two gate groups into a gate group, the

optimal parameter set is determined by maximizing the total slack under the performance

constraints. For efficiency, this step can be performed locally, i.e., only the merged gate group

and its neighbor gate groups are optimized, as discussed in Section 4.3.3. If the constraints

cannot be satisfied after this slack maximization, the gate group pair is discarded and the next

nearest gate group of ƒ¡i is chosen as ƒ¡j. If there is no more k-nearest neighbor, the gate group

with the next largest slack is chosen as ƒ¡i. The process is repeated until no more groups can

be merged.

Performance-Constrained Cell Count Minimization 45

4.3.3 Implementation Issues

Total slack maximization (Step 2 and 7 in Figure 4.5) requires the computation of required

times at all wires. Since the computation of required times includes subtraction and minimum

operations, the formulation like (9) may not be possible. Instead, we use the sum of slacks at

all endpoints (i. e. primary outputs) as total slack. Since required times at endpoints are all

fixed, this problem is simply equivalent to the minimization of the sum of arrival times at all

endpoints. After the total slack maximization, the slack of each internal wire can be computed

for Step 3.

From our experiences, the local optimization (Step 7) dominates the overall runtime. In

the current implementation, a local optimization is performed by a global optimization fixing

the parameters other than the target gates. Even though the solution space is comparably

small, the runtime is still large. In addition, in the case that the constraints cannot be met,

typical nonlinear solvers do not give up until they reach the maximum iteration limit. A simple

optimization, such as decent direction and conjugate direction methods, in conjunction with

incremental timing analysis may speed up the local optimization dramatically.

For large-scale circuits, the nearest neighbor query (Step 5) may also be another bottleneck.

A number of efficient nearest neighbor query algorithms are available [GG98], e. g., region

quadtree method [FB74].

4.4 Experimental Results

First, we constructed a continuously-sized cell library consisting of 24 logic types. The cells

were characterized for the posynomial cell model described in Section 4.2.1 using an indus-

trial 90nm technology as follows. For each logic type, P-type transistor widths were varied

from 1ƒÊm to 8ƒÊm and beta ratios (the ratio of N-type transistor width to P-type transistor

width) were varied from 0.5 to 2. Input slews were varied from 10ps to 1000ps, output loads

were varied from lfF to 100fF. Cell delays and slews were simulated using a prelayout cell char

acteristic estimator [YDBo0] with HSPICE [HSP03] for 256 combinations of the parameters.

Then, we fitted the data to a posynomial function and obtained the coefficients and exponents.

Table 4.1 presents the average fitting error and the standard deviation of cell delays and slews

of each logic type. Overall, the average fitting error was about 1.06% and the standard devi-

ation was 1.19%. For cell areas, the average fitting and the standard deviation were both less

than 0.01%. For input loads, the average fitting and the standard deviation were 0.23% and

0.19%, respectively.

Performance-Constrained Cell Count Minimization 46

Table 4.1 Fitting errors of posynomial gate delay models.

Performance-Constrained Cell Count Minimization 47

Next, we implemented the optimal continuous transistor sizing algorithm explained in Sec-

tion 4.2.2 and the performance-constrained cell minimization algorithm proposed in Sec-

tion 4.3.2. To solve the nonlinear problems, a state-of-the-art nonlinear optimizer IPOPT

[WB06] is used. We then applied them to 10 circuits from the ISCAS 85 benchmark circuits

[BF85]. The benchmark circuits were first synthesized for optimal delay using a discretely-

sized cell library in the same 90nm technology. After replacing the cells with the continuously-

sized cells, delay-optimal circuits were obtained by performing an unconstrained optimal-

delay sizing followed by an optimal-area sizing under the optimal delay constraint. Then, we

applied the proposed cell count minimization method to the delay-optimal circuits as follows.

The cell count of each circuit is minimized with accepting 1% degradation of optimal delay

and keeping the area, i.e., under the constraints of the maximum path delay of (Dopt*1.01)

and the maximum area of Aopt, where Dopt, and Aopt, are the maximum path delay and the area

of a delay-optimal circuit, respectively. Table 4.3 compares the cell counts of the delay-optimal

circuits and the circuits after the cell count minimization. In the table, the second column

shows the number of logic types used in the circuit. Note that the number of logic types is the

lower bound on the cell count. The last column shows the cell count reduction rate calculated

by (Nopt-N1%)/Nopt*100 where Nopt, and N1% are the cell counts of the delay-optimal circuit

and the circuit after the cell count minimization, respectively. The results demonstrate that

the cell counts could be reduced by 78.0% on average with accepting 1% degradationwhich is

almost equivalent to the delay model error. Figure 4.6-Figure 4.11 present the tradeoff curves

between the maximum path delay and the cell count. The curves were obtained by increasing

the maximum path delay constraint from D„p, and keeping the area constraint the same. In

the figures, (a) presents the curve in the full range from the optimal delay to the minimum cell

count, and (b) presents the same curve in a range within 1% of the optimal delay. An important

observation from these results is that the cell count can be reduced dramatically with accepting

very little delay degradation. Figure 4.12 (a) and (b) show the cell size distributions of 2-input

NOR gates in a circuit C499 after delay-optimal sizing and after cell count minimization with

accepting 1% degradation of optimal delay, respectively. In the figures, a circle indicates the

number of instances of the cell is 1, a triangle indicates between 2 and 10, and a square indicates

more than 10. As can be seen from Table 4.3, the runtime of the current implementation

is not small on large circuits. This is mainly due to the local total slack minimization step

(Step 7 in Figure 4.5). By using the techniques in Section 4.3.3, the runtime can be improved

dramatically and larger circuits should be optimized in a reasonably short runtime.

Performance-Constrained Cell Count Minimization 48

Table 4.2 Statistics of ISCAS 85 benchmark circuits implemented in an industrial 90nm technology.

Table 4.3 Cell count minimization results on the ISCAS 85 benchmark circuits in an industrial gonm

technology.

Performance-Constrained Cell Count Minimization 49

Figure 4.6 Delay vs. cell count tradeoff curve on C432.

Figure 4.7 Delay vs. cell count tradeoff curve on C499.

Figure 4.8 Delay vs. cell count tradeoff curve on C880.

Performance-Constrained Cell Count Minimization 50

Figure 4.9 Delay vs. cell count tradeoff curve on C1355.

Figure 4.10 Delay vs. cell count tradeoff curve on C1908.

Figure 4.11 Delay vs. cell count tradeoff curve on C2670.

Performance-Constrained Cell Count Minimization 51

Figure 4.12 Cell size distributions of 2-input NOR gates in an ISCAS 85 benchmark circuit C499.

4.5 Conclusions

This chapter addressed a performance-constrained cell count minimization problem for

continuously-sized circuits. After providing a formal formulation of the problem, we pro-

posed an effective heuristic for the problem. The proposed hill-climbing heuristic iteratively

minimizes the number of cells under performance constraints such as area, delay and power.

The experimental results on a benchmark suite demonstrated its effectiveness. We also dis-

cussed several implementation issues towards a practical application of the proposed method

to large-scale circuits. We expect that the solution presented in this chapter will be successfully

used to achieve a practical realization of continuous sizing in the standard cell based design

flow.

Chapter 5

Synthesis of Minimal Static CMOS Circuits

5.1 Introduction

In general, transistor-level optimization includes two decision problems: transistor siz-

ing and circuit topology synthesis. It is well known that transistor sizing is one of the ef-

fective techniques for timing optimization. Recent semi-custom design methodologies for

high-performance ASICs have employed cell libraries with a rich variation of drive strengths

[NL01, RHH+02] to obtain a similar advantage of continuous transistor sizing. It is notable

that their cell libraries has a small set of logic families. This fact implies that circuit topology

optimization at the intra-cell level is not as effective as transistor sizing. In contrast, it is also

known that the use of complex gates can reduce the design area. Although such complex gates

are typically not available in cell libraries, circuit topology synthesis technique can generate

such gates by combining several cells into a single cell [BB02]. Besides, the area reduction

of non-critical regions improves the overall area utilization, which promotes a faster conver-

gence of timing optimization. On this background, the following three chapters focus on area

optimization at the transistor level. The methods proposed in the chapters can be used for the

manual generation steps in the flow for generating design-specific cell libraries.

Area optimization is one of the most classical problems in the field of logic synthesis. Con-

ventionally, an area optimization is achieved by reducing the literal count in a multi-level

logic network. An early work [Law64] provided an exact multi-level logic minimization al-

gorithm, however, the algorithm applies only to a factored form of a Boolean function, i.e., a

single-output single-stage static CMOS circuit. For synthesizing multi-output multi-stage static

CMOS circuits, a number of heuristics have been developed [GGP+97, LA99]. There was also

an attempt to synthesize an arbitrary static CMOS circuit by technology mapping with a rich

set of library cells [DGR+87]. It requires tens of thousands of cells to be prepared in advance,

which is too infeasible. Due to their heuristic nature, these methods don't guarantee any opti-

52

Synthesis of Minimal Static CMOS Circuits 53

Figure 5.1 Static CMOS circuit (14 transistors)

mality of the solution. Apart from static CMOS circuits, there are a large number of literatures

on the synthesis of more general transistor circuits such as non-series-parallel circuits [AM90]

and pass-transistor circuits [YSS96, BNNSV97].

As mentioned above, transistor-level optimization targeting standard-cell based design flow

is performed only at the intra-cell level. Hence, we believe that it is still worth developing a

computationally-intensive algorithm even though it is applicable only to circuits as small as

standard cells. This chapter presents an algorithm which synthesizes an arbitrary static CMOS

circuits targeting the reduction of transistor counts. To make the problem tractable, the so-

lution space is restricted to the circuit structures which can be obtained by performing alge-

braic transformations on an arbitrary prime-and-irredundant two-level circuit, as illustrated

in Figure 1.3. The circuit structures are implicitly enumerated via structural transformations

on a single graph structure, then a dynamic-programming based algorithm efficiently finds

the minimum solution among them.

The rest of the chapter is organized as follows. In Section 5.2, we first show how static CMOS

circuits are represented in our approach. After the problem formulation in Section 5.3, the pro-

posed algorithm is described in Section 5.4 and Section 5.5. Section 5.6 presents experimental

results on a benchmark suite targeting standard cell implementations and demonstrates the

feasibility and effectiveness of the proposed approach. We also show the results of a numer-

ical analysis on randomly-generated problems to demonstrate the efficiency of the proposed

algorithm. Conclusions are drawn in Section 5.7.

Synthesis of Minimal Static CMOS Circuits 54

Figure 5.2 Primitive patterns in equivalent AND2/INV network

5.2 Representing a Static CMOS Circuit

A static CMOS compound gate is a channel connected component (CCC), which is a set of

transistors connected at the sources and drains. It consists of two parts, a part of P-type tran-

sistors and a part of N-type transistors, which are structurally complementary. By regarding

transistors as switches, it can be viewed as a series-parallel (or parallel-series) nested switch

network which implements a Boolean function. Note that a static CMOS compound gate al-

ways implements a negative unate (i. e. monotonically decreasing) Boolean function. A static

CMOS circuit is defined as a circuit of static CMOS compound gates. An example of a static

CMOS circuit is shown in Figure 5.1.

A Boolean network is defined as a directed acyclic graph in which every node has an asso-

ciated Boolean function. An AND2/INV network is a Boolean network in which the type of

each node is limited to either a 2-input AND gate or an inverter. A negative unate tree is a sub-

tree of an AND2/INV network with the following properties: 1) the root is an inverter, and 2)

every path from the root to leaf has an odd number of inverters. In other words, a negative

unate tree can be viewed as an AND/OR tree with an inverter at the root. A negative unate

tree can be mapped into a static CMOS compound gate in a unique way by transforming the

tree into the series-parallel nested network, and vice versa. An equivalent AND2/INV network

is a network of disjoint negative unate trees.

The cost of an equivalent AND2/INV network is defined as the number of transistors in the

corresponding static CMOS circuit. Figure 5.2 shows three primitive patterns which form a

negative unate tree. Since each pattern has a cost of 2, the cost of a negative unate tree can

be calculated as twice the number of patterns in the tree. Similarly, the cost of an equivalent

AND2/INV network can be calculated as twice the number of patterns in the network. Fig-

Synthesis of Minimal Static CMOS Circuits 55

Figure 5.3 Equivalent AND2/INV network corresponding to static CMOS circuit in Figure 5.1. There

are 7 patterns in the network and hence the cost is 14.

ure 5.3 shows the equivalent AND2/INV network corresponding to the static CMOS circuit

in Figure 5.1. The cost of the equivalent AND2/INV network is 14 since there are 7 patterns.

As can be seen, this matches the number of the transistors in Figure 5.1. Note that the notion

of the cost of primitive cells is conceptual and it does not imply that an AND or OR gate can

be implemented with 2 transistors.

The following lemmas show the relationship between the number of transistors and the cost.

Lemma 5.1. For an arbitrary static CMOS compound gate y with n transistors, there exists a

negative unate tree with a cost of n.

Proof. Let the function represented by ƒÁ be f. Since each input of ƒÁ is connected to a P-type

transistor and an N-type transistor, the number of the inputs of y is m where 2m=n. By

transforming the pull-up (pull-down) network of ƒÁ into a tree, an AND/OR tree with m leaves

such that the tree represents the complement of f is obtained. By decomposing AND and OR

nodes into 2-input nodes, we can obtain a binary AND/OR tree. The number of the nodes

in a binary tree with m leaves is given as m-1. By adding an inverter node at the root, the

tree represents f and can be viewed as a negative unate tree by regarding the AND, OR and

inverter nodes as primitive patterns. Since the number of the nodes in the tree is m, the cost

is n=2m from the definition.

Lemma 5.2. For an arbitrary static CMOS circuit x with n transistors, there exists an equivalent

AND2/INV network with a cost of n.

Proof Let F be the set of the static CMOS compound gates contained in x and T(ƒÁ) be the

number of transistors in a static CMOS compound gate ƒÁ•¸ƒ¡. Then, ‡”ƒÁ•¸T(ƒÁ)=n. For each

Synthesis of Minimal Static CMOS Circuits 56

γ ∈г, there exists a negative unate tree with a cost of T (y) from Lemma 5.1. Therefore, the

cost of the network is given as Σ γ∈гT(γ)=n.

From these lemmas, we can prove the following theorem.

Theorem 5.1. If an equivalent AND2/INV network v is minimum in terms of the cost, the

corresponding static CMOS circuit x is minimum in terms of the number of transistors.

Proof The proof is by contradiction. Let the cost of v be n. By performing the inverse trans-

formation in the proof of Lemma 5.1, the corresponding static CMOS compound gate with n

transistors is obtained from v. Assume that x is not minimum, i.e., there exists a static CMOS

circuit x' with in transistors such that m<n. From Lemma 5.2, there exists an equivalent

AND2/INV network v' with a cost of m which represents x'. However, this contradicts the

definition that v is minimum.

5.3 Problem Formulation

The problem addressed in this chapter can be formulated as follows:

Problem 5.1. Given a set of Boolean functions, find a static CMOS circuit which implements

the Boolean functions with the minimum number of transistors.

From Theorem 5.1, we can re-formulate the problem as follows:

Problem 5.2. Given a set of Boolean functions, find the minimum-cost equivalent AND2/INV

network which implements the Boolean functions.

The proposed algorithm is divided into two steps. The first step generates a mapping graph

which implicitly enumerates possible AND2/INV networks via structural transformations.

The second step produces the static CMOS circuit with the minimum number of transistors

by finding the minimum-cost equivalent AND2/INV network encoded in the mapping graph.

5.4 Implicitly Enumerating AND2/INV Networks

5.4.1 Mapping Graph

A mapping graph proposed by Lehman et al.[LWGH97] efficiently encodes multiple

AND2/INV networks in a single graph structure. A mapping graph is an AND2/INV network

with a new type of node, called choice node. In a mapping graph, the output of a choice node

Synthesis of Minimal Static CMOS Circuits 57

Figure 5.4 A mapping graph (lower left diagram) encoding different implementations of f=abc.

The highlighted portion in the mapping graph generates the AND2/INV network shown in the up-

per right diagram. The number shown next to each choice node is the label assigned to the choice

node.

represents a unique Boolean function. In other words, there cannot be two choice nodes which

represent the same Boolean function. All inverters and 2-input AND gates with logically-

equivalent outputs are connected to the corresponding choice node as its fanins. Given a map-

ping graph, an AND2/INV network is decoded by selecting one or more fanins at each choice

node. Figure 5.4 shows a mapping graph encoding different implementations of f=abc. In

the figure, a mapping graph is partitioned into disjoint subgraphs, called ugates. The cycles in-

troduced by inverters in a ugate are a mechanism to encode an inverter chain with an arbitrary

number of stages.

5.4.2 Constructing a Mapping Graph

Along with the mapping graph structure, Lehman et al. also provided the following proce-

dure which encodes in a mapping graph all possible algebraic decompositions of a Boolean

network. First, a Boolean network ƒÅ is decomposed into an arbitrary AND2/INV network

and then every adjacent AND gates are collapsed into a bigger AND gate as much as possible.

Synthesis of Minimal Static CMOS Circuits 58

Figure 5.5 Distributive transformation.

A mapping graph is constructed from this network by encoding all possible decompositions

of each AND gate. This step is referred to as A-construction step. We denote the set of all

AND2/INV networks encoded in a mapping graph ƒÊ by ƒµ(ƒÊ). Then, the resulting mapping

graph ƒÊ•¢ƒÅ has the following property:

Theorem 5.2. Every AND2/INV decomposition of a Boolean network ƒÅ is contained in ƒµ(ƒÊ•¢ƒÅ).

Proof Refer to Theorem 4.1 in [LWGH97].

Then, the distributive transformation shown in Figure 5.5 is exhaustively applied to ƒÊ•¢ƒÅ. This

step is referred to as •¢-construction step and the resulting mapping graph ƒÊ•¢ƒÅ has the following

property:

Theorem 5.3. Every AND2/INV decomposition of an arbitrary algebraic decomposition of a

Boolean network ƒÅ is contained in ƒµ(ƒÊ•¢ƒÅ).

Proof Refer to Theorem 4.2 in [LWGH97].

Obviously, the initial Boolean network ƒÅ determines the set ƒµ(ƒÊ•¢ƒÅ) of AND2/INV networks

encoded in the final mapping graph ƒÊ•¢ƒÅ. In our approach, we use a two-level network as an

initial Boolean network. In the initial Boolean network, each output has a combinatorial node

representing the sum of all prime implicants of the output function. A mapping graph is con-

structed from the Boolean network by the A-construction step. Similarly, another mapping

graph is constructed from a Boolean network where each output has a combinatorial node

representing the sum of all prime implicants of the complementation of the output function.

The two mapping graphs are merged into a single mapping graph ƒÊ•¢p.

Lemma 5.3. For an arbitrary prime-and-irredundant two-level Boolean network ƒÅ, every

AND2/INV decomposition of the Boolean network ƒÅ is contained in ƒµ(ƒÊ•¢P).

Synthesis of Minimal Static CMOS Circuits 59

Figure 5.6 An illustration of the proof of Theorem 4.2: (a) an AND2/INV decomposition of two-

level Boolean network where ƒ¿1 and ƒ¿2 are the AND2/INV networks representing the logic-OR of

the inputs and (b) a mapping graph constructed from (a).

Proof Let f be the Boolean function of a primary output or its complement and let p1,•c,pn

be the all prime implicants of f. Consider an arbitrary prime-and-irredundant two-level ex-

pression F=p1+•c+pm of the Boolean function f where p1,...pm, are an irredundant set of

the prime implicants. From Theorem 5.2,ƒµ(ƒÊ•¢p) must contain an AND2/INV decomposition

of ƒÅ illustrated in Figure 5.6 (a). Since the nodes n1 and n2 in the network are logically equiv-

alent, they are the fanins of the same choice node in the resulting mapping graph. Figure 5.6

(b) shows the mapping graph where ƒÊ1 and ƒÊ2 are the partial mapping graphs which are con-

structed from ƒ¿1 and ƒ¿2, respectively. Therefore, ƒµ(ƒÊ1)•ºƒµ(ƒÊ•¢p). From Theorem 5.2, ƒµ(ƒÊ1)

contains every AND2/INV decomposition of F.

Then, the •¢-construction step is performed on ƒÊ•¢p. The resulting mapping graph ƒÊ•¢p has the

following property:

Theorem 5.4. For an arbitrary prime-and-irredundant two-level Boolean network ƒÅ, every

AND2/INV decomposition of an arbitrary algebraic decomposition of the Boolean network ƒÅ

is contained in ƒµ(ƒÊ•¢p).

Proof Suppose an arbitrary prime-and-irredundant two-level Boolean network ƒÅ. From

Lemma 4.1,ƒÊ•¢p satisfies Theorem 5.2 for q. From this fact and Theorem 5.3, every AND2/INV

decomposition of an arbitrary algebraic decomposition of ƒÅ is contained in ƒµ(ƒÊ•¢p).

As mentioned in the proof, the proposed procedure introduces redundant cycles in a mapping

graph. Every redundant cycle except the cycles in a ugate can be removed.

Figure 5.7 shows an informal illustration of the relationships between the circuit structures

encoded in ƒÊ•¢p and other circuit structures. For the reduction of transistor counts, we are par-

Synthesis of Minimal Static CMOS Circuits 60

Figure 5.7 A Venn diagram which informally illustrates the relationships between the circuit struc-

tures encoded in ƒÊp and other circuit structures. Note that the sets of non-prime and/or redundant

circuits are infinite sets.

ticularly interested in the set of prime-and-irredundant circuits.ƒµ(ƒÊp) contains every circuit

structures which can be obtained by performing algebraic transformations on a prime-and-

irredundant two-level circuit. However, there can exist prime-and-irredundant multi-level

circuits which are not contained in ƒµ(ƒÊp). Those circuits can be obtained only by performing

algebraic transformations on a non-prime and/or redundant circuit, or by performing non-

algebraic (i. e. Boolean) transformations.

5.5 Finding the Minimum Circuit

5.5.1 Naive Approach

Given a mapping graph p, the objective of this step is to find the minimum-cost equivalent

AND2/INV network encoded in ƒÊ. One naive approach for finding the minimum solution is

to exhaustively enumerate all possible equivalent AND2/INV networks encoded in p and pick

up the minimum-cost network. The choice nodes are visited in a topological order starting

from the primary outputs. At each choice node, all possible matches are identified using the

patterns shown in Figure 5.2. A choice node can be duplicated if there are two or more fanouts.

If the choice node is a fanin of a primary output or has multiple fanouts after the duplication,

only the inverter pattern is allowed to match at the choice node. Both of the AND and OR

patterns match only at single-fanout choice nodes. This guarantees any resulting AND2/INV

Synthesis of Minimal Static CMOS Circuits 61

Figure 5.8 A partially-covered mapping graph

network to be an equivalent AND2/INV network.

Obviously, this naive approach is computationally too expensive. The runtime complex-

ity of this approach is O(s) where s is the number of structures explored during the search.

For a mapping graph with n choice nodes where each choice node has k fanins, there are kn

AND2/INV networks in general. Based on the observation that the minimum solution for a

subnetwork can be obtained independently of the solution for the remaining portion of the

network, the proposed algorithm is based on dynamic programming [KV02]. Here, note that

the proposed dynamic programming based algorithm is different from that of the tree cover-

ing[DGR+87] in the context of the technology mapping.

5.5.2 Dynamic Programming Based Algorithm

Suppose that a mapping graph p is partially covered by the matched patterns from the pri-

mary outputs as illustrated in Figure 5.8. We define a(partial) cover ƒÁ as a circuit consisting

of the matches. A match ƒÓ is a network of 2-input AND gates and inverters, and corresponds

to one of the patterns shown in Figure 5.2. A match ƒÓ is an input match if and only if every

input of ƒÓ is also an input net of ƒÉ, and we denote the set of input matches by ƒÓ(ƒÁ). A frontier

λ is a set of the nets in ƒÊ which correspond to the input nets of a partial cover. An internal

subnetwork ƒÊƒÉ is defined as a subnetwork of ƒÊ which consists of the transitive fanouts of ƒÉ.

Similarly, an external subnetwork ƒÊƒÉ is defined as a subnetwork of ƒÊ which consists of the

transitive fanins of ƒÉ. A frontier ƒÉ is used to specify a partial cover and a subnetwork(e. g. ƒÁƒÉ1,

Synthesis of Minimal Static CMOS Circuits 62

μλ2,μ λ3). The following lemma shows that the problem can be solved efficiently using dynamic

programming.

Lemma 5.4. Let ƒÁƒÉ be the minimum-cost cover of ƒÊƒÉ and let ƒÁƒÉ-ƒÓ_be the cover by removing

φ ∈ Φ(γλ) from ƒÁƒÉ. Then, ƒÁƒÉ-ƒÓ is the minimum-cost cover of ƒÊƒÉ-ƒÓ.

Proof The proof is by contradiction. Let y ƒÁƒÉ-ƒÓ be the minimum-cost cover of ƒÊƒÉ-ƒÓ and ƒÁƒÉ be

the cover by adding ƒÓ to ƒÁƒÉ-ƒÓ. Assume that ƒÁƒÉ-ƒÓ is not the minimum-cost cover of ƒÊƒÉ-ƒÓ:

(5.1)

where C(ƒÁ) is the cost of ƒÁ. Since every match has a cost of 2 by the definition, C(ƒÁƒÉ)=

C(γ λ-φ)+2 and C(ƒÁƒÉ)=C(ƒÁƒÉ-ƒÓ)+2. Under the assumption of the inequality 5.1, we can

derive

(5.2)

However, the inequality 5.2 contradicts the definition that y is the minimum-cost cover of

μλ. ■

The lemma implies that it is sufficient to record only the minimum solution for each internal

subnetwork ƒÊI. Based on this property, we developed the dynamic programming based al-

gorithm. The pseudo-code for the algorithm is shown in Figure 5.9. In a mapping graph, a

label L(c) is assigned to each choice node c in the mapping graph, according to the topologi-

cal order starting from the primary outputs. If there is only a directed path from c to d, then

L(c)>L(d). If there is also a directed path from d to c, then L(c)=L(d). If there is no directed

path in either direction between c and d, then L(c)•‚L(d). Since a mapping graph does not

have any cycle except the cycles in a ugate, no two choice nodes in different ugates can have

the same label. A label L(n) of a net n is defined as L(cn) where cn is the choice node whose

output is connected to n. The label L(ƒÉ) of a frontier A is defined as the smallest label in the set

of the nets in the frontier. A frontier A is said to be interior of a frontier ƒÉ' if L(ƒÉ)<L(ƒÉ'). For

instance, in Figure 5.4, the number assigned to each choice node in the mapping graph shown

is the label of the choice node. In the figure, two choice nodes in a ugate have the same label,

and the choice nodes in the ugate U I have a smaller label since U1 is the fanout of the ugates

U2, U3 and U4.

The algorithm starts with an initial frontier ƒÉ1 consisting of the primary output nets. The

minimum-cost solution associated with ƒÉ1 is an empty circuit. Suppose a frontier ƒÉ with an

Synthesis of Minimal Static CMOS Circuits 63

Figure 5.9 A pseudo-code for the dynamic programming based algorithm. The frontiers in a queue

are sorted in ascending order of labels.

Synthesis of Minimal Static CMOS Circuits 64

Figure 5.10 A frontier expansion on the partially-covered mapping graph shown in Figure 5.8

associated minimum-cost solution of the internal subnetworkƒÊƒÉ is given. First, a net n with the

smallest label is picked up from A. Then, the frontier is expanded by performing the matching

procedure at c where c is the choice node whose output is connected to n. For each match

φ, an expanded frontier ƒÉ' is generated by including ƒÓ in ƒÊƒÉ. Assuming that the cost of the

minimum-cost solution at the current frontier is S , then the cost at the expanded frontier is

S+2. The expanded frontier is recorded with its associated minimum-cost solution. If the

same frontier is already visited, the solution is updated only if the new solution is better. A

frontier can be expanded only if there is no other interior frontier. Figure 5.10 illustrates a

frontier expansion on the partially-covered mapping graph shown in Figure 5.8.

The solution associated with the frontier consisting only of the primary input nets corre-

sponds to the minimum-cost solution. Finally, a static CMOS circuit with the minimum num-

ber of transistors is obtained by transforming each negative unate tree in the minimum-cost

AND2/INV network into a static CMOS compound gate. The following theorem guarantees

the optimality of the algorithm.

Theorem 5.5. The algorithm finds the minimum-cost equivalent AND2/INV network encoded

in a mapping graph.

Proof Regardless of whether at each frontier all possible covers are recoded or only the mini-

mum cover is recorded, the set of frontiers explored by the procedure remains the same. If all

possible covers are recorded at each frontier, the procedure is equivalent to the naive approach

Synthesis of Minimal Static CMOS Circuits 65

and hence finds the minimum solution. From Lemma 5.4, the optimality of the procedure is

preserved even if only the minimum cover is recorded at each frontier. •¡

The computational complexity of the procedure is approximated as follows. The runtime

complexity is given as O(m) where in is the total number of matches performed during the pro-

cedure. The space complexity is dominated by the size of the set of queues {Q[1],....,Q[max]}

which contains all frontiers visited during the procedure. Therefore, the space complexity is

approximated as O(f) where f is the total number of frontiers visited during the procedure.

Due to the nature of the problem, in and f are expected to be exponential to the problem

size. Since it is difficult to analyze m and f theoretically, a numerical analysis using randomly-

generated problems will be performed in the next section.

5.6 Experimental Results

The proposed procedure has been implemented on top of SIS [BRSVW87]. The platform

was a Linux system on AMD Athlon 64 X2 4400 processor with 2 GB main memory. First,

we conducted an experiment on a subset of MCNC91 benchmark circuits [Yan91]. Some

of them are subcircuits of the original circuits, consisting of a subset of the primary outputs

and their transitive fanins. For instance, cm42a, e, f is a subcircuit of cm42a consisting of

the primary outputs e and f and their transitive fanins. It is noticeable that the sizes of the

benchmark circuits in Table 5.1 are reasonably big as standard cells. Besides, in a layout im-

plementation, transistors in a cell may be divided into smaller transistors to fit the cell height.

Since standard cells have a fixed height, a cell with large number of transistors results in a very

long shape and will cause difficulties in placement.

For comparison, we synthesized static CMOS circuits on the same set of benchmark circuits

using SIS technology mapper as follows. A rich cell library was prepared in a similar way to

that used in [DGR+87]. We generated all single-stage static CMOS cells such that the maxi-

mum number of inputs is limited to 6 and the maximum number of series-connected P-type

(N-type) transistors to 4. The number of the logic functions is 461. In the library, the area of

each cell is substituted with the number of transistors in the cell. By using this trick, a total cell

area corresponds to the number of transistors in a circuit. Ideally, an area optimization with

this library is supposed to generate a circuit with the minimum number of transistors. First,

we performed an initial multi-level logic minimization using script. algebraic and

script. rugged. Then, a transistor circuit is synthesized by performing an area-optimal

tree mapping (map-m O.O). We also implemented one of the algorithms presented most

Synthesis of Minimal Static CMOS Circuits 66

Table 5.1 Comparison between SIS and the proposed algorithm.

recently [LA99]. Since the algorithm requires an optimized Boolean network as an input, we

used the Boolean networks generated by the same logic minimization described above. Based

on our experiments on the same set of problems, our implementation of the algorithm pro-

duced almost the same results as those of the SIS-based method and no better results were

obtained.

Table 5.1 shows the comparison between the SIS-based method and the proposed algo-

rithm. In the table, the rightmost column shows the reduction rates of transistor counts. Ta-

ble 5.2 shows the statistics of the mapping graph constructed during the synthesis. The number

of ugates in the constructed mapping graph and the numbers of frontiers and matches during

the minimum solution search are also presented. The CPU time includes the time consumed

by the mapping graph construction and the minimum solution search. As can be seen from

the table, the proposed procedure could reduce the number of transistors up to 23.1%, and the

runtime is reasonably small. The proposed procedure failed to solve other bigger problems in

the MCNC91 benchmark circuits.

Next, we conducted another experiment on randomly-generated problems in order to

Synthesis of Minimal Static CMOS Circuits 67

Table 5.2 Statistics of the mapping graphs.

demonstrate the efficiency of the proposed algorithm. We generated 1000 problems randomly

as follows. First, the numbers of inputs and outputs are randomly determined. Then, for each

output, a sum-of-products expression is generated as the output function by randomly deter-

mining the number of products and generating the products randomly. In this experiment,

the number of inputs is limited up to 6 and the number of outputs is limited up to 3. Next, the

proposed algorithm is applied to the problems. If the total number of the matches exceeded

106 during the minimum solution search, the procedure is terminated and the problem is dis-

carded. Figure 5.11 (a)-(d) show the statistics of the problems.

Since 146 problems were discarded in this experiment, the 854 points are plotted in the

graphs. In all graphs, the X-axis correspond to the number of transistors in the resulting static

CMOS circuit. Figure 5.11 (a) shows the number of ugates in the constructed mapping graph,

which is approximately O(1.1n) where n is the number of transistors. Figure 5.11 (b) and

(c) show f and m, where f and m are the total numbers of frontiers and matches during the

dynamic-programming based algorithm, respectively. As explained in the previous section, f

and m correspond to the space and runtime complexities of the dynamic-programming based

algorithm respectively, and both are approximated by O(1.55n). To show the efficiency, we also

Synthesis of Minimal Static CMOS Circuits 68

Figure 5.11 Statistics on randomly generated problems.

Synthesis of Minimal Static CMOS Circuits 69

applied the naive approach explained in Section 5.5.1 to the same set of the problems. Fig-

ure 5.11 (d) show s, where s is the number of structures explored during the naive approach.

The runtime complexity of the naive approach is approximated by s and hence O(2.15n). Fig-

ure 5.11 (e) shows the speedup factor which is calculated as the ratio of s to m. The speedup

factor quantifies the runtime efficiency of the dynamic-programming based algorithm against

the naive approach, and is approximated by O(1.39n). Since the current implementation al-

locates•`1000 bytes for each frontier, the memory is exhausted when solving problems with

more than 106 frontiers. Based on this observation, the current implementation of the pro-

posed algorithm can solve problems with 30-40 transistors. This also explains the reason why

big problems could not be solved in the previous experiment on the MCNC91 benchmark

circuits.

5.7 Conclusions

Transistor-level optimization is known as a powerful technique to improve the circuit area

and performance beyond gate-level optimization. In this chapter, we presented a structural

approach for synthesizing an arbitrary static CMOS circuits targeting the reduction of tran-

sistor counts. The circuit structures are implicitly enumerated via structural transformations

on a single graph structure, then a dynamic-programming based algorithm efficiently finds

the minimum solution among them. We also showed that the solution space contains the

circuit structures which can be obtained by performing algebraic transformations on an ar-

bitrary prime-and-irredundant two-level circuit, and the proposed algorithm is guaranteed

to find the optimal solution within it. The experimental results on a benchmark suite tar-

geting standard cell implementations demonstrated the feasibility of the proposed procedure.

We also demonstrated the efficiency of the proposed algorithm by a numerical analysis on

randomly-generated problems. It is also shown that the proposed procedure sometimes gen-

erates significantly smaller circuits compared to SIS-based approach. This fact reconfirms a

potential of transistor-level optimization for area minimization.

Chapter 6

Exact Minimum Logic Factoring via Quantified

Boolean Satisfiability

6.1 Introduction

Logic factoring is an operation to find a factored form from a Boolean function. The factored

form is known as one of the efficient representation styles of Boolean functions and forms a

basis of multiple-level logic. Since the factored form corresponds to a static CMOS compound

gate, it has also been used to estimate the circuit area required to implement a Boolean net-

work. For example, the static CMOS compound gate illustrated in Figure 6.1 implements

the complementation of a factored form expression: y=((ab+c)*d)+ef. Although logic

factoring is one of the most fundamental problems in multiple-level logic synthesis, the ex-

act solution to this problem is still challenging. Early works[Law 64, Dav 69] provided exact

multiple-level logic minimization algorithms, however, the algorithms are very inefficient and

apply to very small functions. An improved algorithm of[Dav 69] requires a couple of hours

to synthesize small circuits with•`12 2-input NAND gates[DG 98]. In addition to their com-

putational costs, these algorithms cannot be applied to the minimization of the number of

literals in the factored form.

Recently, Boolean satisfiability solvers have made a dramatic improvement[SS97, MMZ+01]

and have been successfully applied to industrial-scale EDA problems such as automatic test

pattern generation[Lar92] and symbolic model checking[BCCZ99]. Quantified Boolean for-

mula, which is a generalization of propositional logic, is known as a more natural way to model

such problems. As a consequence, a number of efficient QBF decision algorithms have been

proposed[FMS00, Bie05].

In this chapter, we present an exact factoring method which transforms the factoring prob-

lem into a QBF and solving it using general-purpose QBF solver. The solution space explored

in this method is illustrated in Figure 1.3. Since the size of the QBF dominantly determines

70

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 71

Figure 6.1 A static CMOS compound gate.

the runtime of the decision procedure, the QBF must be constructed as compact as possible.

For this purpose, we propose a novel graph structure, called as an X-B tree, which implicitly

enumerates all possible binary trees with a given number of leaf nodes. Experimental results

show that the proposed method generated the exact minimum solutions to the problems with

up to 12 literals in an hour.

The rest of the chapter is organized as follows. In Section 6.2, we introduce a novel graph

structure, called as an X-B(eXchanger Binary) tree, and then present a method for generating

X-B trees. In Section 6.3, we propose an exact method for minimum logic factoring. After

formulating the problem, we explain how to transform the problem into a structural repre-

sentation using an X-B tree and how to represent the structural representation as a quanti-

fied Boolean formula. Section 6.4 presents experimental results on a set of artificially-created

benchmark functions. Conclusions are drawn in Section 6.5.

6.2 X-B Tree and Its Generation

6.2.1 X-B Tree

A binary tree is a graph with internal nodes and leaf nodes in which every internal node has

two children. A child is either an internal node or a leaf node. An X-B (eXchanger Binary)

tree is a rooted unordered binary tree with a new type of nodes, called an exchanger node. An

exchanger node has the same number of inputs{i1,..., in) and outputs {o1,...,on) Only one of

the children is an internal node, and the others are either a leaf node or an exchanger node. An

exchanger node has an associated value, called an exchange index which determines how the

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 72

Figure 6.2 An X-B tree with 7 leaf nodes.

Figure 6.3 An example of 3-input exchanger node.

inputs and the outputs are connected. An exchange index cx is a positive integer

where n is the number of the inputs(outputs) of the exchanger. Then, the relation between the

inputs and the outputs is given as follows:

(6.1)

where ij is the j-th input and oj is the j-th output. In other words, an exchanger node can

be viewed as a bit shifter. An X-B tree with 7 leaf nodes is shown in Figure 6.2 and a 3-input

exchanger node is shown in Figure 6.3.

Once the assignment of the exchange indices is determined, a binary tree is obtained. By

exploring such assignments, all possible binary trees can be obtained. Note that there is not

necessarily a one-to-one correspondence from an assignment of exchange indices to a binary

tree, i.e., different assignments of exchange indices can result in the same binary tree.

When the logic factoring problem is formulated as a QBF, as explained in the next section,

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 73

the exchange index of each exchanger node is represented as a vector of binary variables. The

number of total exchange bits is the number of binary variables required to represent all ex-

change indices in an X-B tree:

(6.2)

where x denotes the smallest integer greater than or equal to x, and ni is the number of inputs

of i-th exchanger node in an X-B tree.

6.2.2 Signatures of Binary Trees

During the construction of X-B trees, it is necessary to check the isomorphism between

two binary trees. We use the bitstring representation[Pro 80, Zak 80] as the signature of binary

trees. Since the original bitstring representation is for ordered binary trees, we extend it for

unordered binary trees. The bitstring representation is a binary sequence b1b2...b2n obtained

recursively, as described in Figure 6.4. In the procedure, the last bit is always 0 and hence is

omitted.

6.2.3 Generating X-B Trees

Given the number of leaf nodes, there are many choices of X-B trees depending on how the

exchanger nodes are connected. Since we are particularly interested in the minimum X-B tree,

all possible X-B trees are first enumerated and the minimum one is chosen.

The proposed generation procedure is constructive in the sense that the X-B trees with L

leaf nodes are constructed from the X-B trees with L-1 leaf nodes. The procedure starts with

a binary tree with one internal node and two children. Given an X-B tree, a set of leaf nodes

and their parents is identified as an insertion point. Then, an exchanger node and an internal

node are inserted at the point, as illustrated in Figure 6.5.

The insertion points are computed as follows. First, a leaf node is replaced with an inter-

nal node and two leaf nodes. Then, all the signatures are computed by exploring all possible

assignments of the exchange indices. After computing the signatures for all leaf nodes, a cov-

ering table is constructed where the rows correspond to the signatures and the columns to the

leaf nodes. By solving the covering problem, the minimum set of leaf nodes is found and an

exchanger node is inserted between the leaf nodes and their parents.

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 74

Figure 6.4 Basic procedure for signature computation.

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 75

Figure 6.5 Inserting an exchanger node.

6.2.4 Complexity of X-B Trees

Table 6.1 shows the characteristics of the minimum X-B trees obtained by the method in

the previous section. Obviously, the numbers of leaf nodes L, internal nodes N and exchanger

nodes X hold the following relation:

(6.3)

An upper bound on the number of total exchange bits is derived as follows. Suppose that an

X-B tree with l leaf nodes is being constructed by inserting an exchanger node into an X-B

tree with l-1 leaf nodes. In the worst case, the number of inputs of the exchanger node is

l-2. Hence, an upper bound on the number of total exchange bits nb is calculated from the

equation 6.2:

(6.4)

Thus, X-B trees can efficiently encode exponential number of binary trees in a single graph .

6.3 Exact Minimum Factoring

6.3.1 Problem Formulation

A literal is a variable or its negation. A factored form is a representation of a Boolean function

and defined recursively as follows: 1) a literal is a factored form; 2) a sum of factored forms is a

factored form; 3) a product of factored forms is a factored form. In general, the factored form

of a Boolean function is not unique. For example, the following expressions; abc+abd+cd,

ab(c+d)+cd and abc+(ab+c)d are all the factored forms of a Boolean function. A factored

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 76

Table 6.1 Characteristics of minimum X-B trees.

form is minimum if and only if the number of literals is the least among all possible factored

forms.

An AND/OR binary tree is a rooted binary tree where the type of each internal node is

either a 2-input AND operator or a 2-input OR operator. By regarding leaf nodes as literals,

an arbitrary factored form can be represented as an AND/OR binary tree.

The problem addressed in this chapter can be formulated as follows: Given an incompletely

specified Boolean function (f, d, r) of variables, find a factored form with

the minimum number of literals. Alternatively, we can formulate it as follows: Given an in-

completely specified Boolean function (f, d, r), find an AND/OR binary tree with the minimum

number of leaf nodes which implements the Boolean function.

6.3.2 Constructing a QBF

The problem is modeled as a miter structure [Bra93] illustrated in Figure 6.6. It checks the

equivalence between the given Boolean function and an AND/OR X-B tree. An AND/OR X-B

tree is an X-B tree with the following modifications. An internal node, called as an operator

node, has its associated variable co•¸{0,1} to specify whether the node type is AND or OR.

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 77

Figure 6.6 A miter structure.

Figure 6.7 shows an operator node and its equivalent logic circuit. A leaf node, called as a literal

node, has its associated variable to specify a literal.

Figure 6.8 shows a literal node and its equivalent logic circuit. The three types of variables, cx,

co and cl, are called as configuration variables. An arbitrary AND/OR binary

tree with a given number of leaf nodes can be represented by an AND/OR X-B tree with an

assignment of the configuration variables.

A quantified Boolean formula is constructed based on this model. The clauses of the quanti-

fied Boolean formula consist of four categories: function constraints, operator node constraints,

exchanger node constraints and literal node constraints where each constraint corresponds to a

node in the miter structure.

Function Constraints

Let °root be the variable corresponding to the output of the root operator node in the

AND/OR X-B tree. The function constraints check the equivalence of the Boolean function

and the AND/OR X-B tree:

(6.5)

where f and d are the on set and the don't care set of the given Boolean function, respectively.

If the assignment of the input variables is don't care, ƒÌf is true regardless of the values of f and

Oroot, Thus, the don't care condition is taken into account.

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 78

Figure 6.7 (a) operator node and (b) its equivalent logic circuit.

Figure 6.8 (a) literal node and (b) its equivalent logic circuit.

Operator Node Constraints

The operator node constraints represent the operator nodes in the AND/OR X-B tree. For

each operator node, the following formula is constructed:

(6.6)

where i1 and i2 are the variables corresponding to the outputs of the child nodes of the operator

node.

Exchanger Node Constraints

Let n be a positive integer Then, a cube representation of n is defined as follows:

(6.7)

where b1b2...b[log2m] is a binary bit-vector representation of a decimal integer n-1. For

example,

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 79

The exchanger node constraints represent the exchanger nodes in the AND/OR X-B tree.

For each exchanger node, the following formula is constructed:

(6.8)

where n is the number of the inputs (outputs) of the exchanger node, oj is the variable corre-

sponding to the j-th output of the operator node, and is the variable corresponding to the

output of the j-th child node of the operator node.

Literal Node Constraints

The literal node constraints represent the literal nodes in the AND/OR X-B tree. For each

literal node, the following formula is constructed:

(6.9)

Constructing a Final QBF

Let be the variables corresponding to the outputs of the exchanger, oper-

ator and literal nodes. Then, a quantified Boolean formula 4 is constructed by combining all

the constraints 6.5, 6.6, 6.8 and 6.9 and introducing existential and universal quantifiers:

(6.10)

whereƒÌoi, ƒÌsi andƒÌli 6, are the constraints corresponding to the i-th node of each type, and L is

the numbers of the leaf nodes in the AND/OR X-B tree. Note that the number of the exchanger

nodes X is given as L-3 from the equation 6.3.

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 80

Figure 6.9 Basic procedure for finding minimum factored form.

6.3.3 Finding the Minimum Factored Form

Given the number L of the leaf nodes in the AND/OR X-B tree, a QBF e is constructed as

described in the previous section. If ƒÌ is satisfiable, it implies that there is a factored form with

L or less literals. To find the minimum factored form, we start with L=|V| literals. Note that

there does not exist any factored form with less than |V| literals because every variable must

appear in the factored form. If the QBF is satisfiable, the assignment of the configuration vari-

ables is computed and the minimum factored form is obtained. Otherwise, L is incremented

by one and the procedure is repeated until the minimum factored form is obtained. Figure 6.9

describes a basic procedure for finding the minimum factored form.

6.3.4 Complexity of QBFs

First, we derive an upper bound on the number of variables used in the QBFs constructed by

the proposed method. Due to space limitations, the details of the derivations are not provided.

Upper bounds on the numbers of configuration variables C, function variables V and output

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 81

Table 6.2 Upper bounds on QBF sizes.

variables O are given as follows:

(6.11)

(6.12)

(6.13)

where L is the number of literals, i.e., the number of leaf nodes in the corresponding AND/OR

X-B tree. Hence, an upper bound on the QBF variables is O(L2) since.

Table 6.2 presents upper bounds on the numbers of clauses and literals of each constraint

type in conjunctive normal form. In the table, Prod(g) and Lit(g) are the numbers of products

and literals in disjunctive normal form (sum-of-product form) of Boolean function g. Also,

f and r are the on set and off set of the incompletely specified Boolean function given as an

input to the factoring problem. Overall, upper bounds on the numbers of clauses and literals

are O(L3) and O(L3log2L), respectively.

6.4 Experimental Results

We have implemented the proposed method called Exact Factor in C++ on top of the logic

manipulation class library Logica which we have recently developed. As a QBF solver, we

have examined a number of state-of-the-art QBF solvers: ssolve [FMS00], SEMPROP [Let02],

sKizzo [Ben04], and Quantor [Bie05]. Among these solvers, we chose sKizzo which solved

our QBF problem instances in the shortest runtime.

We conducted experiments on a set of artificially-created benchmark functions and a func-

tion maj or i ty from MCNC91 benchmark suite. The artificial benchmark functions are

categorized into two groups: algebraic group and Boolean group. The functions in the alge-

braic group are the functions of which the minimum factored form can be obtained without

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 82

Table 6.3 Experimental results on benchmark functions.

the specific features of Boolean algebra. In contrast, the functions in the Boolean group are the

functions of which the minimum factored form can be obtained only if the specific features of

Boolean algebra are used.

The results are shown in Table 6.3. As a reference, we present the results of ESPRESSO two-

level minimizer [BSVHM84] and Good Factor factoring algorithm [BRSVW87]. In the table,

the first two columns give the name of the function and the number of the input variables,

respectively. Columns 3, 4 and 5 show the numbers of literals of the sum-of-products form

generated by ESPRESSO, the factored form generated by Good Factor, and the factored form

generated by the proposed method. The last column shows the CPU time in seconds. Table 6.4

shows the statistics of the constructed QBFs when the minimum solution is found. Columns

2, 3 and 4 show the numbers of variables, clauses and literals of the final satisfiable QBF.

Since it is guaranteed that the proposed method provides the minimum factored form, we

focus particularly on the quality of the results and the runtime. As can be observed, the Good

Factor provides near-minimum results on the functions in the algebraic group. However, on

the functions in the Boolean group, the results of the Good Factor are far from the minimum

solution. For example, the resulting expressions of boolean4 are as follows:

Exact Minimum Logic Factoring via Quantified Boolean Satisfiability 83

Table 6.4 Statistics of the QBFs.

It can also be observed that the size of QBFs does not simply follow the number of variables or

literals. The reason is that our implementation of the logic factoring method performs some

simple reductions on the QBF size as a preprocessing step if a redundancy is found in a given

problem (e.g. a given Boolean function is unate). The proposed method could not solve the

problems bigger than 12 literals in an hour mainly due to large CPU time of QBF satisfiability

checking. QBF decision algorithm is under a heavy development and is still improving further.

Hence it should be expected that bigger problems are solved in the near future.

6.5 Conclusions

Logic factoring is a fundamental but still challenging problem in multiple-level logic syn-

thesis. In this chapter, we presented an exact method which finds the minimum factored form

of an incompletely specified Boolean function. The problem is formulated as a quantified

Boolean formula and is solved by general-purpose QBF solver. We also proposed a novel graph

structure, called an X-B tree, which implicitly enumerates binary trees. Using this graph struc-

ture, the factoring problem is compactly transformed into a QBF. Experimental results showed

that the proposed method successfully found the exact minimum solutions to the problems

with up to 12 literals. Even though the size of solvable problems is limited, the proposed

method is still useful for a number of applications such as standard cell design.

Chapter 7

Synthesis of Read-Once Switch Networks

7.1 Introduction

Although a switch network is known as one of the efficient representation styles of a Boolean

function, its synthesis is still a challenging problem. In contrast, synthesis of a Boolean ex-

pression, which corresponds to a series-parallel switch network, has been extensively studied

including both exact and heuristic methods in the last century [Qui52, Law64, BSVHM84,

BRSVW87]. In addition, other representation/implementation styles such as BDDs and pass

transistor logic have been also well studied [Bry86, PS88]. It is well-known that non-series-

parallel switch networks can represent some classes of Boolean functions more efficiently. One

familiar example of a non-series-parallel circuit is a bridge circuit as shown in Figure 7.1. A

minimum series-parallel switch network implementing the same Boolean function represents

a factored form x1 (x3x5+x4) + x2 (x3x4+x5) and hence requires 8 switches. This efficiency

comes mainly from its bidirectionality, however, at the same time this property complicates its

manipulation. Like a series-parallel switch network, a non-series-parallel switch network can

be used as a PMOS (NMOS) network of static/dynamic CMOS logic and a pass-transistor logic

etc. There are a large number of literatures on the synthesis of more general transistor circuits

such as non-series-parallel circuits [AM90] and pass-transistor circuits [YSS96, BNNSV97].

Due to their heuristic nature, these methods don't guarantee any optimality of the solution.

Our ultimate goal is to synthesize a non-series-parallel switch network representing a given

Boolean function with the minimum number of switches. As a first step towards the goal,

this chapter focuses on the synthesis of a read-once switch network in which every variable

appears only once. The solution space explored in this method is illustrated in Figure 1.3.

The proposed procedure is based on the notions of prime implicants and unateness, which

establish a basis for Boolean expression synthesis. We also propose a pruning technique for

an efficient search.

84

Synthesis of Read-Once Switch Networks 85

Figure 7.1 A switch network representing x1x4 + x2x5 + x1x3x5 + x2x3x4.

The rest of the chapter is organized as follows. In Section 7.2, we provide the definition of

switch networks and their graph representation. In Section 7.3, we propose a method for syn-

thesizing read-once networks. After formulating the problem, Section 7.3.1 presents how to

compute the connectivity function of a switch network. Then, Section 7.3.2 proposes a synthe-

sis procedure of read-once networks. Section 7.4 presents experimental results on randomly-

generated problems to demonstrate the effectiveness and efficiency of the proposed method.

Conclusions are drawn in Section 7.5.

7.2 Switch Network and Its Representation

An n-input in-output completely-specified Boolean function is a mapping between Boolean

space f:{0, 1}n•¨{0, 1}m. In the remainder of this chapter, we will focus only on n-input 1-

output completely-specified Boolean function. The cofactor of f (xi,•c, xi,•c, xn) with respect

to xi is fxi=f (xi,•c, 1,•c, xn) and the cofactor with respect to xi is fxi=f(xi,•c, 0,•c, xn).

A Boolean function f (x1,•c, xi,•c, xn) is unate in variable x, if fxi•ºfxi. A Boolean function

f (xi,•c, xi,•c, xn) is unate if it is unate in all support variables. A Boolean function can be

expressed as a sum of products. A product term c is an implicant of a Boolean function f if

c•ºf. An implicant is prime if it is not contained by any other implicant of the function.

A switch network is a circuit of switches where each switch is either open or close depending

on the value of its associated Boolean variable. If x is associated with a switch, it is close when

x = 1 and open otherwise. Similarly, if .X is associated, it is close when x = 0 and open

otherwise. The connectivity function of a switch network is a Boolean function f such that

f = 1 if and only if there is a conducting path between a specified pair of terminals in the

network. In the switch network shown in Figure 7.1, the connectivity function between the

terminals n1 and n2 is x1x4 + x2x5 + x1x3x5 + x2x3x4. A switch network is read-once if and only

if every variable appears only once in the network. Note that the connectivity function of a

read-once switch network is always unate.

Synthesis of Read-Once Switch Networks 86

Figure 7.2 A network graph corresponding to the switch network in Figure 7.1.

A switch network can be mapped to an undirected graph G=(V, E) where each vertex V

corresponds to a connection point of switches and each edge E corresponds to a switch. We

will refer the graph as a network graph. A path in a network graph is a set of edges between

two terminals. A path corresponds to an implicant of the Boolean function represented by

the graph. A network graph is read-once if and only if every variable appears only once in the

graph. In this chapter, the two terminals for defining the connectivity function are always

mapped to nodes n1 and n2. Figure 7.2 shows the network graph corresponding to the switch

network in Figure 7.1.

7.3 Proposed Synthesis Method

The problem addressed in this chapter can be formulated as follows:

Problem 7.1. Given a completely-specified Boolean function f, find a read-once network graph

representing f.

Note that there does not always exist a read-once network graph representing f. First, we

explain how to compute the connectivity function of a switch network.

7.3.1 Computing the Connectivity Function

The proposed synthesis procedure described in the next section requires the computation of

the connectivity function. A naive way of computing the connectivity function of a network

graph is to enumerate all paths and summing the corresponding implicants to the paths. Since

the number of paths can be exponential to the graph size, this approach is inefficient.

In our approach, we use a connectivity matrix to compute the connectivity function. A

connectivity matrix C is an n•~n matrix where n is the number of nodes in the graph and

(i, j)-th entry ci.j is the connectivity function between the nodes ni and nj. A connectivity

matrix is symmetric, i.e.ci,j=cj ,i, and the main diagonal entries (1<i<n) is always 1.

Synthesis of Read-Once Switch Networks 87

To compute a connectivity matrix, an initial connectivity matrix is first constructed as

follows. The main diagonal entries(1 < i < n) are set to 1 and the other entries are set

to 0. For each edge xk connecting two nodes n, and nj, xk is added to both the(i, j)-th and

(j, i)-th entries. By multiplying Cinit by itself n times, the connectivity matrix C is obtained.

By performing C „V C, C2 „V C2, C4 „V C4 ,•c, the number of multiplications can be reduced to

[log2n] times where [x] denotes the smallest integer greater than or equal to x. For example,

the initial connectivity matrix of the network graph in Figure 7.2 is as follows.

(7.1)

Then, the initial connectivity matrix is multiplied by itself n times.(1, 2)-th entry in the re-

sulting matrix Cn gives the connectivity function. The connectivity matrix obtained by multi-

plying the matrix 7.1 is as follows.

(7.2)

By performing C•~C, C2•~C2, C4•~C4 (,•c, the number of multiplications can be reduced to

Flog, di times where [x] denotes the smallest integer greater than or equal to x.

Synthesis of Read-Once Switch Networks 88

7.3.2 Finding a Read-Once Network

The following theorem provides a basis for the proposed procedure:

Theorem 7.1. Given a read-once network graph G which represents a Boolean function f and

let p be an arbitrary prime implicant of f. Then, there exists a path in G such that the path

represents p.

Proof Without loss of generality, f is assumed to be positive unate, i.e. every prime implicant

consists only of Boolean variables but does not include any complement. By enumerating the

paths in G, a sum-of-products expression f=‡”ci where ci is a product of Boolean variables

can be obtained. By removing any c, such that ci•ºcj(i•‚j), one can obtain f=‡” di where

di is a product of Boolean variables and didj(i•‚j). Then, the following lemma states that

the set of all d, is the set of all prime implicants.

Lemma 7.1. Suppose f=‡”di, where di is a product of Boolean variables and didj(i•‚j).

Then, the set of all d, is precisely the set of all prime implicants of f.

Proof Refer to Proposition 3.3.7 in [BSVHM84]. Recall that f is unate and ‡”di is minimal

with respect to single cube containment.

Therefore, for an arbitrary prime implicant p, there exists di such that di is equivalent to p.

Since there exists a path corresponding to di, there exists a path representing p.

The theorem states that a network graph can be constructed by adding the paths corresponding

to the prime implicants of a given Boolean function. Since the proposed procedure basically

enumerates all possible paths, the completeness is guaranteed. That is, it is guaranteed that the

proposed procedure always finds the solution if it exists. As explained below, the procedure

includes a pruning technique for an efficient search.

A pseudo code for the procedure is presented in Figure 7.3 and Figure 7.4. The top-level

procedure FindReadOnceNetwork starts with an initial graph GI consisting only of two ter-

minals n1 and n2. The procedure AddPrimelmplicants is called with the initial graph. Suppose

that the partial network graph GP shown in Figure 7.5 is passed as an input of the procedure.

First, a prime implicant p to be added is picked up from the set of ordered prime implicants

P. Since all prime implicants must be added, the order of addition is not important and the

exactness is preserved regardless of the order. Then, the subgraph Gs of GP with respect to p

is constructed. A subgraph Gs=(Vs, Es) of a graph GP with respect to a prime implicant p

is defined as a subgraph of GP where Es is the set of edges corresponding to the literals in p

Synthesis of Read-Once Switch Networks 89

Figure 7.3 Top-level procedure FindReadOnceNetwork.

and Vs is the set of vertices induced by Es. Figure 7.6 shows the subgraph of Figure 7.5 with

respect to a prime implicant x1x3x4x7x8x9. Next, all possible bridges are enumerated. A

bridge for subgraph GS=(VS,ES) with respect to a prime implicant p is defined as a graph

GB=(VB,EB) such that the graph GT=(VB•¾VB, ES•¾EB)forms the path corresponding to

the prime implicant p. Figure 7.7(a) and(b) illustrate two example bridges of the subgraph

in Figure 7.6 with respect to a prime implicant x1x3x4x7x8x9 and the resulting network graph.

In Figure 7.7(a), the bridge consists of the edges x7, x8, x9 and the vertex n7. If the subgraph

includes a vertex with more than two edges(e.g. node n4 in Figure 7.9), there does not exist a

bridge.

For each bridge, a new network graph GT is obtained by adding the bridge to GP. Figure 7.8

(a) and(b) show the network graphs after adding the bridges to the network graph in Fig-

ure 7.5. Since the addition of the bridge may introduce paths other than the path correspond-

ing to the prime implicant, the connectivity function fT of GT is computed and is checked

whether it is valid. If fT is not contained by f, the bridge is discarded and the next bridge is

examined. If this check is not performed, all possible solutions are explored. However, once

the connectivity function of a graph is not contained by f, the graph is no longer considered

due to the additive nature of the procedure. In this way, the search is efficiently performed

while the completeness of the procedure is preserved. If fT is equivalent to f, the solution is

Synthesic of Read-Once Switch Networks 90

Figure 7.4 Procedure AddPrimelmplicants which is called by FindReadOnceNetwork.

Synthesis of Read-Once Switch Networks 91

Figure 7.5 A partial network graph.

found and hence it is returned. Otherwise, AddPrimeImplicants is called recursively to add

another prime implicant.

7.4 Experimental Results

7.4.1 Generating Random Problems

In this experiment, all problems are randomly generated such that they can be represented

as a read-once switch network as follows. It starts with a network graph consisting only of two

terminals. Then, a switch is randomly inserted between two nodes. At this point, a Boolean

variable is not assigned to the switch. Once all switches are inserted, Boolean variables are

randomly assigned to the switches. Finally, a Boolean function as a problem is obtained from

the network graph. For each number of variables, 100 problems were generated.

7.4.2 Synthesis Results

We have implemented the proposed procedure in C++ on top of the logic manipulation class

library Logica which we have recently developed. The platform was a Linux system on AMD

Athlon 64 X2 4400 processor with 2 GB main memory. We conducted an experiment on the

set of randomly-generated problems.

The results are shown in Figure 7.10(a) and(b). Figure 7.10(a) shows a scatter plot which

compares the number of variables of the problem and the runtime required to find the solution.

The procedure was terminated when the runtime of the procedure exceeds 600 seconds. In

this experiment, 182 problems were discarded out of 1600 problems. From this graph, the

worst-case runtime complexity can be approximated by O(9.5n) where n is the number of the

variables. We also synthesized series-parallel switch networks on the same set of problems

using SIS Good Factor[BRSVW 87]. The factored form of a Boolean function can be viewed

as a series-parallel switch network. The number of switches is obtained as the number of

Synthesis of Read-Once Switch Networks 92

Figure 7.6 The subgraph of Figure 7.5 with respect to a prime implicant x1x3x4x7x8x9.

Figure 7.7 Two example bridges(thick portion) of the subgraph in Figure 7.6 with respect to a

prime implicant x1x3x4x7x8x9.

Figure 7.8 The resulting network graphs by adding the two bridges in Figure 7.7 to the subgraph

in Figure 7.6.(a) and(b) correspond to Figure 7.7(a) and(b), respectively.

Synthesis of Read-Once Switch Networks 93

Figure 7.9 An example subgraph such that there does not exist a bridge to implement a prime

implicant x1x3x4x7x8x9.

literals in the factored form. Figure 7.10(b) shows a scatter plot which compares the number

of switches in a read-once switch network synthesized by the proposed procedure and the

number of switches in a series-parallel switch network synthesized by SIS Good Factor. As can

be seen from the table, a read-once switch network can represent the same Boolean function

up to 78% smaller number of switches compared to series-parallel switch network.

7.5 Conclusions

Although a switch network is known as one of efficient representation styles of a Boolean

function, its synthesis is still a challenging problem. In this chapter, we presented a proce-

dure which efficiently synthesizes a read-once switch network representing a given Boolean

function. The experimental results on randomly-generated problems with up to 20 switches

demonstrated that the proposed procedure successfully solved about 90% of the problems in

10 minutes each and the resulting read-once switch networks are up to 78% smaller compared

to series-parallel switch networks. Future work includes a further development of efficient

techniques and an extension to general(i.e. non-read-once) switch networks.

Synthesis of Read-Once Switch Networks 94

Figure 7.10 Experimental results on randomly-generated problems.

Chapter 8

Optimal Generation of Design-Specific Cell

Libraries: A Case Study

8.1 Introduction

In the preceding chapters, we have studied the components required to realize the flow for

optimal generation of design-specific cell libraries which is described in Figure 1.2. In this

chapter, we conduct an experimental study on the design-specific cell library generation flow

by actually going through the flow using a design example. As a design example, we use a

circuit consisting of C432 and C499 from the ISCAS 85 benchmark suite [BF85] The technol-

ogy used in the case study is an industrial 90nm technology. Finally, we demonstrate that the

effectiveness of the proposed approach by comparing against the circuits synthesized with a

typical cell library. Several practical issues on the manual generation phase are also discussed.

Before proceeding to the case study, we review the flow for optimal generation of design-

specific cell libraries(Figure 8.1) introduced in Chapter 1. Given an initial circuit description

and a set of design constraints, an initial circuit is synthesized with a logic-rich cell library

generated by the method described in Section 3.2. The logic types are reduced under perfor-

mance constraints(Section 3.3), and the set of logic types for the final library and the circuit

using the library are obtained. Then, the circuit is continuously sized by the optimal transistor

sizer(Section 4.2.2) and the total number of cells is minimized under the same performance

constraints by minimizing the drive strength count for each logic type. Thus, the optimal

design-specific library and the optimized circuit using the library are obtained automatically.

If the design requirements are not met at this point, a manual aggressive optimization can be

performed as follows. First, a portion of the circuit is identified manually, and then the opti-

mal cell for the portion is synthesized by the transistor-level synthesis methods proposed in

Chapter 5, Chapter 6 and Chapter 7. This step is repeated until the requirements are met. Ev-

ery optimization step in this flow includes the cell characteristics evaluation upon which the

95

Optimal Generation of Design-Specific Cell Libraries: A Case Study 96

Figure 8.1 Overall flow for optimal generation of design-specific cell libraries.

overall runtime and the final quality depend. The fast and accurate evaluation of cell charac-

teristics is accomplished by the prelayout cell characteristics estimation method in Chapter 2.

Thus, all components proposed in this dissertation are combined together in this flow.

The remainder of this chapter is organized as follows. Section 8.2 provides the details of the

experimental study on the optimal generation of design-specific cell libraries using a design

example. As a reference, we also construct a typical cell library and synthesize the circuits

using the library. In Section 8.3, several issues towards a practical application of the manual

generation phase are discussed. Conclusions are drawn in Section 8.4.

Optimal Generation of Design-Specific Cell Libraries: A Case Study 97

Table 8.1 Statistics of a typical cell library in an industrial 90nm technology. The number of logic

types is 15 and the total number of cells is 50.

8.2 Design Example-ISCAS 85 benchmark circuits C432 + C499

As a design example, we use a circuit consisting of C432 and C499 from the ISCAS 85

benchmark suite. C432 is a 27-channel interrupt controller and C499 is a 32-bit SEC circuit

[HYH99]. In the circuit, C432 and C499 are placed independently with one another. Through-

out this chapter, we used Cadence PKS(Physically-Knowledgeable Synthesis)[PKSO4] to syn-

thesize circuits from the register-transfer-level description and optimize the synthesized cir-

cuits. We conduct the experiment as follows. First, we construct a typical cell library as a

reference using an industrial 90nm technology. Using this library, several circuits are synthe-

sized with different area and delay constraints. Then, we synthesize several circuits by actually

going through the design-specific cell library generation flow. The maximum number of cells

in every design-specific cell library is limited to 50 which is equivalent to the number of cells

in the typical library. Finally, two sets of the synthesized circuits are compared to demonstrate

the effectiveness of the proposed flow.

8.2.1 A Typical Cell Library

We constructed a typical cell library in an industrial 90nm technology as follows. The statis-

tics of the library is shown in Table 8.1. In the table, each row corresponds to a logic type. The

Optimal Generation of Design-Specific Cell Libraries: A Case Study 98

Figure 8.2 Area-delay tradeoff curve on the typical cell library.

second column shows the Boolean function and the third column shows the drive strengths

of the cell. The set of logic types and drive strengths is compliant to typical industrial libraries.

The transistor sizes are determined by the method described in Section 3.2.2. The number of

logic types is 15 and the total number of cells is 50. The cell characteristics were obtained using

the prelayout cell characteristic estimator proposed in Chapter 2 with HSPICE[HSP03]. Us-

ing this library, the circuits are synthesized under different area and performance constraints.

Figure 8.2 shows the area-delay tradeoff curve. In the figure, the fastest point corresponds to

the delay-optimal circuit(i. e. no area constraint) and the smallest point to the area-optimal

circuit (i.e. no timing constraint).

8.2.2 Design-Specific Cell Libraries

First, we synthesized the area-optimal circuit using the automatic flow in Figure 8.1. Using

the logic-rich library which is constructed in Chapter 3, the area-optimal circuit was synthe-

sized. Table 8.2 shows the statistics of the cell logic types for the area-optimal circuit. The

number of logic types is 26. Since all cells have the smallest sizes, the total number of cells

is also 26. As can be seen from the table, many complex cells with 6 inputs are used in the

area-optimal circuit. This fact reconfirms that complex cells are beneficial for area reduction.

Next, we synthesized the delay-optimal circuit as follows. Using the logic-rich library, an

initial delay-optimal circuit was synthesized. Then, the logic types are reduced to 6 types.

Table 8.3 shows the statistics of the cell logic types for the delay-optimal circuit. In contrast

to that for the area-optimal circuit, the logic types are all simple ones. Besides, two different

Optimal Generation of Design-Specific Cell Libraries: A Case Study 99

Table 8.2 Statistics of cell logic types for the area-optimal circuit.

Table 8.3 Statistics of cell logic types for the delay-optimal circuit.

Optimal Generation of Design-Specific Cell Libraries: A Case Study 100

topologies,(A+B)• C and A• (B+C), of OAI21 are used. Since these two types have different

input-to-output delays, they are used according to the timing criticality of gate inputs. Then,

the circuit was continuously and optimally sized, and then the number of cells was minimized

to 50 which is equivalent to the number of cells in the typical library. Figure 8.3 (a)-(f) show

the cell size distributions of 6 logic types. An important observation from these distributions

is that the sizes are almost within the range of the cell sizes in the typical cell library. In other

words, the performance improvement is achieved not by using bigger cells than those in the

typical cell library, but by using intermediate sizes and beta ratio variations.

Finally, four points between the area-optimal and delay-optimal circuits were generated in a

similar way under the constraint that the maximum number of cells is 50. The final area-delay

tradeoff curve is superimposed to the tradeoff curve using the typical cell library (Figure 8.2)

and shown in Figure 8.4. As can been seen from the figure, the tradeoff curve is shifted to the

left-bottom. Comparing between the area-optimal circuits, the area was improved by 27.3%.

Also, comparing between the delay-optimal circuits, the maximum delay was improved by

22.4%. This indicates that the circuits are intrinsically improved by using the design-specific

cell libraries.

8.3 Discussions on Manual Cell Generation

In this case study, the manual generation of design-specific cells was not performed. Practi-

cally, this manual process is infeasible mainly because it is difficult to identify a circuit portion

for transistor-level resynthesis. Automating this identification process is the key to a successful

realization of the overall flow. Ideally, a circuit portion should be selected such that

1. the maximal area and/or performance improvement is expected by transistor-level

resynthesis of the portion, and

2. the resulting cell can be maximally utilized at other portions.

Regarding the item 1, a further study may be necessary to evaluate the area and performance

improvement by transistor-level synthesis without performing any actual synthesis. Or, the

transistor-level synthesis must be fast enough to explore all possible circuit portions in a feasi-

ble runtime. The item 2 can be viewed as a problem to find a substructure appearing frequently

in a circuit. This problem has been well studied and a number of efficient algorithms are avail-

able. For a fine-grained structural analysis, a target circuit may be decomposed into smallest

gates, such as inverters and 2-input NANDs.

Optimal Generation of Design-Specific Cell Libraries: A Case Study 101

Figure 8.3 Cell size distributions for the delay-optimal circuit. A circle indicates the number of

instances of the cell is 1, a triangle indicates between 2 and 10, and a square indicates more than

10.

Optimal Generation of Design-Specific Cell Libraries: A Case Study 102

Figure 8.4 Area-delay tradeoff curves on the typical cell library and the optimal design-specific

cell library.

8.4 Conclusions

In this chapter, we conducted an experimental study to demonstrate the effectiveness of

the flow proposed in this dissertation. As a design example, a circuit consisting of C432 and

C499 from the ISCAS 85 benchmark suite was used with an industrial 90nm technology. The

experimental results demonstrated that using the design-specific cell libraries, the area-delay

tradeoff curve was shifted to the left-bottom from that using a typical cell library. Comparing

between the area-optimal circuits, the area was improved by 27.3%. And, comparing between

the delay-optimal circuits, the maximum delay was improved by 22.4%. From these results,

we draw a conclusion that the proposed flow achieved an intrinsic improvement.

Chapter 9

Conclusions

We have studied various problems regarding optimal generation of design-specific cell li-

braries. The contribution of this dissertation is summarized below.

The goal of the first part of the dissertation was to provide the key components required to

successfully realize the automatic generation phase (the upper half part of the overall flow in

Figure 1.2), which consists of the cell logic type selection and the drive strength type selection.

Chapter 2 addressed feasibility issues on transistor-level optimization. During transistor-

level optimization, the cell layout synthesis and characterization steps are the major bottle-

necks with respect to runtime. To resolve this drawback, we presented a fast and accurate

prelayout estimation technique of cell characteristics. Our estimation technique is based on

quick transistor placement. Given a transistor-level circuit of a cell, the layout parasitics are

estimated using quick transistor placement. Then, the cell is characterized by simulating an

estimated circuit which is built according to the estimated layout parasitics. The experimental

results on a 0.13ƒÊm industrial standard cell library demonstrated that the proposed technique

estimated the cell characteristics with a reasonable accuracy in a negligibly small amount of

time.

Chapter 3 addressed a cell logic type selection problem for design-specific cell libraries. The

methodology consists of two steps: the construction of a logic-rich library and the cell logic

type count minimization. The proposed cell logic type count minimization method minimizes

the logic type count iteratively under performance constraints. The experimental results on the

ISCAS 85 benchmark suite in an industrial gonm technology demonstrated that it is feasible

to find the minimal set of logic types under performance constraints.

Chapter 4 addressed a performance-constrained cell count minimization problem for

continuously-sized circuits. After providing a formal formulation of the problem, we pro-

posed an effective heuristic for the problem. The proposed hill-climbing heuristic iteratively

103

Conclusions 104

minimizes the number of cells under performance constraints such as area, delay and power.

The experimental results on the ISCAS 85 benchmark suite in an industrial 90nm technol-

ogy demonstrated its effectiveness. We also discussed several implementation issues towards

a practical application of the proposed method to large-scale circuits.

The second part of the dissertation focused on transistor-level topology synthesis, which is

an important component in the manual generation phase (the lower half portion of the flow in

Figure 1.2). We presented three transistor-level topology synthesis methods. Although their

objectives are to minimize the transistor count, they have different solution spaces. Combining

these methods, the minimum solution in larger solution space can be obtained.

Chapter 5 presented a method for synthesis of minimal static CMOS circuits where the solu-

tion space is restricted to the circuit structures which can be obtained by performing algebraic

transformations on an arbitrary prime-and-irredundant two-level circuit. The circuit struc-

tures are implicitly enumerated via structural transformations on a single graph structure,

then a dynamic-programming based algorithm efficiently finds the minimum solution among

them. The experimental results on a benchmark suite targeting standard cell implementations

demonstrated the feasibility of the proposed procedure. We also demonstrated the efficiency

of the proposed algorithm by a numerical analysis on randomly-generated problems. It is also

shown that the proposed procedure sometimes generates significantly smaller circuits com-

pared to conventional approach.

Chapter 6 presented an exact method for minimum logic factoring which can be viewed

as the synthesis of a static CMOS compound gate. We first introduced a novel graph struc-

ture, called an X-B (eXchanger Binary) tree, which implicitly enumerates binary trees. Using

this X-B tree, the factoring problem is compactly transformed into a quantified Boolean for-

mula (QBF) and is solved by general-purpose QBF solver. Experimental results on artificially-

created benchmark functions showed that the proposed method successfully found the exact

minimum solutions to the problems with up to 12 literals.

Chapter 7 studied the synthesis of a read-once switch network in which every variable ap-

pears only once. The proposed procedure is based on the notions of prime implicants and

unateness, which establish a basis for Boolean expression synthesis. We also proposed a prun-

ing technique for an efficient search. The experimental results on randomly-generated prob-

lems with up to 20 switches demonstrated that the proposed procedure successfully solved

about 90% of the problems in 10 minutes each and the resulting read-once switch networks

are up to 78% smaller compared to series-parallel switch networks.

Conclusions 105

Chapter 8 conducted an experimental study using a circuit consisting of C432 and C499

from the ISCAS 85 benchmark suite as a design example. We compared the circuits synthe-

sized with a typical cell library and optimal design-specific libraries in an industrial 90nm tech-

nology, and demonstrated that using the design-specific cell libraries, the area-delay tradeoff

curve was shifted to the left-bottom from that using the typical library. Comparing between

the area-optimal circuits, the area was improved by 27.3%. And, comparing between the delay-

optimal circuits, the maximum delay was improved by 22.4%. These results clearly proved the

effectiveness of the flow and the key components for optimal generation of design-specific cell

libraries.

Bibliography

[abr03] abraCAD Documentation. Synopsys, Inc., 2003.

[AM90] K. Asada and J. Mavor. MOSYN: A MOS circuit synthesis program employing

3-way decomposition and reduction based on seven-valued logic. IEE Proc.

Computers and Digital Techniques, 137(6): 451-461, November 1990.

[BB02] D. Bhattacharya and V. Boppana. Design optimization with automated flex-

cell creation. Closing the Gap Between ASIC Custom, pages 14-23, 2002.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Proc. ACM/IEEE Design Automation Conf., pages 193-207, June

1999.

[Ben 04] M. Benedetti. sKizzo: a QBF decision procedure based on propositional

skolemization and symbolic reasoning. ITC-Irst Tech. Rep. TR04-11-03,

November 2004.

[Ber00] D.P. Bertsekas. Nonlinear Programming 2nd Edition. Athena Scientific, 2000.

[BF85] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark

circuits. In Proc. IEEE Int. Symp. Circuits and Systems, pages 695-698, June

1985.

[BF98] J.L. Burns and J. A. Feldman. C5M-a control-logic layout synthesis system

for high-performance microprocessors. IEEE Trans. Computer-Aided Design,

17(1): 14-23, January 1998.

[BHSA03] C. Bittlestone, A.M. Hill, V. Singhal, and NV Arvind. Architecting ASIC

libraries and flows in nanometer era. In Proc. ACM/IEEE Design Automation

Conf., pages 776-781, June 2003.

[Bie05] A. Biere. Resolve and expand. In Proc. Intl. Conf. Theory and Applications of

Satisfiability Testing, LNCS, Springer, 2005.

106

Bibliography 107

[BKKS98] F. Beeftink, P. Kudva, D. Kung, and L. Stok. Gate size selection for standard

cell libraries. In Proc. IEEE int. Conf. on Computer-Aided Design, pages 545-

550, November 1998.

[BNNSV97] P. Buch, A. Narayan, A. R. Newton, and A. Sangiovanni-Vincentelli. Logic

synthesis for large pass transistor circuits. In Proc. IEEE int. Conf. on

Computer-Aided Design, pages 663-670, November 1997.

[Boe88] M. Boehner. LOGEX-an automatic logic extractor from transistor to gate

level for CMOS technology. In Proc. ACM/IEEE Design Automation Conf.,

pages 517-522, July 1988.

[Bra93] D. Brand. Verification of large synthesized designs. In Proc. IEEE Int. Conf.

on Computer-Aided Design, pages 534-537, November 1993.

[Bre77] M. A. Breuer. A class of min-cut placement algorithms. In Proc. ACM/IEEE

Design Automation Conf, pages 284-290, June 1977.

[BRSVW87] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. MIS:

A multiple-level logic optimization system. IEEE Trans. Computer-Aided De-

sign, 6(6): 1062-1081, November 1987.

[Bry86] R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Trans. Computers, 35(8): 677-691, August 1986.

[Bry91] R. E. Bryant. Extraction of gate level models from transistor circuits by four-

valued symbolic analysis. In Proc. IEEE Int. Conf on Computer-Aided Design,

pages 350-353, November 1991.

[BSVHM84] R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and C. McMullin. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,

Boston, 1984.

[Cal04] Performing Transistor-level Parasitic Extraction. Mentor Graphics Corpora-

tion, 2004.

[CCW99] C. P. Chen, C. C. N. Chu, and D. F. Wong. Fast and exact simultaneous gate

and wire sizing by lagrangian relaxation. IEEE Trans. Computer-Aided De-

sign, 18(7): 1014-1025, July 1999.

Bibliography 108

[CEWWM+99] A. R. Conn, I. M. Elfadel, Jr. W. W. Molzen, P. R. O'Brien, P. N. Strenski,

C. Visweswariah, and C. B. Whan. Gradient-based optimization of custom

circuits using a static-timing formulation. In Proc. ACM/IEEE Design Au-

tomation Conf., pages 452-459, June 1999.

[CK00] D. G. Chinnery and K. Keutzer. Closing the gap between ASIC and custom:

an ASIC perspective. In Proc. ACM/IEEE Design Automation Conf, pages

637-642, June 2000.

[CK02] D. G. Chinnery and K. Keutzer. Closing the Gap Between ASIC Custom:

Tools and Techniques for High-Performance ASIC Design. Kluwer Academic

Publishers, 2002.

[CMG+01] R. Carragher, R. Murgai, S. Chakraborty, M. R. Prasad, A. Srivastava, N. Ve-

muri, H. Yoshida, T. Shibuya, and Y. Kanazawa. Layout-driven logic opti-

mization. In Designer's Forum Proc. IEEE Design, Automation and Test in

Europe, March 2001.

[CNK01] D. G. Chinnery, B. Nikolic, and K. Keutzer. Achieving 550MHz in an ASIC

methodology. In Proc. ACM/IEEE Design Automation Conf, pages 420-425,

June 2001.

[Dav69] E. Davidson. An algorithm for NAND decomposition under network con-

straints. IEEE Trans. Computers, 18: 1098-1109, 1969.

[DG98] R. Drechsler and W. Gunther. Exact circuit synthesis. In IEEE Int. Workshop

on Logic Synthesis, 1998.

[DGR+87] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang.

Technology mapping in MIS. In Proc. IEEE Int. Conf on Computer-Aided

Design, pages 116-119, November 1987.

[Eck80] J. G. Ecker. Geometric programming: Methods, computations and applica-

tions. SIAM Review, 22(3): 338-362, July 1980.

[FB74] R. A. Finkel and J. L. Bentley. Quad trees, a data structure for retrieval on

composite keys. Acta Informatica, 4: 1-9, 1974.

Bibliography 109

[FD85] J. P. Fishburn and A. E. Dunlop. Tilos: A posynomial programming approach

to transistor sizing. In Proc. IEEE Int. Conf. on Computer-Aided Design, pages

326-328, November 1985.

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proc. ACM/IEEE Design Automation Conf., pages 175-

181, June 1982.

[FMS00] R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm to

evaluate quantified Boolean formulas. In Proc. National Conf. on Artificial

Intelligence, pages 285-290,2000.

[GG98] V. Gaede and O. Gunther. Multidimensional access methods. ACM Comput.

Surv., 30(2): 170-231, 1998.

[GGP+97] S. Gavrilov, A. Glebov, S. Pullela, S. Moore, A. Dharchoudhury, R. Panda,

G. Vijayan, and D. Blaauw. Library-less synthesis for static CMOS combi-

national logic circuits. In Proc. IEEE Int. Conf. on Computer-Aided Design,

pages 658-662, November 1997.

[GH97] A. Gupta and J. Hayes. CLIP: An optimizing layout generator for two-

dimensional CMOS cells. In Proc. ACM/IEEE Design Automation Conf.,

pages 452-457, June 1997.

[GMD+97] M. Guruswamy, R. L. Maziasz, D. Dulitz, S. Raman, V. Chiluvuri, A. Fernan-

dez, and L. G. Jones. CELLERITY: A fully automatic layout synthesis sys-

tem for standard cell libraries. In Proc. ACM/IEEE Design Automation Conf.,

pages 327-332, June 1997.

[GS96] B. Guan and C. Sechen. Large standard cell libraries and their impact on

layout area and circuit performance. In Proc. IEEE Int. Conf. on Computer

Design, pages 378-383, October 1996.

[HSP03] HSPICE Data Sheet. Synopsys, Inc., 2003.

[HYH99] M. C. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the ISCAS-85 bench-

marks: A case study in reverse engineering. IEEE Design and Test, 16(3): 72-

80, July 1999.

Bibliography 110

[IMK+00] R. Inanami, S. Magoshi, S. Kousai, M. Hamada, T. Takayanagi, K. Sugihara,

K. Okumura, and T. Kuroda. Throughput enhancement strategy of maskless

electron beam direct writing for logic device. In IEEE Int. Electron Devices

Meeting Technical Digest, pages 833-836, December 2000.

[KKL87] K. Keutzer, K. Kolwicz, and M. Lega. Impact of library size on the quality

of automated synthesis. In Proc. IEEE Mt. Conf. on Computer-Aided Design,

pages 120-123, November 1987.

[KKS00] M. Ketkar, K. Kasmasetty, and S. S. Sapatnekar. Convex delay models for

transistor sizing. In Proc. ACM/IEEE Design Automation Conf., pages 655-

660, June 2000.

[KP99] D. S. Kung and R. puri. Optimal P/N width ratio selection for standard cell

libraries. In Proc. IEEE Mt. Conf. on Computer-Aided Design, pages 178-184,

November 1999.

[KR92] A. B. Kahng and G. Robins. A new class of iterative steiner tree heuristics with

good performance. IEEE Trans. Computer-Aided Design, 11(7):893-902, July
1992.

[KV02] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer-Verlag, 2002.

[L+98] W. Liu et al. BSIM3v3.2 MOSFET Model Users' Manual. University of Cali-

fornia, Berkeley, 1998.

[LA99] C.-P. L. Liu and J. A. Abraham. Transistor level synthesis for static CMOS

combinational circuits. In Proc. Great Lakes Symposium on VLSI, pages 116-

119, March 1999.

[Lar92] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans.

Computer-Aided Design, 11(1):4-15, January 1992.

[Law64] E. L. Lawler. An approach to multilevel Boolean minimization. J. ACM, pages

283-295, 1964.

Bibliography 111

[Let02] R. Letz. Lemma and model caching in decision procedures for quantified

Boolean formulas. In Proc. TABLEAUX2002, vol.2381 of LNAI, pages 160-

175, 2002.

[Lib03] Library Compiler User Guide: Modeling Timing and Power Technology Li-

braries. Synopsys, Inc., 2003.

[LWGH97] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decomposition

during technology mapping. IEEE Trans. Computer-Aided Design, 16(8):813-

834, August 1997.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient SAT solver. In Proc. ACM/IEEE Design Automation

Conf, pages 530-535, June 2001.

[NL01] G. A. Northrop and P.-F.Lu. A semi-custom design flow in high-performance

microprocessor design. In Proc. ACM/IEEE Design Automation Conf, pages

426-431, June 2001.

[PDE+98] R. Panda, A. Dharchoudhury, T. Edwards, J. Norton, and D. Blaauw. Migra-

tion: A new technique to improve synthesized designs through incremental

customization. In Proc. ACM/IEEE Design Automation Conf, pages 388-391,

June 1998.

[Pfe79] H. C. Pfeiffer. Recent advances in electron-beam lithography for the high-

volume production of VLSI devices. IEEE Trans. Electron Devices, 4: 663-674,

1979.

[PKS04] PKS User Guide. Cadence Design Systems, 2004.

[Pro80] A. Proskurowski. On the generation of binary trees. J. ACM, 27(1): 1-2, Jan-

uary 1980.

[PS88] C. Pedron and A. Stauffer. Analysis and synthesis of combinational pass tran-

sistor circuits. IEEE Trans. Computer-Aided Design, 7(7): 775-786, July 1988.

[Qui52] W. Quine. The problem of simplifying truth functions. American Math.

Monthly, 59: 521-531, 1952.

Bibliography 112

[RC05] S. Roy and W Chen. ConvexFit: an optimal minimum-error convex fitting

and smoothing algorithm with application to gate-sizing. In Proc. IEEE Mt.

Conf. on Computer-Aided Design, pages 196-203, November 2005.

[RC06] S. Roy and C. C.-P. Chen. ConvexSmooth: A simultaneous convex fitting and

smoothing algorithm for convex optimization problems. In Proc. IEEE Int.

Symp. on Quality of Electronic Design, pages 665-670, March 2006.

[RHH+02] N. Richardson, L. B. Huang, R. Hossain, J. Lewis, T. Zounes, and N. Soni. The

iCORETM 520 mhz synthesizable CPU core. Closing the Gap Between ASIC

& Custom, Kluwer Academic Publishers, pages 225-240, 2002.

[RPS01] S. E. Rich, M. J. Parker, and J. Schwartz. Reducing the frequency gap between

ASIC and custom designs: A custom perspective. In Proc. ACM/IEEE Design

Automation Conf, pages 432-437, June 2001.

[RS03] M. A. Riepe and K. A. Sakallah. Transistor placement for noncomplemen-

tary digital VLSI cell synthesis. ACM Trans. Design Automation of Electronic

Systems, 8(1): 81-107, January 2003.

[Sem04] Semiconductor Industry Association. International Technology Roadmap for

Semiconductors 2004 Update. 2004.

[SID+99] N. Shenoy, M. Iyer, R. Damiano, K. Harer, H.-K. Ma, and P. Thilking. A robust

solution to the timing convergence problem in high-performance design. In

Proc. IEEE Int. Conf on Computer Design, pages 250-257, October 1999.

[SK94] K. Scott and K. Keutzer. Improving cell libraries for synthesis. In Proc. IEEE

Custom Integrated Circuits Conf, pages 128-131, May 1994.

[SRVK93] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S.-M. Kang. An exact solution to

the transistor sizing problem for CMOS circuits using convex optimization.

IEEE Trans. Computer-Aided Design, 12(11): 1621-1634, November 1993.

[SS97] J. P. M. Silva and K. A. Sakallah. GRASP-a new search algorithm for satis-f

iability. In Proc. IEEE Mt. Conf on Computer-Aided Design, pages 220-227,

November 1997.

Bibliography 113

[SS99] T. Serdar and C. Sechen. AKORD: Transistor level and mixed transis-

tor/gate level placement tool for digital datapaths. In Proc. IEEE Mt. Conf.

on Computer-Aided Design, pages 91-97, November 1999.

[TS05] H. Tennakoon and C. Sechen. Efficient and accurate gate sizing with piece-

wise convex delay models. In Proc. ACM/IEEE Design Automation Conf.,

pages 807-812, June 2005.

[WB06] A. Wachter and L. T. Biegler. On the implementation of a primal-dual inte-

rior point filter line search algorithm for large-scale nonlinear programming.

Mathematical Programming, 106(1): 25-57, 2006.

[Yan91] S. Yang. Logic synthesis and optimization benchmarks user guide version

3.0. Tech. rep., Microelectronics Center of North Carolina, January 1991.

[YDB04] H. Yoshida, K. De, and V. Boppana. Accurate pre-layout estimation of stan-

dard cell characteristics. In Proc. ACM/IEEE Design Automation Conf., pages

208-211, June 2004.

[YSS96] K. Yano, Y. Sasaki, and K. Seki. Top-down pass-transistor logic design. IEEE

J. Solid-State Circuits, 31(6): 792-803, June 1996.

[Zak80] S. Zaks. Lexicographic generation of ordered trees. Theoretical Computer

Science, 10: 63-82, 1980.

List of Publications

Journal Papers

[1] H. Yoshida, M. Ikeda and K. Asada,"Exact Minimum Logic Factoring via Quantified

Boolean Satisfiability," IEICE Transactions on Fundamentals.(to be submitted)

[2] H. Yoshida, M. Ikeda and K. Asada,"Cell Characteristics Estimation Using Quick Tran-

sistor Placement," IEICE Transactions on Fundamentals.(to be submitted)

[3] H. Yoshida, M. Ikeda and K. Asada,"Synthesis of Read-Once Switch Networks," IEICE

Transactions on Fundamentals.(submitted)

[4] H. Yoshida, M. Ikeda and K. Asada,"A Structural Approach for Transistor Circuit Syn-

thesis," IEICE Transactions on Fundamentals, vol. E89-A, no.12, pp.3529-3537, Dec.

2006.

International Conference Papers

[1] H. Yoshida, M. Ikeda and K. Asada,"Performance-Constrained Cell Count Minimiza-

tion for Continuously-Sized Circuits," ACM/IEEE Design Automation Conference, Jun.

2007.(submitted)

[2] H. Yoshida, M. Ikeda and K. Asada,"Synthesis of Read-Once Switch Network," ACM

Great Lakes Symposium on VLSI, Mar. 2007.(submitted)

[3] H. Yoshida, M. Ikeda and K. Asada,"Exact Minimum Logic Factoring via Quantified

Boolean Satisfiability," in Proc. IEEE International Conference on Electronics, Circuits

and Systems, Dec. 2006.

[4] H. Yoshida, M. Ikeda and K. Asada,"An Algebraic Approach for Transistor Circuit Syn-

thesis," in Proc. IEEE International Conference on Electronics, Circuits and Systems, Dec.

2005.

114

List of Publications 115

[5] H. Yoshida, K. De, and V. Boppana,"Accurate Pre-layout Estimation of Standard Cell

Characteristics," in Proc. of ACM/IEEE Design Automation Conference, pp.208-211,

Jun. 2004.

Domestic Conference Papers

[1] H. Yoshida, M. Ikeda, and K. Asada,"Synthesis of Read-Once Switch Network," in Proc.

of IEICE Society Conference 2006, A-3-9, pp.53, Sep. 2006.(in Japanese)

[2] H. Yoshida, M. Ikeda, and K. Asada," Exact Minimum Logic Factoring via Quantified

Boolean Satisfiability," IEICE Technical Report, vol.105, no.443, pp.41-46, Dec. 2005.

(in Japanese)

[3] H. Yoshida, M. Ikeda, and K. Asada,"An Algebraic Approach for Synthesizing Circuits

with Minimum Number of Transistors,"in Proc. of IPSJ DA Symposium 2005, pp.133-

138, Aug. 2005.(in Japanese)

[4] H. Yoshida, K. De, V. Boppana, M. Ikeda, and K. Asada,"Accurate Pre-Layout Esti-

mation of Intra-cell Parasitics Using Fast Transistor-level Placement:" IEICE Technical

Report, vol.104, no.478, pp.7-12, Dec. 2004.(in Japanese)

Patents

[1] H. Yoshida and V. Boppana, System and method for automated accurate pre-layout

estimation of standard cell characteristics, U. S. Patent Application 20050229142.

[2] P. Majumder, B. Kumthekar, N. R. Shah, J. Mowchenko, P. A. Chavda, Y. Kojima, Y. Jiang,

H. Yoshida, and V. Boppana. Method, system and apparatus of IC design optimization

via creation of design-specific cell from post-layout patterns, U. S Patent Application

Serial No.60/809, 132.

List of Publications 116

Other Publications/Awards

[1] U. Ekinciel, H. Yamaoka, H. Yoshida, M. Ikeda, and K. Asada," A Performance Driven

Module Generator for a Dual-Rail PLA with Embedded 2-Input Logic Cells," IEICE

Transactions on Information & Systems, vol.E88-D, no. 6, pp.1159-1167, Jun. 2005.

[2] H. Yamaoka, H. Yoshida, M. Ikeda and K. Asada," A Logic-Cell-Embedded PLA

(LCPLA): An Area-Efficient Dual-Rail Array Logic Architecture," IEICE Transactions

on Electronics, vol.E87-C, no.2, pp.238-245, Feb. 2004.

[3] H. Yamaoka, H. Yoshida, M. Ikeda and K. Asada," A Dual-Rail PLA with 2-Input Logic

Cells," in Proc. IEEE European Solid-State Circuits Conference, pp.203-206, Sep. 2002.

[4] H.Yoshida, H. Yamaoka, M. Ikeda, and K. Asada," Logic Synthesis for PLA with 2-input

Logic Elements," in Proc. IEEE International Symposium on Circuits and Systems, May

2002.

[5] H. Yoshida, M. Sera, M. Kubo and M. Fujita" Simultaneous Circuit Transformation

and Routing," in Proc. Asia and South Pacific Design Automation Conference and Inter-

national Conference on VLSI Design, pp.479-483, Jan. 2002.

[6] H. Yoshida, H. Yamaoka, M. Ikeda, and K. Asada," Logic Synthesis for AND-XOR-

OR type Sense-Amplifying PLA:" in Proc. Asia and South Pacific Design Automation

Conference and International Conference on VLSI Design, pp.166-171, Jan. 2002.

[7] H. Yoshida, M. Sera, M. Kubo and M. Fujita," Integration of Logic Synthesis and Lay-

out processes by Generating Multiple Choices of Circuit Transformation," IEEE Inter-

national Workshop on Logic and Synthesis, Jun. 2001.

[8] R. Carragher, R. Murgai, S. Chakraborty, M. R. Prasad, A. Srivastava, N. Vemuri, H.

Yoshida, T. Shibuya and Y. Kanazawa," Layout-driven Logic Optimization," in Proc.

IEEE Design, Automation and Test in Europe, Mar. 2001.

[9] K. Seto, H. Yoshida, M. Ikeda and K. Asada," Logic Minimization Using Node Com-

plementation," IEEE International Workshop on Logic Synthesis, Jun. 2000.

[10] H. Yosida, H. Yamaoka, M. Ikeda, and K. Asada," Logic Synthesis for PLA with 2-input

Logic Elements," IEICE Technical Report, CPSY2001-72, Nov. 2001.(in Japanese)

List of Publications 117

[11] H. Yoshida, H. Yamaoka, M. Ikeda, and K. Asada,"Logic Synthesis for XOR-Based

Dual=Rail PLA," in Proc. of IPSJ DA Synposium, pp. 31-36, Jul. 2001.(in Japanese)

[12] H. Yamaoka, H. Yoshida, U. Ekinciel and K. Asada,"A Module Generator for a Dual-

Rail PLA with 2-input Logic Cells:" 5th Nikkei-BP LSI IP Design Award (IP Award), Jun.

2003.

[13] H. Yamaoka, H. Yoshida, U. Ekinciel and K. Asada,"A Module Generator for a Dual-

Rail PLA with 2-input Logic Cells," 4th Nikkei-BP LSI IP Design Award (Challenge

Award), May. 2002.

