
K
odak G

ray Scale
---=--·

.__....
-

.
r

-~
-
~

A

t
2

3
4

s
e

M

s
9

1
0

11

12
13

14-
14

B

11
tJ

1e

Efficient and Reusable Implementation of
Fine-Grain Multithreading and Garbage

Collection on Distributed-Memory Parallel
Computers

-$t'llHc1iM~IJ~tlltfJ!O) tc. fh 0)~$8\J C'~fiJI'IFiJIM:
*H!~Sl/i:? iv7.A v ·:17' 1 ;., ? JiHf:::i' ~ ~fh

Kenjiro Taura

April, 1997

Doctoral Dissertation

Department of Information Science
Graduate School of Science

University of Tokyo

Abstract

This thesis studies efficient runtime systems for parallelism management
(multithreading) and memory management (garbage collection) on large
scale distributed-memory parallel computers. Both are fundamental primi
tives for implementmg high-level parallel prograrnmmg languages that sup
port dynamic parallelism and dynamic data structures.

A distinguishing feature of the developed multithreading system is that
it tolerates a large number of threads in a single CPU while allowing di
rect reuse of existing sequential C compiler . In fact , it is able to turn any
standard C procedure call into an asynchronous one. Havmg such a run
time system, the compiler of a high-level parallel programming language can
fork a new thread simply by a C procedure call to a corresponding C func
tion. A thread can block its execution by calling a library procedure that
saves the stack frame of the thread and unwinds stack frames. To resun1e
a thread, StackThreads provides another runtime routine that rebuilds the
saved stack frame on top of the current stack and restarts the computation
from the blockmg point. All these operations are implemented by using
information already present on standard C stack frames , without requiring
a frame format customized for a particular programming language. Experi
ments demonstrate that potential performance problems are not s ignificant
in practice, even on distdbuted memory computers in whicb each remote
access causes a thread switch.

The developed garbage collection system is a simple mark & sweep col
lector that stops the user program while collecting. We show viability of
such collectors on a large scale (up to 256 processors) distributed memory
computer (Fujitsu AP1000+) . Under a reasonable heap expansion policy,
garbage collection occupies at most 15% of the application time (excluding
id le time). More importantly, the overhead of garbage collection on paral
lel machines was, except for one application, in the ballpark of that on a
single processor, indicating that garbage collection is at least as scalable as
the applications. Another observation from the experiment is that indepen
dent local collection is a dangerous strategy which degrades performance

of synchronous applications severely (by up to 60%), contraclicting previ
ous believes tha garbage collections should be done as independently as
possible. This is because an independent local collection makes the collect
ing processor "unresponsive," making processors waiting for a reply from
the collecting processor idle. For asynchronous applications with plenty
of intra-node parallelism, independent collections perform better than syn
chronous collections, but the difference is small at least in our experiments.
A more advanced strategy which adaptively selects a right strategy is also
itnplemented and shown to be effective, though it is not significantly better
than a simpler "always-synchronous" approach in the current experimental

condi lions.
On top of these rWltime systems, a new programming language ABCL/ f

is designed and implemented. Severalnon-t.rivial applications written by the
author and others are used for experiments. Both sequential performance
and speed up of the applications are reported.

2

Acknowledgement

First of all, I express my biggest gratitude to my supervisor, Professor
Akinori Yonezawa, for leading me to tbis very exciting area in computer
science-programming language design, implementation , and parallel pro
gramming. Your encouragement was the greatest source of motivation to
do my best, when I clidn't know how to work as a researcher . It was the
greatest event of me to become a research associate of your laboratory and
enjoy extra time working in tbis amazing group.

Since I became a member of this group, Professor Satoshi Matsuoka has
been the best advisor of my work . He has a broad range of background in
this field and has been improving the quality of my job over five years.

One of the most fortunate things for a researcher is to be involved in
a group with a lot of 'bigh ability persons. Dr. Masahiro Yasugi has been
the greatest source of my inspiration ever since I begin to work. I learned
from you how implementers should work and how to make systems faster.
Professor Naoki Kobayashi, formerly a research associate of the Yonezawa
Laboratory, has always been stimulating me with his keen intelligence. Luck
ily, after you take the current position , I still have joint meetings with your
laboratory, to be timely informed of your activities. Since I begin to learn
computer science, Hidehiko Masuhara ha.~ been the best friend to discuss
with. You have been patiently listening to my incomplete questions or vague
ideas and inspiring me with comments bitting the point.

As a research associate, there is nothing more exciting than working and
discussing with motivated and hard-working students. I especially thank to
Toshio Endo, Yoshihiro Oyama, and Takasbi Ninomiya, for their good work
and patience. You make my research life here far more fun and exciting
than it would be without you . It is really difficult to motivate mysell with
out working with other motivated people! I also thank Atsusbi Jgarashi,

Hirotaka Yamamoto, and Norifumi Gotob for their good work and spon
taneous devotion to the computing environment of the laboratory. Space
prevents me of expressing thanks to everybody in the laboratory. I really
thank all the people here who make this laboratory fun place to work.

I am grateful to Dr. Robert Halstead, for his comments and encourage
ment on the Chapter 2 of this thesis. Exchanging E-mails with you about
this work was the most exciting events in my life as a researcher of this field.

I am thankful to the members of the thesis committee, Professor Takas hi
Chikayama, Professor Masami Hagiya. Professor Kei Hiraki, Professor Yoshio
Oyanagi, and Dr. Mitsuhisa Sato, for their insight comments and criticism.

Not only research colleagues helped me. I wish to thank Keishi Tajima
and Takashi Miyata, for all the enjoyable t ime spent with me.

At last, but not least, I wish to express my gratitnde to Secretary Yoko
Kobayashi for her support and all sort of arrangements. Without her help,
it was impossible for me to submit this thesis by the deadline!

2

Contents

1 Introduction
1.1 Presentation of Thesis
1. 2 Motivation and Background
1.3 Contributions ...
1.4 Evaluation Settings .
1.5 Roadmap .

2 Mult ithreading
2.1 Introduction , .
2.2 R.elated Work

2.3

2.4

2.2.1 Thread Management by Simple Task Pool
2.2.2 More Elaborate Thread Management Schemes
2.2.3 Simple C Code Generation with Restricted Concur-

rency Model

Procedure Linkage Convention of C Procedures
2.3.1 Stack Frame Layout
2.3.2 Register Us<tge Convention
2.3.3 Summary: \¥here is Context? .. .
StackThreads: Framework and Implementation
2.4.1 Overview
2.4.2 Creating Threads by C Procedure Calls
2.4.3 Blocking a Thread by Epilogue Code Threading
2.4.4 Resuming a Blocked Thread by Call Chain Recon-

struction
2.4.5 Limitations and Discussion

2.5 Implementation and Machine Specific Details

3

7
7

8

10
13
14

15
16

18
19

20

22
24

24
24

27
27
27

28
28

32
34
35

2.5.1 General Description
2.5.2 Spare
2.5.3 Alpha .. .

2.6 Implementing Higher Level Abstractions on Top of Stack-
Threads
2.6.1 Remote Read
2.6.2 Pork-Join
2.6.3 Return Value Passing Protocols .

2. 7 Performance Evaluation
2.7.1 Micro Benchmark .. .
2.7.2 Application Benchmark

2.8 Summary

3 Garbage Collection
3.1 Introduction
3.2 Related Work .

3.2.1 Local Collection + Reference Counting

35
39
40

43
43
43

45
49
49
50
56

57
58
59
60

3.2.2 Distributed Marking . . . 61
3.3 Design and Implementation of th Collection Scheme . 62

3.4

3.3.1 Overall Design 62
3.3.2 Boehm & We.iser's GC Library 62
3.3.3 RepresentMion and Management of Remote References 63
3.3.4 Collection Algorithms . . 66
Collection Scheduling and Heap Expansion Policies 70
3.4.1 Problem Statement . 70
3.4.2 Local Collections .
3. 'l.3 Global Collections .
3.4.4 Choices between the Two Local Collections

3.5 Experimental Conditions .

71

73
73
76
78
81
86

86
86

87

3.6 Collection Overhead . .

3.7 Impact of the Local Collection Strategies
3.8 Discussion

3.8.1 In remeutal/lnterruptible Local Collection .
3.8.2 Latency-Tolerant Algorithms

3.9 Summary

4 ABCL/f- The Language Design 88
4.1 Overview 88
4.2 Par<>.llelism and Synchronization Primitives 90

4.2.1 Ohallllels 90
4.2.2 Procedure Invocation 91
4.2.3 Procedures 92

4.3 Concurrent Objects 95
4.3.1 Classes and Methods . 95
4.3.2 Updating States 96
4.3.3 Concnrrency and Consistency 97

4.4 Immutable Data ... 9
4.5 Examples 100

4.5.1 Concurrent 'free Updating . 100
4.5.2 Synchronizing Objects ... 102

4.6 Comparison to Other Language Designs 103
4.6.1 Concurrent Object-Oriented Languages 103
4.6.2 Other Parallel Languages 105

5 Implementation of ABCL/ f 108
5.1 Overview 108
5.2 Procedures 110
5.3 Procedure Invocations and Context Switches . 113
5.4 Unboxed Challllels and Efficient Communication via Channels 116

6 Application B enchmark
6.1 Single Processor Performance
6.2 Speed-up

7 Conclusion and Future Work

A Description of Benchmark Applications
A.1 BH ...

A.l.1 Problem .
A.l.2 Basic Algorithm
A.l.3 Description in ABCL/ f and Parallelizatioo
A.l.4 Behav ior and Performance Limiting Factors

A.2 CKY..... ·. ·

5

120

120
. 125

132

147
147
147
147
149
151
151

A.2.1 Problem ...
A.2.2 Basic Algorithm
A.2.3 Description in ABCL/ f and Parallel.ization
A.2.4 Behavior and Performance Limiting Factors

A.3 RNA
A.3.1 Problem
A.3.2 Basic Algorithm
A.3.3 Description in ABCL/f and Parallel.ization
A.3.4 Behavior and Performance Limiting Factors .

B Unboxed Channel Scheme
8.1 Essential Syntax
B.2 Locations .
8.3 Boxing . . .
B.4 Correctness

6

151
152
154
155
157
157
157
158
159

160

161
163
163
165

Chapter 1

Introduction

1.1 Presentation of Thesis

This thesis studies runtime systems for high-level programming languages
on parallel computers. The primary focuses of the thesis are multithreading

and gat·bage collection. We pursued these issues in the implementation of a
concurrent object-oriented language ABCL/ f on a distributed-memory par
allel computer AP1000+ [34]. Techniques developed and observat ions drawn
from the experiments are most relevant on large-scale distributed-memory
multicomputers , though they are c<'.rtainly useful in large-scale parallel com
puting in general.

Multithl'eading is a capability that man<tges a large number of threads
of control in a single processor. With multithreading, the programmer can
have much larger number of threads of control than the number of proces
sors. The developed multithreading technique is unique in that it tolerates a
very large number of (say, thousands) threads in each processor, while main
taining sequential speed and interoperability with existing C code. This
is implemented in a small runtime system that can turn any standard C
procedure call into asynchronous one. Having such a runtime system, the
compiler 's task becomes relatively straightforward; the compiler can use a
C procedure call for a thread creation and just about any kind of C expres
sions for intra-thread sequential operations. In addition to the advantage
that thread creation is fast, there is another advantage that it allows the
compiler of high-level programming languages to generate simple C code
that enables substantial optimizations performed by the 0 compiler. This

7

multithreading mechanism has been implemented on Spare and Alpha.
Ga1·bage collection is a capabitity that automatically reuses memory that

is no longer used by the application. On distributed-memory multicomput
ers, data may be referenced from remote processors. Therefore, detecting
if a region of memory is still used by the application requires substantial
amount of cooperation between processors. Our garbage collector is a sim
ple distributed mark & sweep collector, which judges if a datum is still live
by reacha.bility from the root. Despite its conceptual simplicity, implemen
tations of tills type of collectors on large-scale parallel computers are rare
and viability of such collectors has not been well studied t hrough experi
ments. Tllis tbesjg proposes several implementation techruques for making
such collectors feasible and demonstrates their viability through empirical
sloltdy.

ABCL/ f is a concurrent object-oriented language, designed and imple
mented on top of these substrates. It supports dynamic thread creation and
concurrent objects, thus is suitable for applications that use dynanlically
created parallelism and data. structures. Both multithreading and garbage
collection are crucial underlying mcchanjgm for implementing such program
nling languages.

1.2 Motivation and Background

As parallel computers be ·orne very widespread, problems people solve on
such computers become very diverse. Experiments revealed that many prob
lems have dynamic J1atures that make problem solving on large-scale paral
lel compu ters challenging. More specifically, many problems adopt dynamic
data struch!!'es and extract dynamic pamllelism.

Dynamic rlata structUT'e,, generally mean data structures that are created
dynamically (or incrementally) during the course of a computation. They
are useful '"hen the application ne ds a data structure whose shape, size,
or distribution across processors is .not known or difficult to approximate in
advance, eveu if the primary parameters of the problem (e.g ., the problem
size) are given. Au unbalanced tree whose depth varies from one part to
another aud depends on lhe details of the input data is one such example.
The most direct and flexible support for such applications is dynamic object

c1·ea.t10n, where the programmer can allocate a new block of memory at any

8

time in the computation. The allocated memory can be linked together to
form a large structured data.

Dynamic parallelism generally means a parallelism that is dynamically
created and extracted dming the course of a computation. It is useful when
the amount of parallelism that should be extracted to mask latency or to

achieve a reasonable load balance is not known or difficult to approximate in
advance, even if the primary parameters of the problem (e.g., the problem
size) are given. Parallel tree search problem with pruning is a typical ex
ample. In this problem, the amount of work under a giv n sub-tree cannot
easily be estimated, even when the computation reaches the sub-tree. To
achleve a reasonable load balance, one must divide the work into a much
larger number of chunks than the number of processors and continues to
djgtribute them across processors. The most direct and flexible support for
such applications is dynamic thread creation (or multithreading), where the
programmer can create a new thread of control at any time in a computation.

Efficient support for these dynamic applications imposes significant im
plementation challenges. To list some of important ones,

Efficient transparent data accesses: To support computation that uses
dynamic data structures, the system should desirably provide tran.y

pa•·ent accesses to remote data, even if shared-memory is not supported
by the hardware. Using dynamic data structures, i11ter-processor com
munication required by a computation is often unknown until runtime,
because how data are distributed across processors are in general not
known until runt ime. Tills makes it hard to optimize communication
cost by aggregating several remote accesses into a single message or
by producer-initiated communication. If applications exhibit irregular
data accesses, but relatively regular parallelism (i.e., irregula.· data

parallelism), one can still apply runtime techniques such as inspector
executor (45]. Otherwise, one must resort to a straightforward imple
mentation where a remote access implies a remote communication.

Automat ic memory management : To support dynamic data structures,
garbage objects (memory no longer used by the a ()plication) should
desirably be automatically reclaimed by the system. Memory man
agement by application programmers jg already a source of trouble
in single processor systems and thus many automatic management

9

systems are available. With dynamic parallelism, manual memory
management becomes even more dangerous and error-prone, iocreas
iog the ilnportance of automatic memory management. It is difficult,
however, even for the sophisticated runtilne systems to perform the job
efficiently. ln the presence of remote reference, detecting if a region of
memory is still used by the application requires substantial amount of
processor coordination.

Management of parallelism: To support dynamic parallelism , the sys
tem must tolerate much larger number of threads of control than the
number of processors. This imposes a constraint on implementation
that the resource requirement for a single thread must be small. In
addition , the system should desirably support fine grain threads, not
to con.~traint. the way in which parallelism is extracted from the appli
cation. Tltis means that the overhead of a thread creation as well as
a thread switch should be small. Moreover, these facilities should be
provided in a way that they do not hurt sequential performance.

Interoperability and Reusability: All these facilities should be provided
in a way the resulting system can nicely ioter-operate with existing
software. Faciog all the above challenging issues, it is tempting but
not feasible to redesign and restructure the entire system from scratch.
One must remember, however, that all the problems that appear io
single-processor systems are still there and the total performance of the
system can hardly be achieved without exploiting all these existing so
lutions. They ioclude the whole optimization techniques ilnplemented
in sequential compilers, librari~.s written io sequential programming
languages, and programming environment supports such as debuggers
and profilers. We must avoid ending up with systems that ilnplement
some particular aspects of the above issues nicely, but fail to be uti
lized due to slow sequent ial speed or the lack of interoperability with
exiting C libraries

1.3 Contributions

ln this thesis we address some of the above issues by buildiog efficient
runtime systems for multithreadiog and automatic memory management

10

for large-scale distributed-memory parallel machines, and by designing and
implementing a programming language tha:t provides easy and transparent
accesses to these primitives. To list specific contributions of this thesis,

o It proposes a new implementation scheme for fine-graio software mul
tithreading on stock microprocessors. The proposed s<:hcme is unique
in that it can make any stylized C procedure call an asynchronous one.
Unlike traditional thread libraries, a thread creation needs neitner an
expensive startup procedure nor a large stack space. Unlike previ
ously proposed efficient multithreadiog schemes, it does not as. ume a
customized frame format designed for a particular programming la.n
guage or a set of multithreadiog prilnitives. Instead, it operates on
standard C stack frames and calling conventions. Difficulties arise du
to calling conventions that assume sequential calls (e.g ., callee-save
registers) and lack of information on C stack frames for multithreaded
execution.

o It empirically studies performance of the multithreading scheme. The
study shows that potential limiting factors of the proposed scheme do
not become significant in practice.

o It shows an ilnplementation scheme of distributed mark-and-sweep
garbage collectors on large-scale parallel computers, together with sev
eral simple teclmiques that reduce the overhead of this type of collec
tors. It also demonstrates a design of the interface between a collector
and an application that makes such collectors reusable across multi
ple language implementations. More specifically, the collector does
not require extensive cooperation from the application program or the
message-passing layer. This property should not be taken as granted,
because mark & sweep garbage collectors must operate on a consis
tent global snapshot of the application, the definition of which includes
messages that are in network or messag buffer.

o It empirically studies performance of the proposed garbage collector
through sev ral benchmark applications. In a configu.ralion that is
the most space-intensive in our experiments, but is still not as ioten
sive as some collectors used in heap-intensive programming languages,

11

garbage collections occupy at most 15% of the application time (ex
cluding idle time due to load imbalance and communication) on 256
processors.

• It empirically demonstrates the in1portance of .1cheduling strategies of
local collections. Contrary to previous beliefs that local collections
should be independent, the experiments show that they should of
ten be scheduled sync.hronously. Independent collection severely de
grades performance of synchronous applications. Examination reveals
that this is because independent collections introduce large scheduling
skews in the applications. Since a local collection makes the collecting
processor unresponsive to requests from other processors, processors
that wait for a reply from a collecting processor also become idle un
less they have parallelism which hide the latency introduced by the
local collection. This can be avoided by performing local collections
simultaneously on all the processors. We also developed an adaptive
strategy that selects an appropriate local collection scheduling strategy
by examining the behavior of the application.

• It shows design and implementation of a concurrent object-oriented
language ABCL/ f , as a running vehicle of the proposed implemen
tation. techniques. ABCL/ f supports future and concurrent objects.
Future is a means of dynamic thread creation and concurrent object
is a means of location transparent data access and automatic mutual
exclusion. By combining these primitives, the programmer can express
data structlU'eS and parallelism needed by the application in a natural
way.

• It shows how to implement a general and efficient communication
through a first-class communication medium called channels. We also
show tba , on top of this mechanism, diverse calling sequences-any
combination of local/remote and synchronousjasynchronous calls-are
irnplem •nted efficiently and uniformly.

There are many issues that are important for supporting genera.! purpose
programming languages on large-scale parallel machines but are not tackled
in this thesis. Amongst others, the multithreading mechanism explored in
thi thesis does not have provisions for migration on distributed memory

12

machines. In other words, once a thread is cre.'l.Led, it executes on that
processor. Migration is a desirable mechanism for supporting dynamic load
balancing but is hard to implement, particularly on distributed-memory
computers. Second, it does not address the first problem stated in the
previous section-efficient location-transparent access to data. We assume
that the cost model of distributed memory computers is directly exposed to
the programmer or there is a shared-memory layer implemented by a lower
level software or hardware. In the implementation of ABCL/ f , we take
the former position. ABCL/ f program automatically determines where a
method is invoked based on the location of the receiver object but it does
not perform any caching automatically. In other words, ABCL/ f supports
shared name-space, but does not support (any better approximation of}
shared memory.

1.4 Evaluation Settings

We evaluated the performance of developed ruutime systems as well as
ABCL/ f on single processor workstations and a distributed-memory par
allel computer AP1000+ [34].

APlOOO+ is a distributed-memory parallel computer. The processor
elements are SuperSparc 50 MHz with 16 MB physical memory. The system
we used in our experiments has 256 processors. Processors are connected
via a torus network whose peer-to-peer bandwidth is 25 MB/s.1 We used
a buudled send / receive communication library. The minimum latency +
overhead of a round-trip commuuication between a pair of processors with
the library is about 401's, or 2,000 processor cycles. The default operating
system for the AP1000+ is a single-task operating system with no virtual
1nemory support. A parallel job monopolizes all the CPUs and memories.
More importantly, a message is never delayed by scheduling skew between
the sender and the receiver.

For evaluations shown in Chapter 2, ~' and 6, we use application pro
grams listed in Table 1.1 or a part of them. Characteristics of these appli
catious are described as necessary in each chapter. A Llu·ough description
for BH, CKY, and RNA are given in Appendix A.

1 APlOOO+ is equipped with two additional networks for broadcast. :md cornrnunicaiion
with a liost. (froutend) processor. They were not used in our cxpcrim nts.

13

Application Description

BR Nbody simulation by Barnes-Rut Method
CKY Parser for Context Free Grammars
RNA RNA secondary structure prediction by tree search
GA Genetic algorithm

Table 1.1: List of parallel applications

BH is a parallel N-body simulation using a hierarchical tree struct ure.
The original sequential algorithm is published in [9] and there are many
parallel formulations such as [32, 75, 76], most of which are writ ten in C.
CKY is a parallel parsing algoritlun for context-free grammars. The original
sequential CKY algorithm was proposed by Cocke, Kasami, and Younger

[43]. A survey of para llel algorithms is given in [50]. Refer to [54] for our
algorithm. RNA is a parallel tree search program that predicts t he secondary
structure of an Ri'<A molecule from a given sequence of bases. The original
prograrn was written by Nakaya in C using message passing [49] as well as a
concurrent object-oriented language Schematic [72]. A simplified version is

written in ABCL /f b y the author and used in the evaluation in this thesis.
GA is a parallel genetic algorithm written by Hiyane [35j.

1.5 Roadmap

The rest of t.he thesis is organized as follows. Chapter 2 describes the devel

op d mult ithreading techniques in a language-independent fashion . Details
that arc relevant only for ABCL/ f are left for Chapter 5. Chapter 3 de
votes to garbage collection. Chapter 4 focuses on t he design of ABCL/ f.
Chapter 5 then presents cmplementation of ABCL/f . Since the important
aspects of the implementation of ABCL/ f have already been presented in
Chapter 2 and 3, t llis chapter mainly fo cuses on mappings from particular

langu<tge constructs supported by ABCL/ / to facili ties provided by these
runtime systems. Chapter 6 demonstrates applications written in ABCL/ f
and examines its performance. Finally, we summarize the work and state
conclusions in Chapter 7.

14

Chapter 2

Multithreading

Compiling into C is increasingly becoming an attractive approach to imple
menting high-level prograrruning languages, for its portability and potential

performance advantage t hanks to optimizations performed by C compilers.
However , it is rlifficult to map the execution model of multithreading lan
guages (languages which support fine-grain dynamic thread creation) onto

the single stack execution model of C. Consequently, previous work on ef
ficient multithreading uses elaborate frame formats and alloca~ ion strat
egy, with compilers customized for them. This chapte~ seeks an alternative
cost-effective implementat ion strategy for multithreading la nguages that can

maximally exploit current sequential C compilers. We identify a set of prim
itives whereby efficient dynamic thread creation and switch can be achieved
and clarify implementation issues and solutions wh.ich work under the stack

frame layout and calling conventions of current C compilers. The primitives
are implemented as a C library and named Stack Threads. In StackThreads,
a thread creation is done just by a C procedure call, ma.'<.imizing thread

creation performance. When a procedure suspends an execution , the con
text of the procedure, which is roughly a stack fame of the procedure, is
saved into heap. Contexts saved into heap are reconstructed on top of t he C

stack when the thread is resumed. With StackThreads, the compi ler writer
can straightforwardly translate sequential constructs of the source language

into corresponding C statements or expressions, while using StackThreads
primit ives as a blackbox mechanism that switches execution between C pro
cedures.

15

2.1 Introduction

Many parallel programming languages support dynamic creation of threads.
Example language constructs include futures [33], asynchronous message
passing between concurrent objects [2, 79], fork-join [5 1], parallel blocks
and loops [17, 20), and implicit parallelism (52]. Implementation of paral
lel languages with dynamic thread creation (which we hereafter refer to as
multithreading languages) must achieve efficient multithreading without sac
rificing good sequential performance. Compiling multithreading languages

into 0 aud exploiting optimizations performed by the C compiler is an at
tractive choice for obtaining sequential performance. It has been challeng
ing, however, because the execution models of multithreading languages are
not naturally mapped onto the execution model of C, which assumes a sin
gle stack. The time and space overhead of allocating a separate stack for

each thread is prohibitively large, hence existing user-level thread libraries
[23, 44] cannot straightforward ly be used for implementing multithreading
languages. Consequently, most of the previously published efficient imple
mentations of multithreading languages adopt a custom frame management
and generate ither assembler or assembly-like C code in which frame man
agement and context switch code sequences are inlined. In such implementa
tions, a thread creation typically allocates only a single frame from a general
free storage and a context switch just saves live registers on the frame and
transfers control to the restarting thread [24]. While this approach achieves
very fast thread creation and context switch, there are several disadvantages
and potential pitfalls. First, the compiler development cost is very high, be

cause they must design runtime data structures from scratch for threaded
execution and the compiler must perform low-level analyses such as live
range analysis to emit inlined context switch sequences. Second, sequential
performance is sacrificed unless there is substantial effort on optimization.
They must implement many sequential optimizations when generating as
sembly. Even when generating C code, C compilers often fail to optimize

assembly-like C code because of its ltighly complex and tmstructnred repre
sentation of comptitation. For example, restarting a computation inside a
loop requires a goto statement into the body of the loop, which is likely to
disable optimization by the backend.

This chapter presents an attractive alternative for efficient implemen-

16

tation of multithreading languages. The mechanism is provided as a low

level C library , called StackThreads. By low le11el, we mean that only prim

itive frame management mechanisms are defined by t.he library. Supporting
higher- level abstractions on top of the base primitives is left for language

designers and implernenters. Section 2.6 demonstrates several example ab
stractions built on top of StackThreads. By library, we mean that most
of the work needed for multithreading is done under cover of the library,

without requiring extensive cooperation from the code generator. More pre
cisely, the generated code simply calls a few library routines when a thread

blocks. The library routine performs all the work needed to switch to an
other thread . In particular, the context-saving sequence does not hav<' to
be in.Iined in the generated 0 code. Hence, with StackThreads, sequential
constructs can be straightforwardly compiled into corresponding C state

ments or expressions which may call a library routine when evaluation can
no longer continue. This reduces development cost and enhances the c:hances
for the backend optimization.

Unlike traditional thread libraries, StackThreads meets the performance
requirement of multithreading languages-smal l creation overhead. In Stack
Threads, starting a new thread, including parameter passing, takes only a

few instructions. In fact, starting a new thread that executes the body of

a C function f is just a procedure call to f (possibly with extra parame
ters, depending on the implemented language construct). In the case where
a thread blocks, mechanisms are provided to (1) save the context of the
0 procedure and resume the caller of a procedure, and (2) later restart a
blocked thread from a saved context. Unlike previous implementations of

multithreading languages in which these or similar mechanisms are imple
mented on top of a customized frame management protocol, StackThreads
implements the mechanisms which work with any C code satisfying the few

conditions described in Section 2.4.5. That is, the generated C code uses

conventional 0 stack frames and procedure linkage conventions including
parameter passing, result value passing, and even callee-save registers. Our
primary contribution is to identify a set of primitives which are required

for efficient multithreading and implementable under the stack frame for

mat and calling conventions of current sequential compilers. The rest of

this chapter is orgmtized as follows. Section 2.2 reviews previous work on
software implementations of multithreading. Section 2.3 summarizes the

17

stack frame layout and code generation conventions of C procedures which
StackThreads mechanism relies on. Section 2.4 outlines how our mechanism
works and Section 2.5 describes implementation details and machine-specific
i~sues. Section 2.6 demonstrates several higher-level constructs built on top
of StackThreads. Section 2. 7 reports performance numbers and Section 2.8
summarizes this chapter.

2.2 Related Work

This section reviews previous efficient multithreading schemes. We limit our
focus to schemes that are implemented on conventional CPUs; We do not
discuss those that are implemented on multithreaded architectures. All of
them either involve custom frame management and procedure linkage con
ventions or restrict the concurrency model so that they can be implemented
without a general multithreading mechanism. Table 2.llists these works in
roughly chronologica.l order with their supported concurrency models and
code generation schemes. A concurrency model is general if they implement
a general multithreading model and restricted otherwise. By general multi
threading model, we mean that the system guarantees that created threads
are scheduled eventually, at least when it becomes the only runna ble thread .1

A code ge neration scheme is native if it generates assembly, assembly like C

if it generates C with iulined frame management and context switch code
sequences, and simple C if it can simply run on top of C's stack frame
management.

Most notably, schemes that adopt simple C code generation-leapfrogging
[74J and la"y RPC (28J-do not support a fully general concurrency model. A
distinguishing feature of StackThreads is that it allows shnple C code gener
ation while implementing a general multitl.t.read.ing model. Below we classify
previous work into three categories and describe each work in more detail.
The three categories include those that use a simple task pool for thread
management, those that adopt more elaborate and complicated thread man
agement schemes, and those that simply run on top of C's stack frame man
agement at the cosl of a restricted concurrency model.

1Most work , including ou.rs, do not guarantee any stronger sense of rainless. They on ly
gua.rant(>e tha.L- neither the ruutime nor t.he compiler add depet\dencies between threads
which are otherwise indepE>.nde.nt.

18

Concurrency Code Generation Primary Target
Model Scheme Language

Threads .in SML/NJ [22] general native SML/NJ (4]
LTC [29, 48] general native Mu.l tilisp [33]
TAM (24] general native Id [52]
ABCL/ APlOOO [70] general assembly-like C ABCL
Leapfrogging (7 4] restricted simple C Multi lisp
Olden [59] restricted native Olden
Concert [57] general assembly-like C ICC++ (20]

and CA [19]
Lacy Threads [31] general native Id
Lazy RPC (28] restricted simple C ParSubC [28]

Table 2.1: List of previous efficient implementations of multithreading

2.2.1 Thread Management by Simple Task Pool

Many multithreading implementations use a custom procedure linkage con
vention and frame management strategy, and generate assembly or assembly
like C code in whlch frame management and context switch code are inlined.
The simplest management scheme allocates activation frames from a general
free storage (e.g., free list) on an invocation-by-invocation basis, so that each
thread does not have to have a stack. All nmnable threads arc stored into
a task pool. At thread creation only allocates a thread control block, which
does not have to have a stack, and stores it into the task pool. When a thread
blocks, it simply schedules another thread from the task pool. TAM [24] and
threads implemented in SML/NJ [22] fall into this category. TAM allocates
an activation frame for each parallel invocation of a function or a loop body,
from a free list. SML/NJ [22] implements threads using the callcc primi
tive. Since SML/ NJ allocates all activation frames from the heap 15, 66],
callcc is implemented simply by capturing the pointer to the current frame
and savin.g callee-save registers. Hence, SML/ J's thread management us
ing callcc effectively implements simple heap-based frame management very
efficiently.

This strategy necessarily uses a custom frame format as well a.~ calling
convention, and calling legacy libraries written in C needs sp cial setup

19

procedures sucb as a stack switch. In addition to sucb software engineering
issues, threads in this category have some performance disadvantages. First,
thread creation incurs e..xpensive operations such as allocating frames from
a general free storage and enqueueing a frame into a task pool. Second,
they usually have no chances to pass the result value of an invocation via a
register. The result value is always written into memory, because the callee
in general does not know when the caller is scheduled. Since registers are
volatile storage, returning the result value via a register requires making
some assumptions on the scheduling order and exploiting them. Third, they
have no provisions for using callee-save registers on a thread creation. The
caller saves all its contexts prior to a thread creation. This is again because
no scheduling order is assumed between a parent thread and a child thread.

2.2 .2 More E laborate Thread Management Schemes

More elaborate thread management schemes are based on the observation
first stated by Mohr, Kranz, and Halstead [47, 48]. The observation is that
a t bread creation merely has to leave minimal information to perform a real
fork retroactively when it turns out to be really needed. More precisely,
when we create a thread that evaluates the body of I , we continue the eval
uation off just as a sequential call.2 Mechanisms are provided to resume the
continuation off without waiting for its completion in case it is blocked. If 1
is not blocked at all , the cost of a thread creation is roughly that of a proce
dure call + writing a descriptor to indicate a potential fork point. This basic
structure- tninimal fork overhead and retroactive work g neration-can be
ubiquitously found in many works which follow [31, 57, 59] , in dilferent con
texts with further clarifications and improvements. This basic idea opens
the door to several improvements over the simple task-pool approaches to
managing threads. First, allocating a frame of a new thread from a stack
is more efficient than allocating from a general free storage and enqueueing
it to a task-pool. Moreover, this process is very similar to a procedure call
in sequential languages, giving us an opportunity to express a thread fork
in C's procedure call. Second, since the scheduling order is fixed and LIFO,
they can return the result value via a register when a thread terminates

2 A thread creation in LTC leaves a description a task pool so t.bat anoi her processor
can steal it.. This is a cost of dynamic load distribution and not a cost of multithreading
per se.

20

without blocking, because we know the next thread to run will be the caller.
Protocols must be devised for returning the result value after a thread is
blocked. Third, we have an opportunity to exploit callee-save registers even
on a thread creation. This is again because, when the callee terminates
without blocking, we know the caller is scheduled immediately after the
callee, enabling the callee to restore the callee-save registers for the caller.
The execution scheme of the present work is based on the same ob. ervation
and most close to that of the authors' previous work [70] and the l1ybrid
execution model of Concert [57]. The difference between our work and any
prior work is where the mechanism is implemented. Existing schemes use a
custom frame management protocol and do not allow the clirect reuse of a
sequential compiler substrate-optimizing C compi.lers. On the other hand ,
StackThreads deals with a conventional C stack. Compilers of higher-level
languages can straightforwardly map sequential computation onto C and a
context switch simply calls library routines at runtime.

Differences between schemes in this category lie in bow to deal with
blocking- situation where the current thread can no longer proceed. When
a thread that evaluates a procedure I blocks, [57] and [70] simply save the
stack frame of the procedure and resume the frame just below the current
frame. Both works implement this mechanism by generating assembly-like
C code.

A procedure in the source language is, ignoring inline expansion, com
piled into a C procedure. For each potential blocking point, the compiler
generates a code sequence that saves all live variables into a heap frame and
returns. Another code sequences is generated for restarting a computation
from a blocked point. It loads live variables from memory and "goto" the
blocked point. At least in the authors' experiences in [71], this implemen
tation strategy is not so successful in terms of cost-effectiveness. First, the
generated C code is very large and has a very obscure control/data flow due
to nilined switcb sequences. Hence, C compilers are likely to fail to optimize
them. Second, compiler development cost is high, because we must perform
low-level analysis such as live-range analysis to guarantee correct execution.
Both factors lose some of the motivations for generating C code1,ease of
compiler development and backend optimization.

La.zyTbreads [31] takes a similar but different approach to frame man
agement and thread suspension. Frames arc allocated in the unit of what

21

they call stacklet. A stacklet is a. contiguous region that can hold several
frames, but is much smaller tha.n the typical stack size. A blocked thread
resumes a caller without copying the stack frame to heap. Instead, each
procedure checks if space is available on top of the current frame. If not,
anew stacklet is allocated, regardless whether the call is sequential or paral
lel. Implementation of LazyThreads necessarily has to design runtime data
structure from scratch; the implementation was done by modifying the GNU
C compiler.

2.2.3 Simple C Code Generation with Restricted Concur-
rency Model

Some multithreading languages implement multithreading on top of the
stack frame management mechanism of C. The basic idea is we continue
execution of a single thread as far as we can and, when a thread is blocked,
we g1·ow the stack by other schedulable work, rather than unwinding the
stack. In this way we can hold contexts of multiple threads in a single stack
without stack unwinding, which cannot be naturally expressed in C.

Leapfrogging [74) implements Multilisp's fu ture construct. A thread
which evaluates an expression e is created by a future expression (future
e). When a processor encounters a future expression, the processor con
tinues to evaluate the continuation of the expression, leaving a descriptor
of e in a shared task paola A task is blocked when it needs the value of
an undetermined future. When a processor executing a task T encounters
an undetermined future J, the processor now steals work from the shared
task pool, but only steals one which is a subtask off (including f itself).
The stolen subtask (call it F) on top of the current stack. This strategy
can be natu.ra.lly expressed inC's stack frame management mechanism. The
processor simply fetches F and calls a procedure that evaluates F'. An
implication is that the blocked thread T can only be resumed after the eval
uation ofF finishes. This scheduling is not always safe. It is safe as long as
determining the value ofF requires determining the value ofF', because in
this case resuming T, which we know requires the value ofF, transitively

3 Using a sharE-d tas k pool doetJ not imply leapfrogging assumes shared memory. The
shared task pool cau actually be implemented as a logicaUy shared , buL physically dis
tributed data st.rudurc.

22

requires determining the value of F. To summarize, leapfrogging can evalu
ate two tasks in a single stack as long as the lower thread has been blocked
and is dependent on the upper thread (assuming a stack grows upwards).
Evaluating multiple tasks that may be independent requires correspondingly
ma.ny stacks. The concurrency model of leapfrogging is more restrictive than
the general multithreading model in several ways. First, it does not sup
port speculative computations. As the authors pointed out in [74) , ifF' is
speculative and does not contribute to the value of f , leapfrogging causes
a deadlock which should not occur in a general multithreading model. Sec
ond, it only supports 1-producer-N-consumers synchronization via future
and does not support general synchronization primitives. 1\llore speci£cally,
it assumes that a blocked thread knows the resumer thread (the thread that
is going to resume it). This condition holds in stylized uses of futures, but
does not hold for general synchronization primitives such as mutexes and
condition variables. Finally, it does not en ·ourage eager movement of tasks
or application-specific task placement, which is particularly importation on
distributed-memory parallel machines. This i again because independent
tasks may not coexist on a single stack. A new task can be evaluated only
when the current task is blocked or an empty stack becomes available. Lazy
RPC [28) is based on the same idea. The difference is that, when a task
blocks, the processor steals any task in the task pool. The dis ussion a.nd
restriction above also apply for Lazy RPC. StackThreads, on the other ha.n.d,
implements general mnltithreading with a single stack (or a constant number
of stacks) per processor. The key mechanism is stack unwinding, in which
we can speculatively evaluate independent tasks .in a single stack and revoke
speculative decisions when the topmost task is blocked. Unlike leapfrogging
or Lazy RPC, StackThreads moves stack frames, thus is incompatible with
C programs or C compiler optimizations which assume they do not move.
The primary use of StackThreads is therefore as a compiler target, rather
than for user-level libraries for C programs.

23

2.3 Procedure Linkage Convention ofC Procedures

2.3.1 Stack Frame Layout

This section summarizes procedure linkage and code generation conventions
of G procedures, which are necessary for understanding the details of Stack
Threads. In particular, understanding the details of the procedure return
mechanism- how a procedure returns to the caller so that the caller con
tinue.s execution- gives us opportunities for saving/restoring the context of
procedures in an unusual way. The background includes stack frame layout,
register usage convention, how the linkage between a caller and a callee is
maintained, and when/where registers are saved.

Figure 2.1 shows a typical stack frame layout of a C procedure. The
figure illustrates a stack frame for a procedure I and its parent P , assuming
the stack grows downwards. The lowest and the highest addresses of the
stack frame are pointed to by the stack pointer (SP) and frame pointer
(FP), respectively. A stack frame for I holds:

• local and temporary variables of I,

• cal lee-save registers for P , and

• the link toP, whlch is the return address and the frame pointer of P.

Incoming parameters not allocated to registers are stored in the caller's
frame, so that the caller does not have to know the frame layout of the called
procedure. The offset of the incoming parameters from the callee's frame
pointer is constant across all procedures, so that the callee does not have to
know the caller. It is the callee's responsibility to restore the SP and FP of
the caller \lpon procedure return.

2.3.2 Register Usage Convention

The register u"age convention for a processor classifies CPU registers into
two categories. One is ca!Jee-save registers, which tbe caller assumes are pre
served a ross a procedure call, and the other is caller-save registers, which

24

Stack Frame of P (caller off)
rncoming parameters or f

(=Outgoing arguments of P)

Frame Pointer off J constc tnl

Locals, temporaries off
+ Callce save registers for P

Stack Frame off +Link tOP

Stack Pointer o J'f

Stack Growth

+

Figure 2.1: A typical stack frame layout of a 0 procedure. Parameters are
in the frame of the caller. Local variables, temporary variables, callee-save
registers, and linka to the caller (i .e., return address and FP of the caller)
are in the frame of the current procedure.

25

the caller assumes are destroyed across a procedure call 4 In order for a
procedure to return to the correct place with the correct values iu registers,
a stack frame saves the return address, the frame pointer of the parent, and
the callee-save registers which it destroys. When a procedure returns, it
restores the values of the frame pointer, stack pointer, and the callee-save
registers and jumps to the return address. The caller then cont inues exe
cution, nssumin11 F P SP and callee save registers have the original values
anrl other registers do not. In other words, FP, SP, and callee-save regis
ters constitute f's context- information that must be restored when I is
rescheduled. The basic idea behind any thread library is that whenever we
fork or switch a thread, we save enough information so that we can restore
the context from the point where we r~.schedule the thread. Since the point
where we reschedule the thread is usually unknown, ordinary tllread libraries
save all contexts, including all callee-save registers in the calling convention,
of the current thread whenever a fork or a switch occurs . StackThreads, on
the other hand, does not save all contexts on a thread fork; when a proce
dure I is forked, it saves exactly the same amount of context as an ordinary
procedure call to I.

This makes a thread fork efficient but raises a difficult question against
the implementation of StackThreads, because the callee-save registers for a
procedure may be spread into an unknown number of frames and registers.
Suppose a procedure I is using four callee-save registers A, B, C, and D,
calls a procedure _q that uses A and B, which in turn calls a procedure h
that uses B, G. Where is the relevant context for f? When his active (i.e.,
its frame is on the top of tbe stack), A and B are saved in g's stack frame,
C in h's stack frame, and finally, D still in the register! To save f's context
and reswne it later, we must find where they are. Information is not present
in stack frames as to which callee-save registers are used by a procedure or
where they are saved. Even if it were present, interpreting inJormation and
restoring registers would make context switch prohibitively slow. The way in
whid1 we handle callee-save registers instead relies on au assumption about
the code generation style of C compilers. The assumed code generation style
of C compilers is that a procedure saves callee-save registers at the entry (or

4 SP :u.1d FP are also a."isnnted lo he preserved across a procedure calL For our purpose,
however, we consider them as special regist,e.rs and distinguish them from regular callee
save registers.

26

prologue) of the procedure and restores them at the exit (epilogue) of the
procedure, all at once. In other words, a procedure does not incrementally
save them depending on the control path. The assW!1ption is true of all
the compilers we know of including GNU C compilers. The programmer's
manual of Mips [42] explicitly states that caJlee-save registers are saved at
entry. This assumption validates an interesting technique for blocking a
thread and resuming the parent in a consistent state, called epilogue code
threading, which is further described in Section 2.4.3.

2.3 .3 Summary: Where is Context?

When a procedure invocation I is inactive (i.e., its stack frame is not at the
top of the st.ack), the relevant context for I consists o(: (1) the local and
temporary variables of I, (2) the incoming parameters of I, (3) the stack
pointer and frame pointer of I 's frame, (4) and the callee-save registers of
I. Locals and temporaries are in I's frame; incoming parameters are in the
frame of I's caller. The frame poioter is saved in the frame of the direct child
of I (unless the direct child does not save it at all). The stack pointer is the
frame pointer of the direct child of I. Hence it may still be in the register
or saved in the frame of the grandchild of the thread. Finally, callee-save
registers are hard to locate. The next section further details how to locate
the first three constituents and how to capture the callee-save registers.

2.4 StackThreads: Framework and Implementa
tion

2.4-1 Overview

The ba.,ic execution scheme of Stack Threads is simple and has already been
published elsewhere by the authors [71]. When we fork a new thread that
evaluates a procedure I , we call I just as a sequential call. When I blocks,
it can resun1e its caller by moving its frame from the stack to the l1eap
and unwinding the stack. Since the caller can be rescheduled even if the
callee blocks, we effectively create a new thread of control in this sequence.
When I is later rescheduled, the context is restored on top of the stack and
control transfers to the point where I blocked. What needs to be clarified is

27

which part of a stack frame and registers must be saved/restored and how
lo correctly capture them from conventional C stack frames.

2.4.2 Creating Threads by C Procedure Calls

Suppose we wish to fork a new thread which evaluates the body of a C proce
dure f . The parent of the thread just calls f, passing parameters in ~xactly
the same way as normal C procedure calls. If f successfully terminates its
execution without blocking, the result value is obtained as the return value
of the procedure call. In StackThreads, however, control may return to the
caller even if f does block, in which case the return value from f is un
specified. Once f bas blocked, it does not make sense for f to return the
result value by means of C's return statement, as the caller may no longer
be scheduled immediately after the return. Hence, it is often necessary for
a thread to tell the caller whether it terminated or blocked, and, if blocked,
the location through which these two threads thereafter communicate. In
particular, so-called sequential calls must be implemented using this kind of
protocol, if the calls may be blocked. StackThreads does not define any fixed
protocol for this, based on the observation that an appropriate protocol is
often language dependent and sometimes unnecessary. The protocol is, for
example, unnecessary in pure Actor-based languages where all method invo
cations are done via an asynchronous message and the result value is passed
via another asynchronous message. Section 2.6.3 shows example protocols
for passing the result value for a future-like commun:ication primitive.

2.4.3 B locking a Thread by Epilogue Code Threading

StackThreads provides a way in which a thread saves its context into heap
and resumes the frame just below the current frame (the cu.n·ent parent of
the thread). The current parent is the original caller (creator) when the
thread blocks for the first time. When a thread A was blocked and another
t.hread B later resumes A, B becomes the current parent for A. Notice that
Sta.ckThreads by no means forces the runtime system of the language to
resume its current parent immediately when a thread blocks. It may spin
a while, try to find other work locally or from the network, or even run
the garbage collector when appropriate, and thread libraries alone cannot
determine the right action. This is the reason why Stack Threads supports

28

the parent resuming as a library, rather than as a built-in response to a
thread blocking.

Suppose a thread P forked f, which now wishes to resume P again.
It allocates a heap frame of appropriate size by calling library function
alloc_ctxt and then calls switch_to_parent to trigger the actual context
switch, passing the allocated frame to switch_to_parent. The procedure
switch_ to_parent fills the heap frame with the context off and resumes
the current parent of f. When f is resumed later, control returns to f as if
switch_ to_parent returned normally. The allocation and the actual con
text switch are separated because the cont~xt switch code needs to perform
a language-specific action on the context (e.g., storing the pointer to the con
text somewhere for later resumption). The typical context switch sequence
is to first allocate a heap frame, save the pointer to the frame somewhere to
implement the language construct, and then call swi tch_to_parent. This
interface also allows the language implement rs to reuse the same memory
for sav ing context over multiple suspensions in a single procedure.

Let us see bow the procedure switch_to_parent works. For now, let
us make an assumption for simplicity, which we will rela..-.: later, that f di

rectly calls sYitch_to_parent , thus switch_to_parent knows the frame
of the blocking thread is just below the current frame. Stack frames and
the control flow when swi tch_to_parent is just called directly by f are
illustrated in Figure 2.2. Thick lines denote prologue or epilogue code se
quence of procedures. To later restart f as if switch_to_parent returned
to f, we have to (1) capture and save the state of f at the point when
f called switch_to_parent (G, in the figure), and (2) transfer control to
the return address off (R1 in the figure) , with the values of stack/frame
pointers and callee-save registers at the point when P called f (GJ in the
figure). The state of f consists of local variables in the frame, incoming
parameters of f , and callee-save registers. For saving locals, we need the
highest and the lowest address of the local variable save area in the frame
off, and for incoming parameters, we require its size (its offset is a con
stant through all procedures). Saving callee-save registers is more complex.
Since we do not know which callee-save rcgL~ters switch_to_parent de
stroys, the only feasible way to capture the callee-save registers at C, is to
l•ctually run the epilogue code of switch_to_parent and then capture callee

29

...... -..a~------~--~--~--------------------------------L---------------------------------------

Rr

Prologue code

switch_to_parent-

the currenl/lOSition

f
Epilogue code

p
The handler which captures 1--------'
all callec save register~

Figure 2.2: Control flow and stack frame layout when P forked f , which
called svitch....to_parent to block f. The control is at the point denoted
by the current position and we now resume P. We copy local variables,
temporaries, and parameters off to heap within switch_to_parent and
capture callee-save registers in a special handler that saves all callee-save
registers. Dotted line indicates the control path along which we resume P.

save 1·egisters there.5 We achieve this by modifying the return address of
svitch_to_parent so that it jumps to a special handler routine after run
ning the epilogue of switch_to_parent. The special handler routine saves
all callec-save registers defined by the register usage convention and then
jumps to the epilogue code of f. The epilogue code of f then restores the
callee-save registers f uses and retur-ns to P. The control path along which
we save cal\ee-save r egisters for f and. resume P is indicated. by the dotted
Line io Figure 2.2. otice that the control path is equivalent to the regular
control path, except that. the rest of the procedur-e body of f is just skipped.

6'A'e might uow which caJlee-sa.ve registers svitch _to_pa.rent is using by looking at
assembly code generated from it , or by writing it in assembly in the first place. In gen
eral, however, svitch_to_parent is called indirectly from f. ln that case, restoring only
caUee-save regh; ters dest.royed by svitch_t o_parent does not. restore callee-save registers
correct ly.

30

Figure 2.3: Control path along which we resume the current parent of f
(general case). R turn addresses of all parents but the direct child off (b
in the figure) are redirected to the epilogue code of its parent. The return
address of b is redirected to the special handler that saves all callee-save
registers.

We have so far asswned that svi tch_ to_parent is directly called from
f. Let us relax this assumption and now consider a general case where
switch_ to_parent may be called indirectly from a procedure that is called
from f . Suppose P forked f , which called a function b, which finally decides
to call svitch_to_parent to block f , perhaps from another procedure which
is called from b. The generalized situation is illustrated in Figure 2.3. The
semantics we implement is that f later restarts computation as if b returns
to f. Io other words, switch_to_parent saves the context off and resumes
P , while aborting all computation j1·om switch_ to_parent back to f.

Obviously, the above semantics is rather inconvenient for language imple
menters. A much more convenient and natural semantics would be that we
resume P when f is blocked and we later restart f as if svitch_to_parent
returns to its direct caller. In other words, we save the context of all the call
cha ins between f and switch_to_parent and restore all of them when f
later restarts. As we will discuss later, this semantics is hard to implement
in some procedure calling conventions. Our semantics needs to save/restore
only one frame per blocking/ resuming.

31

........ ~~~--~~~~--~~~----------------~~--------------------

StackThreads allows switch_ to_parent to be called indirectly for the
sake of language implementers. If it were calla.ble only from the toplevel of
the thread itself, a thread must always inline a code sequence that determines
whether the thread continues or blocks.6 In such cases, inlined sequences
sometimes become unpleasantly long, so we wish to inline only frequent
cases in which a thread can continue with a small overhead and leave other
ca.~es in a separate procedure.

To implement the above semantics, we modify the ret urn address of all
procedures from switch_to_parent back to b. Every frame but b is redi
rected to the epilogue code of its caller and b is redirected to the handler
which saves all callec-save registers. The control flow from switch_to_parent
to P is threaded through all the epilogue sequences in the call chain, as is
indicated by the dotted line in the Figure 2.3.

2 .4.4 Resuming a Blocked Thread by Call Chain Reconstruc-
tion

Suppose a thread A satisfies the condition whereby a blocked thread f can
now restart execution. Thread A can restart f by callingrestart _thread(c),
where cis the heap context filled by sYitch_to_parent . The basic oper
at ions are as follows; build local variables and incoming parameter regions
for 1 on top of the stack, restore callee-save registers for f, set FP and
SP to the new frame location and jump to the restarting point. Care
must be taken so that, after I finishes or blocks again, I correctly returns
to restart_ thread with the correct callee-save register state. Since we
directly jump into the middle of I , I does not run the regular prologue
sequence. This in turn implies that executing the epilogue sequence of f
does not return to restart_thread, but to the original caller of I, with
values of callee-save registers, SP, and FP for the original caller. Our so
lution for this consists of two parts. First, restart_ thread overwrites the
slots of f's frame which hold the link to the caller, so that f returns to
restart_thread with t he correct values of FP and SP. More specifically, it
overwrites the slots that save the FP of the caller and the return address.

°For c.xn.mple, in our implementation of ABCL//. checking whether or not to block at
a potential blocking poiul includt."'S four conditionaJs. Such in lined decis ioJlS increase code
size aud obscu-re the back.cnd C com piler.

32

A restart_ thread .f
(1)a llocate stack frame i{>r f.
(2)copy local variables and pammcters off,
(3)rep lacc the link to the parent off,
(4)savc all callec-savc registers.
(5)rcstorc caUec-save registers off, and
(6)jump to the re~tarting point R,.

(invalid) epi logue code

F igure 2.4: Control path along which we restart a blocked thread f. After
building a stack frame for f on top of the ·tack (1 and 2) , we replace
the return address and the FP of the parent at (3) so that f returns to
restart_thread. We then save callee-save registers (4), restore callec-save
registers captured when f was blocked (5), and jump to the restarting point.
The epilogue off is no longer valid. Hence restart_ thread restores callec
save registers saved at (4) by itself.

Second, restart_ thread saves callee-save registers before restarting f , and
restores callee-save registers by itself after f returns.

To summarize, restarting a blocked thread involves the foUowing steps:
(1) allocate a stack frame for I , (2) copy local variables and incoming param
eters onto the stack, (3) replace the li nk to the parent (return address and
the FP of the parent) with the link to restart_ thread, so that f returns
to restart_ thread, (4) save all callee-save registers, (5) restore all c:allee
save registers captured when f was blocked, and (6) jump to the restarting
point . Since f returns to restart_ thread with invaHd callee-save register
state, restart_thread restores aU call e-save registers saved at (4) after
I returned. The control path along which we restart f and f eventually

33

returns to restart_thread i illustrated in Figure 2.4.

2.4.5 Limitations and Discussion

While StackThreads aims to support as wide a range of programming prac
tices in C as possible, there are certain limitations.

First, StackThreads fundamentally relies on the fact that stack frames
are mobile, or more precisely, stack- allocated data are accessed relative
to the FP or SP. This is not the case for all-C programs and compilers, of
course. StackThreads prohibits taking the address of stack-allocated objects
and assuming the address remains valid across context switches. Worse,
even if a procedure does not explicitly take the address of stack data, an
optimizer can cache such an address in a general-purpose register and use
the address throughout a procedure. This is done for aggregate data (arrays
or structures) allocated on the stack. Overall, StackThreads discourages
alloca ing any aggregate data structure on stack. vVe believe this is not a
fata.l restriction for garbage-collected languages.

Second, the reader might realize that there are alternative choices As
to which primitives StackThreads supports. It supports saving the context
of a single stack frame (recall that in Section 2.4.3, when a thread j calls
switch_to_parent indirect.Jy through a procedure call chain, only the frame
of j is saved and other frames in the call chain are simply discarded). A
consequence is that a sequential call to a possibly blocking procedure must
check a flag after the procedure returns and cascade the unwinding oper
ation if the return value is not present. We investigated the possibility of
supporting a sequential call by the library, so that in a sequential call, the
control transfer to the caller implies the presence of the return value. We
finally concluded t his is hard to implement on some calling conventions.
To support the above sequential call semantics, the library must unwind
multiple stack frames in a single library call and later move them to an
other location, maintaining the call chain between frames. Moving multiple
frames together would be simple if stack frames would be linked with only
relative addresses. Unfortunately, however, this is not the casein some pro
cedure linkage conventions including Spare; each frame stores the absolute

address of the frame pointer of the caller. To reconstruct call chains in such
conventions, e11.ch frame would have to supply information about the frame

34

before making a sequential call. On Spare, tllis takes about 10 instructions
per frame, nullifying the advantage that the value present check is unnec
essary. Our current implementation instead imposes no overhead before a
call and the overhead is paid after the call by checking a Bag and cascading
unwinding operations as necessary.

Finally, StackThreads cannot utilize live variable information to mini
mize context switch cost. We save and restoxe the entire region that holds
all local variables for a procedure. Although this is potentially a problem,
the performance evaluation in Section 2. 7 indic11.tes that other factors are
more dominating.

2.5 Implementation and Machine Specific Details

2.5.1 General Description

StackThreads exposes the following three interfaces to the programmer.

• alloc_ctxt (desc, don'Ljree, add_nq)

• switch_to_parent(desc, ctxt)

• restart_ thread (ctxt)

Desc is a small data structure (frame descriptor) which describes the frame
format of the direct caller of each procedure and ctxt is a pointer to the
context returned by alloc_ctxt. Set don 'Lj1·ee? to 1 to request that the
context should be freed by the runtime system before the thread is resumed.
Set add_req to request additional memory co-allocated with the context.
This is provided because it is often the case that the language implemen
tation must allocate a language-specific data structure a.~sociated with a
context switch. The following discussion ignores these parameters for the
sake of simplicity.

A frame descriptor at least contains a fi eld t.hat links itself to the de
scriptor of the caller. The chain ends at the descriptor of the thread that
is about to block. It may also contajn some machine dependent fi elds
that provide information hard to achieve from the current procedure. As
a design criterion, the overhead for setting up a descriptor should be as
sm11.ll as possible, because a descriptor should be setup when a thread

35

call~ a procedure that potenlially blocks the thread. Macros for setting
up frame descriptors of a thread and an intermediate procedure between
a thread and alloc_ctxtfsvitch_to_parent are provided. We call the
former SET_THREAD_DESC and the later SET_LINK_DESC.

We have implemented StackThreads on two platforms, Spare and Al
pha. Below we schematically illustrate each procedure and how it obtains
necessary information on each platform, with non-trivial part underlined.

First, alloc_ctxt is shown as follows.

alloc_ctxt (desc don'Lfree, add_,·eq)

{

}

TL, TH = the lowest/highest address of the th?'ead 's frame;

c = malloc (TH - TL + argument size + adtL•·eq) ;

initialize c with doTI'Lfree, arg?tment_size etc.;

return c;

By traversing the descriptor until the end, we can easily locate the de
scr iptor of the thread. On both platforms , we obtain the argument size from
the descriptor of the thread. That is, before the thread makes a call to a
procedure that may block the procedure, it sets the size of arguments by an
extension supported by GNU C compiler __ builtin_args_info(O), which
returns the size of paran1eters of the current procedure.

A less obvious is bow to obtain the lowest and highest addresses of the
thread's frame. We must be able to traverse the real chain of stack frames
in parallel with traversing the chain of descriptor. It turns out tbis part is
very machine specific. We describe details in subsections for each platform.

svitch_to_parent is schematically shown as follows.

switch_to_parent (desc, ctzt)

{

fm· each frame £between the current and the grandch-ild's frame {

set f 's return address to the epilogue of its parent;

}

cta:t->m = the child's 1'et1<rn address;

set the child's return address to the special hand leT that saves

<1ll callee save •·egiste1·s;

36

}

dump the thread 's fmme to ctxt ;

dump the thread's arguments to ctxt;

I* tell the handler necessary informatioTI •I
R = ctxt->m;

C = ctxt->callee_save_regs;

return; I* act~<ally begins epilogue code th1·eading •I

We modify the return address of every intermediate frame from the cur
rent frame up to the frame for the grandchild of the thread, to its parent's
epilogue code. On both platforms, we obtain the epilogue code of a proce
dure by an extension supported by GNU C, which allows the address of a
label to be used as value. That is, before a thread calls a procedure that
potentially blocks the thread, it writes its epilogue code to the descriptor.
A code fragment is illustrated in Figure 2.5

After all intermediate frames have been redirected , the child frame's
return address is set to a special handler that saves all callee-save registers
in ctxt. The handler requires the address where callee save registers should
be stored and where to transfer the control after that. They are provided via
global variables shown as Rand C in the figttre. When svitch_to_parent
returns, it actually returns to the epilogue code of its parent, which in turn
returns to the epilogue code of its parent, and so on. When the child of
the thread returns, it jumps to the spec,ial handler. The handler saves all
callee-save registers, whose state is now valid for the thread, and returns to
its parent, obtaining the address via R. Again, we postpone the discussion
as to how to traverse the real frame chain in parallel with descriptor chain
and l10w to find the return address in each frame.

Finally, restart_ thread is shown below.

restart_thread (ctxt)

{

cs[N];

frame = alloca (adequate size for ctxt 's args and f•·ame) ;

build fmme of ctxt in the new frame;

build args of ctxt in the new frame;

link the new frame wi'th the CU1Tent frame;

copy ctxt->callee_save_,.egs to cs;

37

}

ra = ctxt->ra;

I • ctxt can be freed here • I
restore_proc (new_fp, new_sp, ra, cs) ;

RETURN:

•·est01·e callee save registers for itself from cs;

That is, it expands the stack via aUoca by the size t.hat adequately con
tains both parameter area and the frame of the thread being resumed and
restores dumped images on the newly allocated area. So far, nothing is
tricky. We then link the new frame to the current frame, so that the re
sumed thread returns to this procedure. This actually overwrites the return
address of the new frame to the address labeled as RETURN in the above. The
parent FP is modified similarly. Finally we transfer control to the thread,
wltich is done by an assembly routine called restore_proc. Before calling
restore_proc, we copy the dumped callee save registers on stack. It is nec
essary for being able to free ctxt before restarting the caller. Restore_proc
swaps the current contents of the callee save registers and the contents in
cs, and jump tom, setting SP and FP appropriately. Care must be taken
in calling conventions where a procedure may not use FP. In such calling
conventions, a procedure may use the frame pointer register for arbitrary
puxpose. Setting FP 'appropriately' in such calling conventions requires us
precisely know if the frame pointer register is used as FP, used as a general
purpose register, or not used at all by a procedure. We clarify how to know
it on Alpha in Section 2.5.3. What happens when the thread returns? It

returns to the label RETURN. There, the state of the callee save registers is in
general invalid , but FP is valid. FP is valid because we appropriately over
wrote the saved frame pointer in the new frame before restarting the thread,
thus set appropriately in the epilogue code of the restarting thread. Tltis
guarantees that cs after RETURN is addressed correctly. 7 Here we must clar
ify how t.o find the location in the thread's frame where the return address
and the frame pointer of the parent are saved.

The discussion so far made it clear t-hat we must be able to:

• traverse the real frame chain in parallel with the descriptor chain.

• locate wltere the return address is saved in a frame, and
7Since restart_thread use.o;: alloca, cs must. be addressed via FP.

38

-

int f (x, y, z) {
if (x > 0) {

return

} else {
&&EPILOGUE;

switch_to_parent (...);
}

EPILOGUE :
}

Figure 2.5: The skeleton of a StackThreads procedure. The label EPILOGUE
is put at the end of the procedure and captured by && operator. EPILOGUE
refers to the epilogue sequence of the procedure.

• know if a procedure uses FP, and if it does, for what purpose and
where the register for FP is saved in the frame for a procedure.

We now clarify machine specific details on Spare and Alpha.

2.5 .2 Spare

Implementation on Spare has been done using GNU C compiler version
2.7.2 under the Spare version 8 calling convention [68). As the register
usage convention, we used the - mflat option, which does not use register
windows. This convention retains interoperability with legacy C binaries
that use register windows.

In -mflat convention, non-leaf procedures always setup FP in the reg
ister %i7. Hence any non-leaf procedure saves the parent FP in its stack
frame. Obtaining the location of them is not straightforward. The stack
layout of the -mflat convention is shown in Figure 2.6. It locates them at
the lowest two words of the local variables save area, pu tting the caller FP
at the bottom and the return address next. The offset of this area from
both the FP and the SP varies from one procedure to another . Fortunately,
however , t he space just below the local variables area is for stack allocation
via alloca and we can obtain the address of the bottom word by r questing
zero(!) bytes using the aUoca (i.e., alloca(O)) before making any other

39

alloca rcquest.8

To swn up , before a thread calls a procedure which may eventually call
switch_to_parent, it writes the result of alloca(O) to the frame descrip
tor. Every intermediate procedure between the thread and alloc_ctxt (or
switch_to_parent) simi larly writes the result of alloca(O) in its frame
descriptor. Having the cha in of descriptors each of which contains the lo
cation where the parent FP is stored, traversing the real stack frame is
straightforward.

2.5.3 Alpha

Alpha uses register $15 for frame pointer. However, the calling convention of
Alpha (25, 26] is much more complex than that of Spare. First, a procedure
may not establish a frame pointer. Such procedures acce.ss all local variables
via SP and may use $15 as a general-purpose register or may not use it at all.
Second, even if $15 is used and thus is saved in a frame, its location is not
stylized at all. $15 is treated as a regular callee-save register and the location
where it is saved depends on all the details of which callee-save ·registers are
used by the procedure. Finally, even if $15 is used as FP, it does not point
to the highest address of t he current stack frame (stack grows downward).
It instead points to the lowest address of the fixed area of the frame. That
is, a prologue code of a procedure .first expands stack by subtracting the size
of the frame from SP, and copies the new SP to $15. SP may be changed by
alloca, but $15 is constant through the invocation and is used for accessing
local variables hereafter.

The ftrst problem may not be fatal , because one can force a procedure to
establish FP, either by a compile option supported both by GNU C and the
native C compiler of Digital UNIX, or by calling a!loca. The third problem
may still not be fatal. Without a pointer to the highest address of the
frame of the blocking thread, we cannot precisely determine which portion
of the stack should be saved. However , as the last resort, one may be able to
overestimate them somehow. Probably, t be second problem is the most fatal

8The reality is slightly more complex. There ma.y be one word gap between the address
returned by alloca(O) and the address where the caller FP is saved. U.l that ca'5e, the
returned address con-tains not.hing. Fortunately, we cau distinguish these two cases by
reading the oue word above tbe retur.ned add ress and testing if this word contains the
address of a text segment or an address in the stack.

40

parameters
arg size

68

I Locals &
temporaries

FP

Lo cals

Return address
Alloca

allocation c aller's FP

SP

1 Stack Growtb

Figure 2.6: Stack frame layout of GNU C Compiler OIJ Spare with -mflat
option (ignore register windows). The two worcls just above the aUoca region
are the caller's FP and return address.

41

one. Without knowing where the parent FP is saved, we cannot establish
link between the restarting thread and restart_ thread.

All these features are problerna.tic not only for Sta.ckThreads, but also
for other language constructs, most notably, exception handling. Operating

systems on Alpha {Digital UNIX and Windows NT) supports mntime pro
ced~tre descriptor for implementing this kind of \musual control constructs.
It basically provides mapping from a function {actually, any code address
within a fun,ction) to the descriptor of the stack frame for a fuoction. The

descriptor provides various kinds of information for the frame, including its
size (of the fixed part), whether or not it establishes FP, which callee-save
registers are saved, where the return address is saved, and so on. With such
support, everything becomes at least implementable.

Traversing stack in alloc_ctxt jswitch_to_parent does not have any
difficulty. lL first looks up its own procedure descriptor. It tells us where the

return address of the current procedure is saved. Vie read it and then ask
for the procedure descriptor of the caller, using the obtained return address.
In this way, we can trivially traverse the real stack frame chain in parallel
with the chain of {StackThreads) descriptors.

Setting FP and SP appropriately for restarting a procedure should be
done carefully, but possible with runtime procedure descriptor that tells us
how does the restarting procedure use $15. If the procedure does not use $15

at all, we do not have to set $15 before restarting it. Since it does not access
$15, the current value of $15 does not matter for it, and since its epilogue
code does not destroy $15, it will retain the original value, when lhe control
reaches restart_thread again. \lfhat if it uses $15 as a general-purpose

register? $15 is set to the original value captured wl1en it blocked. When
it later ret.nrns to restart_ thread again, its epilogue code will restore the
FP of restart_thread. Finally, when if it uses $15 as FP, we set $15 so
that it points to the appropriate point in t he newly constructed frame.

While this kind of support is very attract ive, the ost for associating a

code address to its frame descriptor may be significant. Although we have
not fully examined the typical cost of the lookup, it seems to take roughly
a hlmdred instructions.

42

2.6 Implementing Higher Level Abstractions on

Top of StackThreads

2.6.1 Remote Read

Figure 2. 7 illustrates a simple example in which a procedure suspends its

computation when it needs to read remote data". It first checks whether the
data is local. If the data is remote, it allocates a conte..xt, sends a request
message to an owner node, and calls switch_to_parent to suspend the

procedure. A protocol is defined so that the read datum is put in the global
vadable R before the procedure is later reactivated. Prior to blocking, a
descriptor of the stack frame is filled by SET_THREAD_DESC(td) and passed

to alloc_ctxt and switch_ to_parent to carry the information necessary
to save and restore the stack frame.

2.6.2 Fork-Join

Consider the simple fork-join protocol illustrated in Figure 2.8. A master
thread (master) forks a number of child threads {task) and waits for a ll the
crea.ted threads to finish. The master and all the children share a counter

(a sync object) which keeps the number of unfinished tasks. The master
forks child threads simply by calling the C procedure task in a loop and
then calls join_children to wait for their completion. Assume each task

may block during its computation. The master blocks if some tasks are still
unfinished when the master tries join_children. There are basically two
scenarios. If no children actually block, every procedure call to task simply

decrements t he counter before returning to the master (line 13). The master
then checks t he counter in join_children, to find the counter is already

zero, and falls through (line 42). If, on the other hand, any child is blocked,
the counter may not be zero when the master checks it in join_ children.

In that case, the master allocates the heap context, writes the context to the
counter, and calls switch_to_parent to block itself (Line 43- 51. When the

last child finishes, it will find the context written in the counter and restart
the master {line 16- 18). This example illustrates how to design and irnple

ment synchronizing operations (i.e., operations that may trigger a context
switch) on top of Stack Threads primitives in a simple case. In t hjs example,
join_children is the synchronizing operation. In general, a thread which

43

1 : {

2:

3:

4:

5:
6:

7:
8:

9:

10:

11:

12:

13:

14:

15:

16 :

17 :

18:

19:

20:

21:

22:

static struct thread_desc td[l] ;

I• try to read DATA to x •I
if (is_local (data)) {

x = data->val i

} else {

}

char * c ;

SET_THREAD_DESC(td);

c = alloc_ctxt (td);

remote_read_request (data, c);

s~itch_to_parent (td, c);

I • returns here when unblocked • /

x = R->val;

I• X has now the right value •/

EPILOGUE:

Figure 2.7: A simple code fragment which blocks the current procedure if
data is remote. Tf remote, it fills a frame descriptor, allocates context, sends
a remote read request, and switches to its parent.

44

~--~--=---~-------------

calls a synchronizing operation must ca.Il SET_TI!READ_DESC(td), which puts

information of the current frame in t he area pointed to by td, and pass td to
the synchronizing operation. The synchronizing operation checks th~ syn
chronizing condition and when it decides to block, calls SET_LINK_DESC(Ink,

td) , which fills the area pointed to by l7Jk with information about the current
frame and links Ink to td .

2.6 .3 Return Value Passing Protocols

StackThreads a llows a thread to return a value via the normal C return se

quence when the thread terminates without blocking. Once a thread blocks,
however, it does not make sense for a thread to return a value in t his way,
because the original caller may not be present just below the current frame.

This is inconvenient when building future-like primitive or even a sequent ial
call. Here, we sketch how to express such abstractions in StackThreads,
using two previously published schemes as examples.

Concert Hybrid Execution Mode l

Figure 2.9 shows a variant of lazy context creation scheme in the Concert

hybrid execution model [57], changing unimportant deta.ils for the presen
tation. Lazy context creation defines how a potentially blocking procedure
passes its r sult value to the caller, given that control may return to the

caller even if the callee has not finished. Suppose procedure f calls proce
dure g, which may block. If g finishes without blocking, g dears the global
flag blocked and returns the result value via C's ret urn statement (line 45-

46).9 If 9 blocks, on the other hand, g allocates a heap context, sets t he
flag to point to the context, and switch to f. After control returns to j , j
tests the flag and cascades blocking if the flag is non-zero (linel6- 28). To

maintain the call chain between f and 9 after 9 blocks, f links 9's context to
f 's context before blocking (line 23). When 9 is later resumed and finally
finished , 9 checks if another context is linked from 9 's context and if one is,

resumes it. The return value is written in f 's context (line 47- 50).

9 The original lazy context aUocation does t.he reverse; return value is written into
memory, while t.he Ciag is returned to the procedure.

45

1:
2:
3:
4:
5:
6 :
7 :

t ypedef struct sync {
int count; I• # of unfinished tasks • I
char • wai t; I• waiting context •I

} • sync_t;

void task (s)
sync_t s;

8: {
9: . . . do v ork . assume we may

block during computation

I• I am nov finished •/
s->count--;
I • if everybody has finished and the

master is w·aiting., wake up the master • I
if (s ->count == 0 && s->wait) {

restart_thread (s->wait);
}

EPILOGUE:

void master
int n ;

10 :
11 :
12:
13:
14:
15 :
16:
17 :
18 :
19:
20: }
21:
22:
23:
24: {
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39 :
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

(n)

static struct thread_desc td [1];

I • fork N child tasks • I
sync_ t s = ma.ke_sync (n) ;
for (i :::: 0; i < n; i++) task (s);

I • wait for everybody to finish • /
SET_THREAD_DESC(td); join_children (s, td);
I • continue work . . . •I

EPILOGUE: ;

I• TD = descriptor of MASTER •I
void join_children (s> td)

sync_t s; thread_desc_t td;

if (s->count > 0) {

}

I • when there are unfinished
tasks, we switch to parent • I

struct thread_desc ln.k.[1] j char • c;
SET _LINK_DESC (lnk, td) ;
I • allocate context. write it to S,

and SWITCH_TO _PARENT • I
c = alloc_ctxt (lnk) ;
s->wait = c;
s witch_ to_parent (lnk, c);

EPILOGUE: ; }

Figure 2.8: A simple fork-join protocol. The sync object (s) counts the
number of unfinished tasks. The master blocks on a. sync object by leaving
the context in it. A finished task decrements the counter and the last task
wakes up the master if the master is waiting.

46

---------------~-------------

1:
2:
3:
4:

typedef struct ct:xt
{

char • ctxt; I • StackThreads context •I
int result_val; I• result value •/
struct ctxt • cont; I• link to caller •I
• c txt_t;

5:
6:
7:
8:
9:

c txt_t blocked;
void f ()
{

static struct thread_desc td [1] ;
int r;

I • code template which calls may-block procedure G •I
r = g ();
if (blocked) { I • G has blocked , thus F also blocks •I

char • c ; ctxt_t f_ctxt;

}

ctxt_t g_ctxt = blocked;
SET_THREAD_DESC(td);
c = alloc_ctxt (td);
f_ctxt = make_ctxt (c);
I • link G' s ctxt -> F's ctxt • I
g_ctxt ->cont = f_ctxt;
I • tell the caller of F that F has blocked • I
blocked = f_ctxt;
switch_to_parent (td, c);
r = f _ctxt->result_val;

printf (!•result = \ %d\ n 11
, r);

EPILOGUE:

10:
11:
12 :
13:
14:
15:
16:
17:
18:
19 :
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33 : }
34:
35:
36 :
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49: }

int g ()
{

computation of G takes place. during which G may block

I • return sequence of may-bl ock procedure •I
if (g_ctxt->cont) {

I • G has blocked. 'Write result value and wake up F . • I
g_ctxt->cont->result_val = result;
restart_thread (g_ctxt->cont->ctxt);

e lse {
I• G has never blocked •I
blocked = 0; return result ;

}
EPILOGUE: ;

Figure 2.9: A variant of the Concert lazy context allocat ion scheme. When a
procedure .9 blocks, it allocates a context and sets the global variable blocked
to it . After .9 returns, the caller (f) checks the flag and blocks if it is not
zero. The coot field of the g's context is set to the f 's context so that .9
can later wake up f when .9 finishes.

47

First Class Communication Channel Protocol

In the authors' previous work [71], we have proposed an implementation
echeme for efficient first-class communication channels. The computation
model has no inherent notion of sequential calls. All procedure calls are,
at. least conceptually, asynchronous calls. Threads communicate and syn
chronize via communication channels. To return the result value of an in
vocation, each procedure, in addition to normal parameters, take an extra
parameter, called the reply channel. A future call is expressed by a channel
creation, a procedure call that passes tbe new channel as the reply channel,
and receiving the result later from the reply channel. A sequential call is
just a special case of a future call. Given that thread creat ion is sufficiently
fast, the key question is how to implement channels efficiently.

When a thread passes a new empty channel to a new local thread, it
merely sets a special flag value that indicates an empty channel, without
al locating memory for it. When the callee wri tes a value to an empty channel
that is not yet assigned to a heap location, it merely writes the value to
a register and sets the flag of the channels to indicate it is full. When
a procedure t rminates leaving one value on the reply channel, it simply
returns t.he value as the return value of the procedure. When a procedw:e
is blocked, on the other hand , the reply channel is converted to a boxed
representation- a heap memory is allocated for it and the flag is set to the
pointer to it. This boxing operation is also performed when the reply channel
escapes from the ca!lee's context; for example when it is passed to a remote
processor or stored into a data structure. When the callee tries to receive the
result value, it checks the flag and if the flag indicates full , the value is simply
extracted as the return value of tlle procedure. A notable point of th:is model
is its generality and simplicity. There are no inherent notions of sequential
calls or even asynchronous calls. Many primitives can be constructed from
threads and communication channels, including result value passing and
mutual exclusion. Efficiency of frequent cases is preserved by efficient thread
creation am! the elaborate representation of communication channels.

Chapter 5 describes how t llis scheme is used in ABCL/ f and Appendix B
details the implementation.

48

2. 7 Performance Evaluation

2.7.1 Micro Benchmark

In StackThreads, a thread creation is just a procedure cal l. Thus the over
head for a thread creation is that of a procedure call on the target ma
chine + whatever necessary for implementing a specific language construct.
Therefore, the interesting numbers are the cost of blocking and resuming.
Table 2.2 and 2.3 breaks down the cost of blocking and resuming in cases
where sYitch_to_parent is directly called from the blocked thread. Cur
rently, the cost was mea~ured only on Spare. Numbers are given as in
struction counts on Spa.rc. The overhead depends on the number of local
variables of the procedure (l), the number of incoming parameters of the
procedure (P) and the number of callee save registers in the convention
(1·). The cost of blocking also depends on whether we must allocate a fresh
context or can reuse the context of previous blocks of this procedure. In

the register usage convention of Spare where r = 14 and a typical procedure
where l = 16 and p = 3, a block costs 267 instructions (when we allocate
afresh context) or 179 instructions (when we reuse a context) and a resum
ing costs 191 instructions. Copying locals and parameters accounts for one
third of the total instruction count for a block or a resume. In the sim
ple benchmark program in which a thread repeats blocking and resumjug,
the time taken for a block-resume pair was 2.31J.ts on l 50Mhz RyperSparc
processor. This is comparable to the re ult reported by P levyak et al [57].
As is already discussed in Section 2.4.5, our scheme totally ignores live vari
able information, copying all locals and parameters between stack and he.ap.
Nevertheless, these figures show that this possible limiting factor is not a
big problem in practice. Exp)ojting live vadable information would make l
(or p) the number of live local variables (or parameters) at the point, rather
than the total number of slots allocated for local variables (or parameters)
of the procedure. Even assuming l = p = 0 would save at most one third of
the blocking or the resuming cost. We also note that almost all instructions
for context switch are shared in a library. In the benchmark program, the
inlined sequence for blocking is only nine instntctions. All other jnstructions
are shared by a ll context switch sites or are necessary anyhow (such as the
ep.ilogue sequence). This is difficult to achieve if we inline context S\\'itch

49

Category Description # of Instructions

1. Allocate context 1-1. Calculate context size 33

l-2. MALLOC 28

l-3. Initialization 27

2. Switch to parent 2-1. Return adclress modification 22

2-2. Copy locals and temporaries 16 + 3.251

2-3. Copy parameters 10+ 5p

2-4. Set buffer for callee-save registers 11

2-5. Epilogue 6

3. Save callee-save regs 3-1. Save all callee-save registers 7+r

3-2. Epilogue of the thread n'"
Others 15

Total (with fresh
context allocation) 186 + 3.251 + 5p+ r

Total (without fresh
context allocation) 98 + 3.251 + 5p + r

Table 2.2: Breakdown of the blocking cost in# of instructions. Parameters l ,
p , and,. refer to the number oflocals and temporaries, incoming parameters,
and caliee save registers , respectively. In 2-4., we set the address of the buffer

to a global variable, in which callee save registers are written in 3-1.

sequences to exploit live variable information.

2.7.2 Application Benchmark

Experimental Conditions

We measured performance of three applications listed in Table 2.4, which

also shows how threads are forked and switched in each application.
For each application, we first wrote a pure sequential algorithm in C++

and compared it with ones that are augmented with calls to StackThreads
primitives. For the evaluat ion i:n this chapter, the augmented versions use
Stack Threads prin1itives directly from C++ programs, rather than indirectly

from ABCL/f. Applications are compiled with GNU C++ (g++) with the
highest (-04) optimization level and all programs run on ;~ ingle processor
(HyperSparc 150"Mbz) workstation. There are two augmented versions, one

9depends on the Lhread

50

--

Description # of instructions

1. Setup 21

2. Copy locals and temporaries 16 + 3.251

3. Copy parameters 10 + 5p

4. Reinstall caller links 13

5. Copy callee-save registers to stack 1+ 2r

6. Check if it should free the conte.xt 6

7. Swap callee-save registers with stack 1+ 2t•

Total 68 + 3.251 + 5p + 4•·

Table 2.3: Breakdown of the resuming cost in # of instructions. Param
eters l ,]l, and r refer to the number of locals and temporaries, incoming
parameters, and callee save registers, respectively.

for evaluating fork overhead and the other for evaluating fork overhead as

well as switch overhead. More specifically, we evaluated the following three

versions:

SQ: True sequential execution in C++. No multithreading overhead is

in1posed.

FK: SQ + fork overhead. This version forks threads and checks synchro
nization conditions, at every point where they would be required in

a true parallel/ distributed execution. It also forks a new thread at
each sequential call to a potentially blocking procedure. A potentially
blocking procedure is a procedure that may check a ynchronlzation
condition in its body. This is necessary because Stack Threads does not

directly support a sequential call to potentially blocking procedures.
The return value from a potentially blocking procedure is obtained via

a first class channel protocol presented in Section 2.6.3.

SW: FK + switch overhead. We artificially block the thread at some po
tential blocking points. The exact conditions in which a thread blocks

differ from one application to another.

FK is intended to estimate the overhead imposed on single processor exe

cution of parallel binaries, whereas SW is meant to emulate execution on

51

parallel processors, assuming zero communication overhead. We assume
zero overheads for communication so that switch overhead is not masked by
other sources of overhead.

BH simulates motion of particles that interact with each other by New
tonian force. It builds a large tree structure (BH-tree) and force calculation
for a particle traverses a part of the tree. A true parallel version parti
tions particles among processors and processors work in paraU.el. A thread
blocks when it accesses a node of a BH-tree that is not present locally. SW
version emulates this behavior on a single processor, by blocking a thread
when it accesses a node that has not been accessed 'recently.' When a force
calculation starts, no BH-nodes have been accessed recently. When a node
is accessed, the computation is blocked and the node is marked "recently
accessed." Once a node is marked, accesses to the same node do not cause
further blocking. We clear aU the marks every 128 particle. This emulates
an execution where each processor is responsible for 128 particles. Since
each recursive call to a BH-node potentially encounters a remote oode, each
recursive call is a potentially blocking procedure call. Hence we fork a thread
at each recursive call bot.h in FK version and SW version .

RNA is a combinatorial tree search problem with pruning. A true parallel
program extracts parallelism simply by making recursive calls in parallel
when the recmsion depth < D , where D is given at command line. The
processor on which a parallel recursion is invoked is determined randomly.
A thread blocks to wait for the completion of recursive calls. SW version
of R..'NA emulates this behavior by blocking a thread at every recursive call
whose recursion depth < D. In the true distributed memory execution,
the caller of a remote call is not blocked if it has other works when the
remote processor is evaluating the remote call. Thus, this pessimistically
emulates execut ion on a true distributed memory machine in terms of switch
frequency. A thread is forked at each recursive call both in FK version and
SW version, regardless of the depth.

CKY is a parser for context free grammars. Given an input sentence of
length n, it calculates 1/ 2 n(n + 1) sets of symbols, which we denote asS;,;.
(0 :o; i < j .::; n). A true parallel version forks a separate thread for each
S; ,3 and distributes them on processors. The thread which computes S;.;
requires S;,k and SkJ for any k (i < k < j) and blocks if data bas no t been
produced wheu necessary.

52

Application FK/SW fork a thread at: SW switches a thread when:

BH each visit at BH tree node the node is not accessed
recently

RNA each visit to a node in the the depth of the node < D
search tree (D is a constant)

CKY each computation of S;,; S;,; accesses S; ,k or Sk J

before computed

Table 2.4: Benchmark Applications

SQ version of CKY calculates S;.; (0 ::; i < j ::; n) , one after another, in
an order that S;,; with smaller j -i are computed before S; ,; with larger j -i.
This naturally guarantees that necessary data has already been produced
when necessary. FK attaches a thread for each computation of S;,;. SW
reverses the order in which S;,; are computed. This scheduling order blocks
all threads with j - ·i > 1 at least once.

Benchmark Results

Figure 2.10 shows the execution time (relative to true sequential execution)
of the FK and SW version, on Spare and Alpha. FK estimates the overhead
that appears when we e.xecute the parallel program on a single processor.
The sources of overhead include forks, synchron ization condition cber.ks, and
creation of synchronizing data structures. SW estimates the fork and switch
overheads that appear in true parallel execution on distributed memory par
allel computers (other sources of overheads such as communication overhead
is not included) . In all the benchmarks, FK overhead is within 15% and SW
overhead is within 30%. In CKY, the fork overhead is relatively high be
cause accesses to S;,k and Sk ,J by the thread which computes S;.;, which are
just an array reference in true sequential version , are performed by synchro
nizing accesses. The overhead also includes creation of synchronizing data

structme for each S;J.

Table 2.6 and Tab! 2.7 show the execution t ime of each version (call
them TsQ, TFK, and Tsw, respect ively) in milliseconds on Spare and Alpha,
respectively. Table 2.5 shows the number of forks (F), lbe number of syn
chronizations (S), and the number of blocking (B) which occurred in t he

53

Spare

1.4

1.2
,- J

I - ,- ,- jel 0.8 1- -- r---
0.6 1- -- t-- 1- DSW
0.4 - ·--'

0.2 1- -- 1- 1-

0 '--- ~ '--'--

BH RNA CKY

Applic.:aLion

;\lph3

1.6

1.4

~ 1.2

~ I

-li 0.8

~ 0.6
a
~ 0.-1

0.2

Bl·l RNA CKY

Applictttion

Figure 2.10: Overhead of each version relative to true sequential program
on Spare and Alpha.

54

Application No. of forka (F) No. of syncs (S) No. of blocks (B)
BH 1,298,124 1,323,554 68 ,360
RNA 160,411 177,341 33,861
CKY 14,560 941,690 28,524

Table 2.5: Number of forks in FK/ SW (F) , synchronization or potential
blocking points in FK/ SW (S) , and actual blocks in SW (B).

Application TsQ TpK Tsw
BH 5,224 5,321 6,338
RNA 1,095 1,101 1,395
CKY 5,803 6,602 6,746

Table 2.6: Execution time for each version (T.sq , TpK, and Tsw) in millisec
onds (on Spare).

Application TsQ TpK Tsw
BH 1,016 1,126 2,351
RNA 371 398 570
CKY 3,438 3,664 3,869

Table 2.7: Execution time for each version (Tsq, TPK , and Tsw) in millisec
onds (on Alpha).

55

benclunar)<. In other words, S is the number of potentially blocking points,
and B the number of actual context switches. Execution times are given in
milliseconds on HyperSparc 150Mhz processor and Alpha 333 lhz processor.
As expected, the cost of switch is somewhat hlgher on Alpha.

(Tsw - TpK) / B gives us a rough approximation of the cost of a switch.
Although they vary depending on application they are roughly from 51's to
15J'S on Spare and from 5!'5 to l8J'S on Alpha. We have no fully analyzed
the source of the different switch cost in the applications.

2.8 Summary

StackThreads offers a practical approach to implementing efficient multi
threading languages. It supports very efficient thread creation and thread
switching between normally 'vr.itten 0 procedures. Unlike previous imple
mentations of efficient multithreading, it does not require extensive coopera
tion from the code generat,or. Thus, the compiler writer can map the sequen
tial constructs of the language straightforwardly onto C, wh ile using the low
overhead multithreading support of StackThreads for parallel/ concurrent
primitives. Performance measurement through three parallel applicat ions
shows encouraging results on Spare. Overheads for fork and synchroniza
tion checks are never significant (< 15%). Switch cost is comparable to one
of the best-known results [57] which, unlike ours, needs a cooperat ing com
piler. Finally, switch frequency in these applications is low enough to make
the overhead of switches acceptable in practice (< 30%).

56

,...... .

Chapter 3

Garbage Collection

This chapter describes the design and implement.ation of a garbage collection
scheme on large-scale distributed-memory computers and reports various
experimental results. The collector is based on the conservative GC library
by Boehm & Weiser. Each processor traces local pointers using the GC
library while traversing remote pointers by exchanging "mark messages"
between processors. It exhlbi ts a promising performance. In the most space
intensive settings we tested, the total collection overhead ranges from 5%
up to 15% of the application running time (excluding idle time) . We not
only examine basic performance figures such as the total overhead or latency
of a global collection , but also demonstrate how local collection scheduling
st rategies affect application performance. In our collector, a local collection
is scheduled either independently or synchmnously. Experimental results
show that the benefit of independent local collections has b een overstated in

the literature. Independent local collections slowed applicat ion performance
to 40%, by increasing the average communication latency. Synchronized
local collections exhlbit much more robust performance characteristics than
independent local collections and the overhead for global synchronization is
not significant. Furthermore, we show that an adapt ive collection scheduler
can select the appropriate local collection strategy based on the applicat.ion's
behavior.

57

3.1 Introduction

Although many high-perfo1·mance parallel programming languages and their
implementation techniques have been studied, the performance of garbage
coJ!eclion on large-scale paraJ!el machines is not yet weJI understood. In par
ticular , performance studies of garbage coJ!ection on distributed-memory
paraJ!el computers are rare, presumably because of the complexity of im
plementation. This chapter describes the design and implementation of a
garbage collector for large-scale distributed-memory paraJ!el computers and

examines its performance.
We extended Boehm & Weiser's conservative garbage coJ!ection library

[15, 16] to distributed-memory parallel machines. Our coJ!ector preserves
the spirit and advantages o{ Boelun & Weiser's GC including the capability
of working with C a.nd C++ p.rograms and a modest heap expansion policy.
The collector is used as part of the runtime system for a concurrent object

oriented language ABCL/ f.
Like other collectors, our coJ!ector consists of two levels-local and global .

In addition, it has two kinds of local coJ!ection, namely, independent (or
a.synchf'onous) and synchronized. An independent local collection is a collec
~ion in which a coJ!ec~iug processor independently reclaims its local garbage
without any coordination with other processors. A synchronized local col
lection is a collection in which all processors perform a local collection at the
same ti.nle. These two local collections diller only in bow they are scheduled.
Au independent coJ!ection is invoked without any notification being sent to
other processors, while for a synchronized one, notification is sent to a mas
ter processor, which requests aJl other processors to do a local coJ!ection.
A global collection is a simple distributed marking coJ!ectiou in which aJI
processors cooperatively traverse the entire object graph, exchanging "mark
messages" to trace remote pointers.

We investigate performance characteristics of the collector using four
applications that exhibit various allocation and communication behaviors .
Conclusions derived from the experiments include:

• The cost of barrier synchronization for synchronized local coJ!ectiou
and global collection is insignificant, at least in our e:xperimeutal en
vironments (up to 256 processors). They are implemented with a
simplel- to-N communi ation and can certainly be improved.

58

• Several simple techniques significantly reduce the overhead of the dis
tributed marking collection. With these techniques, the overhead of
global coJ!ections becomes insignificant. Global coJ!ections occupy
from 5% to 30% of the total running time of the application exclud
ing idle time d1.e to load imbalance and communication. In the most
space-intensive setting in the experiments, they occupy at most 15%.

• Application performance is affected not only by allocationjcoJ!ection
performance per se, but also by how collections are scheduled. In par
ticular, synchronous applications, which frequently use synchronous
communication and have little intra-node parallelism, are very sensi
tive to the scheduling skew introduced by independent local coUections.

• We can adaptively select the appropriate local collection strategy by
examining application behavior. The adaptive scheduler synchronizes
local collections by default and uses independent coJ!ectious when it
presumes that the application tolerates long communication latency.

The rest of lhe chapter is organized as foJ!ows. Section 3.2 reviews previous
work on coJ!ection schemes in paraJ!el and distributed environments. Sec
tion 3.3 describes Ute design and implementation of our coJ!ector. Section 3.4
devotes to the collection selection and heap expansion policies of our collec
tor. Section 3.5 describes the experimental conditions. Section 3.6 shows
the overall coJ!ection overhead. Section 3. 7 demonstrates the i.nlportance of
collection scheduling strategies. After discussing alternatives and limitations
of the work in Section 3.8, we summarize this chapter in Section 3.9.

3.2 Related Work

Many proposed collection schemes on parallel and distributed systems are
multilevel. They typicaJ!y consist of local coJ!ectious and a global collection
and local coJ!ections are typically scheduled independently. On distributed
memory machines, global collection schemes are roughly classified into two
categories, which are reference counting schemes and distributed-marking
schemes [1, 39, 56]. Reference counting schemes keep track of how many
references exist for each object and delete objects to which there are no refer
ences. Distributed-marking schemes are natura.! e.xtensions to local-marking

59

collectors. They traverse the entire object graph, which spans mnl&iple pro
cessors, exchanging "mark messages" to trace remote references.

3.2.1 Local Collection + Reference Counting

There have been many proposals that extend reference counting schemes
to distributed-memory machines [10, 11, 30, 55, 77]. Implementations of
distributed programming languages typically favor reference counting [12)
and some parallel languages adopt them [3 , 60]. Since managing reference
counts on every pointer duplication and deletion incurs very expensive over
head, reference counting in distributed environments is often combined with
a local tracing collector and keep track of reference counts only for 1·emote

references. Each processor independently performs local collections and the
local collector counts how many remote references the processor still holds
for each remote object [11, 38, 46].

It is still an open question under what circumstances distributed-marking
collectors perform better than reference counting collectors, and tills thesis
does not address that issue. Here, we just make a few remarks that contrasts
distributed-marking and reference counting.

• Reference counting collecto.rs send messages (so called delete messages)
along 'dead' edges of the global object graph (i.e., references that
point to dead objects), whereas distributed-marking collectors send
messages (so called ma1·k messages) along ' live' ones. Therefore, as in
uniprocessor collectors, whether or not one scheme is more favorable
than the other depends on the live/dead ratio; distributed-marking
collectors will be favorable when the percentage of live objects in heap
is relatively small .

• In typical reference counting collectors, each processor triggers local
collection on its own ·initiative, followed by sending delete messages
along remote references no longer used by the processor. These delete
messages contribute to reclaiming space in the next local collection
at the remote processors. In other words, a processor performs a lo
cal collection when that processm· runs out of space, but whether or
not the coli ction is successful depends on how many delete messages
reached that processor , or, how many local collections have occurred
in other processors that send delete messages to that processor. This

60

form of ' uncooperative' local collection scheduling, which we believe
is typical in state-of-the-art systems, may unnec ssarily delay recla
mation of garbage that would otherwise be collected more promptly.
For example, reclamation of a data structure that spans N proce sors
must wait for those N processors to perform their local collections on
their own initiative. A data structure that remains mmecessarily long
degrades local collector performance, which in turn affects the overall
performance significantly.

• Our observation that independent local collections often degrade per
formance of synchronous applications (as will be presented in Sec
tion 3.7) should apply to reference counting schemes as well. 1 This
partially nnllifies the conventional wisdom that an advantage of refer
ence counting is t11at it allows processors to collect independently.

3.2-2 Distributed Marking

Many algorithms based on distributed marking have been proposed (37, 40,
56]. Since they have been studied mainly in the context of loosely cou
p led distributed environments, attention has mainly been focused on how
to avoid barrier-synchronization or tight coordination between processors.
Most of them are complex in order to overcome problems in distributed
environments such as faulty processes or lost messages, and have not been
implemented. There has been little work in the context of parallel high
performance computing. One study [41] focuses on superficial aspects such
as the number of messages or the total overhead of global collections. How
they affect overall a.pplication performance has not yet been studied. Com
pared to the many proposed algori thms, our global collector is rather simple.
Our global collection assumes reliable message delivery, no faulty processors,
and no concurrency with user programs. We are interested in the perfor
mance of such collectors and how such global collections should be combined
with local collections to achieve overall application performance.

1The same observat;ion has been reached by others, although not. published; imple
mentation of the KLl on PIM [38J uses reference counting aud provides a primitive by
whlch the programmer can explicil.ly trigger local GCs on all processors. The primitive
was found to be useful by application writers r21J.

61

3.3 Design and Implementation of the Collection

Scheme

3.3.1 Overall Design

Our collector defines local and global collections, and local collections are
further classified into synchronized and independent collections. We reuse
the basic functionality of the GC library such as heap management, pointer
identification, local pointer traversing, and local allocation. The heart of our
extension is (1) how to adapt it to distributed-memory parallel computers
where an object may be referenced from other processors and (2) when we
should invoke which collections. 1n the following subsections, we first briefly
summarize relevant information about the GC library and then describe our

extensions.

3.3.2 Boehm & Weiser's GC Library

Boehm & Weiser's conservative GC library [15, 16] is a garbage collector
that can work with C and C++ programs. An important design goal is to
minimize cooperation required from application programs. The programmer
sin1ply calls GC_MALLOC(size), instead of malloc, to allocate size bytes of
memory. Unlik malloc in the C standard library, the programmer does
not have to e>.-plicitly free the allocated memory. The garbage collector au
tomatically reuses blocks of memory that are no longer being used. Since
the runtime data stmcture of C programs does not have enough information
that precisely distinguishes pointers from non-pointers, the collector conser
vatively assumes that any value that appears to be a pointer is in fact a

pointer.
Omitting irrelevant details, free memory is managed via free lists that are

segregated by their object sizes. When an allocation request is made, the al
locator tries to find a block of memory from the appropriate free list. When
an allocation request cannot be met from the current heap, the allocator ei
ther invokes a garbage collection or expands the heap by requesting memory
from the operating system. It iuvokes a garbage collection if the application
has allocated enough memory since the last collection. This places an upper
bound of the collection frequency, as long as the request to the operating
system is successfully served. The user can customize the threshold value

62

that determines whether to invoke a garbage collection. More precisely, let·
ting H be the current heap size, A the amount of memory allocated since
the last collection, and r the customizable parameter, the allocator decides
to invoke a collection when:

H/r < A.

That is, a collection is invoked when at least one •·th (1/r) of the current
heap size has been allocated since the last collection. Smaller values of r
tend to produce less frequent collections at the expense of space.

To understand the impact of parameter ,. , let us estimate the heap size
for an application, assuming a very simple allocation behavior and a lifetime
distribution. We assume the application holds L bytes of long-lived objects
and continues allocating short-Jived objects. By "long-Jived" objects, we
mean objects whose lifetime is beyond the typical collection interval. 1n this
case, the collector tries to keep the size of the heap (H) at

H=-
1
·- L

r- 1

The application behavior in this state is to repeat the allocation of H /r =

L/(r- 1) bytes, followed by a collection which retains L bytes while freeing
H-L = L / (r -l) bytes for the next allocation cycle. For exam pie, when ,. is
minimum (i.e., ,. = 2), 2 the heap is expanded to 2£ bytes, leaving L bytes for
allocating short-Jived objects. 'Vhen r = 4., which is the default setting, the
heap is expanded to 1.33£ bytes, leaving 0.33£ bytes for allocating short·
lived objects. Notice that the heap usage of the collector is much more
modest than that of typical collectors used in implementations of heap·
ir1tensive programming languages such as SML/NJ [3].

Our extension preserves the simple interface to C and C++ programs
and the modest heap expansion policy of Boehm & Weiser's GC.

3.3.3 Representation and Management of Remote References

Exit Table

A reference to a remote object is repr sented by a pointer to a special type
of object called a stub (a.k.a. proxy). A stub for an object remembers the
processor number and the address of the object body.

'lBy definitiotl, r = 1 effectively it)hibiis garbage collection. The value for r can only

be specified as an integer. Thus the minimum value for r is 2.

63

Proce sor P

,--
' ,
: ,

------l

Processor Q

uJ ruJdre'iS .1·.

-----®

Figure 3.1: Object. A on processor Preferences object B allocated at add.ress
x on processor Q. A actually points to stub B' which is allocated on P. Stub
B' holds processor number Q and the bit-wise negation of x.

A stub actually holds the bit-wise negation of the address of the object
body, rather than the address itself, so that the local conservative collector
does not misidentify the address as valid in the local processor.3 Figure 3.1
illust-rates a situation where an object A on processor P references another
object B, which was created by processor Qat address x.

All stubs in a processor are registered in a hash table called an exit
table . When a processor receives a reference to a remote object for the
:first time, the receiver registers the object in the exit table of the receiver
processor. Upon subsequent receptions of the same address, the receiver
looks up the address in the exit table to avoid having multiple entries for

the same address.

Entry Table

To enable local colle tions, each processor keeps track of objects that are
created by the processor and may still be referenced from other processors.
Such objects are registered in a table called an entry table. Wben a pro
cessor sends a reference to an object to another processor for the first time ,
the object is registered to the ent ry table of the sender processor. Once

3 Lei.. II be the ma.xlmwn heap address, M the greatest possible pointer value, and X

any vaJid heap address. If JJ < .M /2 1 as i:; t.he case in most address space configurations,
bitwise negation of x (;::::;: ~.t[- :t) is larger tl1<u1 M - M/2 ::::::: /Ill / 2, hence is not a valid heap
address. The idea is borrowed fr.om t.he fmalizat.ion code of Boehm & Weiser's GC.

64

registered, the object is never reclaimed without cooperation from other
processors. The local collector simply regards the entry table as a root of
a local collection, so that objects that are referenced from other processors
are retained. In our collector, references can be removed from an ent-ry table
only by a global collection.

AU objects that may be referenced from other processors as well as all
stubs have the following co=ou header fields:

Flag: A flag that distinguishes the type and the status of the object. The
flag is either a stub, a body of an object registered in the entry table,
or a body of an object not registered in the entry table.

Export Count: The number of messages that contain a reference to the
object and have not been delivered to the app lication program.

The runtime system checks the :first word of an object to see whether the
object is a stub or the body of an object. If the object is not a stub, the
flag also indicates whether the object is registered in the entry table. The
role of the export count will be described in Section 3.3.3

We currently store these items of informat ion in the header of an object.
Thus, every object that may be referenced from other processors as well
as every stub must conform to this format. A better interface to C and
C++ applications would be to allocate them in a separate space so that
programmers would not have to be aware of the format. We chose to embed
the header in an object just for simplicity of implementation and for fast
access to the headers.

Obtaining Consistent Snapshots

In distributed-memory computers where references to objects are carried by
messages, the garbage collector must traverse a globally consistent snapshot
of the object graph. The definition of a snapshot includes messages that
have not yet been delivered to the application program [18]. In other words,
the garbage collector must somehow find references in undelivered messages .
An implementation of a garbage collector could achieve this by examining
the message buffer. This approach however requires the message format used
in the application be known to the collector , reducing both the reusability
and the flexibility. Alternatively, the collector could run concwTently with

65

the application and traverse a message when the application unpacks it.
This also requires a very tight coordination between the application and the
collector. The application must notify the collector whenever it unpacks
a message. Another problem with this approach is that it is difficu.lt to

guarantee that the collector will make enough progress.
The approach we took in our collector reduces the cooperation from the

application and simplifies the interface to the collector. As shown in Sec:
tion 3.3.3, all objects as well as stubs have a counter that stores the export
count. When an application sends a reference to an object to another pro
cessor, it increments the export count of the object. Conversely, when an
application receives a reference to an object from another processor, it decre
ments it. These operations are local-the creator of an object operates on
the body of the object, while other processors operate on their local stubs
for the object. The invariant is that the global summation of the export
counts over the body and all stubs for an object equal to the number of
messages that have been issued by a sender but have not been delivered
to the receiver. Before a global collection, all processors synchronize and
retain all objects whose e>.'])Ort count is positive. This can be implemented
on top of any send/receive-type message-passing interface and makes the
communication layer and garbage collector independent. The interface to
the application is also quite simple. The application simply calls export (o)

when it sends a reference to an object o and calls import (p, o) when it
receives a reference to an object o that is allocated at processor p. These
procedures increment and decrement the export counts. As long as tl:ris co
operation is given to the collector, the application freely chooses its message
format, buffering policy, flow control, and so forth.

One expense of this mechanism is that all processors must synchronize
and calcu.late the global su=ation of e>.'])ort counts. We report the over
bead of t'his process in Section 3.6.

3.3.4 Collection Algorithms

Local Collections

When a processor decides to invoke au independent local collection, it simply
invokes a local collection, regarding the entry table of the processor as a root.
It is a completely local operation.

66

When a processor decides to invoke a synchronized local collection, on
the other hand , it sends a request to a master processor. The master ar
bitrates almost simultaneous collection requests from other processors and
broadcasts a request message to all the processors. When a processor re
ceives the message, it performs a local collection and then continues. This
way, a synchronized local collection is implemented with a single request
plus a broadcast.

Global Collections

When a processor decides to invoke a global collection, it sends a request to
the master processor, just as in a syn.chronized Jocal collection. After arbi
trating simultaneous requests, the master controls the progress of a global
collection in the following steps.

Sync phase: stops the user program,

Undelivered phase: finds objects that are referenced from undelivered
messages,

Mark phase: marks objects starting from local roots of all processors, and

Finish phase: fiulshes a collection.

The sync phase guarantees that, after this phase, user-level activities
are stopped and no user-level messages are being transmitted in the net
work. This is done as follows. For each pair of processors (P, Q) (P i= Q),
processor P maintains two counters which count the number of user-level
messages sent by P to Q as well as those received by P from Q. That is, each
processor maintains 2(p- l) counters where p is the number of processors.
Each processor requests all other processors to return the number of received
messages from that processor and stops delivering incoming messages to the
application. These received, but undelivered messages are buffered and de
livered to the application after the current globaJ collection. Each processor
signals the end of this phase when all the user-level messages have reached
the receiver processor. Notice that this does not mean that messages have
been delive•·ed to the application. It simply rneans that all the user-level
messages have been delivered to the application or buffered by the collec-

67

tor running at the receiver processor. After this phase, the global collector

exclusively receives GC-related messages.4

The undelivered phase finds objects referenced from undelivered mes
sages, which are buffered during the previous phase. As mentioned in Sec
tion 3.3.3, we achieve this without examining the buffered messages directly,
by maintaining the export count for each object. Each processor scans its
exit table, reads the counter of every stub, sends counters to owner pro
cessors, and zeros the counters of stubs. Each processor then accumulates
received counts into object bodies. Objects whose exported count is zero
are the subject of the current global collection. Other objects, whose export
count is positive, are simply retained. When tllis exchange has been done,
each processor clears entries in the table for objects that are the subject of

the collection.
The mark phase begins marking from the root in each processor. This

phase proceeds as follows. Each processor initiates marking from its local
root. When the marking is finished, each processor finds stubs that are
marked during the marking and sends "mark messages" to owner processors.
Upon receiving a mark message, the receiver processor registers objects in
the mark message to the entry table. The processor then resumes local
marking from these newly registered object,s.

In this way, each processor continues local marking as far as possible and
then performs remote marking from all the stubs that were marked during
the previous local marking. In this way, senders reduce the message overhead
by requesting several items of work with a single message. In addition, we
found a similar buffering policy at the receiver side equally important for
further reducing the message exchange overhead. Upon reception of a mark
message, the receiver buffers the mark message and tries to receive further
mark messages. A processor buffers mark messages until the buffer for
mark messages becomes full or until there are no incoming messages in the
network. Figure 3.2 illustrates the main loop of this phase.

An acknowledgment for a mark message is returned when all objects
reachable from the mark message have been marked. The mark phase fin
ishes when all the processors have received a!J the acknowledgments for their

4This phase is unnecessary if the user-level program can be separated from GC mes
sages, as is the c:ase when, for example, tbe user-level program and the collect.or use
separate message buffers.

68

Figure 3.2: The main loop of the mark phase of a global collection. Each
processor traverses local pointers as far as possible, finds marked stubs in
the local traversal, and sends mark messages to other processors. Mark
messages from other processors are buffered until the buffer is fuU or until
no messages are found from the network.

69

first. remote mark in g.
There are some subtle implement<ttion issues. First, since Boehm &

Weiser's GC recognizes the exit table as a root, simply invoking a local
collection marks all the stubs in the first local marking. Therefore, we need
to deceive the local collector. Before marking from the local root, each
processor overwrites all the pointers from the exit table to stubs with bit
wise-negations of these pointers. This way, we effectively hi.de all the stubs
from the local collector, while correctly retaiiting the structure of the exit
table. These pointers are restored when the first local marking is finished.
Second, it is inefficient to scan the entire ex.i t table after every single local
marking. We need a way of quickly finding objects that are marked during a
local marking. This is a tricky task again because the local collector has no
special knowledge about stubs. We solve this problem by using a clever data
structure for the exit table. Stubs in the exit table are grouped into several
bins. Stubs in a bin all share a one-word object. When the one-word object
for a bin is not marked after a local marking, there is no possibility that any
object in the bin has been marked, so we can skip all the stubs in t hat bin.
Mark bits for the one-word objects are cleared after every local marking.
We found this technique very important. This was particularly important,
particularly because second or later local markings actually mark few stubs.
That is, most live objects are reachable from the root with a small number
of remote links.

Finally, the finish phase finishes collection by reclaiming unmarked oh
jects. Boehm & Weiser's G C defers the reconstruction of the free lists until
an allocation r quest demands it.

3.4 Collection Scheduling and Heap Expansion Poli

cies

3.4.1 Problem Statement

When an allocation request cannot he served from the current heap, the
allocator has tlu·ee choices, namely, a local collection, a global collection,
or a heap expansion. There are further choices as to which local collection
should be invoked, namely, independent or synchronized. The goal is to
avoid unnecessarily frequent garbage collections with a reasonable heap-size.

70

Figure 3.3 illustrates our policy that is explained below.

Remark: We note that the goals of most current garbage collectors, in
cluding Boehm & Weiser's GC and ours, are not to maxintize speed, but to
achieve a reasonable speed with a reasonable space. As a matter of fact,
the most aggressive policy that expands the heap until it exhausts a large
fraction of the physical memory would achieve a nearly optimal speed in
most cases (at least for small applications that are unlikely to exhaust the
physical memory, and thus unlikely to be swapped ont)s Most collectors do
not behave in this way, however. This is partially because it is clifficlllt to
correctly capture the tradeoff between time and space--we can save time by
using more space in normal circumstances, but such policy occasionally in
curs a large cost in events which occur unpredictably (e.g., swap out). Thus
the primary policy taken in most collectors is to play safe by keeping the
heap size reasonable and expanding it only when there is a strong motiva
tion to do so (i.e., when collections would otherwise become too frequent).
Our policy as to when and which collections should be invoked is based on
the same policy.

3.4.2 Local Collections

As mentioned in Section 3.3.2, when an allocation cannot be served from the
current heap, Boehm & Weiser's GC invokes a collection if the application
has allocated at least H f•· bytes since the last collection, where H is the
heap size and ,. a parameter chosen by the user. A natural adaptation of
thls policy to distributed-memory parallel computers would be to invoke a
local collection when at least H /r bytes have been allocated on a processor
since the last local collection, where H is the 'local heap size of the processor.

We slightly modified this policy to take synch1'0nized local collections into
account. Each processor is informed of the largest local heap size over all
the processors. Let us call the value M, which is made consistent at every
global collection. When a processor's local heap size is smaller than eM
where cis a constant close to 1.0 (we currently set c to 0.8), the processor
expands the heap without invoking a garbage collection. In other words,

5 Ln particular, this is almost always the case in single-task environment.s such as the
default operating system for AP1000+.

71

Figure 3.3: The decision diagram when an allocation cannot be served. It

unconditionally expands he heap to around the maximum heap size among
processors. If enough allocation has been done since the last local GC, it in
vokes a local GC. Or if enough allocation has been done since the last global
GC, it invokes a global GC. Otherwise it tries to expand the heap. Whether
or not to synchronize local GC is determined by the cri teria e>..-plained in
the main text.

72

a processor invokes a local collection when at least H /r byt.~.s have been
allocated on that processor ince the last local collection and its local heap
size is close to the maximum heap size among all the processors. Th.is policy
applies both to synchronized and independent local collections.

The policy is justified based on the following observations. If any proces
sor has already expanded its heap size to M bytes, it is reasonable for other
processors also to expand their local heaps to around M bytes. In other
words, if any processor requires Nf bytes, it is reasonable in distributed
memory computers to expand the total heap size to around nM bytes, where
n is the number of processors. In fact, if any processor requires M bytes,
other processors are, sooner or later, likely to require roughly the same
amount of space. Thus if this policy would not be taken, synchronized local
collections would become unreasonably frequent. If any processor is wlU
ing to do a synchronized local collection, other processors are also forced
to do so. The net effect would be that the frequency of synchronized local
collections becomes the maximum local collection frequency over all the pro
cessors. We avoid th.is effect simply by allowing any processor's local heap
size to be e>..-panded without garbage collection until it catches up to any
other processor's local heap size.

3.4.3 Global Collections

A global collection is invoked when a local collection is not invoked by the
criterion in the previous section aud when enough allocation has been done
since the last global collection. More precisely, letting H be the local heap
size, A1 the amount of allocation done since the last local collection, A 9 the
amount of allocation done since the last global collection, and r a customiz
able parameter, we invoke a global collection when:

That is, when enough allocation has not been done since the last local col
lection, but bas been done since the last global collection.

3.4.4 Choices b etween the Two Local Collections

When a processor decides to invoke a local collection, it must then decide
whether the collection should be independent or synchronized. The most

73

important point is that processors that are collecting do not respond to
requests from other processors. Thus a request to a locally collecting pro
cessor is delayed until the local collection is finished , increasing the latency
of the communication. As we will see in Section 3.7, tills sometimes affects

application performance significantly.
Thus the criteria of the local collection scheduler are:

• Synchronize by default (at startup or uncertain cases)

• Switch to independent mode when the system is sure that the program

is Iaten ·y tolerant

• Quickly recover from the independent mode if the decision turns out

to be wrong.

The main problem lies in the second it.em- how to detect if an application,
currently running in synchronized mode, is actually latency-tolerant. We
achieve th is by examining how mauy times each processor enters the idle
state dnriug an interval. From the number of idle state periods, each pro
cessor calculates bow performance would be degraded if idle periods would
be made longer by the receivers' local collections. Each processor reports
tills number and its processor ut ilization to the master. The master pre
swnes that the application is currently latency-tolerant if most processors

report a small degradation factor.
More precisely, suppose the system is currently in the synchronized mode

and we are about to start a synchronized local collection. For each processor,
let L be the interval between the last synchronized collection and the current
one and n be the number of times the processor became idle during that
interval. We define the degr·adation factor (D) of this interval by:

D = __!!:!!!!____
2(L+g)

where G is the estimated time of a single local collection and p = G /(L +
G), which approximates the probability that a given communication would
be delayed by a local collection on the destination processor. Given the
estimated single local collection time, G, the average additional delay when
the receiver processor happens to be locally collecting is G / 2. By multiplying
np and G / 2, we obtain the total additional delay that would have been

74

imposed if the last interval were in the independent mode. 'I'o sum up, D
represents how much the last interval would have been affected if it were
in the independent mode. Together witl1 D, processor utilization is also
collected in the master. The master presumes that independent collection
is more desirable if:

• the number of processors that report D larger than a threshold (= 0.3
in the current implementation) is less than a threshold (= one eighth
of the total number of processors), and

• the number of processors that report utilization smaller than a thresh
old (= 0.5) is less than a threshold (= half the total number of pro
cessors).

The first condition says that few processor. would be damaged by the in
creased average latency, hence the application will be latency-tolerant. The
second coudition rules out cases where many processors are idle, so having
global synchronization on each local collection unlikely to matter. In such
cases, we prefer to insist on synchronized local collection for safety.

When the system is running in independent mode, on the other hand,
each processor individually checks its processor utilizat.ion after each inde
pendent collection. If utilization is lower than a threshold (= 50%) the
processor notifies the master. The master decides to revert to the synchro
nized mode when a predetermined number (= one sixteenth of the total
number of processors) of notifications have accumulated.

The actual state transition is controlled by a three-state ((l, 0, or -1)
saturating counter. When the system detects that independent collection
is more desirable, it decrements the counter and switches to independent
mode if the counter is -1. This avoids oscillation between t lte two modes
when an appl ication has alternating latency-tolerant and latency-sens itive
sections. On the other band, when the system is in independent mode and
detects that the application is latency sensitive, it directly sets the counter
to l and immediately reverts to synchronized mode.

Limitation: We note here a potential limitation of this formulation. It

assumes that the number of idle periods is does not significantly change by
making each idle time period longer. This is a reasonable approximation for

75

(1) SPMD-style parallel programs with rare communication, (2) SPMD-style
parallel programs without latency hiding, and (3) asynchronous applications
with plenty of parallelism in each processor. Our formulation is a reason
able model for (1) and (3) because such applications exhibit very small n
tmder whatever commw1ication latency, so the nwnber of idle periods will
not differ much. It is also a reasonable model of (2) because, without any
latency hiding, the number of idle periods is approximated by the num
ber of request messages, which is not affected by communication latency in
SPMD applications. Irn portant applications that we do not know can be
modeled with our formulation are "moderately latency-tolerant" programs
where each processor tries to mask latency by techniques sucb as prefetching
and producer-in itiated communication or by a moderate nwnber of threads
on each processor. If the latency tolerance is large enough to completely
mask the latency in normal circumstances, but not enough to hide an en
tire local collection latency, the system observes a very small n in synchro
nized mode and might wrongly switch to independent mode, even though
the application does not actually tolerate it. Note that this happens only
when latencies in synchronous mode are almost completely hidden so that
each processor exhibits no idle periods for almost all the remote communica
tions. On the other hand , our formulation works correctly as long as latency
hidlng is typically partial, i.e., the application still observes approximately
the same number of idle periods even with latency hidlng. They should be
examined in more detail for further clarification.

3.5 Experimental Conditions

This section briefly describes characteristics of applicat ions relevant for the
following experiments. They are summarized in Table 3.1.

In BH, we build a tree which represents an entire simulation space (BH
tree), traverses the entire tree one , and then traverses part of the tJ:ee many
times to calculate force for each particle. Live data at a global collection
ma,inly consists of the entire BH-tree, particles, reply channels, and activa
tion frames . The force calculation phase dominates computation time and
determines the overall behavior of the application. A commlmication occurs
when a processor accesses a tree node whose copy is not present in the local
processor. Each processor sequentially processes particles. Hence, a remote

76

Application Main Data Parallelism Communication

BH BH-tree nodes, part i- SPMD frequent, syn-
cles, frames, and chan- chronous
nels

OKY CKY matrix, parse communicating frequent, syu-
trees, frames , and threads chronous
channels

RNA Frames and channels parallel reeur- infrequent ,
sion asynchronous

GA Workers and genes SPMD infrequent, syn-
chronous

Table 3.1: A brief description of parallel applications

access stalls the accessing processor, making this application very sensitive
to commwlication latency.

In CKY, we invoke l / 2n(n + 1) concurrent threads for parsing a sen
tence with n words. Since the length of a sentence is between 35 and 45, we
create from 1,000 to 2,000 concurrent threads for each sentence. A thread
COilSwnes from 0 to 2n values produced by other threads and produces one
result using these values . We implement a data structure for tbe procedure
conswner synchronization (the GKY matrix) by concurrent objects. Live
data at a global collection mainly consists of the entire CKY matrix, parse
trees under construction, activation frames, and reply channels. Commu
nication is frequent and synchronous. The amount of parallelism on each
processor depends on the number of processors and the input sentence. For
example , while it is enough to have 2,000 threads on 16 processors, it is
not enough to have 1,000 threads on 256 processors. Thus we cannot easily
predict whether or not CKY is latency-tolerant.

In RNA , parallelism is extracted via parallel recursive calls to a tree
search procedure. There are few globally shared objects. Live data at a
global collection mainly consists of activation frames and reply channels. A
communication occurs when a processor makes a parallel recursive call, a
branch of recursive call terminates, and a processor broadcasts an improved
solution to other processors for pruning. RNA typically forks 250K concur-

77

rent threads, all of which can run independently. Thus each processor has

plenty of intra-node parallelism.
ln GA, there is one worker on each processor. Workers independently

mutate local genes or crossover two genes that belong to the worker. Live
data at a global collection mainly consists of workers and genes. A commu
nication occurs when they exchange their genes. Thus each processor alter

nates computation-only phases and short communication-intensive phases.
We briefly summarize the performance of the non-GC part of the ap

plications. For BH, CKY, and RNA, we also wrote a sequential version in

C++ and compared the sequential performance of ABCL/ f with C++. We
ran parallel ABCL/ f binaries that are executable as pa rallel applicat ions
on workstation clusters. The speed of the ABCL/ f versions ranged from

about 40% to 55% of that of the C++ versions. These results indicate t hat
ABCL/f has reasonable sequential performance. The speed-up factor for
running these applications on 256 processors ranged from 20 to 160, show
ing t hat they are reasonably scalable. To sum up, both the application and
the hmguage are fa~t enough to reveal any significant inefficiency in garbage

collectors.

3-6 Collection Overhead

Figure 3.4 breaks down the npplication time into busy, parallelization over
head, local GC, and global GC. Times are totaled over all the processors.
Tht> parallel.ization overhead includes commun.ication overhead and context
switch overhead. The breakdown does not include idle time, because it never

involves allocation requests. By excluding idle time, we effectively estimate
an upper bound of the relative overhead of garbage collect ions. We tested
various values for the threshold parameter ,. that determines whether we
collect garbage or expand t he heap when an allocation request cannot be
served. For each application, we set r to 2, 3, and 4 and ran the application

on AP1000+ using 16, 64, and 256 processors and on a single processor· Ul
traS pare workstation. In the experiments in tlJ..is section, we turned off the
adaptive selection strategy of local collections; we always used synchronized

loca l collections.
Overall , the collection overhead ranges from a few percent up to around

oue fourth of the total time. More importantly, in all appl.ications except

7

BH Cr-=2}

f• o..yOo....mudCioc:aiJt.Opoballt. j

100\

""
10\

"'
"'
'"
""
""
'"
"

- ~ 1\
"' '\

,,.

CK'I'(r : 2)

[a bu:sy 00¥e~ C~lac: Cllab.lll;]

100\

"'
"'
10\

'"
"

1\ -

1\
_..-

BH k-= l)

• busv a-me.d ckMo.t 1'.: a.~ ,c:

"'''
90\ \
"" 1\ 10\

"" " "' \
"'
""
'"
'"
" "'

r. bul. O!Wahud C-loul c Dalob!ll cl
100\

"' 1\
"" I/ f.:::
10\

"'
1\ "'

40\

"' 1- -
'"
"'
"

79

Btl (r- <4)

! • ~yOoverhud Dioe.l aeo~

"'
10\

'"
"'
"' .,,,
"'
'"
"'

"'"
"'
""'
70\ ...
"' ...
'"
20\

"" ..

\

L.... -

" .. tofpraceno ...

CKY (r: .l)

I\
1/ ' /

\
/

,,.

I
I

RN4(r-?) RN.!\6-'-3) RNA{r;..4)

·~o-m, .. ciQto{.A!~Oa'.o~l.: t•IMiyOo~dSioc:IIIRc;0~1n 1 • tn.vOoo.erheadDICM:elrcC~\~

1011'\ 100\

110\

""
10\

"'
50\ .. ,
,..
'"'
"" ..

~

i
J

Ill 0:~ 256
•or"'oc••..,.

GA. (t 2)

""
20\

"

'\.. -

GA(r.o.J)

'"" 1'\ ""'-
"" ~

~ ""
10\

'

~
I
I

"'
""
'"'
JO\

20\

"'
"

I
18 64 2511

~ofpraeenot:~

..!_~~Qav...t>e•d_~~Oi!obllt~ 1• bu6v.Oo~D1oe-'lei:J~ltcl ~y00V'41,_adDI~1 D11iot* o

'"' ""' l "'"
"" v 90\

"" 80\

-
I :1

-
I

'"' "''
"' ""' "'
"" ""
'"' "' "'
"" JO\

20\ ,.,.
"'

" "'

I

I
, ..
" " .. "' lfl &4 ZS6

tofQrOCeiW'S 1ofuroee1sors

Figure 3.4: Breakdowns of application time into busy, overhead, local GC,
and global GC (from bottom to top). Times are totaled over all the proces
sors. Id le times are excluded. The overhead refers to communication and
context switch overhead.

80

RNA, the time spent on collections is essentially constant regardless of the
number of processors. Most cases that exhibit large collection times on
AP1000+ (BH and CKY when r = 3 or 4) also have correspondingly large
collect ion times on th single processor. This indicates that the garbage
collection in these applications was at least as scalable as the application
itself. Only in Ri'<A did the collection time significantly increase with the
number of processors. It turned out that RNA was highly scalable, exhibit
ing 160 times speed-up on 256 processors. The result merely indicates that
our collector is less scalable than RNA; it is not noticeably worse in RNA
than in other applications.

Table 3.2 shows the number of local/global collections and average pause
time of a local/global collection in each application. We only present data
for r = 2. Numbers in other settings are sirnjjar. Figure 3.5 breaks down
the overhead of global collections into the following five parts .

Sync: for the sync phase.

Undelivered : for the undelivered phase.

Local: for local marking

R emote: for scanning the exit table and the remote marking.

Idle: Idle time.

For each application, we show the case for r = 2 on 256 processors.
We see there is no phase that dominates the total collection time in all
applications. We also note that the overhead of the undeliv red phase is
not significant, justifying our design decision as to how to find references in
undelivered messages, which was described in Section 3.3.3

3.7 Impact of the Local Collection Stra t egies

This section examines the impact of the two local collection strategies. Fig
ure 3.6 shows performance of the following four scheduling strategies:

Fixed-Synch ronized (FS): Always synchronize.

F ixed-Independent (FI): ever synchronize.

81

App. No. of No. of collections pause time

processors (local/global) (local/global)

BH 16 33/ 6 253/395
64 12/5 122/365

256 4/3 141/461

CKY 16 0/31 -/904
64 0/5 -/994

256 0/1 -/1059

RNA 16 19/21 80/95
64 10/ 15 55/94

256 2/15 60/115
GA 16 77/5 99/74

64 38/3 56/60
256 14/2 61/100

Table 3.2: Number of local/global collections and their average pause times.

BH CKY RNA GA

Application

Figure 3.5: Breakdown of the overhead of global collections into sync, un
delivered, local, remote, and idle (from bottom to top).

82

Adaptive-Synchronized (AS): Adaptive, with the initial strategy being
synchronized.

Adaptive-Independent (AI): Adaptive, with the initial strategy being
independent .

Adaptive strategies choose an appropriate strategy based on the criteria
described in Section 3.4.4. The graphs break down the application time into
busy, idle, GC (both local and global), and parallelization overhead. Times
are totaled over all the processors.

When we compare the two fixed scheduling strategies, neither is consis
tently better than the other, but we can make several useful observations.

• BH on any number of processors and CKY on 64 and 256 processors
significantly suffer from independent collections. More interestingly,
the collection time per se does not increase at all. It is the idle time
that increases significantly. That is, a processor that is locally collect
ing becomes unresponsive to requests from other processors, causing
idle time on those requesting processors.

• When the fixed independent strategy is better than the fixed-synchronized
strategy, gains are small. Although the number of appli ations we
tested was too small to conclude that this usually holds, we can con
jecture that it holds for a wide range of applications based on the
following discussion. When allocation rates of processors arc fairly
well balanced, the synchronized strategy merely triggers collections
slightly earlier than necessary on each processor. I t only adds a little
extra work on the collector. A relatively large penalty is added to the
master , but the overhead is still one broadcast. When allocation rates
are very unbalanced, on the other hand , non-intensive processors must
perform marking which would not be necessary at all. This typically
occurs in the initialization phase of a program. Fortunately, in such
circumstances, the critical path of the application typically exists on
intensive processors and adding extra work on less-intensive processors
will not affe -t overall performance.

• In all cases, adaptive strategies are better than the worst fixed strategy,
regarrUess of the initial strategy and close to the best fi.xed strategy.

83

8H116pm.:o...\0111)

I• h!.L~ OLdie! CJ @C OtiVCJhcad"]

=wu 21)0(1

~ 1500

"""
'IJ"

0

FS AI

CKYIII'It1fl'<Ct~'\l.'"l

\• llu!iJOIUic [il~c O rwcrhe-.Jd

"""
'(10(1

•0000

l~ t~us.Y Oldie 0~ o,r;·erhead

=· ~~)()()
2fKX'l

1000

f)

FS A)

FS AI

84

R l~ f:Bflprncc.o.~)

,I!""~>YD<di,~Do'"~
1~100

WIQO
12(!00

~ IIXlUO _
I= 1<000

(!(1(.,)

4000

2000 -
0

AI

CKY(l.SbprOI..'CUOfl)

•hu.~yDidlcD~~
20000
111000
II>O<Kl
14000
12000

~~::;
61l00

FS AI

RNAtll•pmcl!.\:>ilfS)

• t~u~)'DldkCp:.Oln~

~:oo 800 -"
700

""" ~500
~=....,

300
200
100

u
FS AI

rl!l~9 OlUit O£C Ooverhcul.l

'"''DB
34ll>
.\400

).]SIJ

~ll(IO - -
l:!SIJ

3200

llSO
3100

FS AI

RNA (Mpr\oc~q)

l • hu~y Otdk 0$'- Oo•·crhC"Old

1200 r

~·~fnti i
200 UlJJ

0

FS

l• t~w.)'O i!lle O g~:OIJv~d

""'I] ~[~
]201)

llSO
)!(X)

FS AI

RNA(l.~fll' e.~~~

• hu'y Oidle 0~..; OtJ\nhCo~t.l ::nu IUIIO

~1<00
F 6011

•oo
200

0

FS AI

(iAf'256[m~!l~l

I• Ni)' Oldie 0~.: oo~i:rh~::t.l

,~,wm~ J700 -l>OO
~ :1400
I= 3300 ,...

3200
)100

'JOO
2'!111)

FS AI

r strategtes. . . The graphs break
. 3 6· Impact of collection schedu tng I + Jobal) and overhead. Ftgure · · ·die GC (loca g ' . 1

down the application t ime into busy, ' ' FS refers to the fixed-synchrontzec
11 the processors. d FJ the fixed-Times are totaled over a nize local collections an

· which we always syncbro h ·. local collections. AS
strategy tn . hicb we never sync romze I onized
independent strategy m w . hose initial strategies are sync 1f and AI refer to adaptive strategtes w

and independent, respect ively.

85

From application logs, we confirmed that adaptive strategies success
fully select the right strategy when one fixed strategy is clearly better
than the other.

3.8 Discussion

An important conclusion drawn from our experiments is that performance
of frequently communica.ting synchronous applications is heavily damaged
by a scheduling skew introduced by independent collections. However, syn
chronized local collection is not the sole strategy for fight ing this problem.
Here we discuss alternat ives and potential problems.

3.8.1 Incremental/Interruptible Local Collection

The most straightforward approach would be to make an independent lo
cal collector interruptible. An independent collection would periodically
poU the network and schedule incoming messages, even in the middle of a
collection. This is just an adaptation of .incremental collection techniques
[39]. Expenses include additiona l memory overhead, polling overhead, and
implementation complexity. The viability of this approach will depend on
memory requirements of the application. If each processor has plenty of
available memory, additional memory overhead caused by incremental col
lection will cause no problems. However, if memory shortage is detected
and the collector wishes to restrain. the progress of the application, that
processor becomes unresponsive. After all, the system must still have a
synchronized collection as the last resm;t in cases many processors exhibit
memory shortage, just as single processor incremental collectors must have
full collections in case where memory is so constrained.

3.8 .2 Latency-Tolerant Algorithms

As we have seen in Section 3.7, programs in which communication is in
frequent or very latency tolerant do not suffer from a scheduJing skew. It
might be possible for a compiler of a programming language to automati
cally g nerate Iaten y tolerant code or at least encourage latency-tolerant
programm.ing styles. However, latency-tolerance is acltieved at the expense
of additional memory requirements and additional scheduling overhead. In

86

general, it is not a feasible idea to force a programming style in which the
programmer must create otherwise useless parallelism just in case the re
ceiver processor is performing a local collection. In order to make sure that
the latency is masked when it is very unpredictable, the programmer must
overestimate it, leading to excess parallelism and poor utilization of the local
storage in usual cases.

3.9 Summary

The suitability of collection schemes on large-scale parallel machines has not
been studied enough and has often been misunderstood. In particular, the
expense of global synchronization and the benefit of independent local col
lections have been overstated. Performance of complex systems like garbage
collections should be empirically examined, taking their space requirements
and interaction to the application into account. Our experiments have shown
that the independent local collection is a dangerous strategy that severely
slows synchronous applications, by up to 60% in our experiments (CKY on
256 processors) . The synchronized local collection exhibits much more ro
bust performance characteristics, despite the cost of global synchronization
and the extra work imposed on collectors. With simple techniques which
reduce the overhead for message passing and scanning exit tables, the cost
of global marking becomes insit,'lli:ficant. In a heap expansion policy which
is the most space-intensive in om· experiments (t = 2), but stiJI not as
intensive as collectors used in heap-intensive languages, garbage collection
occupies at most 15% of the appUcation time (excluding idle time). Our
results indicate that an efficient global collection can be implemented by a
simple global marking together with a careful collection scheduling strategy,
at least in dedicated parallel computers. Our hope is that this work outUnes
a 'baseline' implementation strategy of garbage co llectors on distributed
memory parallel machines, from which more efficient collectors are derived
in the future, under a right definition of "efficiency" and a right framework
for performance evaluation.

87

Chapter 4

ABCL/f-The Language
Design

This hapter describes design of ABCL/f, a concurrent object-oriented lan
guage. Implementation is outlined through giving mappings from ABCL/f
constructs to runtime primitives introduced in Chapter 2 and 3. ABCL/ f
supports future as the meaJJS to creating parallelism, first-class channels as
the me3Jl5 to synchronization, and concurrent-objects as location-transparent
mutable data structures accesses to wh:ich are automatically protected.

The rest of this chapter is organized as follows. After giving a brief
design overview of ABCL/ f in Section 4.1, we introduce basic concurrency
primitives of ABCL/ f in Section 4.2. Section 4.3 and 4.4 devote to the
two data type definition constructs in ABCL/ f , namely, concurrent objects
and immutable data. Section 4.5 shows program examples that some pre-
vious concurrent object-oriented languages have difficulty with. Section 4.6
compares the design of ABCL/ f with other language designs.

4.1 Overview

Synta1t and sequential constructs of ABCL/ f are borrowed from Common
Lisp (69]. Unlike Common Lisp, ABCL/ / bas a simple stat ic type sys
tem and enforces type declarations for procedure/ method parameters. The
curreut implementation of ABCL/ f lacks parametric polymorphism and in
heritaJJce. Types for local variables are normally in£ •rred but monomorphic

88

type declarations are necessary where types are otherwise inferred as poly
morphic.l To summarize, the type system of ABCL/ f is similar to that of
Pascal and certainly much less powerful than today's modern languages. We
currently side step implementation issues that come from powerful type sys
tems. By concurrent object-or·iented languages, we simply mean languages
which support and encourage concurrent objects- mutable data structure
accesses to which are automatically protected 2

ABCL/ f can be most concisely understood as a concurrent and object
oriented extension to simple statical.ly typed procedural languages. The
following is the su=ary of key extensions key extensions.

Channels: As the fundamental primitive for synchronization, it provides
first-class channel.~. A channel is a data structure on which synchro
nizing read/write can be performed. Chann Is can be passed to other
processes or stored in any data structure.

Future: As the fundamental construct for creating parallelism, it intro
duces a variant of the future construct originally proposed by Halstead
(33]. The result value of a future expression is a channel, which we
call reply channel of the future expression, via which the result of the
invocation can he extracted.

Explicit Reply: The reply channel of an invocation is visible from the in
voked process and subject to any first-class manjpulation. This feature
allows us to construct many flexible commtmicationjsynchronization
patterns in a natural way. For example, by an explicit reply hannel ,
multiple invocations can share a single reply channel, or an invocation
can delegate the rep ly channel to another invocation.

Concurrent Objects: Concurrent objects are supported as a convenient
3Jld recommended way for sharing mutable data stTuctures among
concurrent processes. A concurrent object is a data strncture where a
method invocation can roughly be regarded as an instcmtaneous trans
action on that object , in the sense that methods never observe inter
mediate state of other t ransactions.

1 For example, (leu ((r • ())) ...) requires a. monomorphic Lype dt.oc larat.ion for r ,
since the type of r is ot.berwise inferred as Vcr list cr .

2Such languages are sometimes lerm d as concurreut object~ based languages.

89

Concurrent Accesses: While achieving the instantaneousness of a method
invocation, we still allow a certain amount of concurrency between
multiple method invocations on a single concurrent object. In partic
ular, we guarantee that read-only methods are never blocked by other

methods.

4.2 Parallelism and Synchronization Primitives

4.2.1 Channels

Channels are the fundamental entities that realize synchronization and com
munication between processes. Channels can be explicitly created via the

following form:

(make-channel type),

though they are most often implicitly created as the result of a proce
dure/method invocation as will be described in Section 4.2.2. Type denotes
the type of values that are stored in the channel. The type of a channel that
accepts values of type is (future type).

When c is a channel, we can perform following operations on c:

• (touch c) -e:"<tracts a value from c. The extracted value is supplied
to the enclosing expression. If there are no values in the channel,
the evaluation of the enclosing expression is blocked until the value is

supplied by reply.

• (reply x c)-puts x in c. The enclosing expression immediately gets
a unit.3 If there is suspended touch operations, the value is feed to
one of these touch operations.

Again, these operations can be explicitly used at any place, but are most
often called implicitly. As we will see in Section 4.2.2, reply and touch are
implicitly used for commWlicating the result value of an invocation between

the caller and the cal lee.
There may be multiple values stored in the channel when a touch occurs.

In that ase it may get any one from the stored values. Similarly, there may
be multiple suspended touches when a reply occurs. In that case, it may
resume any suspended touch from them.

3 A special const<tnt typically used when L.be value returned does not mat;ter.

90

4.2.2 Procedure Invocation

In ABCL//, procedures or methods are called either asynchronously or syn
chronously, and either locally or remotely. In addition it adds a further
Hexibility in the way the caller and the callee communicate the result value.
In distributed memory machines, a remote procedure call normally requires
two messages (i.e., request and reply). This sometimes results in unneces
sary round-trip communication. For example, consider processor P wishes
to create a local copy of a remote object 0. This could be done by writing a
method that creates a replica of the receiver object (self) on P and invoking
the method from P. This involves an extra round-trip co=Wlication be
cause the created replica is first returned back to 0, which is then forwarded
to the original requester. Instead, the replica created at P should be dir ctly
returned to the original requester. We address this kind of issues by allow
ing the progra=er to specify the location to which an invocation should
return the result. The way we view a procedure invocation is as follows:

• Any procedure or method takes, in addition to regular parameters,
another parameter called 1·eply channel via which the caller and the
callee can communicate result values.

• The caller creates a new (unique) channel and passes it to the caller
as the reply channel unless otherwise specified. The caller can specify
any channeJ as the reply channel when desired.

• Any pwcedure invocation creates a new thread of control. Whether
or not an invocation is synchronous call is a matter of when the caller
happens to require the msult.

Suppose f is a procedure or a method defined by defun or defmethod con
structs described below. The canonical form of a procedure invocation is
written as follows:

(future (/ a.o a1 · · · an- 1) :reply-to,. :on o)

This creates a thread which evaluates the body of f on processor o and

passes ao, a1, · · ·, and a,.-1 as arguments and r as the reply channel of the
invocation. The value of this expression is ,.. From this canonical form,
shorter and more frequently used forms are derived.

91

• H keyword :on is omitted, f is evaluated on the local processor.

o If :reply-to r is omitted, a new channel is created and supplied as

the reply channel. That is,

(future (/ ao a1 · · · Un- 1) :on o)

= (future (j ao a1 · · · an- !)

:reply-to (make-channel type) :on o),

where type is the type of the reply value of f.

• A synchronous invocation is done by immediately touching the result

of the fu ture. Tbis is written by now e;>cpression:

(now (/ ao a1 · · · an- !) :reply-to,. :on o),

which is actually an abbreviation of:

(touch (future (j ao at ·· · an- ll :reply-tor :ono)).

o Finally, when neither : reply-to nor :on are specified, now e;>cpression

can be simply written:

(j ao a1 · · · an- ll

wbich is the most frequently used form of procedure/method invoca

tions.

4 .2.3 Procedures

A procedure in ABCL/ f is defined by a top level form called defun. Its
syuta.x reflects the way in which we view a procedure invocat ion described

in the previous section. The canonical syntax of defun is:

(defun name (po P1 · · · Pn- ll :reply-to r

(declare · · ·) ;; type declaration

body),

where p0 1 p1 , · · • , Pn- ! refer to arguments and ,. to the reply channel of the

invocat ion. Unlike Common Lisp, declare clause is mandatory in ABCL/ /

and has the following syntax:

92

declare-clause

type declare

(declare type decla,·e•)

(type-expression { variable-name}•)

(reply-type type-expression)

Here, (type-expression { variable-name}•) declares listed variables to be of

type type expression, whereas (reply-type type-expression) the type of lhe
reply value to be of type type-expression.

A defun defines a template of threads that, when invoked, execute its
body . The body typically replies a value tor, though neither the compiler
nor the runtime system enforces this property. The programmer could write

a procedure which reply values multiple times , or do not reply any value at
all to, .. For example, a procedure may store r somewhere without replying
any value and another procedure may obtain the reference to ,. and reply a
value. We later show some examples where this is useful.

The clause :reply-to ,. can be, and in fact often is, omitted . In that

case, the definition denotes a template of threads that, when invoked, eval
uate body and reply the evaluated value to the reply channel. That is,

(de fun name (po Pl · · · Pn- 1)

(declare · · ·) ;; type declaration
body)

(defun name (po PI · · · Pn- ll :reply-to r
(declare · · ·) ;; type declaration

(reply body 1-)

For example, the following code defines a simple procedure which computes
the nth Fibonacci number, which takes an integer (f ixnum) as the parameter

and returns an integer.

(defun fib (n)

(declare (fixnum n) (reply-type fixnum))
(if (< n 2)

1

(+ (fib (- n 1)) (fib (- n 2)))))

93

As tllis example indicates, defun in ABOL/ f is syntactically similar to the
defun in Common Lisp. Differences are it has a declare-clause and optional
:reply-to clause, and a declare-clause has a reply-type declaration.

Implications to Implementation: The semantics of a procedure call in
ABCL/ f is strictly based 011 the view that each procedure invocation has an
independent thread of control. There is no inherent notion of "sequential"
call; it is j ust a particular combination of the behavior of the caller and the
callee. Even if the caller invokes a procedure by now expression , the callee
may reply a result before its termination and continue. In that case the
rest of the callee and the caller are semantically parallel. This implies that
an implementation of ABCL/ f r.annot serialize a given invocation solely by
looking at its call site; it must consult the definition of the called procedure
as well. For e.xample, the call to f in the following code is apparently

sequential:

(progn
(acquire- lock x)
(f x)

(release-lock x)) 4 ,

bu t if the definition off was:

(defun f (x) :reply-to r
(declare ())
(reply 10 r)
(acquire-lock x)

),

the compiler cannot serialize the call to f. Under the correct semant ics, the
implicit touch which occurs at (f x) is resumed when (reply 10 r) is done.
Then the caller performs (release-lock x) , making (acquire-lock x)
in J successful. If the compiler would (wrongly} serialize the ca.U to J,

4pr ogn executes its constituent sequentially. acquire- lock and release-lock are hy
pot.het.icaJ mutual exclu.sion constructs which lock and unlock the given datum, ·re~pec

tively. This is act.ually a lower-level representation or a method thai updates an object in

ABCL/ / .

94

(acquire-lock x) in f would never succeed , resulting in a deadlock which
should not occur. We will fully describe our implementation of procedure
calls in Section 5.3.

4 .3 Concurrent Objects

In ABCL/ f , a concurrent object plays two roles. First, it serves as a means
to sharing data in a location transparent fashion. A method invocation au
tomatically locates the receiver object and emits a message when the object
is remote. Second, it serves as a safe and a stylized means to sharing muta
ble (updatable} data st.ructure among concurrent threads. The programmer
can assume concurrent accesses to an object interleave at the granularity
of a method invocation, rather than individual load and stores, without
explicitly locking/unlocking objects.

4.3.1 Classes and Methods

Defining Classes

A class is defined by defclass and a method by defrnethod or defmethod! .
For example,

(defclass point ()
(real x)

(real y))

defines class called point, each instance of which has slots called x and y.

What follows a.fter the class name i' the list of inherited classes, which is
not yet supported in the current implementation and thus is a lways empty.

A clefclass implicitly defines a function with the class name that creates
an instance of the class. For exam pie, an instance of point class is created
by:

(point 2.0 3.0)

Defining Methods

The following defines a method that returns the distance between the point
and the origin.

95

(defmethod point distance ()
(declare (reply-type real))
(sqrt (+ (* x x) (* y y))))

This can be, as usual, called by:

(distance p)

where p is an instance of point. Note that the first argument of a method
invocation specifies the receiver object, wWch does not appear in the pa
rameter list of a method definition. It is implicit and can be referred to by

self in the body of a method.
Unlike regular procedures, an invocation of a method cannot specify :

on clause and is always performed on the owner processor5 of the receiver
object. In all other aspects, a method invocation shares the same model as
a regular procedure invocation described in Section 4.2.2; it can be called
either synchronously or asynchronously and explicit reply channels can be
used in methods as well. For example, method distance could also be written

by:

(defmethod point distance () :reply-to r
(declare (real dx dy) (reply-type unit))
(reply (sqrt (+ (• x x) (• y y))) r)),

though this is just a clumsy coding style of the previous simpler definition.

4 .3 .2 Updating States

Updating the state of an object is not expressed by an individual update
to instance variables. Instead, it is expressed by become construct, which
specifies new values for updated slots and atomically update all the specified
variables. To our knowledge, this idea iB first described by Yariv in Sympal
[7]. For example, the following method increments x and y by dx and dy

respectively.

(defmethod! point move! (dx dy)
(declare (real dx dy) (reply-type unit))
(become (redraw! self) :x (+ x dx) :y (+ y dy)))

6 The cu.rrent implementat ion of ABGL/ f never perfonns software caching. The owner
processor of an object always refru-s to lhe procr.ssor that created the object.

96

The first argument of a become ((redraw! self) in this case) is called •·e.~!Llt
expression of the become and specifies which value the become is evaluated
to, whereas the rest part the up·dated values for slots. Values for unchanged
slots can be simply omitted. A become expression first evaluates all the new
values {or updated slots, update the slots atomically, and then evaluate the
result expression.

Notice that we used defmethod! above, rather than just defmethod.
The rule is that a become cannot appear in the body of defmethod. We
put a further restriction on the position of become inside the body of a
defmethod! , so that become is performed exactly once in a method invo
cation. In general, this cannot be precisely verified at compile time, hence
some syntactic rules that conservatively reject suspic ious programs are nec
essary. Rules must be simple so that they can be told to the programmer.
Unfortnnately, the syntax of ABCL/f is borrowed from Common Lisp and is
not structured enough to express restrictions in a sufficiently simple manner.
Specifically, it has an unstructured goto statement, in the presence of which
there does not seem to be sufficiently simple and precise rules that describe
the restriction. At present, the implementation resorts to rnntime checks
and performance evaluation turned off the runtime check, assuming that
we have more structured constructs in which we can defin.e the restrictions
syntactically.

4 .3.3 Concurrency and Consistency

ABCL/f object model allows certain amount of concurrency between meth
ods operating on a single object , wWle preserving a simple way of reasoning
about state of an object. Let us call a section between an invocation of an
update method and its become an !Lpdate section. Simply stated, ABCL/f

object model serializes all update sections on a single object. All other ac
cesses to a single object (either by a non-update section of an update method
or by read-only methods) may overlap with other accesses {including update
sections). For example, it is safe to invoke a read-ouly method and waits
for its completion from within another update method and vice versa. It is
also safe to invoke an update method from within a non-update section of
another update method.

Row should the programmer reason about state of an object, when

97

method executions may be interleaved in such a way? First, we guaran
tee thai a become updates all the specified instance variables atomically.

That is, a method never observes a combination of slot values that are par
tially updated. Second, once a method is invoked, the body of the method

consistently observes the same values of instance variables, even if slot val
ues are changed by other methods. Intuitively, a method atomically copies
all the instance variables at the beginning and operates on the copy, and a

become writes back the new slot values atomically.
A special care must be taken when a read-only method (M) calls an

update method (M!) on self and uses instance variables after the completion

of M. M does not observe state updated by M! directly from M. M can
observe updated state by making another method invocation to self from

within it.
Except for this tricky part, ABCL/ f object model is simple and intuitive;

it provides a model in which all invocations on a single object appear to be
serialized and the serialization respects the order implied hy synchronizations
in the program in the following sense. (1) Let M and M' be update methods

invoked on an object. If either invocations or becomes of M and M' are
ordered in the program, the serialization preserves the corresponding order
between M and M'. If the order implied by the invocations contradict the
ordP.r impli d by becomes, the program is unsafe (results in deadlock). A

salient example is an update method called from within an update section
of another update method. (2) Let M be an update method and M' be
a read-only method invoked on an object. If the become by M and the
invocation of .M' are ordered in the program, the serialization preserves the

corresponding order in the serialization.
Notice that when an update method M calls a read-only method M'

the invocation of M' proceeds the become by M in the program, thus M'
proceeds .M. in the serialization, despite that A1' is called from withln M.

4.4 Immutable Data

ABCL/f has immutable data and distinguishes them from concurrent ob

jects by its synt~;tx and static type system. An immutable data type is
defined by deftype con truct, which is analogue of the datatype construct
in ML. An inunutable datum may have a reference to a concurrent object,

98

thus it can be a part of large mutable data structure. For ~.xarnple ,

(deftype complex ()

(rectangular real real)

(polar real real))

defines a complex number. This defines a new data type called complex,
two procedures (constructors) called rectangular and po lar, each of which
creates a new complex data from two real numbers. For example, the type
of both

(rectangular 3.0 4.0)

and

(polar 5 . 0 (/ *pi• 3))

is complex. To access fields of a datum, ABCL/ f provides a pattern match
expression. For example, the following defines the absolute value of a given
complex number.

(defun complex-abs (z)

(declare (complex z) (reply-type real))
(match z

((rectangular x y)

(sqrt (+ (• x x) (• y y))))

((polar r _)
r)))

The functionality provided by deftype can be in theory subsumed by classes
with inheritance. Hence, deftype might be somewhat redundant from the
language designer's point of view. Vve incorporated a special construct for

defining immutable data because in distributed-memory parallel programs,
it is often desirable for the programmer to pass a linked data structure by

structure copy, rather than by a reference. Copying a potentially mutable
data on distributed-memory ma.chlnes implies that some coherence proto
cols must be implemented by software. At present, we sidestep this problem

by distinguishing mutable and inunutabJe data. immutable data are struc
turally copied on remote communication, while mutable data (concurrent
objects) are simply passed by reference.

99

4.5 Examples

4 .5.1 Concurrent Tree Updating

This exli.II1ple demonstrates how the concurrency semantics of our model,
the notion of before/after-stage in particular, allows natural description of
a concurrent data structure. Consider a binary tree search algorithm where
each node of the binary tree L~ a concurrent object. The example is a model

of the tree construction method io Barnes-Hut N-body algorithm. Here is

the definition of each node object.

(defclass bintree-node ()

;; this node associates mapping

;; between KEY++ VALUE
(fixnum key)
(fixnum value)

;; children is void when it does not exist
(bintree-node left)
(bintree-node right))

Each node has its key and associated value. It holds that the key of the left

child is less t han that of self and the key of the right child ls greater than
that of self. Hence binary search operation is very straightforward.

II>

;;; Lookup the value associated j01· K.
;;; retum -1 if not found

(defmethod bintree-node lookup (k)
(declare (fixnum k) (reply-type fixnum))

(cond ((= k key) value) ; found

((< k key)
;; look fo,· the left subtree if K < KEY
(if (voidp left) -1 (lookup left k)))

(true

;; look for the 1ight subtree if K > KEY
(if (voidp right) -1 (lookup right k)))))

100

Since this operation does not update the tree, we use define-method, hence

multiple lookup invocations can simultaneously operate on a iugle tree. The

following method associates element vaJ with key k.

;;; Establish association K ++ VAL maintaining the
;;; following int1ariant:

,, "KEY of LEFT < KEY of SELF < kEY of RIGHT"

(defmethod! bintree-node insert! (k val)
(declare (fixnum k val) (reply-type unit))
(cond ((< k key)

(if left

; ; if there is already left child delegate this value

;; to the child unlocking self
(become (insert! left k val))

; ; if there is no left child CTeate it
(become unit

:left (make-leaf-bintree-node k val)))

((= k key)

;; an object is already installed in the same key do nothing
(become unit))

(true
;; the same alg01ithm as the first case but for the 1·ight child
(if right

(become (insert! right k val))

(become unit
:right (make-leaf-bintree-node k val)))))))

This method first finds the appropriate place to which we insert t he item and
then installs a new node to the place. An interesting case happens in internal

nodes; an internal node recursively calls insert! met hod for an appropriate
chi ld after it un1ocks self for subsequent requests. This is expressed by:

(become (insert! left k val))

at li.ne 6 and

101

(become (insert! right k val))

at line 15. As has been described in Section 4.3.3, these recursive calls are
done after the object has been updated, hence do not result in deadlock.

4.5.2 Synchronizing Objects

To demonstrate the expressive power of explicit reply channels, consider an
implementation of an object that embodies an application-specific synchro
nization constraint. That is, upon a method invocation, the object may
not be ready for executing the method and wish to defer the execution of
the method until certain synchronization constraints are satisfied. Since the
synchronization constraints may be satisfied only by subsequent methods
the same object, the method cannot simply block computation inside the
method. We wish to have a way to terminate the current method without
replying any answer. This situation actually arose in our implementation of
CKY algorithm [54] for parsing context free grammars.

For a simple example, consider implementing a "barrier synchronization"
object. A set of processes shares a barrier object and each process invokes
finished! method on the barrier object when its local computation has been
done. Finished! method does not reply any acknowledgement to the process

until all the processes ir•voke a finished! method.
Here is the definition of barrier class.

(defclass barrier ()
ii numbe1· of finished to wait
(fixnum n)
ii number of finished so far processed
(fixnum count)
ii list of reply channels
((list (future unit)) waiters))

An instance of a barrier class has three instance variables n, count, and
waiters where n is the number of finished! calls to be synchronized, count
the number of finished' which have been made, and waiters the list of reply
channels of previous calls. When synchronization is realized, that is, nth call
to this object is made, it replies value unit to all the channels in waiters as

well as the current reply channel.

102

Method finished! facilitates explicit reply channel for deferring the
replies.

, , Jillhen this finished is the last call it unblocks
iii all the waiters by explicitly calling reply otherwise

iii it does not 1·eply anything so that the caller is blocked.

(define-method! barrier finished! () :reply-to r
(declare (reply-type unit))
(if (= (+ count 1) n)

ii reply unit t·o every channels
(become (dolist (x (cons r waiters)) (reply unit x)))

ii reply nothing
(become unit :n n :count (+ count 1)

:waiters (cons r waiters))))

In the above, the reply channel is named, .. If(+ count 1) < n (i.e., this

is not the last invocation), the method stores r· in list waiters , replying
nothing to r. In the last invocation, the method broadcasts a reply for
every reply channel so far received.

4.6 Comparison to Other Language Designs

4.6.1 Concurrent Object-Oriented Languages

A concurrent object refers to data that embodies some access arbitration
mechanisms so that an execution of a method never observes inconsistent
state of an object. Several object models have been proposed and they
differ in the degree of concurrency on a single object, therefore the range of
deadlock free programs.

Actors and Early Concurrent Object-Oriented Languages

The original Actor model [2] and some early concurrent object-oriented lan

guages such as ABCL/ 1 [79, 80] and Cantor [8] achieves the instantaneous
ness of a method execution by mutually exclnding all the method invocations

103

on an object. This is often explained by ·'an autonomous object that has
its own thread and message queue." Although the traditional Actor model
gives us the instantaneousness and a v ry simple model in which the pro
grammer reasons about deacllock, it is often criticized to serialize too much.
This not only loses performance gain that is otherwise possible by exploiting
parallelism, but also enforces unnatural description of algorithms to solely

avoid potential deadlock.

Concurrent Aggregates

Concurrent Aggregates (CA) [19] supports aggregates in addition to regular
objects. A regular object is a traditional Actor and an aggregate is internally
composed of multiple objects, but externally viewed as if it were a single
object. By processing multiple method invocations on an aggregate by mul
t iple internal objects, an aggregate can serve as a non-seriali.zing object.
Maintaining the consistency among multiple internal objects, if required, is
the responsibility of the programmer.

UFO and Sympal

An object in more recent languages such as UFO [62, 63] and Sympal [7]
allows/guarantees more parallelism than the traditional Actor. ABCL/f
also belongs to this category and UFO, Sympal, and ABCL/f are common
in many ways. First they support multiple paradigms, in the sense tha.t
they do not force programmers to use concurrent objects wherever concur
rency is required. This avoids serializing computation that does not require
shared mutable dat.a. Second, a method in those languages allows subse
quent methods on an object to overlap with tbe current method after the
current method reaches a certain point. In UFO, the compiler statically
identifies a point after which instance variables are never updated and un
locks the object when the e..xecution rea hes that point. Become construct
in ABCL/ f was first proposed by Yariv in the language Sympal, under the

name finally [7].

C++ Dialects

Here we only discuss C++ dialects that support object-wise concurrency .
control m chani.sms and do not discuss a notable data-parallel extension

104

pC++ [13, 14].
CC++ [17] does not directly support concurrent objects, but the similar

effect can be achieved by atomic member functions. By declaring a mem
ber function as atomic, the member function locks/ unlock the object at
invocation/termination as in the traditional Actors. Thus the object model
of CC++ has the same problems with early concurrent object-oriented lan
guages. Non-atomic functions can run concurrently with others, but this
merely leaves consistency issues for the programmer.

Objects in ICC++ [20] allow two methods M and M' to operate on a
single object in parallel if there are no read/write or write/write conflicts
between them on any instance variable of the object. The main difference
between ICC++ and the UFO, Sympal, and ABCL// group is that the
ICC++ model performs mutual exclusion on per instance variable basis,
rather than per object basis.

The range of programs which are guaranteed to be scheduled without
deadlock do not seem quite different between ICC++ and ABCL/f. A
foreseeable problem with the ICC++ object model is that each object now
potentially has to have mnltiple locks to serialize only conflicting methods.
The worst case requires a lock per instance variable and removing redundant
locks requires global information on the source code.

4.6.2 Other Parallel Languages

Multilisp

Mnltilisp [33] is the language that originally embodies tbe future construct .
The central idea of future that a future expression returns something that
later becomes the result value is adopted not only in parallel Lisps but also
in some concurrent object-oriented languages [36, 78].

ABCL/ f also supports a variant of future. An apparent difference be
tween the future in Multilisp and the one in ABCL/f is that in Multilisp,
producer-consumer synchronization of a future invocation i.s implicit in value
reference, whereas ABCL/f requires explicit touch operations. For exam
ple, invoking (f x) and (g y z) in parallel and then adds the two resnlts
is written in M ultilis p as:

(+ (future (f x)) (future (g y z))),

105

whereas in ABCL// it is written as:

(let ((l (future (f x)))
(r (future (g y z))))

(+ (touch l) (touch r))).

Informally, the Multilisp view of a future is that what is immediately re
turned by a future expression is a placeholder object, which later becomes
the result value for itself, whereas the Schematic view is that a future ex
pression returns a placeholder into which the result value is sto1·ed.

There are tradeoffs between the implicit and the explicit version. The
implicit version, as the above example indicates, often results in a terse
expression but loses some flexibility. By making touch explicit, we can
distinguish a reference to the placeholder itself from the reference to the
value that is stored in the placeholder by the program text. This not only
guarantees fast value reference without additional compiler analysis (67],
but also gives us more expressive power by making t.he placeholder first
class citizens. Examples have been given in Section 4.5.2.

Another difference is their positions on shared mutable data. Multilisp
provides Scheme built-in data as the basis for mutable data and some atomic
memory operations such as replace-if-eq (analogue of compare & swap).

No higher- level mechanisms for defining safe mutable data are provided.
ABCL/ f supports and encourages the use of concurrent objects to represent
mutable data, concurrent accesses to which are arbitrated by the runtime
syst m.

Concurrent ML

Concurrent ML (CML) [58] extends SML by first-class channels and fork
(spawn). The main difference is that channels in CML are very orthogonal
to the original sequential constructs, whereas channels in ABCL/ f are in

tegrated into sequential constructs. For example, any procedure or method
in ABCL/ f are callable both in asynchronoualy and synchronously, while

flmctions i.n CML are not.
Consider how to perform two CML funct ion calls f x and g x in parallel.

Since the results must now be extracted from a channel, let us define a
'wrapper' .Function that takes a channel and sends the result of f x to the
channel.

lOG

fun vrapper f x c = send (f x, c)

What remains is to create two channels, pawn two wrappers, and wait for
the result.

let cO
and c1
in

channel ()
channel ()

(spawn (fn () => vrapper f x cO);
spawn (fn () => vrapper g x c1);
accept cO; accept c1)

end

Presumably, a fragment like this will appear very often and should be more
stylized, as in ABCL/ f. In fact, a restricted version of future can be defined
in CML by

fun future f x =
let c = channel ()

in

(spavn (fn ()=>send (c, f x)); c)
end.

Except that it can only invoke a unary function, the above future takes any
function and any argument and returns the reply channel. This is more
monolithic and less flexible than futures in ABCL/ f, in that a future now
always creates a reply channel and the caller loses the chance to specify a
reply channel.

Given that a fnnction is the fundamental building block of CML pro
grams, CML should support and encourage a convenient way for invoking
functions in parallel. ABCL// is designed based on this principle, while
leaving chances to construct customized communication structure whenever
desired.

107

Chapter 5

Implementation of ABCL/f

5.1 Overview

The compiler translates ABCL/ f programs into C++ programs, which are
then compiled by G U C++ compiler. The generated code (syntactically)
relies on extensions supported by GNU C++ compiler. In particular, it
extensively uses statement expressions,1 which are e.xpressions that may
contain arbitrary control statements ins.ide. Since the implementation of
StackThreads already relies on GNU C++ in much more fundamental ways,
we did not hesitate to rely on it also in the code generator.

The compilation from ABCL/f to C++ roughly consists of two phases.
The first phase (or, "frontend") transforms constructs that are apparently
different but are actually similar into a combination of "essential" constructs.
For example, va rious loop constructs such as do, dolist, and dotimes are
translated into a combination of blocks and goto expressions. Toplevel
definitions such as defmethod and defun are translated into a canonical
procedure-definition construct, which defines an asynchronously invoked
procedure. Diverse calling sequences including synchronous call, asyucl1ronous
call without an explicit reply channel, and asynchronous call with an explicit
reply channel, are converted into a combination of a channel creation, touch,
and a canonical sequence in which the reply channel is explicit and the in-

1The syntax of a statement expression is almost equivalent to that of a cor.npound
statemenl in C, except that statements are enclosed by ' ({' and '})' instead of just braces.
and Lhe last statement rnust be an expression. A statement expression is evaluated to the
value of the last e.x·pression.

108

vocation is asynchronous. The two data definition constructs (i.e. , deftype
and defclass) are also unified into a canonical type-definition construct
that names a data format. The task carried out by the frontend is essen
tially a simple macro expansion that reduces the nun1ber of primitives that
must be recognized by later phases.

The second phase (or, code generator) takes the expanded form and gen
erates C++ code. A procedure definition (expanded either from defmethod
or defun) is converted into a single C+ + procedure which takes parameters
as well as a reply channel as its parameters. A type definition (expanded
either from deftype or defclass) is converted into a C++ typedef statement .
An ABCL/ f expression is converted into a. single C++ statement expression
that represents the value of the ABCL/f expression in C++. The gener
ated C++ expression retains roughly the same control structure and variable
scopes as the original ABCL/ f expressions. T hat is, the transformation is
relatively straightforward, in the sense that it does not introduce many tem
porary variables or breakdown compound expressions into small sequences.
Although not empirically verified, this tends to produce a C++ code that
is likely to be successfully optimized by the backend C++ compiler.

This style of relatively simple code generation scheme should not be
taken as granted, especially in the context of parallel languages. In fact,
parallel programming languages are typically compiled into an assembly or
assembly-like C code in which compound statements are converted into se
quences of small operations. This is partially because a thread may block
execution in the middle of a compound e>..-pression, and values that are live
across the blocking point must be preserved. If one wishes to implement
a compound expression by a corresponding compound expression within a
single C procedure, there must be a way to restart a computation from the
middle of a C procedure. Traditional thread libraries accomplish this by al
locating a stack for each thread and by switching stack pointer on blocking,
suffering from the large resource requirements and thread creation overhead.
Therefore fine-grain parallel languages typically manage context explici tly
to bypass the stack frame management mechanism of C. When a blocking
occurs, generated C code explicitly saves live values into an explicitly man
aged frame. However , we cannot precisely detennine the set of live values
at a point within a compound expression , because it depends on the or
der in which sub-expressions of a compound expression are evaluated . For

109

example, suppose we straightforwardly compile a compound expression:

A+B

into a C expression:
A'+B'

where A' and B' are generated from A and B, respectively. Notice that the
evaluation of A' and B' are not P_xplicitly ordered. We further assume that
A may block. If the C compiler evaluates A' before B' and A' blocks, live

values at the blocking point include all the values which the evaluation of
B' requires. If we evaluate A' after B', on the other hand, live values at the
blocking point does not include these values, but instead include the result

value of B'. Thus we must exp licitly order therij as in:

or,

t= A';
s=B';
r = t + s;

s = B';
t= A';
1· = t+s

Note that we not only must order them, but also name each intermediate

result, so that they can be saved at blocking points.
Our code generator emits straightforward C code; when blocking occurs,

the generated code calls a C procedure, which saves callee-save registers and
Ww whole stack frame for the calling procedure. No matter how expressions

are evaluated, the C compiler preserves necessary information on the stack.

5 .2 P rocedures

The frontend generates t hree C++ procedures from a regular procedme (one
defined by a defun), and two C++ procedures from a method (one defined by
defmethod or defrnethod!). It generates body stub, a.nd handler for a regnlar

procedure, whereas body and handler for a method . A stub is a small C++
procedure called either when non-trivial :on clause is supplied or the called

procedure is not known. ln addition to ABCL/f-level parameters and the

110

•

reply channel, it takes a parameter that receives ~be value specified after the
:on keyword. It checks if the :on parameter refers to the local processor and

either calls the body or generates a remote procedure call. request depending
on whether the call is locaL I t returns the reply channel as the result value.

The skeleton of a stub is shown below. When : on+ clause is not specified
and the called procedure is known, the caller directly calls the body. For

defrnethod, we do not generate a separate stub. The body first checks if tbe
receiver object is local and either generates a remote procedure call request
or simply continues the method execution, depending on the location of the

object. A handler is a small 0++ procedure that is invoked when a remote
procedure call request arrives at a processor. It extracts arguments and the

reply channel from the message and invokes the body. Since we generate a
specialized handler for each defun a.nd defrnethod, and the garbage collector
does not require buffered messages be understandable by the coll.ector, a

message does not have to be tagged. A body is a 0++ procedure that takes
ABCL/ !-level parameters plus the reply channel as C- leve! parameters. It
returns the reply channel as the return value. Figure 5.1 shows a skeleton
of a stub, a handler, and a body of a regular procedure and a method.

The different code placement between regular procedures a.nd methods
comes from the typical calling sequence for each type of procedures. In

the current implementation, our compiler never optimizes away the locality
check for a method invocation, although the receiver is often local at runtime.
Thus it is important to optimize the sequence tha.t performs a locality check
followed by the execution of the method body. For regular procedures, on

the other hand, many calls are statically known to be local , thus we wish to
avoid comparing :on parameter and the local processor number. Note that
in either case, we do not duplicate the body.

A simple ad-hoc optimization that has not been implemented is a recog
nition of simple procedures that:

• never block,

• do not explicitly access the reply channel, and

• is small.

For such a procedure, it may be worth generating two versions of its body.

Ou.e is for the re1,'l.llar calling sequence that takes the reply channel as a

111

I • A skeleton of a stub for a regular procedure It takes an additional
parameter on • I

cha.nnel<T> * f (channel<T>• r, ao1 a1 , · · · , an - 11 int on)
{

}

if (on == local_FE) {
f_body (r, ao 1 a, ,

}

else {
msg [0] = f_handler;
push_msg (r, msg) ;
push_msg (ao, msg) ;
push_msg (a 1 , msg);

push_msg (a n-1 , msg) i
send_msg (on, msg) ;

return r;

I • A skeleton of a handler for a regular procedure or a method It
extmcts pammeters from the message and executes body •I

void f_handler (char • msg)
{

}

r = extract_msg 0;
ao = extract~msg () ;
al = extract_msg () ;

an- 1 = extract _msg () ;
f_body (rl ao, al , ... ' an- 1) i

I • A skeleton of a body for· a regular procedure • I
channel<T> • f_body (channel<!>• r, ao, a1 , · · · 1 an- 1• int on)
{

}

I • body of f . no locality check. • I
.. · I• do whatever •I

return r;

I • A skeleton of a body for a method • I
channel<T> • f_body (channel<!>* r,
{

}

if (is_local (self)) {
I• execute body of f

else {
msg [0] = f_handler;
push_msg (ao , msg) ;
push_msg (a I, msg) i

pus.h_msg (a,. _ I . msg) ;
send_msg (on, msg) ;

return r;

•I

Figure 5.1: A skeleton of a stub, handler , and a body of a regular procedure

and a method.

U2

parameter. The other is a specialized interface for local calls without an
explicit reply channel. The specialized interface does not take the reply
channel and returns the vaJue of the body. A synchronous call can be per
formed by a direct procedure call to the specialized body. An asynchronous
call is done by first caUing the specialized body, and then creating a reply
channel that stores the return value. Note that the version for general call
ing sequences are still necessary for supporting remote calls, explicit reply
channels, and first-class procedures.

5.3 Procedure Invocations and Context Switches

The frontend expands any type of calling sequence into the following canon
ical form:

(future (/ ao a1 .. · an - Jl :reply-tor)

where f is either a body of a regular procedure, a stub of a regular procedure,
or a body of a method. The code generator simply translates this call into a
0++ procedure call. Recall that stubs and bodies return the reply channel
as the return vaJue. Thus this correctly transforms an ABCL/ f e.xpression
into a 0++ expression that represents the value of the expression in C++.

A procedure blocks when a touch operation does not find any vaJue in
the channel. A touch may be explicit in the source code, or automatically
inserted by the frontend to implement a synchronous call or a mutua.! ex
clusion for a concurrent object. When a touch fails , the procedme allocates
its heap context, enqueues the pointer to the context into the channel, and
unwinds the stack by calling sll'i tch_ to_parent.

When a thread later writes a value to the channel, the thread moves the
resumed heap context to a globaJ scheduling queue. The globaJ scheduling
queue is periodicaJiy checked and threads in the global scheduling queue are
resumed by restart_thread. Alternatively, when a reply finds a thread
sleeping on a channel , it could immediately resume the thread by directly
calling restart_ thread, rather than inserting the thread in the global
scheduling queue and later picking it up. This approach would eliminate
the queue manipulation overhead. Unfortunately, this approach has a bad
interaction with the conservative garbage collector. A procedure typically

113

performs a reply at the end, because typical procedures do not have an ex

plicit reply channel. When this is the case, the context of the current thread
should desirably be removed from the stack before pushing the context of
the next thread. Otherwise, the context of the current thread, which is ac

tually no longer necessary, is identified as a root by the garbage collector.
By inserting the restarting thread in the global scheduling queue, we effec

tively defer pushing the context of the thread. If the reply is the last or near
the last action of the current thread, the context of the thread will soon be

removed from the stack.
By the same reason, we free a heap context as soon as the thread is

resumed. That is, when a single procedure invocation blocks multiple times,
it does not reuse the heap context, though StackThreads itself allows the
reuse. When a procedure would reuse the heap context, after a resume, all

the live values of t he procedure at the time it blocked last time would be
retained until the context is overwritten by subsequent blocks. We instead
simply free the heap context by calling GC_FREE2 explicitly, which nullify

the context. Other options that we have not tested include:

• Only nullify the context, without freeing the context. This saves allo
cation cost and initializations unnecessary for second or later blocks.
A disadvantage is that it retains the heap context that would other

wise be reused by other purposes, including blocking other procedure
invocations.!!

• Do nothing. Just let the garbage collector reuse the heap conte.xt. This
is locally an optimal solution, since this incurs no overhead. Hidden
cost .is unnecessary heap growth or more frequent garbage collections

when we do not have enough memory.

Stated above are all the basic mechanisms we have for implementing proce
dure calls . This correctly implements all the calling sequences supported by

ABCL/ f , including synchronous and asynchronous calls, local and remote
calls, and calls with or without explicit reply channels. Everything is derived

2 A _procedure supplied by Boehm & \Yeiser's GC that frees a region of memory allocated
by GCJ!ALLOC.

3 Many heap contexts have more or less a similar size. Renee freed heap contexts have
n plenty of chances lo be reused soon.

114

from the canonical calling sequence, touches, and replies. Let us see several

typical examples to understand how this mecl1anism works.

Example 1, Synchronous calls: A synchronous call is just a combina

tion of an asynchronous call + touch immediately after the call. For
example, a synchronous call:

(f x)

is expanded by the frontend into the following canonica l form:

(touch (future (f x) :reply-to (make-channeltype))),

where type is the reply type of f. Suppose this call is local (i.e., either

f is a regular procedure or f is a method and x is a local object). A
channel is created, f is called with the channel and x as arguments.

Since the call is local, f starts its computation. F returns to the caller
either when f terminates or blocks. Either case, the caller then tries
to touch the channel. If the value exists, the caller simply proceeds.
Otherwise it blocks. Now suppose the call is remote. In this case, f

emits a remote procedure call message to the remote proces or and

immediately returns. The caller then tries to touch the channel, finds
the channel to be empty, and blocks. Note that the caller does not per

form a particular check to see iff is blocked, or the call was performed
locally. It simply checks if it can proceed.

Example 2, Asynchronous calls : Suppose we have:

(let* ((1 (future (f x)))

(r (future (f y))))

(+ (touch 1) (touch r))),

where f is a method, and we do not know statically whether objects

are local or remote. Let ns further assume f is a small method that,
once started, always reply a value without blocking. First consider the

case where both x and y happen to be local at runtime. In tltis case,
both method invocations schedule f , which reply a value to the reply
channel before it returns to the caller. When the caller later tries to

115

touch 1 and r , it will find a value from both. Next consider the case
where x happens to be remote. The invocation (future (f x)) sends
a remote procedure call request to the remote processor, returns to the
caller with an empty channel. Then (future (f y)) is called and the
caller further proceeds to' ... '. Meanwhile, the reply from (f x) may
or may not arrive. When it does, (touch 1) will find a value in l.
This is a representation of latency biding in ABCL/ J. Only when the
reply has not arrived until (touch 1) , does the caller block.

Example 3, A chain of Synchronous calls: Suppose a ·hain of proce
dure invocations fo, ft, · · ·, fn- 1 where/; calls fHl synchronously and
locally and J,._1 blocks. We further assume every procedure replies a
value to the reply channel if and only if it terminates. Since fn- 1 calls
f,_2 synchronously, blocking fn- 1 will cause fn - 2 a.lso block, which
will in turn cause fn - J also block, and so forth . In this way, this cas
cading block continues until fn - l is resumed. When f,. - 1 is resumed,
its context is copied on stack (via restart_ thr ead) to restart it. It
will eventually terminate and resume fn- 2. which in turn eventually
resun1e f, _3, and so on. Notice that no particular mechanisms are
provided for maintaining the call chain between /; and h+ 1· They
are implicit ly maintained through sharing the reply channels between
them. Also notice that heap contexts are lazily copied back to the
stack; when fn - l is resumed, the copied back to the stack is only the
frame for j,._ 1 . Other frames still remain in the heap. That is, if fn - 1

blocks again, only the frame for fn- 1 must be saved.

5 .4 Unboxed Channels and Efficient Communica

tion via Channels

We have seen that how the combination of the canonical calling sequence
and cha1mels implement various calling sequences uniformly. What is left
unclear is how to implement channels, which are ubiquitously used in the
mechanism . A naive implementation would represent a channel as a pointer
to a heap-allocated datum that has two queues, one for values and the other
for threads sleeping on it. With this naive implementation, however, the
above mechanism is just an expensive representation of various calling se-

116

qu nces. The goal of this section is to develop a mechanism that implements
the semantics of the first class channels correctly, while achieving efficiency
where more specialized mechanisms are be applicable.

Omitting details, we apply a special (unboxed) representation for chan
nels that satisfy conditions described below and lazily convert them to the
normal (boxed) representation (i.e. , pointer to a heap-allocated datum) when
they no longer satisfy the conditions. An unboxed channel represents its en
tire state in local variables (which will hopefully be allocated on registers)
and reply/touch on it simply update the local variables. The essential condi
tion under which this "in-place update" correctly implements the semantics
of channel~ is that the channel is not aliased, or if it is aliased, a protocol
correctly propagates the change to other references.

In our protocol, a channel is created in its unboxed form and remains
unboxed as long as:

• it is empty or it has only single value stored in it,

• it is not referenced from heap,

• the thread that creates it references it through at most one local vari
able, and,

• other threads that reference it do so only through the reply channel
and have not blocked.

Put differently, a channel is created in its unboxed form, passed to another
local thread via the reply channel parameter as is. It must be converted to
the boxed representation, however, when it is stored into heap data, passed
to a remote thread, passed to another thread via a regular parameter, or
aliased to multiple local variables within a thread. How to generate code
that maintains the invariant is yet unclear and we detail the code generation
scheme in Appendix B .

As long as a channel is referenced only from a single thread, this mech
anism works with no surprise. Since it is referenced only from a single
variable, updating the variable sufficiently updates all the references to the
channel. Less obviously, a channel can be shared among multiple local
threads, as long as it is passed to these threads via the rep ly channel pa
rameter and these threads have not blocked. For example, an expression:

117

(let• ((r (future (f x) :reply-to (make-channel fixnum))))

(touch r))

creates a channel at the future call and shares it between f and the caller
through the reply channel parameter. We define a protocol by which an
invoked procedure propagates the updated state of the reply channel to its
caller. More precisely, an invoked procedure receives a (possibly unboxed}
channel via the reply channel parameter, keeps it unboxed as long as the
conditions are met, and notifies the caller of the updated representation when
it returns to the caller (whether by termination or blocking). If it blocks,
the channel must be boxed, so that tbe caller and the callee may share them
afterwards. If it terminates, on the other hand, it returns the d:tannel as is,

which is hopefully still unboxed.
A channel is represented by a single 32-bit word represented either in

boxed form or in unboxed form. A boxed form is simply a pointer to a

heap-allocated channel. An unboxed form is either:

• a special value UNBOXED_EMPTY , or

• a pair (11alue, UNBOXED_ONE_ VALUE)

Current ly, we assign one to UNBOXED_EMPTY and three to UNBOXED _ONE_ VALUE.

Due to the limitation of the word size, we can use only 30 bits for en
coding the value stored in a channel. Hence, the current implementation
uses unboxed channels only for channels of unit, boolean, character, and
fixnum , assuming fixnum is r epresented in 30 bits. We encode the pair
(value, UNBOXED_ONE_VALUE) by (4 x value+ UNBOXEO_ONE_vALUE) .

It is clearly desirable to use unboxed channels for other data, especially
for floating point numbers and pointers, and there are in fact no fundamental
difficulties. We do not so simply because of t he urrent implementation
artifacts . Since a floating point nwnber fully utilizes 32 or 64 bits, in order
to use unboxed channels for floating point munbers, a channel must be split
into two words, one for the value and the other for the tag. This can be done
by representing them with a C++ struct value or two separate C++ values
in the generated code. The former cannot be used because it invalidates the
restriction imposed by StackThreads that aggregate data are not allocated
on the stack. Thus, we must use the later . However, the current code

118

generation scheme works by translating a single ABCL/ f expression into a
single C statement expression and there a.re no ways to represent multiple
C++ values by a single C++ e':pression. Using unboxed values for pointers
should be even easier, because two lowest bits of a pointer are in any case
zeroes. This is really a silly limitation of the current implementation that
uses only a single encoding scheme over all types of channels.

119

Chapter 6

Application Benchmark

Although results shown in Chapter 2 and 3 demonstrate multithreacling and
memory management overhead are not significant, we are still interested in
how good was the performance of such systems overall, especially relative to
pjficient sequential systems (such as C and C++). This chapter examines
the overall performance of the ABCL/ f system by application benchmark.
We tested the same applications with Chapter 2 (BH, CKY, and R.l'<A) .
For each application, we show single processor performance, breakdown of
parallel execution overhead, and overall speed-up. Refer to Appendix A for
a more though description of each application.

6.1 Single Processor Performance

For each applicat ion , we wrote programs both in C++ and ABCL/ / , us
ing an essentially the same algorithm and ran them on a single processor
workstation (Ult raSparc, 167 Mhz with 128 MB memory). The baseline
C++ programs are sequential. For ABCL/ / , we wrote both parallel and
sequential version. T he parallel version exploits parallelism when executed
on multiprocessor systems. The sequential version does not have overhead
for polling and locality checks of concurreut objects. It also eliminates some
application specific overheads that are unnecessary on single processors and
are easily removable without significantly restructttring tbe application. The
sequential version still incurs, however, overhead for fork , channel creation,
communication vja channels, and object locking. They are, in general, nee-

120

essary for implementing semantics of ABCL/f . C++ programs use Boehm
& Weiser's conservative garbage collector. ABCL/ / and C++ programs ex
hibit similar heap-allocation behavior, except that some ABCL// programs
allocate many (boxed) channels on heap for synchronization and obtaining
results of procedure calls. Using garbage collector for C++ is not meant
to underestimate performance of C++ programs. In fact, the conservative
garbage collector has an allocation speed superior to malloc. It allocates a
small fixed sized block in 11 Spare instructions in the common case. For al
location intensive applications, the overall performance is much better than
programs that use malloc and free on a per datum basis. Of course, it may
incur high overhead compared to programs that ustomize allocation meth
ods, taking advantage of the application specific knowledge about allocation
behavior and lifetime distribution of objects. When this is the case, we also
write a C++ program with such a customized memory al locator.

Figure 6.1 shows performance of the three applications. Graphs show
the relative performance of various versions, with the C++ program that
use Boehm & Weiser 's GC as the baseline. For each program, "ABOL/f
(parallel)" refers to the parallel ABCL/f binary, "ABCL/ f (sequential)"
the sequential binary, and "C++ (gc)" the baseline C++ program.

For BH, the parallel binary runs about 2.2 times slower than the baseline
C++ program. The sequential version removes overhead for polling, local
ity checks, and (most importantly) software caching overhead. It is still 1.8
times slower than the baseline. It turned out that this high overhead was
due to the lack of using unboxed channels for pointer data, as mentioned
in Section 5.4. The execution time of BH is dominated by the force cal
culation, whose main procedure is a recursive method that returns a three
dimensional vector, which is represented by a (deftype) record in ABCL/ f .
The representation of the three dimensional vector is a pointer to a heap
allocated record , thus a result of a recursive call is always written in a boxed
channel by the callee and then fetched by the caller. The instrnction count
at leaves of the call tree, which essentially computes a Newtonian force be
tween two particles, is about 65-70 instmctions in C++, while it is 90-100
instructions in ABCL/ f. The difference comes from the cost for writing the
result to the (boxed) reply channel, which is about 25 instructions in the
current implementation. The 25 instructions involve ones to make sure that
no threads are waiting on the channel, to make sure that the value queue

121

an

OS

CKY

l .S ,-----------------.,

~ " 1--------1

},
u:

O.:'i

122

• C+..-(gc)

D ABCUf (~ut:nual}

0 ABCUf (parallel)

El C+t (f!\SI :IUC'lC}

• c++(gt:)

D ~'BCIJflSI.'q uentilll)

O ABOJr (PJif:IIM)

1.2

-~ 0.8
~
~ 0.6

"' 0.4

0.2

RNA

D C++(gc)
• ADC:!Jf (scquenunll
0 ABOJf(~:dlcl)

Figure 6.1: Single processor performance of ABCL/ f programs, relative to
sequential C++ programs. C++ (gc) refers to the baseline C++ program.
ABCL/ f (sequential) does not incur overhead for object locality checks and
polling. It still incurs overhead for fork , communication via channels, and

object lock. ABCL(f (parallel) refers to a true parallel binary.

123

is empty, and to write the value to the channel. Non-leaf nodes of the call
tree perform recursive calls to children and each recursive call t;tkes about
25 instructions (at the call site) in C++, while it takes 45 instructions in
ABCL/ f. The difference again comes from the cost of obtaining the result of
recursive calls from a channel, wWch is about 15 instructions. They include
instructions to make sure that only one value is stored in the channel, to
read the value, and to make the channel empty. In addition to the differ
ence in the call site, non-leaf nodes must create a channel for these recursive
calls (we manually optimized the program so that all recursive calls from a
node share a single reply channel, thus each internal node at the call tree
creates only 011e boxed channel). They all together explain most of the dif
ferences between ABCL/f and C++. The performance of ABCL/f should
become much closer to C++ when we implement a better code generator
that applies unboxed channels to pointer data.

The baseline C++ program allocates the result of recursive calls on heap,
only to return the result to the caller. This is clearly unnecessary. We wrote
an optimized version that returns the result of recursive calls on stack. In
this program, no heap allocations occur during the force calculation phase.
"C++ (stack)" shows the result of tWs version, wWch was about 30% faster
than the baseline version.

Both sequent ial and parallel versions of CKY in ABCL/f run about
2.0 times slower than the baseline C++ program. Again, a large overhead
comes from communication via boxed channels. Moreover, the problem is
slightly harder than in BH. CKY builds a large matrix (CKY matrix) during
parsing a sentence. Parse trees are constructed in a bottom up fasWon; parse
trees for shorter sub-sentences are bnilt first and then combined to form
parse trees for longer sub-sentences. The C++ program naturally acWeves
this bottom up behavior by building parse trees one after the other. The
parallel ABCL/f program overlaps construction of parse trees for smaller
sentences with that for longer sentences as much a~ possible. Hence threads
which build a parse tree must synchronize with threads that produce its
sub-trees. ln t.he source code level, the C++ program obtains sub-trees
simply by array references , whereas the ABCL/ f program by method calls
to concmrent objects that implement synchronizat ion between the producer
and consumers. Worse, since this method returns a pointer, the result of a
method call must be communicated via a. boxed channel. Again, we expect

124

a significant improvement is possible when we implement unboxed channels
for pointer data.

Performance of CKY is inlproved by customizing memory allocator for
the particular lifetinle clistribntion of parse trees. That is, all intermediate
parse-trees for a sentence remain live until near the end of parsing the sen
tence, and they become dead, en messe, when parsing is finished. Hence,
instead of requesting memory from a general memory allocator on a datum
by datum basis, we can request a large block and allocate memory for parse
trees from the block. They are sinl ply recycled when we finish one sentence.
Performance of C++ program with this op irnized allocator is shown as
C++ (fast alloc).

The above two applications suffer from the overhead of communication
via boxed channel. RNA does not use channels of floating point or channels
of pointer data in its kernel , and thus exhibits performance very close to
C++. The overhead of the sequential version is in fact negligible. The
parallel version incurs an overhead for performing asynchronous recursive
calls until a certain depth of the call tree. Making future calls, per se, do
not make any difference. The overhead is incurred because reply channels
for the future calls are stored in cons cells and therefore boxed. In this

benchmark, there were 65,000 future caUs out of 1,300,000 total calls. That
is, one out of twenty calls makes the reply channel boxed and performs an
additional heap all.ocation for a cons cell.

6 .2 Speed-up

F igure 6.2 shows speed-ups obtained on AP1000+ for various problem sizes.
The baseline is the estimated tinle of the parallel ABCL/ f binary executed
on one processor of APlOOO+. The sing.le processor execution time on
AP1000+ is estimated from the execution time on a faster workstation (Ul
traSparc 167 Mhz) and the ratio between those two processors in a small
problem. For some applications, we were unable to directly measure the
single processor execution ime on AP1000+, because they take too long
time or run ont of memory (16 MB).

For BH, we set the number of particles to 8,192, 24,576, and 49,152
particles. On 256 processor., they correspond to having 32, 96, and 192
particles on each processor , rm;pcctively. ·when we have 49,152 particles,

125

45

40

Jl

~"'

t~
15
Ill

J()

10

/

llH

--

----~ ,.,.-__..-
~

50 100 150 200 250 300

no. ofprocessors

CKY

.L-
__,/

L~

~
/

u
1,_/~

u " 1110 ISO 200

126

""
'"'
140 ,,.

RN.\

---~ ,.
·' /

..X/

~=== rtf_
~ .

"' 100 IS() 100 '" IUlN"JI(t\:t)o.~

Figure 6.2: Speedup on AP1000+. RNA is quite scalable especially for large
problem sizes. See the main text for performance limit ing factors.

we observe 42 times speed-up on 256 processors, which is admittedly much
lower than it ought to be. To understand the source of inefficiencies and
how could it be improved, we analyze where time goes on various numbers
of processors. Figure 6.3 breaks down the execution time of the force cal
culation phase into four categories, namely, busy, overhead, GC, and idle.
The y-a..·-ds refers to the number of processors and times are totaled over all

the processors . "Busy" refers to the time spent on user program, including
calculation and replication, "overhead" the time spent on communication
(send and receive) and context switches (block and resume) , and "GC" the
time spent on lo(:al/global GC {including idle time during global GC). "Idle"
literally means the idle time, excluding idle time during global GC. First of
all, the busy part clearly includes a portion that is proportional to the num
ber of processors. The overhead part is also roughly proportiona l to the
number of processors. This is because each processor must replicate a part
of the BH t ree, and thus the total amount of replications increases as we
have more processors. The graph indicates that this poor scalability could
be alleviated by optimizing communication layer or by having a (possibly
built-in) more optimized layer for software caching. Next, t here is a large

127

""
224

• ~ 192

£ 160

i 128

~ % z
(>J

32

I

I

I

100

IHI

I --._ ---~
!--::- ~ =- 1

171
7 7'

/ /d'

/ ~

7?

400 600 1000 1200

Totoll Time ~~cond)

Figure 6.3: The breakdown of the execution time of BH into busy, overhead,
GO, and idle. Times are totaled over all the processors. The amount of work
(busy and overhead) noticeably increases as the number of processors. This
is because each processor must replicate a part of BH-nodes. Idle time is

also large due to inadequate load balancing method we currently implement.

fraction of idle t ime. Th.is comes from an inadequate load balancing method
we currently implement. We sort particles according to the Morton ordering
[75] and assign the same number of pa1·ticle.s to each processor. Since the
density of particles significantly varies from one place to another, assigning
the same number of particles cause processors assigned to a dense region to
be heavily loaded. We examined an application profile and observed that
most idle times appear at the end of the force calculation, confirming that
the idle time is due to load imbalance, rather than latency of synchronous

communication.
For OKY, we tested sentences of various lengths, namely, 35-45, 65-

75 , and 95-105. Longer the sentences are, better speed-up we ach.ieved.
Breakdown of the application time is also shown for the short sentences (35-
45) and the long sentences (95-105) in Figure 6.4. Unlike BH, the amount
of work (busy, GO, and overhead) is essentially constant.

In gen ral, OKY exhibits an even severer speed-up than BH, and it is
much harder to establish a simple performance model for it. Our analysis

128

"'
"' ~ 192

i 160

~ 128

~
'l_ 96

...
"

256

'"' • E 192
~ c: 160

"' 128
.i1
E 96

'l_
64

32

II

II

500

CKY (3:'i -1Swtlf'd1;)

/

'/ 77
'/

Tmal li /1ll.11second)

CKY (95-105 W()lds)

'-

....._

1000 1500

TCMal Tim~ (secont.O

10000 12000

~

'I
l!bw;y

D hfl l)

O g<
D conun

I
~~

'
....._

2000 2.l00

Figure 6.4: The breakdown of the execution time of CKY into busy, over
head , GO, and idle. Times are total d over all the processors. Unlike BH,
the amount of work is constant. The limiting factors are overhead for com
munication and idle time du • to a severe critical path length (for short
sentences) and load imbalances.

129

so far indicates that speed-up is limited by several factors . First, a critical
path inherent in the algorithm limits speed-up for short sentences. Recall
that parsing proceeds from bottom to top. To completely finish parsing
the entire sentence (call it w 1w2 · · ·wn), we must wait for the completion
of parsing both sub-sentences w1 w2 · · · Wn-1 and W2W3 · · · Wn because there
are possibilities that parse t rees for those sub-sentences constitute an entire
parse tree. In general, to complete parsing a sentence of length n , we must
wait for the completion of parsing its sub-sentences of length n- 1, and
then examine if they constitute a parse tree of the entire sentence. This
places a severe upper bound on the achievable performance, particularly for
short sentences. Refer to [54] for a more detailed analysis. From an appli
cation profile, we attribute the poor speed-up for sentences of length 35-45
to the critical path length. Second, for sentences of any length , communica
tion overhead between a thread that produces a sub-tree and other threads
that read it places an upper bound on the efficiency {the ratio between the
achieved speed-up and the ideal speed-up). Our OKY implementation cre
ates a thread for l\ny sub-sentence of the given sentence. That is, for any
p, g such that 1 $ p < g $ n, we create a thread which builds parse trees for
sub-sentence Wp · · · tvq· The thread that is assigned to this sentence must re
ceive results from threads that produce parse trees for its sub-sentences. The
ratio between the cost of this communication + associated context switches
and the cost of useful computation (i.e., combining parse t rees to form a
larger tree) limits the efficiency. Finally, load imbalance limits processor
utilization. From the lower graph in Figure 6.4, we observe that there is
a significant amount of idle time even for long sentences where the critical
path should not be a problem. By profiling the amount of work done by each
processor, we attribute this to load imbalance. Since the work performed
by each thread is highly uneven and depends on input, and the number of
threads at each processor is at most 40 or so on 256 processors, the total
work performed by each processor is unlikely to be balanced enough.

RNA just exhibits an encouraging speed-up, at least for large problems.
This is because RNA is a simple parallel tree search problem where threads
do not synchronize and communication is not frequent. n refers to the size
of the problem and the size of the search space is exponential ton. A similar
br akdown of the application time for the maximum problem size (n = 230)
is shown in Figure 6.5. The amount of work is approximately constant, but

130

22-1

192

160

""
96

....
J2

I(NA

200 400 600 soo l 000 1200 1400 1600

Tott\llime (scmntlj

Figure 6.5: The breakdown of the execution time of RNA into busy, over
head, GO, and idle. The amount of work slightly varies unpredictably, prob
ably due to the inherent indeterminacy of the application.

slightly varies unpredictably. This is probably due to the inherent indeter
minacy of the application. How much prurting occurs depends on timing
and may differ from one invocation to another.

131

Chapter 7

Conclusion and Future Work

The main contribution of this thesis is efficient and reusable implementation
of multithreading and garbage collection and empirical results obtained by
building a new programming language ABCL/ f and writing applications in

it.
Multithreading mechanisms have been studied in many contexts and by

various approaches, including hardware solutions [53, 61], compiler-centric
approaches [6, 64, 65 , 73], and runtime-centric approaches (which are, of
course, not exclusive with each other). Our study clearly falls into the
runtime-centric approach. Previous work, Lazy Task Creation (LTC) in
particular, has proposed the basic execution mechanisms in this area and
it has been studied in the context of a parallel Lisp on shared-memory ma
chines. Additional contributions of this work are two folds. First, LTC has
been studied with relatively sma11 and mostly functional applications, as
swning hardware-supported shared heaps, 1 while we study our mechanism in
the context of larger and more complex app licat ions on distributed-memory
machines. As an environment in which multithreading is studied, mostly
funct ional programs with hardware upported shared heap was somewhat
less severe than our setting. I.Yhen data are mostly read and remote data
can be fetched quickly by hardware, one does not have to seriously worry
about switch cost or switch frequency. Having object-oriented applications
in which data are frequently locked with fine granularity and distributed

1 F'eeleyjs message passi.ng protocol J29} does not assume shared stack, but. assumes

shared heap.

132

memory machines in which stalling the entire processor on a remote access
is undesirable and sometimes difficult to implement , empirical studies were
needed to verify that fine-grain multithreading is really feasible. Second,
previous runtime-centric approaches are, although in principle applicable
to other languages, not readily sharable by other language implementers.
Previous runtime-centric approaches were in fact compiler-centric, in the
sense that extensive cooperation was required from the code generator. As
a consequence, it has not been clear to which extent LTC-like mechanisms
can be efficiently implemented in such a way that strictly preserves the se
quential calling standard as well as many compilers and support tools built
on top of it. Our multithreading mechanism maximally exploits informa
tion ah-eady present in standard C stack frames as much. as possible and
has been successfully implemented on two different platforms (Spare and
Alpha). Thanks to such runtime mechanism, we were able to implement
a programming language whose sequential speed is as fast as C and whose
thread creation overhead is as low as LTC, without re-designing runtime
data format, calling convention, and code generator which conforms to the
convention from scratch. Performance studies so far indicate that support
ing multithreading languages in this way is indeed feasible. Assuming data
distribution with reasonable amount of locality or appropriate replication
strategy, multithreading overhead (overhead for preparing potential blocking
and overhead for thread switch) is never significant, as shown in Chapter 2.

Garbage collections have also been studied in broad contexts. Even when
we restrict our attention to ones on distributed memory environments, va
riety of algodthrns have been proposed in the literature. Our garbage col
lection algorithm is very straightforward, compared to many previous algo
ri thms that deal with issues such as faulty processes or lost messages. Most
of previous studies, however, only present algorithms and have not been im
plemented on real machines. Performance is often studied only qualitatively.
Our primary contribution to the community is an empirical and qualitative
performance study with a reasonable heap expansion policy clearly men
tioned. Garbage collection overhead is necessarily relative to behavior of
the application and how much memory is allowed to use, thus performance
studies without reasonable heap expansion policies may not be reproducible
when the amount of available memory differs. We show that, under a modest
heap expansion policy that preserves that of the original Boehm & Weiser's

133

collector, t.he garbage collection overhead is in the ballpark of that in the
sequential program. We also show that local collections should be typically
invoked synchronously on aU the processors, at least in our experimental
settings (256 processors and heap expansion policies stated in Chapter 3),
despite its synchronization cost and potential extra work. In essence, this
is a restatement of the "co-scheduling benefit" of local collectors, but has
been overlooked by the community, because we have an intuition that a
global synchronizat ion is expensive and does not scale. Furthermore, an
adaptive scheduling strategy that selects the appropriate strategy has been
developed. Our experiments so far indicate that it selects the right strategy

when one is clearly better than the other.
Applications have been written il1 ABCL/ f and their performances have

been compared to equivalent sequential C++ programs. The overhead of
ABCL/ f on a single processor workstation varies from 30 % to llO %. A
large sourc,e of the sequential overhead was a current limitation of the com
piler that always boxes reply channels of pointer data. This will certainly
be fixed in the future. Another, more serious problem is allocation and (lo
cal) collection overhead. In spite of the allocation performance of Boehm
& Weiser's collector that is superior to usual malloc + free, C++ programs
can manually customize allocation performance by taking advantage of the
application-specific allocation bellavior and lifetime distribution. There may
even be cases where data can be allocated on stack. We do not have an im
mediate answer to this problem. Applications exhibit from 40 to 160 times
speed-up on 256 processors and speed-up is often limited by communica
tion overhead. This is partially due to current implementation that favors
portabili ty across different message passing interfaces. Reengineering com
munication code will produce a better result.

Many issues should be investigated more extensively. Below we list only
ones that will immediately follow the present work.

Portability Guarantee of StackThreads: Although StackThreads has
been shown to add little restrictions to the current C compilers and
it bas been ported to Spare and Alpha, we wish to guarantee the
portability of the approach in any reasonable calling conventions for
Cor C++, hopefully under more relaxed assumptions. We roughly
made three assumptions, namely, ability to thread epilogue code se
quences through a call chain , ability to traverse the chain of stack

134

frames , and mobility of stack frames. First two assumptions would
be most conveniently satisfied by a set of simple extensions Lo C that
provide information about the current procedure such as the size of
parameters and the offset where return address is saved. Such exten
sions may not be available on existing compilers, however. In a short
term, a more practical approach will be providil1g procedure descriptor
by post-processing assembly code generated by C compilers. Such de
scriptors will be a modest extension to exception handling mechanisms
provided on some operating systems such as Digital UNIX and IR.IX
and may hopefully be incorporated into a standard. Mobility of stack
frames seems to be a valid assumption as long as aggregate data are
not allocated on stack. For StackThreads to be more useful , however,
we wish to guarantee the safety of code that allocates aggregate data
on stack, as long as the address is not explicitly taken. Such guaran
tee seems to necessarily require compiler extensions. Right now we
do not have a better alternative to tlus problem.

Study of the adaptive local collection strategy in various settings:
While the adaptive collection strategy investigated in Section 3.4.4
chooses the right strategy where one strategy is clearly better than
the other, it was not substantially better than a simpler "always
sync.hronous" approach. In fact , independent local collections have
(if any) little gain over synchronous ones, thus the adaptive strategy
can always resort to the synchronous strategy whenever the right strat
egy is not clear. This may not be the case in other settings. First, we
suspect that this was the case partially because of our heap expansion
policy. Our heap expansion policy assumes that if any processor has
expanded its local heap up toNI, it is reasonable for any processor that
has much smaller heap size to expand its local heap up to around M.
This policy avoids too frequent local collections when many processors
are simultaneously expanding heap sizes. On the other hand , this may
still expand heap too aggressively, particularly when live data among
processors are highly unbalanced. Right now, we do not have an al
ternative expansion policy that i less aggressive under unbalanced
live data distribution and does not lead to unreasonably frequent col
lections when processors are simultaneously expanding their heaps.

135

Assuming the presence of such a policy, the policy would be likely
to favor independent collections more than the current policy does,
and thus the importance of the adaptive strategy would accordingly
increase. Second, the advantage of synchronous collections may be
reduced in multi programmed environments (network of workstations)
where synchronization delays may be more unpredictable. Right now,
we simply do not know how do they perform on today's commod
ity operating systems in whlch processes are scheduled independently.
While future operating systems for high performance workstation clus
ters will support some form of co-scheduling for synchronous SPMD
applications, the advantage may be smaller than in dedicated parallel

computers such as AP1000+.

Comparison to reference counting methods: Our experimental results,
which favor synchronized collections over independent ones, partially
contradicted previous scalability criteria of collectors on large-scale
systems. We suspect naive reference counting sch me suffer from the
same problem with the independent collection scheme and tend to re
quire a larger amount of memory than stop-the-world type collector
does. It will be fruitful to examine this conjecture through experi
ments and explore the possibility for a combined strategy. The com
bined strategy reclaims small and locally shared data incrementally by
reference counting and reclaims large and globally shared linked data
structure by global mark & sweep, with one stroke.

Dynamic load balancing: One thing that is overlooked in this work de
spite of its importance is dynamic load balancing, where a computation
migrates to another processor in the middle of it. In addition to per
formance considerations, implementing migration was already hard a
problem in the conte>.'t of our work. It would require precise identifica
tion of pointers in a C stack frame or a lower level software support for
shared address space. As large-scale shared-memory machines are get
t.ing popular and more widely available, assuming hardware support
for shared-memory will not become a severe restriction in the future.
Hence, we wish to explore the pos ibility for implementing dynamic
load balancing again with existing sequential C/C++ compilers. The
execution mechan.ism will naturally be similar to Lazy Task Creation,

136

but again the problem is how to make it implementab.le under the
current C stack frames and calling conventions. In the presence of
callee-save registers, it seems unavoidable that a task stealing requires
some cooperation from the victim. Hence, the mechanism will be based
on the message passing protocol investigated by Feeley [29]. Here we
vaguely describe the task stealing mechanism under standard C staek
frames and calling conventions. When a victim picks up a task-stealing
request, it unwinds stack frames using the epilogue code threading un
til an appropriate fork point. At that point, we transfer control to a
special routine that handles the request on a separate stack. The
handler copies the stolen continuation and makes it available to the
requesting processor. It then modifies the original continuation so that
when control reaches to the continuation, the stolen frames are sim
ply discarded, again by epilogue code threading. The handler fu1ally
resumes the original comptttation .

137

Bibliography

[1] Saleh E. Abdullahi , Eliot E. Miranda, and Gra.em A. Ringwood. Col
lect ion schemes for distributed garbage. In Proceedings of International

Workshop on Mem01y Management, number 637 in Lecture Notes in
Computer Science, pages 43-81. Springer-Verlag, 1992.

[2] Gul A. Agha. Actors: A Model of Concurrent Computation in Dis
t.-ibuted System.s. The MIT Press, Cambridge, Massachusetts, 1986.

[3] Andrew W. Appel. Simple generational garbage collection and fast
allocation. Softwar·e, Practice & Exper·ience, 19(2):171- 183, February

1989.

[4] Andrew W. Appel. Compiling with Continuations. Cambridge Univer

sity Press, 1992.

[5] Andrew W. Appel and Zhong Shao. An empirical and analytic study
of stack vs. heap cost for languages with closures. Technical Report
CS-TR-450-94, Department of Computer Science, Princeton University,

1994.

[6] Takuya Araki and Hidehiko Tanaka. A static granularity optimization
method of a cornitted-choice language fieng. Transactions of Informa

tion Processing Society of Japan, 1997. (to appear).

[7] Yariv Aridor. An Efficient Softwm·e Em;ironment fo•· Implicit Par-allel
P1·og..amming with a Mulii-Paradigm Language. PhD thesis, the Senate

of Tel-Aviv University, 1995.

138

[8] W. C. Athas and C. L. Seitz. Cantor user report version 2.0. Technical
report, Computer Science Department, California Institute of Technol
ogy, 1987.

[9] Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calcuJation
algorithm. Nature, 324:446-449, 1986.

[10] David I. Bevan. Distributed garbage collection using reference count
ing. In Proceedings of Parallel Architectu•·es and Languages Europe,

number 258, 259 in Lecture Notes in Computer Science, pages 176-
187, Springer-Verlag, 1987.

[11] Andrew Birrel, David Evers, Greg Nelson , Susan Owicki , and Edward
Wobber. Distributed garbage collection for network objects. Technical
Report 116, Digital Systems Research Center, 1993.

[12] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Net
work objects. In Proceedings of Fourteenth Symposium on Operating
Systems Principles {SOSP), pages 217- 230, 1993.

[13] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony,
and B. Mohr. Implementing a parallel C++ runtime system for s alable
parallel systems. In Pmceedings of Supe1·computing, pages 588- 597,
1993.

[14] Fran~ois Bodin, Peter Beckman, Dennis Gannon, STinivas Narayana,
and Shelby X. Yang. Dist ributed pC++: Basic ideas for an object
parallellangauge. Scientific Computing, 2(3) , 1993.

[15] Hans-J uergen Boehm. Space efficient conservative garbage collection.
In P•·oceedings of the ACM SIGPLAN'g3 Conference on Programming

Lan.guage Design and Implementation, pages 197- 206, 1993.

[16] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an unco
operative environment. Softwa,·e Practice and Experience, 18(9):807-
820, 1988.

(17] K. Mani Chandy and Carl Kesselman. CC++: A declarative concur
rent object-oriented programming notation. In Resea1·ch Directions in
Concurr·ent Object-Oriented Programming, chapter 11, pages 281- 313.
The MlT Press, 1993.

139

[18] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Deter
mining global states of distributed systems. A GM Transactions on

Computer Systems, 3(1):63- 75, 1985.

[19] Andrew A. Chien. GoncurTent Aggregates (GA). MIT Press, 1991.

[20] Andrew. A. Chien, U. S. Reddy, J. Plevyak, and J. Dolby. ICC++
a C++ dialect for high performance parallel computing. In P1'0ceed
ing.< of the Second International Symposium on Object Technologies jo1·

Advanced Software, 1996.

[21] Takashi Chikayama. Personal Communication.

[22] Eric C. Cooper. Adding threads to standard ML. Technical Report
90-186, Carnegie Mellon University, Pittsburgh, December 1990.

[23] Eric C. Cooper and Richard P. Draves. G Threads. Department of
Computer Science, Carnegie Mellon University, 1987.

[24) David E. Culler, Anurag Sah, l<laus Erik Schauser, Thorsten von
Eicken, and John Wawrzynek. Fine-grain parallelism with minimal
hardware support: A compiler-controlled threaded abstract machine.
In Proceedings of the Fou•·th Jntemational Gonfe•·ence on Architectural
Supp01·t for Progmmming Languages and Operating Systems, pages

166- 175, 1991.

[25) Digital Equipment Corporation. DEC OSF/1 Assembly Language Pro

gmmmer's Guide, 1994.

[26] Digital Equipmeut Corporation. DEC OSF/ 1 Galling Standard for

AXP Systems, 1994.

[27] .l. P. Dtunas and J. Ninio. Efficient algorithms for folding and comput
ing nucleic acid sequences. Nucleic Acids Res. , 10(1):197- 206, 1982.

[28] Marc Feeley. Lazy remote procedure call and its implementation in a
parallel variant of C. In P1'0ceedings of International Workshop on Par

allel Symbolic Languages and Systems, number 1068 in Lecture Notes
in Computer S ience, pages 3- 21. Springer-Verlag, 1995.

140

[29] Mark Feeley. An Efficient and Gene..al Implement<ttion of Futures on

La•ge Scale Sha1·ed-Memory Multip•·ocessors. PhD thesis, Brandeis Uni
versity, 1993.

[30] Benjamin Goldberg. Generational reference counting: A reduced
commwlication distributed strage reclamation scheme. In P1'0ceedings
of the AGM SIGPLAN'89 Conference on Programming Lang,.age De
sign and Implementation, pages 313- 321 , 1989.

[31] Seth Copen Goldstein , Klaus Erik Schauser, and David Culler. En
abling primitives for compiling parallel languages. In Workshop on
Languages, Compilers and Run-Time Systems for Scalable Computers,
1995.

[32] Ananth Y. Grama, Vipin Kumar, and Ahme<;l Sameh. Scalable paral
lel formulation of the Barnes-Hut method for n-body simulations. In
Proceedings of Supercomputing '94, pages 439- 44.8, 1994.

[33] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. AGM Transactions on Programming Languages and Sys
tems, 7(4):501- 538, April 1985.

[34) Kenichi Hayashi, Tunehisa Doi , Takeshi Horie, Yoichi I<oyanagi, Osamu
Sbiraki , Nobutaka Imamura, Toshiyulci Shimizu, Hiroaki Ishihata, and
Tatsuya Shindo. AP1000+: Architectural support of PUT/ GET inter
face for parallel:izing compiler. In Proceedings of A •·chitectltral Support
fo•· Progmmming Languages and Operating Systems, pages 196- 207,
1994.

[35] I<azuo Hiyane. Generation of a set of pareto-optimal solutions for mul
tiobjective optimization by parallel genetic algorithms and its quantita
tive estimation. In 9th SIGE Symposium on Decentralized Autonomous
Systems, pages 295- 300, 1997. (In Japanese).

[36] Waldemar Horwat. Concurrent Smalltalk on the message-driven pro
cesso,r. Master's thesis, Department of Electrical Engineering and Com
puter Science, Massachusetts Institute of Technology, May 1989.

[37] John Hughes. A distributed garbage collection algorithm. In Proceed
ings of the AGM Conference on Functional Programming Languages

141

and Computer Architecture, number 201 in Lecture Notes in Computer

Science, pages 256- 272. Springer-Verlag, 1985.

[38] Nobuyuki Ichiyoshi , Kazuaki Rokusawa, Katsuto Nakajima, and Yu lo
amura. A new external reference management and distributed unifica
tion for KLl. In New Generation Computing, volume 7, pages 159-177.

Springer-Verlag, 1990.

[39] Richard Jones and Rafael Lins. Garbage Collection, Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons, 1996.

[40] Niels Christian Juul and Eric Jul. Comprehensive and robust garbage
collection in a distributed system. lo Proceedings of International Work
shop on Memory Management, number 637 in Lecture Notes in Com
puter Science, pages 103- 115. Springer-Verlag, 1992.

[41] Tomio Kamada, Satoshi Matsuoka, and Akinori Yonezawa. Efficient
parallel global garbage collection on massively parallel computers. lo
Pmceedings of Supe1·computing •g4 , pages 79- 88, 1994.

[42] Gerry Kane and Joe Heinrich. MIPS RJSC Architecture. Prentice Hall,

1992.

(43] T. Kasami. An efficient recognition and syntax algorithm for context
free languages. Technical report, Air Force Cambridge Research Lab,

1965.

[44] Steve Kleiman, Devang Shah, and Bart Smaalders. Programming with
Threads. SunSoft Press, 1996.

[45] Charles Koelbel and Piyush Mehrotra. Compiling global name-space
parallel loops for distributed execution. IEEE 11-ansa.ctions on Parallel
and Distributed Systems, 2(4):440- 451, 1991.

[46] Bernard Lang, Christian Queinnec, aud Jose Piquer. Garbage collect
ing the world. In Conference Record of the Nineteenth Annual ACM
SIGPLAN-SJGACT Symposium on Principles of Programming Lan

guages, pages 39- 58, 1992.

142

(47] Eric Mohr. Distillations of dynamic partitioning experience. In
Robert H. Halstead, Jr. and Takayasu Ito, editors, Proceedings of Par
allel Symbolic Computing: Langugages, Systems, and Applications, vol
ume 748 of Lecture Notes in Computer Science, pages 88- 93. Springer
Verlag, 1992.

(48] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task cre
ation: A techinque for increasing the granularity of parallel programs.
IEEE 11-ansactions on Parallel and Distributed Systems, 2(3):264- 280,

July 1991.

[49] Akihiro Nakaya, Kenji Yamamoto, and Akinori Youezawa. RNA sec
ondary strudure prediction using highly parallel computers. Comput.
Applic. Biosci. (CABIOS), 11 , 1995.

[50] Anton Nijholt. Parallel approaches to context-free language parsing. In
Parallel Natut·al Language Pt·ocessing, pages 135- 167. Ablex Publishing
Corporation, 1994.

[51] Rishiyur S. Nikbil. Parallel symbolic computing in Cid. lo Takayasulto,
Robert H. Halstead, Jr. , and Christian Queinnec, editors, Proceedings of
lntemational W01·kshop on Parallel Symbolic Languages and Systems,
number 1068 in Lecture Notes in Computer Science, pages 217- 242.

Springer-Verlag, 1995.

(52] Rishiyur S. Nikhil and Arvind. Id: a language with implicit parallelism.
Technical report, Massachusetts Instituted of Technology, Cambridge,
1990.

(53] Rishiyur S. Nikhil, Greg. M. Papadopoulos, and Arviud. 'T: A multi
threaded massively parallel architecture. In The 19th Annual Jntema
tional Symposium on Computer Architecture, pages 156- 167, 1992.

[54] Takashi Ninomiya, Keujiro Taura, Kentaro Torisawa, and Jtm 'ichi Tsu
jii. A scalable implementation of parallel CKY algorithm in concurrent
object-oriented language ABCL/ f . lo Proceedings of JSSST Workshop
on Object-Oriented Computing (WOOC), 1997. (in Japanese).

(55] Jose 1\'f. Piquer. lodirect reference counting: A distributed garbage
collection algorithm. In Proceedings of Parallel Architectures and Lan-

143

[56]

[5 7]

[58]

[59]

[60]

[6 1]

guages Europe, number 505, 506 in Lecture Notes in Computer Science,
pages 150- 165. Springer-Verlag, 1991.

Plainfossc and Shapiro. A survey of distributed garbage collection tech
niques. In Pror.eedings of International Workshop on Memory Manage
ment, number 986 in Lecture Notes in Computer Science. Springer

Verlag, 1995.

John Plevyak, Vijay Karamcheti, Xingbin Zhang, and Andrew A.
Chien. A hybrid execution model for fine-grained languages on dis
tributed memory multicomputers. In Supercomputing '95, 1995.

John H. Reppy. CML: A higher-order concurrent language. In Pror.eed
ings of the ACM SIGPLAN'91 Conferenr.e on Programming Language

Design and Implementation, pages 293-305, 1991.

A. Rogers, M. Carlisle, J. Reppy, and L. H ndren. Supporting dynamic
data structures on distributed memory machines. A CM 'n-ansactions
on Programming Languages and Systems, 17(2}:233- 263, 1995.

Kazuaki Rokusawa and Nobuyuki Ichiyoshi. Evaluation of remote ref
erence management in a distributed KL1 irnplementat.ion. In IPSJ SIG
Notes 96-PR0-8 (Proceedings of Summer Workshop on Parallel Pro

cessing}, pages 13- 18, 1996. (in Japanese).

Shuichi Sakai, Yoshinori Yamaguchi, and Kei Hiraki. An architecture
of a dataflow single chip processor. In The 16th Annual International
Symposium on Computer Architecture, pages 46- 53, 1989 .

(62] Jolm Sargeant. United functions and objects: An overview. Technical
report, Department of Computer Science, University of Manchester,

1993.

(63] Jolm Sargeant. Uniting functional and object-oriented programming.
In Shojiro L~hio and Akinori Yonezawa, editors, Proceedings of First
JSSST International Symposium on Object Technologies for Advanced
Softwar·e, volume 742 of Lectun Notes in Computer Science, pages 1-

26. Springer-Verlag, 1993.

144

[64] Klaus E. Schauser, David E. Culler, and Seth C. Goldstein. Separation
constraint partitioning - a new algorithm for partitiouing non-strict
programs into sequential threads. In Conference Record on POPL '95:
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program
ming Languages, pages 259- 272, 1995.

[65] Klaus Erik Schauser. Compiling Lenient Languages for Parallel Asyn
chronous Execution. PhD thesis, Department of Electrical Engineering
and Computer Science, 1996.

[66] Zhong Shao and Andrew W. Appel. Space-efficient closure representa
tions. In Proceedings of the 19g4 ACM Conference on Lisp and FUnc
tional Pmgramming, pages 15Q--161, 1994.

[67] Olin Shivers. Data-flow analysis and type recovery in Scheme. In Peter
Lee, editor, Topics in Advanced Language Implementation, chapter 3,
pages 47- 87. The MIT Press, 1991.

(68] SPARC International Inc. The SPARC Architecture Manual, 1992.

[69] Guy L. Steel, Jr. Common Lisp, The Language, Second Edition. Digital
Press, 1992.

[70] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. An effi
cient implementation scheme of concurrent object-oriented languages
on stock multicomputers. In Pmceedings of the ACM SIGPLAN Sym
posium on P1·inciples & Pmctice of Parallel Programming {PPOPP},
pages 218- 228, 1993.

[71] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. Stack
Threads: An abstract machine for scheduling fine-grain threads on
stock CPUs. In Proceedings of Workshop on Theory and Practice of
Pam/lei Progmmming, number 907 in Lecture Notes on Computer Sci
ence, pages 121- 136. Springer Verlag, 1994.

[72] Kenjiro Taura and Akinori Yonezawa. Schematic: A concurrent object
oriented extension to scheme. In Proceedings of Workshop on Object
Based Parallel and Distdbuted Computation, number 1107 in Lecture
Notes in Computer Science, pages 59- 82. Springer-Verlag, 1996.

145

[73] Kenneth R. Traub, David E. Culler, and Klaus E. Sd1auser. Global
analysis for partitioning non-strict programs into sequential threads.
In Proceedings of the ACM Conference on Lisp and F'unctio11al Pro

gramming, pages 324-334, San Francisco, California, June 1992.

[74] David n. Wagr1er and Bradley G. Calder. Leapfrogging: A portable
tedmique for implementing efficient futures. In Proceedings of the A CM

SIGPLAN Symposium on Principles fj Practice of Parallel P•·ogram

rning {PPoPP), pages 208- 217, 1993.

[75) MichaelS. Warren and John K. Salmon. Astrophysical N-body simu
.lations using hierarchlcal tree data structures. In Proceedings of Super

computing •g2, pages 57Q-576, 1992.

[76] Michael S. Warren and John K. Salmon. A parallel hashed oct-tree
N -body algorithm. In Proceedings of Supercomputing •gs, pages 12- 21,

1993.

[77] Paul Watson and Jan Watson. An efficient garbage collection scheme for
parallel computer architectures. In Pmceedings of Pa1·allel Architectures
and Languages Europe, number 258, 259 in Lecture Notes in Computer

Science, pages 432-443, Springer-Verlag, 1987.

[78] William Weihl , Eric Brewer Adrian Colbrook, Chrysanthos Dellarocas,
Wilson Hsieh, Anthony Joseph, Carl Waldspurger, and Paul Wang.
PRELUDE: A system for portable parallel software. Technical Report
MIT/LCS/TR-519, Laboratory for Computer Science, Massachusetts

Institute of Technology, 1991.

[79) Akinori Yonezawa. ABCL: An Object-Oriented Concurrent System
- Theo•-y, Lmtguage, Programming, Implementation and Application.

The MIT Press, 1990.

[80) Akinori Yonezawa, J ean-Pierre Briot, and Etsuya Shibayama. Object
oriented concurrent programming in ABCL/ 1. In Proceedings of A CM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan

guages, and Applications (OOPSLA '86}, pages 258- 268, 1986.

146

Appendix A

Description of Benchmark
Applications

For BH, CKY, and RNA, we describe the problem, basic algorithm, par
allelization and its description in ABCL/ f , and behavior of the parallel
program.

A .l BH

A.l.l Problem

Given initial velocities and positions of particles, simulate motions of them.
Any pair of two particles interacts with each other via Newtonian force:

F=GmM ,.2

where r is the distance between the two particles and m and M arc masses
of them.

A.1.2 Basic Algorithm

Since naive algorithm that calculates interaction between all pairs of parti
cles takes O(n2), we use an approximation method widely known as Barnes
Hut method [9], or BH-method in short. When we calculate a force exerted
on a particle, we regard a s t of particles whose center of gravity is far

147

from the particle as a single (virtual) particle located on the center of grav
ity. More precisely, let r be the distance between the particle in question
and the center of gravity of the particles, and let d be the diameter of the
particles. We regard the set of particles as a single particle if:

~ <8,
r

where (B is a constant (1.0 in our experiment).
To enable this approximation, we construct au Oct- tree each node of

which represents a cubical cell in the simulation space. The root of the
t ree represents a cell that is big enough to contain the entire particles. The
(direct) children of a node represent subdivisions of the parent, derived by
cutting the parent cell into eight equally sized sub-cells. A node has children
when two or more particles fall into the cell represented by the node. In other
words, at leaves of a BH-tree are nodes that contain at most one particle.
The tree is constructed at each step from scratch. To summarize, each step

of a simulation proceeds as follows:

Tree-construction phase: constructs a BH-tree, so that leaves contain at

most one particle,

Augment phase: augments every node of the tree with the center of grav
ity and total mass of the particles contained in it,

Force-calculation phase: calculates force exerted on each particle, and

Update ph ase: updates position and velocity of each particle.

The sequential algorithm for the tree coru;truction phase begins wit.h an
empty tree that holds no particles. From this initial state, we ' load' particles
one by one from the root of the tree. Whenever the second particle is loaded
into a node, which currently contains only one particle, we create children
of the node and load the particle to the appropriate child. Subsequent
particles loaded into a cell that already has children are just forwarded to
the appropriate child. Once the tree has been constructed, the augment
phase sets the center of gravity and the total mass of the particles contained
in each node by a depth-first traversal of the tree. The main procedure of
th force-ca lculation phase is a recursive procedure that takes a position of
a particle and a node of a BH-tree as parameters. It tries to calculate an

148

acceleration that the particles contained in the node exert on the particle.
It simply returns the Newtonian acceleration if the node is either a leaf or
an internal node that meets the approximation criterion described above.
Otherwise it recursively applies the procedure to all its children and sums
up the results. When all the accelerations are calculated, the update phase
updates velocities and positions of all particles.

A.1.3 Description in ABCL// and Parallelization

We represent a node of a BH-tree by a concurrent object. The tree-construction
phase is implemented by au update method (i.e., a method defined by
defmethod!) for node objects, which takes a particle as the parameter and
loads the particle into the tree. The method updates self when it was orig
inally a leaf, or otherwise simply forwards the given particle to the ap
propriate child. The augment phase is implemented by a recursive update
method that traverses the tree and augments every node by its total ma.s
and the center of gravity. The force-calculation is implemented by a read
only method tl1at recursively traverses the tree until leaves or nodes that
meet the approximation criterion.

The source of parallelism can be easily identified. Force-calculation phase
can calculate forces of all particles in parallel. Augment phase can traverse
different part of the tree in parallel. Less obviously, the tree construction
phase can load all particles in parallel, as long as method invocations on a
leaf node are properly serialized. A difficult part is how to remove bottleneck
and obtain a load balance.

The most time-consuming phase is force-calculation, which occupies more
than 80% of the total execution time. Tree-construction approximately takes
15% and other two phases the rest 5% . V{hile force-calculation is domi
nant , it is yet important to achi.eve reasonable speed-up for other phases;
for example, if only the force-calculation would be parallelized, the total
execution time would be at best reduced to 20% of the sequential execution
time.

In tbe original description, neither the force-calculation nor the tree
construction achieves satisfactory speed-up, because almost all recursive
calls become remote, introducing large overhead. Moreover, nodes near
the root are much more frequently accessed than nodes near leaves are, in-

149

troducing a significant load imbalance. Caching node objects appropriately
alleviate these problems. In our experiments, we manually replicate objects
in ABCL/ f level. Each processor maintains a hash table that associates

remote objects to their local copies.
The caching protocols take advantage of application-specific knowledge

about access patterns. In the force-calculation phase, nodes are read-only.
Hence we simply replicate objects without any provision for future invali
dation. A processor calculates forces to its particles, one particle after the
other. A calculation for a particle utilizes replicas created by previous par

ticles. The entire cache is discardccl at the end of the phase.
The protocol for the tree construction phase is less straightforward. We

take advantage of the fact that a node becomes read-only after it once be
comes a non-leaf noue. The protocol works as fol.lows. Before a processor
calls a method on a BH-node, the processor first looks up its cache. If the
replica is in the cache, it simply calls the method with the replica as the
receiver object. Otb rwise, it asks the BH-node to create a copy of itself on
the requesting processor and returns it to the requesting processor, as long

as the IJFI node has already become a non leaf node. What happens if the
node is still a leaf? It simply returns self to the requesting processor. Ei
ther case, the requesting processor invokes a method on the returned object,
which may be a local copy or the original object. Again, the entire cache
is discarded at the end of the phase, hence the protocol does no have any

provision for invalidation.
One remaining problem is bow to assign particles to processors. An

obvious requirement is load balance. Another, less obvious one is locality, by
which we mean particles physically close to eac:h other must be co-located on
the same processor as much as possible. This comes from the access patterns
implied by the above approximation criterion. Since particles close to each
other access a similar set of BH-nodes, co-lo ·ating such particles better
exploit the above introdtJced software caches. [76] describes a method that
achi ves both load balance and locality. We only partially in1plement this
method, achieving only locality. As for the load balance, we currently assign

the same number of particles to each processor.

150

A.l.4 Behavior and Performance Limiting Factors

We only describe the behavior of the force-calculation phase, which dom
inates the overall behavior. Since each processor sequentially calculates a
force exerted on a particle, there is no intra-processor parallelism. A proces
sor stalls when a copy of the receiver object is not in the cache. In an early
stage of a force-calculation phase, processors stall very frequently. Each ac
cess to a BH-node that has never been accessed by the processor in this step
causes the processor to stall. Stalls become less frequent as caches are get
ting filled. This synchronous behavior makes this application very sensitive
to latency.

Performance of tllis algorithm is currently limited by the following fac
tors:

Replication Overhead: Since each processor starts witl! an empty cache
and fills it with necessary data on demand, the total work carried out
by a processor is force-calculation + copying part of a BH-trec nec
essary for the force-calculation. The replication overhead actually in
volves communication overhead, switch overhead, and object creation
overhead. It accounts a large fraction of the total execution time, as
we have seen in Section 6.2.

Load Imbalance: Since we assign the same number of particles to each
processor, processors being in charge of dense regions tend to be heav
ily loaded. This results in load imbalance we have observed in Sec
tion 6.2

A.2 CKY

A.2.1 Problem

Given a context free grammar {CFG) in its Chomsky Normal Form and an
input sentence, judge if the sentence is produced by the CFG and if it is
leave sufficient information to reproduce the derivation tree (p~se tree). '

In Chomsky Normal Form, a rule is either a lexical rule:

a~w,

151

where a is a non-terminal and w a terminal , or a production rule:

a-t b c,

where a, b, and c are non-terminal symbols. That is, the right hand side of

a production rule is binary.
The actual benclunark first copies the grammar to all the processors and

feeds many input sequences one after another. We parallelize parsing of a
single entence and do not overlap processes for multiple sentences. We also

exclude the time to broadcast the grammar from the benchmark.

A.2.2 Basic Algorithm

We use CKY algorithm (43]. Let Wt w2 · • · Wn be the input sentence, S;,; a set

of non-terminal symbols that derive sub-sentence 'UJi+t · · · w;. The probl m
now is to find So,n, a set of non-terminal symbols that derive the whole

sentence, and check if it contains the start symbol. The CKY algorithm
calculates {S;.;} (0 ~ i < j :::; n) in a bottom up manner, i.e. , from S;,;s for
shorter sentences to ones for longer sentences; it first calculates S;- J,i for
all 1 :::; i :::; n, using lexical rules. By the definition of S;,; , S;- t ,i refers to a
set of non-terminal symbols that derive sub-sentence w; . Hence, for each a

such that a-t w;, we include a in S; - 1,;. Once all S;- l ,i (1 :5 ; :5 n) have

been calculated, we can calculate S;- 2.i (2 :5 i :5 n). To calculate an S;- 2,;,

we find all production rules a--+ b c, such that bE Si- 2,i - l and c E S;- J,i

and include a in 8; _2,;. That is, if b derives sub-sentence 1V;- t, c derives w;,

and there is a production rule a-t b c, then we have that a derives w;- tW; .

In general, to obtain an S;.; where j > i + 1, we find all combinations of

an index k (i < k < j) and a production rule a -t b c, such t hat b E S;, ~o,
and c E S~o.; , and include all such a. in S; ,;. That is, if b derives sub-sentence

1Vi+ l ·.·'Wk. c derives 1Vk+l · · · w;, and there is a production rule a --+ b c,
then we have that a derives Wi+ t · · · w;. To describe how to compute S;.;

more procedurally, for each k (i < k < j), we generate all pairs (x, y) such

that x E S;,k, and y E Sk,;, and for each pair, we consult the grammar to
find rules whose right hand side is x andy. Include the left hand side of all

such rules iuS;,; , removing duplications (Figure A.1).
Along with S ;,j, we build data structure E;,;, which record derivation

trees. E;,
1

are not consulted during parsing, but necessary to later reproduce

152

1: I• calculate a set of non-terminal symbols, each symbol in which

2: derives sub-sentence w;+l · · · Wj. +I
3 : calc_Sij (i, j)
4: {
5: ,. = 0;
6: foreach k (i < k < j)
7: foreach x E S;,k
8: foreach y E Sk,j
9: r = ,. U { a I a --+ x y E P } ;

10:

11:

12 :

return r;

13: I• •·eturn SUCCESS if non-terminal symbol S de1ives

14: WJ • · · Wn. return FAIL otherwise.+/

15: CKY Cwt· .. w,., S)

16 : {

17: foreach i (1 < i < n)
18: Si- t ,i = { a I a --+ w; E L } ;
19: for (I= 2; I <= n; I++) {
20: for (i = 0, j =I; j <= n; i ++, j++) {

21: S;.; = calc_Sij (i, j);

22:
23:

24: if CS E So,n) return SUCCESS;
25 : else return FAIL;

26:

Figure A.1: CKY algorithm. CKY takes a sentence w1 · · · Wn and a start
symbol S as parameters <tnd returns whether or not S derives WJ • · · w,. in a
given grammar. In the program, Prefers to the set of produ tion rules and

L the set of lexical mles. The algorithm first calculates S;.j for sub-sentences
of length 1 (i. e., S; 1,,) and proceeds to longer sentences. An iteration of

the for loop at line 19 calculates S;,; for sub-sentences of length I.

153

the derivation process as necessary. For each symbol a E S;.,j , we record k

and the production rule used to include a in Si,j·

As revealed from the above description, the process is bottom up in
nature. More specifically, computing S;J needs S;,k and Sk.j for all k (i <
k < j) , thus S;,k and Sk,j must be computed before Si,j· A sequential
algorithm satisfies this constraint by the order in which S;,; are computed.
It calculates S;,; sequentially, from ones that have smaller j - i to ones that

have larger j - i.

A.2.3 Description in ABCL// and Parallelization

We fork a thread for each S;,; using the future construct of ABCL/f. The
thread that calculates S;,j processes j- i- 1 pairs (S; ,k. SkJ) (i < k < j)
sequentially, waiting for S;.,k and Sk,; to be produced for each k. When a
thread processes all pairs, it produces S;,j resuming threads waiting to con
sume it. To accomplish this producer-consumer synchronization, we define
a cell object which has two methods, put! and get!. They are implemented
using explicit reply channel in the manner described in Section 4.5.2.

Let us examine how much parallelism are there in this algorithm. Obvi
ously, computations for all S;,;s of the same length do not depend on each
other, so they run fully in parallel. In other words, the inner loop at line
20 of Figure A.1 is a 'doall ' loop. How about the outer loop? Since compu
tation of an S;,; depends on computations of its sub-sentences of the form
S;,k or SkJ , it is not clear how much parallelim are there between iterations

of the outer loop.
Fortunately, we can e..xtract a significant amount of parallelism from the

outer loop by carefully ordering the computation. When a thread calculate
S;,; from {S;,k} and {Sk,j} (i < k < j), we first process pairs that are likely
to be produced early. To achieve this, we begin with A: which is most close
to (i + j)/2 and step towards both edges (i and j). For example, a thmad

that computes S0,20 first processes pair (So,.1o, Sto,2o), next (So,9, Sg,zo) and
(S1t,20 , S11 ,20}, and so on. Both So,Jo and S10,20 will probably be produced
much earlier than S0,19 or S1,2o- Thus, there is significant overlap between
computations for S;,j of different lengths. Roughly, threads that compute
S;,j where j -i = c overlap with threads that computeS;,; where j -i > c/2.

The amount of work carried out by each thread is neither constant nor

154

very predictable. In general, S;,; with larger j- i represent more tasks than
those with small j- i, because S;,; is computed by processing j- i -1 pairs.
Further details are, however, dependent on the input sentence. Threads are
mapped onto processors so that each processor is in charge of approximately
the same number of threads and threads with large j - i are not assigned to
the same processor. More specifir.ally, we first allocate So,n to processor 1,

next So,n- l and S1,n to processor 2 and 3, respectively, then So,n- 2, S1 ,n- t .
and S2,n to processor 4, 5, and 6, respectively, and so on. The cell object
that stores S;,; is co-located with the thread that produces it.

See (54) for more detailed description.

A.2.4 Behavior and Performance Limiting Factors

When a thread that computes S;,; processes a pair (S;,k, Sk,j) , it is likely to
stall due to remote communication. Recall that S;,k and Sk,j are co-located
with the threads that compute them, and threads are mapped onto proces
sors in a round-robin fashion. Thus, threads for S;J and S;,k (or Sk,;) are
unlikely to be mapped on the same processor. The latency involves not only
the latency of remote communication, but also that of producer-consumer
synchronization whose delay is unpredictable. The latency is partially (or
hopefully completely) masked by other threads on the same processor. When
we parse short sentences on many processors, it is unlikely to be; sentences
of 30 words yield only (30 x 31)/2 = 465 threads, which are not much larger
than the maximum number of processors we have. On the other hand, i[
the length of the sentence is 100, we create (100 x 101)/2 = 5050 threads,
meaning that we have 20 threads on one processor even on 256 processors.
In this case, we have a reasonable chance to utilize processors while one
thread is waiting for a value from another thread. This application allocates
a large amount of memory for S;,; and E;,;. These data remain live until
parsing the current sentence is finished.

There are several factors that currently limit the performance of this
algorithm.

Overhead : When a thread processes a pair (S; ,k,SkJ) , it first fetches the
two lists from appropriate processors, with associated context switches,
and then processes them locaJly. The local computation is a doubly
nested loop that, for every pair (b, c) E S,,k x Sk,j, looks up production

155

rules whose right hand side is b and c, generates symbols included in
S; ,;, and updates E;,j- The ratio betweeJl the local computation and
the communication + switch overhead determines an upper botu1d of

the achievable speed-up.

Critical Path: This is relevant for short sentences. We denote the process
that operates on the pair (S;,k, Sk,j) as Pi,kJ (That is, calculation of
S; ,j consists of (j - i - 1) processes {P; ,k,j} (i < k < j)). Since P; ,k,i

depends on the result of S;,k and Sk,j, there can be no overlap between
P;,k,j and computation of S;,k or Sk,j· In other words, there cannot be

any overlap between P; ,k,i and any of P;,.,k or Pk,•J.

Let us write P;,k,i > P;' ,k' J' to denote that there cannot be overlap

between P;,k,j and P;' ,k'J'· Thus, we have:

and
P;,kJ > P;,x,k

P; ,kJ > Pk,x,i

(i <X< k),
(k <X< j)

Using this fact recursively, we have a chain of P;,k ,i s each of which can
never overlap. The length of a chain can be as long as the length of

the input sentence minus one. For example,

Load Imbalance: Critical path is not a relevant limiting factor for long
sentences. Even so, processor ntilization is limited by load imbalance.
Our current mapping of threads onto processors seems not adequate
in several ways. First, the amount of work performed by each thread
is not constant and depends on input. As a general hint, threads for
long sub-sentences tend to perform large tasks, but an accurate esti
mation of the work performed by threads seems very difficult. Second,
even when sentences are very long (say, have 100 words), the number
of threads we have is not sufficiently large to make the round-robin
distributiofl very effective. As a result, we consistently observe fairly
large idle time in Chapter 6, even for longest sentences on small num

ber of processors.

In summary, CKY imposes severe implementation challenges. Wh n we
look at results in Chapter 6, where proce sors spent approximately the same

156

amount of time on busy, overhead, and idle, overhead and load imbalance
are both significant limiting factors. As uming we would eliminate all these
idle times, the overhead alone would still limit the achievable speed-up on p

processors to something aronnd 0.5p. Assuming the overhead would become
very close to zero, the idle time caused by load imbalance alone would still
limit the achievable speed-up on p processors to something around 0.5p.
Improving load balance requires us generate more threads and distribute
them on processors in a smaller unit, but this in turn makes the overhead
limit severer. Similarly, shortening the critical path by making threads finer
raises the overhead.

A .3 RNA

A.3.1 Problem

The problem really is to predict feasible secondary structures of a given
RNA sequence. Here we omit all such biological aspects and describe the
problem only from computational point of view.

Let us begin with some preliminary definitions. A stack 1·egion is desig
nated by its position and energy. A position is represented by a quadruple
of integers, though details are unimportant. Energy is specified by a positive
floating point number. We assume there is a binary relation that determines
if two stack regions are compatible. A set of stack regions is feasible if any
pair of its elements is compatible. The energy of a set of stack regions is the
total energy of all the elements. Here is the problem.

Given a set of stack regions Sand a parameter 11, find all feasible
subsets of S t hat have an energy no smaller than (Emax - 11) ,
where Emax is the optimal energy over any feasible subsets of S.

Typical problem sizes (the number of stack regions in S) we tested are
between 170 and 230. The maximum size we have so far solved on 256

CPUs is 280.

A.3 .2 Basic Algorithm

Since the problem is to find all feasible subsets that have certain energies, we
must use a combinatorial brute-force search algorithm, rather than heuristics

157

to obtain an approximation. We can, of course, do better than the naive
algorithm that tests zn possible combinations. As preprocess, we divide S

into disjoint partitions, each partition of which does not have any pair of
compatible stack regions. Each partition is called incompatible islet [27].
This preprocessing takes O(n2). We also augment each incompatible islet
with the maximum energy among its elements. We call it the achievable

energy of the islet.
Once S is partitioned into incompatible islets, a subset of S is specified

by selecting one or zero element from each incompatible islet, because, by
the definition of the incompatible islet , we cannot choose two or more stack
regions from any single incompatible islet. We form the search tree along
this view. That is, let S = h + · · · + Im where h is an incompatible islet.
The root node has (#It+ 1) direct child nodes, # h nod s of which indicate
cases where an element bas been committed from It and the last child node
the case where none has been selected from h. Similarly, each direct child
of the root has (# !2 + 1) children. As a heuristics, we sort islets by its
size, from smaller ones to larger ones. This makes pruning described later
more effective. Assmning depths at which pruning occur are approximately
constant regardless how islets are ordered, expanding smaller number of
branches near the root of a search tree tends to produce less work in totaL

How do we prune unnecessary branches? We keep track of the maximum
energy achieved so far and prune a node that can never achieve that value
under the node. Incompatible islet plays an important role to estimate the
value achievable under a given node of the search tree. The estimated value
for a searCh node is the total energy of already committed stack regions +
the total achievable energies over the incompatible islets yet examined. This
value is actually computed incrementally; the estimated value for the root is
the total achievable energies over all the incompatible islets. Whenever we
go down the tree, committing one region or none from an islet, we subtract
the difference between the achievable energy of the islet and the energy

actually committed.

A.3.3 Description in ABCL/ f and Parallelization

Parallelization is really simple. We simply e>..1>ress the search algorithm using
recursion and extract parallelism by recursive future calls. Load distribution

158

is simply done by making calls remote until a certain threshold depth and
then proceeding locally. Load balancing is achieved simply by making much
larger number of remote calls than the number of processors and distributing
them randomly. In the experiments we specified the threshold value in the
command line.l We typically fork from 601< to 200K threads by remote
future calls.

All processors share the maximum energy so far achieved (M) and keep
them consistent. Since Af monotonically increases and there are no problems
about underestimating it, the strict consistency is of course Wllle essary.
Processors merely have to update M promptly enough to make pruning
effective. A processor broadcasts the value when it achieves a value of energy
that is significantly better than M at any intermediate nodes of the search
tree, or when it ac.hieves a value of energy that is better than M at leaves
of the search tree. The threshold value that determines exactly when a
processor updates M in intermediate nodes is chosen arbitrarily by the user.

A.3.4 Behavior and Performance Limiting Factors

Since so many threads are randomly distributed on processors and threads
never synchronize until termination, each processor has plenty of parallelism,
any of which can be scheduled at anytime. Tlus makes this application very
latency-tolerant, as we have observed in Chapter 3.

Two potential limiting factors are load imbalance and overhead. As we
have observed in Chapter 6, when the problem size is large, each accounts
for less than 10% of the execution time on any number of processors. To
summarize, as far as this problem is concerned, the current sin1ple approach
that Chops the work into small pieces and distributes them randomly is suc
cessful. Further improvements are of course possible by more sophisticated
load balancing method that minimizes the number of remote fork, while
achieving a similar or a better load balance.

1 Determining an appropriate value adaptively is not actually difficult . Given thread
creation is inexpensive, we do not. hav(~ to 11piupoint" the right threshold. We merely have
to guarantee that the nu.mber of threads are not too small. We let the user to specify
simply for benclunarking pu·rpose.

159

Appendix B

U nboxed Channel Scheme

This chapter details a code generation scheme that implements the unboxed
channel scheme outlined in Section 5.4, using a simple language that models
ABOL/ f. The model language has all the essential features in ABCL/J , in
cluding variable bindings, assignments, conclitionals, operations on channels,
and asynchronous procedure invocations. Heap locations are not explicitly
included, but, for our purpose, sufficiently modeled by channels. We first
define the synta.x of the language and then develop a source to source trans
formation scheme that inserts explicit boxing operations wherever necessary.
The transformed e:>,pression guarantees that channels are never escaped in
their unboxed representation to places where we cannot maintain the se

mant ics of first class channels.

160

B. l Essential Syntax

We define the essential syntax of the language as follows.

E (constant)
$ (new channel)
v (variable)
v:=E (assignment)
let v = E in E (let)
if E then E else E (conclitional)
E <= E (reply)
•E (touch)
op (E ,E) (primitives)
E (E) ~ E (invocation)

c is a constant, which we assume is not a channel. $ is a special con
structor that creates a new empty channel. v is a variable. A variable is
introduced either by a Jet, a regular parameter of a procedure, or a reply
channel of a procedure. v := e assigns the value of e to v. The value of an
assignment is nnit. let v = e in e' binds e to v and evaluates e' under
the extended environment. The value of the let expression is the value of e'.
e <= e' is the reply expression. It puts the value of e' to the value e, which
is a channel. The value of this expression is unit. •e is a touch expression.
It extracts a value from the value of e, which is a. channel. The value of a
touch eJq>ression is the extracted value. op (e, e) is a primitive operation,
which we assume takes two parameters and returns a value that is not a
channel. We further assume a primitive operation does not allocate chan
nels or write values into channels. e (e1

) ® e11 is the canonical procedure
invocation expression. It invokes procedure e, passing a regular parameter
e' and a reply channel e"- The value of this expression is the value of e".

The syntax of a procedure definition is:

v (v') ~ u" = E,

where v is the name of the procedure, v' the name of the regular parameter,
v" the name of the reply channel, and E the body expression that is eval
uated when this procedure is invoked. For example, a procedure that calls
two procedures f and g in parallel is written as follows.

161

f_and_g (x) Cll r let s f (x) Cll $

in

let t = g (x) Cll $

in

r <= *s + *t

That is, two channel~ are created and procedures f aud g are called with
the created channels as the reply channels. The new channels are bound to
variable rands and finally touched at the last line. In examples that follow,

we use a Jet expression to bind multiple variables sequentially and to have
multiple expressions in the body. It is a syntactical abbreviation of nested

let expressions. 1

We note differences between ABCL/f and the simple language devel
oped. First, ABCL/f has mutable records that encode concurrent objects
and deftype data. For the purpose of developing code generation schemes

for unboxed channels, any heap data can be modeled by channels. Specif
i ally, a record creation can be modeled by a channel creation + putting
the elements into the channel. Reading a value from a record is modeled by
getting a value from a channel and writing a value to a channel by putting

a value to a channel. This captures all the aspects we are currently inter
ested in- where and how to insert boxing operations. Second, ABCL/f has
block expression of Common Lisp, whose value is the value of its last ex

pression or any expression specified by return-from expression in the block.

For example, a block expression:

(block L

(if

y)

(return-from L x)

...)

returns x as soon as (return-from L x) is evaluated. Otherwise, it returns

y when control reaches the last line. For our purpose, the only important as
pect of a block expression is that multiple expressions can become the value
of the entire e>:pression. Thus it is sufficient to model a block expression as

1Tbe scope rule ofthee.xte!lded Jet binding is that. of MUs let val bindings1 o·r Common
Lisp's let• bindings. That. is , the scope of a variable is the body and all bound expressions
that follow the binding.

162

a (possibly nested) if expression whose branches correspond to all possible
return expressions of a block.

B .2 Locations

Below, we use term "locations" to mean variables introduced by let , regu

lar parameters of procedures, reply channel parameters of procedures, and
channels. The first three categories are just called "variables". Variables
introduced by let or regular parameters are called "regular variables."

We say a value is bound to a location when the location holds the ref
erence to the value. We say a value channel is bound if it is bound to at
least one location. Assignment, let, touch, reply, and procedure invocation
change the binding bet,ween locations and values.

B.3 Boxing

Where the compiler inserts a boxing operation is represented by three trans

lation functions Bo, B+l, and B00 • Each function takes an expression and
returns another expression in which boxing operation is explicitly performed
by box operator. The operand of a box operator is either a channel creation
expression ($) or a variable.

Bu(c)
Bu($)

Bu(v)

Bu(v :=e)
Bu(let v = e in e')
Bu(if e then e! else e")
Bu(e <= e')
Bu(*e)
Bu(op (e,e'J)
Bu(e (e') ~ e")

Bn (v (v') Cll v" =e)

c
box $ (u = oo)
$ (otherwise)

box v (u = + 1 or oo and v is either a let
variable or the reply channel of a procedure)
v (otherwise)

v :=B+t(e)
let v = B+l (e) in B.u(e')
if Bo(e) then B00(e') else B00 (e")
Bo(e) <= B00 (e')
*Bo(e)

op (Boo(e),B00 (e'))

Bo(e) (B+ t(e')J ill Bu(e")
v (v') ill v" = Bo(e)

163

The above definition of 8, actually defines three functions Bo ,B+'!. and
Boo simultaneously. Each of them takes an expression and returns an aug
mented expression. Bv transforms a procedure definition. The returned
expression or definition is identical to the original, except that some vari
ables and channel creations ($) are wrapped by the boxing operator box.
When x is a channel, box x allocates a heap channel according to the state
of x and returns the boxed channel as the value of the expression. Fur
thermore, if x is a variable, box x updates x by the pointer to the boxed
channel. When x is not a channel, it is nop. In stat ically typed monomor
phic languages like ABCL/ f, whether an expression is a channel or not is
checked statically. In the following examples, we omit box operations where

the operand is obviously not a chanr•el.
An expression returned by 8, guarantees the following two properties.

• An unboxed channel is never bound to multiple regular variables, a
regular variable + a reply parameter, or channels.

• For any sub-expression that may be evaluated to a bound unboxed
channel, the compiler can find a variable that (must) reference it.

The first condition says that the set of locations that binds an unboxed
channel include at most one regular variable and (possibly multiple) reply
channel parameters. We require the second condition to guarantee that
operations on a bound unboxed channel can correctly update the variable

that ref< rences it.
Let us illustrate the augmentation using a imple example.

f_and_g (x) ~ r = let s = f (x) ~ $
t g (x) ~ $

in

The augmentation of f (x) ~ $ proceeds as follows:

B+1 (f (x) ~ $) Bo(f) (B+I(x)) ~ B+1($)
f (box x) ~ $

Thus, the entire procedure definition is augmented as follows.

164

f_and_g (x) ~ r let s = f (box x) ~ $

t g (box x) ~ $

in
r <= *s + •t

The regular argument to f and g, which is x, is boxed because it may be a
channel that is used after these invocations. If x were passed in its unboxed
form, the sharing relationship between f, g, and the caller would not be
properly maintained. The reply channels of these invocations , $, are not
boxed, on the other hand. The protocol described in Section 5.4 guarantees
that f and g return the updated representation of the reply channel to the
caller. If, for example, f escapes its reply channel to heap, the reply channel
is boxed there and the boxed representation is returned back to the caller.

Consider another example that demonstrates a channel may be box d
because we otherwise violate the second condition. For example,

f_or_g (p) ~ r = let s = f (0) ~ $
t g (1) ~ $

in

r <= •(if p then s else t)

is augmented as follows.

f_or_g (p) ~ r = let s = f {0) ~ $

t g (1) ~ $

in
r <= •(if p then (box s) else (box t))

In this example, s (t) is boxed despite it is the only location that references
the channel. This is because otherwise the surrounding • expression would
not know which channel it should touch, and thus it does not know which
variable should it update in place.

B.4 Correctness

Since we have not developed a formal semantics of the model language,
we caru10t formally prove the correctness of the above augmentation. In
this section, we argue the correctness of the above augmentation under the

165

informal semantics described in Section B.1 and the following assumptions
about code generation:

• Boxing operation on a variable, box v where v is a variable, updates
v in place and affects any subsequent references to v. Tills is most
easily maintained by mapping a variable in the model language to a
single location in the generated code (e.g., a single C variable) and
implement ing box v by updating the variable.

• On a procedure invocation, the callee is scheduled £rst, and, when
control returns back to the caller, the callee passes the reply channel to
the caller. The reply channel is boxed when the callee's local variables
still reference the reply channel. If a caller's local variable references
the reply channel after the invocation, the caller updates the variable
by the value passed by the callee before proceeding.

• In effect, the protocol introduced in the second item 'postpones' the
bmdng operation, which would normally have to be done as soon as
a channel is bound to the reply channel parameter of the callee. It
defers the boxing operation until the caller is scheduled again . In
other words, a reply channel can remain unboxed as long as it is no
longer referenced by the callee when control returns to the caller.

Let E00 , E+1, and Eo , be the sets of expressions that are produced by
B 00 , B +1 , and Bo, respectively. From the above augmentation rules, it fol
lows that E 00 ,E+1, and Eo are generated by the following syntax:

Boo c
box $

box v
v :=E+l

let V = E+t in Boo
if Eo then E00 else E 00

Eo <= Eoo
•Eo

op CE ,E
Eo CE+tl Ill Boo

166

Eo

c
$

box v
v:=E+1

let v = E +J in E +l
if Eo then Boo else E00

Eo <= Eoo

*Eo
op CE00 ,Eoo l

Eo CE+1l Ill E +1

c
$

v

v :=E+l

let v = E +1 in Eo
if Eo then E 00 else E 00

Eo <= Eoo

*Eo
op (E00 ,Eool
Eo CE+,) Ill Eo

From the above syntax, we observe the following properties about E 00 , E+ 1,

and E0 .

• E00 is never evaluated to an unboxed channel.

• When E+1 i~ evaluated to an unboxed channel, the value is not bound
to any location at moment the expression has been evaluated.

• When Eo is evaluated to an nnboxed channel, the locations that bind
the value include at most one variable at moment the expression has
been evaluated.

Except for procedure invocations in E 1 and Eo, claims are easily verified
by checking how E 00 , E+1, and Eo are constructed (a formal proof would
require an induction on the structure of expressions, which we omit because

167

our discussion is already informal). The claim about procedure invocations
is subtler and requires a precise definition of "the moment the e>:pression has
been evaluated." From the protocol assumed above, a procedure invocation
first transfers control to the callee, which eventually resumes to the caller
either by blocking or termination. We define a proeedure invocation has
been evaluated when the control returns to the caller, whether the callee
terminated or not.

Suppose that an (augmented) procedure invocation f (x) \!l r (E E+l U
Eo) has been evaluated to an unboxed channel. The protocol introduced
above guarantees that, at moment it has been evaluated, the ca!lee's local
variables no longer bind the value of, .. Furthermore, the value of r is not
hound to channels, because if it were, the callee must have evaluated an
expression c <= x, where x is evaluated to the channel. The argumeutation
rules guarantee that x E E00 , which implies that the reply channel would
have been boxed. To srun up, at moment f (x) \!lr has been evaluated to
an unboxed channel, there are no references to the value of ,. either in the
callee or channels. Now let us verify claims about E+ 1 and EO in turn.

Whe.n f (x) ®1· E E+ h r E E+l also hold. By the inductive hypothesis,
we have that the value of r is not bound to any location at moment r has
been evaluated. This implies that when f (x) \!l r E E+l has been evaluated,
the value of,. is not referenced by the caller. Since the callee or channels
do not reference the value of r either, it is not bound to any location at
all. Similarly, when f (x) <01· E Eo, r E Eo also hold. By the inductive
hypothesis, we have that the value of ,. is bound to at most one variable
at moment r has been evaluated. This implies that when f (x) <Or E Eo
has been evaluated, the value of ,. is bound to at most one variable in the
caller. Since the callee or channels do not reference the value of,. either, it
is referenced by at most one variable.

Having shown the claims about E00 ,E+ h and Eo, we have that:

• Wllenever a channel is stored into channel, it is boxed.

• Whenever a cl1annel is bound to a regular variable, either by an assign
ment, a let binding, or a procedure invocation, the channel is either
boxed or not referenced from any other location.

• Whenever a channel is bound to a reply parameter, it is either boxed
or bound to at most oue local variable.

168

What remains to be shown is how to generate code from *C or e <= e'
where e may be evaluated to an unboxed cllannel. Specifically, we must
clarify how to determine the variable to update? The following function
V takes an expression in Eo that may be evaluated to an unboxcd channel
referenced from a variable. It returns an empty set if the value i not bound
to any variable or returns the variable that refers to the value, if it is bound
to a variable.

V($)
V(v)

V(let v = e in e')

V(e (e') IDe")

{}
{v}
V(e')

V(e")

When the code generator emits the code for *Cor e <= e' where e is a cllan
nel, the generated code checks ifV(e) is still unboxed and if it is, updates it.
Note that a conditional expression is never evaluated to an unboxed channel,
so we can precisely determine the variable to update, which mu.qt reference
the channel we a.re operating.

169

L~ - - - - - - --

