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Abstract 

This thesis studies efficient runtime systems for parallelism management 
(multithreading) and memory management (garbage collection) on large
scale distributed-memory parallel computers. Both are fundamental primi
tives for implementmg high-level parallel prograrnmmg languages that sup
port dynamic parallelism and dynamic data structures. 

A distinguishing feature of the developed multithreading system is that 
it tolerates a large number of threads in a single CPU while allowing di
rect reuse of existing sequential C compiler . In fact , it is able to turn any 
standard C procedure call into an asynchronous one. Havmg such a run
time system, the compiler of a high-level parallel programming language can 
fork a new thread simply by a C procedure call to a corresponding C func
tion. A thread can block its execution by calling a library procedure that 
saves the stack frame of the thread and unwinds stack frames. To resun1e 
a thread, StackThreads provides another runtime routine that rebuilds the 
saved stack frame on top of the current stack and restarts the computation 
from the blockmg point. All these operations are implemented by using 
information already present on standard C stack frames , without requiring 
a frame format customized for a particular programming language. Experi
ments demonstrate that potential performance problems are not s ignificant 
in practice, even on distdbuted memory computers in whicb each remote 
access causes a thread switch. 

The developed garbage collection system is a simple mark & sweep col
lector that stops the user program while collecting. We show viability of 
such collectors on a large scale (up to 256 processors) distributed memory 
computer (Fujitsu AP1000+) . Under a reasonable heap expansion policy, 
garbage collection occupies at most 15% of the application time (excluding 
id le time). More importantly, the overhead of garbage collection on paral
lel machines was, except for one application, in the ballpark of that on a 
single processor, indicating that garbage collection is at least as scalable as 
the applications. Another observation from the experiment is that indepen
dent local collection is a dangerous strategy which degrades performance 



of synchronous applications severely (by up to 60%), contraclicting previ
ous believes tha garbage collections should be done as independently as 
possible. This is because an independent local collection makes the collect
ing processor "unresponsive," making processors waiting for a reply from 
the collecting processor idle. For asynchronous applications with plenty 
of intra-node parallelism, independent collections perform better than syn
chronous collections, but the difference is small at least in our experiments. 
A more advanced strategy which adaptively selects a right strategy is also 
itnplemented and shown to be effective, though it is not significantly better 
than a simpler "always-synchronous" approach in the current experimental 

condi lions. 
On top of these rWltime systems, a new programming language ABCL/ f 

is designed and implemented. Severalnon-t.rivial applications written by the 
author and others are used for experiments. Both sequential performance 
and speed up of the applications are reported. 
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Chapter 1 

Introduction 

1.1 Presentation of Thesis 

This thesis studies runtime systems for high-level programming languages 
on parallel computers. The primary focuses of the thesis are multithreading 

and gat·bage collection. We pursued these issues in the implementation of a 
concurrent object-oriented language ABCL/ f on a distributed-memory par
allel computer AP1000+ [34]. Techniques developed and observat ions drawn 
from the experiments are most relevant on large-scale distributed-memory 
multicomputers , though they are c<'.rtainly useful in large-scale parallel com
puting in general. 

Multithl'eading is a capability that man<tges a large number of threads 
of control in a single processor. With multithreading, the programmer can 
have much larger number of threads of control than the number of proces
sors. The developed multithreading technique is unique in that it tolerates a 
very large number of (say, thousands) threads in each processor, while main
taining sequential speed and interoperability with existing C code. This 
is implemented in a small runtime system that can turn any standard C 
procedure call into asynchronous one. Having such a runtime system, the 
compiler 's task becomes relatively straightforward; the compiler can use a 
C procedure call for a thread creation and just about any kind of C expres
sions for intra-thread sequential operations. In addition to the advantage 
that thread creation is fast, there is another advantage that it allows the 
compiler of high-level programming languages to generate simple C code 
that enables substantial optimizations performed by the 0 compiler. This 
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multithreading mechanism has been implemented on Spare and Alpha. 
Ga1·bage collection is a capabitity that automatically reuses memory that 

is no longer used by the application. On distributed-memory multicomput
ers, data may be referenced from remote processors. Therefore, detecting 
if a region of memory is still used by the application requires substantial 
amount of cooperation between processors. Our garbage collector is a sim
ple distributed mark & sweep collector, which judges if a datum is still live 
by reacha.bility from the root. Despite its conceptual simplicity, implemen
tations of tills type of collectors on large-scale parallel computers are rare 
and viability of such collectors has not been well studied t hrough experi
ments. Tllis tbesjg proposes several implementation techruques for making 
such collectors feasible and demonstrates their viability through empirical 
sloltdy. 

ABCL/ f is a concurrent object-oriented language, designed and imple
mented on top of these substrates. It supports dynamic thread creation and 
concurrent objects, thus is suitable for applications that use dynanlically 
created parallelism and data. structures. Both multithreading and garbage 
collection are crucial underlying mcchanjgm for implementing such program
nling languages. 

1.2 Motivation and Background 

As parallel computers be ·orne very widespread, problems people solve on 
such computers become very diverse. Experiments revealed that many prob
lems have dynamic J1atures that make problem solving on large-scale paral
lel compu ters challenging. More specifically, many problems adopt dynamic 
data struch!!'es and extract dynamic pamllelism. 

Dynamic rlata structUT'e,, generally mean data structures that are created 
dynamically (or incrementally) during the course of a computation. They 
are useful '"hen the application ne ds a data structure whose shape, size, 
or distribution across processors is .not known or difficult to approximate in 
advance, eveu if the primary parameters of the problem (e.g ., the problem 
size) are given. Au unbalanced tree whose depth varies from one part to 
another aud depends on lhe details of the input data is one such example. 
The most direct and flexible support for such applications is dynamic object 

c1·ea.t10n, where the programmer can allocate a new block of memory at any 
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time in the computation. The allocated memory can be linked together to 
form a large structured data. 

Dynamic parallelism generally means a parallelism that is dynamically 
created and extracted dming the course of a computation. It is useful when 
the amount of parallelism that should be extracted to mask latency or to 

achieve a reasonable load balance is not known or difficult to approximate in 
advance, even if the primary parameters of the problem (e.g., the problem 
size) are given. Parallel tree search problem with pruning is a typical ex
ample. In this problem, the amount of work under a giv n sub-tree cannot 
easily be estimated, even when the computation reaches the sub-tree. To 
achleve a reasonable load balance, one must divide the work into a much 
larger number of chunks than the number of processors and continues to 
djgtribute them across processors. The most direct and flexible support for 
such applications is dynamic thread creation (or multithreading), where the 
programmer can create a new thread of control at any time in a computation. 

Efficient support for these dynamic applications imposes significant im
plementation challenges. To list some of important ones, 

Efficient transparent data accesses: To support computation that uses 
dynamic data structures, the system should desirably provide tran.y

pa•·ent accesses to remote data, even if shared-memory is not supported 
by the hardware. Using dynamic data structures, i11ter-processor com
munication required by a computation is often unknown until runtime, 
because how data are distributed across processors are in general not 
known until runt ime. Tills makes it hard to optimize communication 
cost by aggregating several remote accesses into a single message or 
by producer-initiated communication. If applications exhibit irregular 
data accesses, but relatively regular parallelism (i.e., irregula.· data 

parallelism), one can still apply runtime techniques such as inspector
executor (45]. Otherwise, one must resort to a straightforward imple
mentation where a remote access implies a remote communication. 

Automat ic memory management : To support dynamic data structures, 
garbage objects (memory no longer used by the a ()plication) should 
desirably be automatically reclaimed by the system. Memory man
agement by application programmers jg already a source of trouble 
in single processor systems and thus many automatic management 
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systems are available. With dynamic parallelism, manual memory 
management becomes even more dangerous and error-prone, iocreas
iog the ilnportance of automatic memory management. It is difficult, 
however, even for the sophisticated runtilne systems to perform the job 
efficiently. ln the presence of remote reference, detecting if a region of 
memory is still used by the application requires substantial amount of 
processor coordination. 

Management of parallelism: To support dynamic parallelism , the sys
tem must tolerate much larger number of threads of control than the 
number of processors. This imposes a constraint on implementation 
that the resource requirement for a single thread must be small. In 
addition , the system should desirably support fine grain threads, not 
to con.~traint. the way in which parallelism is extracted from the appli
cation. Tltis means that the overhead of a thread creation as well as 
a thread switch should be small. Moreover, these facilities should be 
provided in a way that they do not hurt sequential performance. 

Interoperability and Reusability: All these facilities should be provided 
in a way the resulting system can nicely ioter-operate with existing 
software. Faciog all the above challenging issues, it is tempting but 
not feasible to redesign and restructure the entire system from scratch. 
One must remember, however, that all the problems that appear io 
single-processor systems are still there and the total performance of the 
system can hardly be achieved without exploiting all these existing so
lutions. They ioclude the whole optimization techniques ilnplemented 
in sequential compilers, librari~.s written io sequential programming 
languages, and programming environment supports such as debuggers 
and profilers. We must avoid ending up with systems that ilnplement 
some particular aspects of the above issues nicely, but fail to be uti
lized due to slow sequent ial speed or the lack of interoperability with 
exiting C libraries 

1.3 Contributions 

ln this thesis we address some of the above issues by buildiog efficient 
runtime systems for multithreadiog and automatic memory management 
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for large-scale distributed-memory parallel machines, and by designing and 
implementing a programming language tha:t provides easy and transparent 
accesses to these primitives. To list specific contributions of this thesis, 

o It proposes a new implementation scheme for fine-graio software mul
tithreading on stock microprocessors. The proposed s<:hcme is unique 
in that it can make any stylized C procedure call an asynchronous one. 
Unlike traditional thread libraries, a thread creation needs neitner an 
expensive startup procedure nor a large stack space. Unlike previ
ously proposed efficient multithreadiog schemes, it does not as. ume a 
customized frame format designed for a particular programming la.n
guage or a set of multithreadiog prilnitives. Instead, it operates on 
standard C stack frames and calling conventions. Difficulties arise du 
to calling conventions that assume sequential calls (e.g ., callee-save 
registers) and lack of information on C stack frames for multithreaded 
execution. 

o It empirically studies performance of the multithreading scheme. The 
study shows that potential limiting factors of the proposed scheme do 
not become significant in practice. 

o It shows an ilnplementation scheme of distributed mark-and-sweep 
garbage collectors on large-scale parallel computers, together with sev
eral simple teclmiques that reduce the overhead of this type of collec
tors. It also demonstrates a design of the interface between a collector 
and an application that makes such collectors reusable across multi
ple language implementations. More specifically, the collector does 
not require extensive cooperation from the application program or the 
message-passing layer. This property should not be taken as granted, 
because mark & sweep garbage collectors must operate on a consis
tent global snapshot of the application, the definition of which includes 
messages that are in network or messag buffer. 

o It empirically studies performance of the proposed garbage collector 
through sev ral benchmark applications. In a configu.ralion that is 
the most space-intensive in our experiments, but is still not as ioten
sive as some collectors used in heap-intensive programming languages, 
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garbage collections occupy at most 15% of the application time (ex
cluding idle time due to load imbalance and communication) on 256 
processors. 

• It empirically demonstrates the in1portance of .1cheduling strategies of 
local collections. Contrary to previous beliefs that local collections 
should be independent, the experiments show that they should of
ten be scheduled sync.hronously. Independent collection severely de
grades performance of synchronous applications. Examination reveals 
that this is because independent collections introduce large scheduling 
skews in the applications. Since a local collection makes the collecting 
processor unresponsive to requests from other processors, processors 
that wait for a reply from a collecting processor also become idle un
less they have parallelism which hide the latency introduced by the 
local collection. This can be avoided by performing local collections 
simultaneously on all the processors. We also developed an adaptive 
strategy that selects an appropriate local collection scheduling strategy 
by examining the behavior of the application. 

• It shows design and implementation of a concurrent object-oriented 
language ABCL/ f , as a running vehicle of the proposed implemen
tation. techniques. ABCL/ f supports future and concurrent objects. 
Future is a means of dynamic thread creation and concurrent object 
is a means of location transparent data access and automatic mutual 
exclusion. By combining these primitives, the programmer can express 
data structlU'eS and parallelism needed by the application in a natural 
way. 

• It shows how to implement a general and efficient communication 
through a first-class communication medium called channels. We also 
show tba , on top of this mechanism, diverse calling sequences-any 
combination of local/remote and synchronousjasynchronous calls-are 
irnplem •nted efficiently and uniformly. 

There are many issues that are important for supporting genera.! purpose 
programming languages on large-scale parallel machines but are not tackled 
in this thesis. Amongst others, the multithreading mechanism explored in 
thi thesis does not have provisions for migration on distributed memory 
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machines. In other words, once a thread is cre.'l.Led, it executes on that 
processor. Migration is a desirable mechanism for supporting dynamic load 
balancing but is hard to implement, particularly on distributed-memory 
computers. Second, it does not address the first problem stated in the 
previous section-efficient location-transparent access to data. We assume 
that the cost model of distributed memory computers is directly exposed to 
the programmer or there is a shared-memory layer implemented by a lower
level software or hardware. In the implementation of ABCL/ f , we take 
the former position. ABCL/ f program automatically determines where a 
method is invoked based on the location of the receiver object but it does 
not perform any caching automatically. In other words, ABCL/ f supports 
shared name-space, but does not support (any better approximation of} 
shared memory. 

1.4 Evaluation Settings 

We evaluated the performance of developed ruutime systems as well as 
ABCL/ f on single processor workstations and a distributed-memory par
allel computer AP1000+ [34]. 

APlOOO+ is a distributed-memory parallel computer. The processor 
elements are SuperSparc 50 MHz with 16 MB physical memory. The system 
we used in our experiments has 256 processors. Processors are connected 
via a torus network whose peer-to-peer bandwidth is 25 MB/s.1 We used 
a buudled send / receive communication library. The minimum latency + 
overhead of a round-trip commuuication between a pair of processors with 
the library is about 401's, or 2,000 processor cycles. The default operating 
system for the AP1000+ is a single-task operating system with no virtual 
1nemory support. A parallel job monopolizes all the CPUs and memories. 
More importantly, a message is never delayed by scheduling skew between 
the sender and the receiver. 

For evaluations shown in Chapter 2, ~' and 6, we use application pro
grams listed in Table 1.1 or a part of them. Characteristics of these appli
catious are described as necessary in each chapter. A Llu·ough description 
for BH, CKY, and RNA are given in Appendix A. 

1 APlOOO+ is equipped with two additional networks for broadcast. :md cornrnunicaiion 
with a liost. (froutend) processor. They were not used in our cxpcrim nts. 
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Application Description 

BR Nbody simulation by Barnes-Rut Method 
CKY Parser for Context Free Grammars 
RNA RNA secondary structure prediction by tree search 
GA Genetic algorithm 

Table 1.1: List of parallel applications 

BH is a parallel N-body simulation using a hierarchical tree struct ure. 
The original sequential algorithm is published in [9] and there are many 
parallel formulations such as [32, 75, 76], most of which are writ ten in C. 
CKY is a parallel parsing algoritlun for context-free grammars. The original 
sequential CKY algorithm was proposed by Cocke, Kasami, and Younger 

[43]. A survey of para llel algorithms is given in [50]. Refer to [54] for our 
algorithm. RNA is a parallel tree search program that predicts t he secondary 
structure of an Ri'<A molecule from a given sequence of bases. The original 
prograrn was written by Nakaya in C using message passing [49] as well as a 
concurrent object-oriented language Schematic [72]. A simplified version is 

written in ABCL /f b y the author and used in the evaluation in this thesis. 
GA is a parallel genetic algorithm written by Hiyane [35j. 

1.5 Roadmap 

The rest of t.he thesis is organized as follows. Chapter 2 describes the devel

op d mult ithreading techniques in a language-independent fashion . Details 
that arc relevant only for ABCL/ f are left for Chapter 5. Chapter 3 de
votes to garbage collection. Chapter 4 focuses on t he design of ABCL/ f. 
Chapter 5 then presents cmplementation of ABCL/f . Since the important 
aspects of the implementation of ABCL/ f have already been presented in 
Chapter 2 and 3, t llis chapter mainly fo cuses on mappings from particular 

langu<tge constructs supported by ABCL/ / to facili ties provided by these 
runtime systems. Chapter 6 demonstrates applications written in ABCL/ f 
and examines its performance. Finally, we summarize the work and state 
conclusions in Chapter 7. 
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Chapter 2 

Multithreading 

Compiling into C is increasingly becoming an attractive approach to imple
menting high-level prograrruning languages, for its portability and potential 

performance advantage t hanks to optimizations performed by C compilers. 
However , it is rlifficult to map the execution model of multithreading lan
guages (languages which support fine-grain dynamic thread creation) onto 

the single stack execution model of C. Consequently, previous work on ef
ficient multithreading uses elaborate frame formats and alloca~ ion strat
egy, with compilers customized for them. This chapte~ seeks an alternative 
cost-effective implementat ion strategy for multithreading la nguages that can 

maximally exploit current sequential C compilers. We identify a set of prim
itives whereby efficient dynamic thread creation and switch can be achieved 
and clarify implementation issues and solutions wh.ich work under the stack 

frame layout and calling conventions of current C compilers. The primitives 
are implemented as a C library and named Stack Threads. In StackThreads, 
a thread creation is done just by a C procedure call, ma.'<.imizing thread 

creation performance. When a procedure suspends an execution , the con
text of the procedure, which is roughly a stack fame of the procedure, is 
saved into heap. Contexts saved into heap are reconstructed on top of t he C 

stack when the thread is resumed. With StackThreads, the compi ler writer 
can straightforwardly translate sequential constructs of the source language 

into corresponding C statements or expressions, while using StackThreads 
primit ives as a blackbox mechanism that switches execution between C pro
cedures. 
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2.1 Introduction 

Many parallel programming languages support dynamic creation of threads. 
Example language constructs include futures [33], asynchronous message 
passing between concurrent objects [2, 79], fork-join [5 1], parallel blocks 
and loops [17, 20), and implicit parallelism (52]. Implementation of paral
lel languages with dynamic thread creation (which we hereafter refer to as 
multithreading languages ) must achieve efficient multithreading without sac
rificing good sequential performance. Compiling multithreading languages 

into 0 aud exploiting optimizations performed by the C compiler is an at
tractive choice for obtaining sequential performance. It has been challeng
ing, however, because the execution models of multithreading languages are 
not naturally mapped onto the execution model of C, which assumes a sin
gle stack. The time and space overhead of allocating a separate stack for 

each thread is prohibitively large, hence existing user-level thread libraries 
[23, 44] cannot straightforward ly be used for implementing multithreading 
languages. Consequently, most of the previously published efficient imple
mentations of multithreading languages adopt a custom frame management 
and generate ither assembler or assembly-like C code in which frame man
agement and context switch code sequences are inlined. In such implementa
tions, a thread creation typically allocates only a single frame from a general 
free storage and a context switch just saves live registers on the frame and 
transfers control to the restarting thread [24]. While this approach achieves 
very fast thread creation and context switch, there are several disadvantages 
and potential pitfalls. First, the compiler development cost is very high, be

cause they must design runtime data structures from scratch for threaded 
execution and the compiler must perform low-level analyses such as live
range analysis to emit inlined context switch sequences. Second, sequential 
performance is sacrificed unless there is substantial effort on optimization. 
They must implement many sequential optimizations when generating as
sembly. Even when generating C code, C compilers often fail to optimize 

assembly-like C code because of its ltighly complex and tmstructnred repre
sentation of comptitation. For example, restarting a computation inside a 
loop requires a goto statement into the body of the loop, which is likely to 
disable optimization by the backend. 

This chapter presents an attractive alternative for efficient implemen-
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tation of multithreading languages. The mechanism is provided as a low 

level C library , called StackThreads. By low le11el, we mean that only prim

itive frame management mechanisms are defined by t.he library. Supporting 
higher- level abstractions on top of the base primitives is left for language 

designers and implernenters. Section 2.6 demonstrates several example ab
stractions built on top of StackThreads. By library, we mean that most 
of the work needed for multithreading is done under cover of the library, 

without requiring extensive cooperation from the code generator. More pre
cisely, the generated code simply calls a few library routines when a thread 

blocks. The library routine performs all the work needed to switch to an
other thread . In particular, the context-saving sequence does not hav<' to 
be in.Iined in the generated 0 code. Hence, with StackThreads, sequential 
constructs can be straightforwardly compiled into corresponding C state

ments or expressions which may call a library routine when evaluation can 
no longer continue. This reduces development cost and enhances the c:hances 
for the backend optimization. 

Unlike traditional thread libraries, StackThreads meets the performance 
requirement of multithreading languages-smal l creation overhead. In Stack
Threads, starting a new thread, including parameter passing, takes only a 

few instructions. In fact, starting a new thread that executes the body of 

a C function f is just a procedure call to f (possibly with extra parame
ters, depending on the implemented language construct). In the case where 
a thread blocks, mechanisms are provided to (1) save the context of the 
0 procedure and resume the caller of a procedure, and (2) later restart a 
blocked thread from a saved context. Unlike previous implementations of 

multithreading languages in which these or similar mechanisms are imple
mented on top of a customized frame management protocol, StackThreads 
implements the mechanisms which work with any C code satisfying the few 

conditions described in Section 2.4.5. That is, the generated C code uses 

conventional 0 stack frames and procedure linkage conventions including 
parameter passing, result value passing, and even callee-save registers. Our 
primary contribution is to identify a set of primitives which are required 

for efficient multithreading and implementable under the stack frame for

mat and calling conventions of current sequential compilers. The rest of 

this chapter is orgmtized as follows. Section 2.2 reviews previous work on 
software implementations of multithreading. Section 2.3 summarizes the 
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stack frame layout and code generation conventions of C procedures which 
StackThreads mechanism relies on. Section 2.4 outlines how our mechanism 
works and Section 2.5 describes implementation details and machine-specific 
i~sues. Section 2.6 demonstrates several higher-level constructs built on top 
of StackThreads. Section 2. 7 reports performance numbers and Section 2.8 
summarizes this chapter. 

2.2 Related Work 

This section reviews previous efficient multithreading schemes. We limit our 
focus to schemes that are implemented on conventional CPUs; We do not 
discuss those that are implemented on multithreaded architectures. All of 
them either involve custom frame management and procedure linkage con
ventions or restrict the concurrency model so that they can be implemented 
without a general multithreading mechanism. Table 2.llists these works in 
roughly chronologica.l order with their supported concurrency models and 
code generation schemes. A concurrency model is general if they implement 
a general multithreading model and restricted otherwise. By general multi
threading model, we mean that the system guarantees that created threads 
are scheduled eventually, at least when it becomes the only runna ble thread .1 

A code ge neration scheme is native if it generates assembly, assembly like C 

if it generates C with iulined frame management and context switch code 
sequences, and simple C if it can simply run on top of C's stack frame 
management. 

Most notably, schemes that adopt simple C code generation-leapfrogging 
[74J and la"y RPC (28J-do not support a fully general concurrency model. A 
distinguishing feature of StackThreads is that it allows shnple C code gener
ation while implementing a general multitl.t.read.ing model. Below we classify 
previous work into three categories and describe each work in more detail. 
The three categories include those that use a simple task pool for thread 
management, those that adopt more elaborate and complicated thread man
agement schemes, and those that simply run on top of C's stack frame man
agement at the cosl of a restricted concurrency model. 

1Most work , including ou.rs, do not guarantee any stronger sense of rainless. They on ly 
gua.rant(>e tha.L- neither the ruutime nor t.he compiler add depet\dencies between threads 
which are otherwise indepE>.nde.nt. 
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Concurrency Code Generation Primary Target 
Model Scheme Language 

Threads .in SML/NJ [22] general native SML/NJ (4] 
LTC [29, 48] general native Mu.l tilisp [33] 
TAM (24] general native Id [52] 
ABCL/ APlOOO [70] general assembly-like C ABCL 
Leapfrogging (7 4] restricted simple C Multi lisp 
Olden [59] restricted native Olden 
Concert [57] general assembly-like C ICC++ (20] 

and CA [19] 
Lacy Threads [31] general native Id 
Lazy RPC (28] restricted simple C ParSubC [28] 

Table 2.1: List of previous efficient implementations of multithreading 

2.2.1 Thread Management by Simple Task Pool 

Many multithreading implementations use a custom procedure linkage con
vention and frame management strategy, and generate assembly or assembly
like C code in whlch frame management and context switch code are inlined. 
The simplest management scheme allocates activation frames from a general 
free storage (e.g., free list) on an invocation-by-invocation basis, so that each 
thread does not have to have a stack. All nmnable threads arc stored into 
a task pool. At thread creation only allocates a thread control block, which 
does not have to have a stack, and stores it into the task pool. When a thread 
blocks, it simply schedules another thread from the task pool. TAM [24] and 
threads implemented in SML/NJ [22] fall into this category. TAM allocates 
an activation frame for each parallel invocation of a function or a loop body, 
from a free list. SML/NJ [22] implements threads using the callcc primi
tive. Since SML/ NJ allocates all activation frames from the heap 15, 66], 
callcc is implemented simply by capturing the pointer to the current frame 
and savin.g callee-save registers. Hence, SML/ J's thread management us
ing callcc effectively implements simple heap-based frame management very 
efficiently. 

This strategy necessarily uses a custom frame format as well a.~ calling 
convention, and calling legacy libraries written in C needs sp cial setup 
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procedures sucb as a stack switch. In addition to sucb software engineering 
issues, threads in this category have some performance disadvantages. First, 
thread creation incurs e..xpensive operations such as allocating frames from 
a general free storage and enqueueing a frame into a task pool. Second, 
they usually have no chances to pass the result value of an invocation via a 
register. The result value is always written into memory, because the callee 
in general does not know when the caller is scheduled. Since registers are 
volatile storage, returning the result value via a register requires making 
some assumptions on the scheduling order and exploiting them. Third, they 
have no provisions for using callee-save registers on a thread creation. The 
caller saves all its contexts prior to a thread creation. This is again because 
no scheduling order is assumed between a parent thread and a child thread. 

2.2 .2 More E laborate Thread Management Schemes 

More elaborate thread management schemes are based on the observation 
first stated by Mohr, Kranz, and Halstead [47, 48]. The observation is that 
a t bread creation merely has to leave minimal information to perform a real 
fork retroactively when it turns out to be really needed. More precisely, 
when we create a thread that evaluates the body of I , we continue the eval
uation off just as a sequential call.2 Mechanisms are provided to resume the 
continuation off without waiting for its completion in case it is blocked. If 1 
is not blocked at all , the cost of a thread creation is roughly that of a proce
dure call + writing a descriptor to indicate a potential fork point. This basic 
structure- tninimal fork overhead and retroactive work g neration-can be 
ubiquitously found in many works which follow [31, 57, 59] , in dilferent con
texts with further clarifications and improvements. This basic idea opens 
the door to several improvements over the simple task-pool approaches to 
managing threads. First, allocating a frame of a new thread from a stack 
is more efficient than allocating from a general free storage and enqueueing 
it to a task-pool. Moreover, this process is very similar to a procedure call 
in sequential languages, giving us an opportunity to express a thread fork 
in C's procedure call. Second, since the scheduling order is fixed and LIFO, 
they can return the result value via a register when a thread terminates 

2 A thread creation in LTC leaves a description a task pool so t.bat anoi her processor 
can steal it.. This is a cost of dynamic load distribution and not a cost of multithreading 
per se. 
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without blocking, because we know the next thread to run will be the caller. 
Protocols must be devised for returning the result value after a thread is 
blocked. Third, we have an opportunity to exploit callee-save registers even 
on a thread creation. This is again because, when the callee terminates 
without blocking, we know the caller is scheduled immediately after the 
callee, enabling the callee to restore the callee-save registers for the caller. 
The execution scheme of the present work is based on the same ob. ervation 
and most close to that of the authors' previous work [70] and the l1ybrid 
execution model of Concert [57]. The difference between our work and any 
prior work is where the mechanism is implemented. Existing schemes use a 
custom frame management protocol and do not allow the clirect reuse of a 
sequential compiler substrate-optimizing C compi.lers. On the other hand , 
StackThreads deals with a conventional C stack. Compilers of higher-level 
languages can straightforwardly map sequential computation onto C and a 
context switch simply calls library routines at runtime. 

Differences between schemes in this category lie in bow to deal with 
blocking- situation where the current thread can no longer proceed. When 
a thread that evaluates a procedure I blocks, [57] and [70] simply save the 
stack frame of the procedure and resume the frame just below the current 
frame. Both works implement this mechanism by generating assembly-like 
C code. 

A procedure in the source language is, ignoring inline expansion, com
piled into a C procedure. For each potential blocking point, the compiler 
generates a code sequence that saves all live variables into a heap frame and 
returns. Another code sequences is generated for restarting a computation 
from a blocked point. It loads live variables from memory and "goto" the 
blocked point. At least in the authors' experiences in [71], this implemen
tation strategy is not so successful in terms of cost-effectiveness. First, the 
generated C code is very large and has a very obscure control/data flow due 
to nilined switcb sequences. Hence, C compilers are likely to fail to optimize 
them. Second, compiler development cost is high, because we must perform 
low-level analysis such as live-range analysis to guarantee correct execution. 
Both factors lose some of the motivations for generating C code1,ease of 
compiler development and backend optimization. 

La.zyTbreads [31] takes a similar but different approach to frame man
agement and thread suspension. Frames arc allocated in the unit of what 
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they call stacklet. A stacklet is a. contiguous region that can hold several 
frames, but is much smaller tha.n the typical stack size. A blocked thread 
resumes a caller without copying the stack frame to heap. Instead, each 
procedure checks if space is available on top of the current frame. If not, 
anew stacklet is allocated, regardless whether the call is sequential or paral
lel. Implementation of LazyThreads necessarily has to design runtime data 
structure from scratch; the implementation was done by modifying the GNU 
C compiler. 

2.2.3 Simple C Code Generation with Restricted Concur-
rency Model 

Some multithreading languages implement multithreading on top of the 
stack frame management mechanism of C. The basic idea is we continue 
execution of a single thread as far as we can and, when a thread is blocked, 
we g1·ow the stack by other schedulable work, rather than unwinding the 
stack. In this way we can hold contexts of multiple threads in a single stack 
without stack unwinding, which cannot be naturally expressed in C. 

Leapfrogging [74) implements Multilisp's fu ture construct. A thread 
which evaluates an expression e is created by a future expression (future 
e). When a processor encounters a future expression, the processor con
tinues to evaluate the continuation of the expression, leaving a descriptor 
of e in a shared task paola A task is blocked when it needs the value of 
an undetermined future. When a processor executing a task T encounters 
an undetermined future J, the processor now steals work from the shared 
task pool, but only steals one which is a subtask off (including f itself). 
The stolen subtask (call it F) on top of the current stack. This strategy 
can be natu.ra.lly expressed inC's stack frame management mechanism. The 
processor simply fetches F and calls a procedure that evaluates F'. An 
implication is that the blocked thread T can only be resumed after the eval
uation ofF finishes. This scheduling is not always safe. It is safe as long as 
determining the value ofF requires determining the value ofF', because in 
this case resuming T, which we know requires the value ofF, transitively 

3 Using a sharE-d tas k pool doetJ not imply leapfrogging assumes shared memory. The 
shared task pool cau actually be implemented as a logicaUy shared , buL physically dis
tributed data st.rudurc. 
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requires determining the value of F. To summarize, leapfrogging can evalu
ate two tasks in a single stack as long as the lower thread has been blocked 
and is dependent on the upper thread (assuming a stack grows upwards). 
Evaluating multiple tasks that may be independent requires correspondingly 
ma.ny stacks. The concurrency model of leapfrogging is more restrictive than 
the general multithreading model in several ways. First, it does not sup
port speculative computations. As the authors pointed out in [74) , ifF' is 
speculative and does not contribute to the value of f , leapfrogging causes 
a deadlock which should not occur in a general multithreading model. Sec
ond, it only supports 1-producer-N-consumers synchronization via future 
and does not support general synchronization primitives. 1\llore speci£cally, 
it assumes that a blocked thread knows the resumer thread (the thread that 
is going to resume it). This condition holds in stylized uses of futures, but 
does not hold for general synchronization primitives such as mutexes and 
condition variables. Finally, it does not en ·ourage eager movement of tasks 
or application-specific task placement, which is particularly importation on 
distributed-memory parallel machines. This i again because independent 
tasks may not coexist on a single stack. A new task can be evaluated only 
when the current task is blocked or an empty stack becomes available. Lazy 
RPC [28) is based on the same idea. The difference is that, when a task 
blocks, the processor steals any task in the task pool. The dis ussion a.nd 
restriction above also apply for Lazy RPC. StackThreads, on the other ha.n.d, 
implements general mnltithreading with a single stack (or a constant number 
of stacks) per processor. The key mechanism is stack unwinding, in which 
we can speculatively evaluate independent tasks .in a single stack and revoke 
speculative decisions when the topmost task is blocked. Unlike leapfrogging 
or Lazy RPC, StackThreads moves stack frames, thus is incompatible with 
C programs or C compiler optimizations which assume they do not move. 
The primary use of StackThreads is therefore as a compiler target, rather 
than for user-level libraries for C programs. 
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2.3 Procedure Linkage Convention ofC Procedures 

2.3.1 Stack Frame Layout 

This section summarizes procedure linkage and code generation conventions 
of G procedures, which are necessary for understanding the details of Stack
Threads. In particular, understanding the details of the procedure return 
mechanism- how a procedure returns to the caller so that the caller con
tinue.s execution- gives us opportunities for saving/restoring the context of 
procedures in an unusual way. The background includes stack frame layout, 
register usage convention, how the linkage between a caller and a callee is 
maintained, and when/where registers are saved. 

Figure 2.1 shows a typical stack frame layout of a C procedure. The 
figure illustrates a stack frame for a procedure I and its parent P , assuming 
the stack grows downwards. The lowest and the highest addresses of the 
stack frame are pointed to by the stack pointer (SP) and frame pointer 
(FP), respectively. A stack frame for I holds: 

• local and temporary variables of I, 

• cal lee-save registers for P , and 

• the link toP, whlch is the return address and the frame pointer of P. 

Incoming parameters not allocated to registers are stored in the caller's 
frame, so that the caller does not have to know the frame layout of the called 
procedure. The offset of the incoming parameters from the callee's frame 
pointer is constant across all procedures, so that the callee does not have to 
know the caller. It is the callee's responsibility to restore the SP and FP of 
the caller \lpon procedure return. 

2.3.2 Register Usage Convention 

The register u"age convention for a processor classifies CPU registers into 
two categories. One is ca!Jee-save registers, which tbe caller assumes are pre
served a ross a procedure call, and the other is caller-save registers, which 
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Stack Frame of P (caller off) 
rncoming parameters or f 

(=Outgoing arguments of P) 

Frame Pointer off J constc tnl 

Locals, temporaries off 
+ Callce save registers for P 

Stack Frame off +Link tOP 

Stack Pointer o J'f 

Stack Growth 

+ 

Figure 2.1: A typical stack frame layout of a 0 procedure. Parameters are 
in the frame of the caller. Local variables, temporary variables, callee-save 
registers, and linka to the caller (i .e., return address and FP of the caller) 
are in the frame of the current procedure. 
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the caller assumes are destroyed across a procedure call 4 In order for a 
procedure to return to the correct place with the correct values iu registers, 
a stack frame saves the return address, the frame pointer of the parent, and 
the callee-save registers which it destroys. When a procedure returns, it 
restores the values of the frame pointer, stack pointer, and the callee-save 
registers and jumps to the return address. The caller then cont inues exe
cution, nssumin11 F P SP and callee save registers have the original values 
anrl other registers do not. In other words, FP, SP, and callee-save regis
ters constitute f's context- information that must be restored when I is 
rescheduled. The basic idea behind any thread library is that whenever we 
fork or switch a thread, we save enough information so that we can restore 
the context from the point where we r~.schedule the thread. Since the point 
where we reschedule the thread is usually unknown, ordinary tllread libraries 
save all contexts, including all callee-save registers in the calling convention, 
of the current thread whenever a fork or a switch occurs . StackThreads, on 
the other hand, does not save all contexts on a thread fork; when a proce
dure I is forked, it saves exactly the same amount of context as an ordinary 
procedure call to I. 

This makes a thread fork efficient but raises a difficult question against 
the implementation of StackThreads, because the callee-save registers for a 
procedure may be spread into an unknown number of frames and registers. 
Suppose a procedure I is using four callee-save registers A, B, C, and D, 
calls a procedure _q that uses A and B, which in turn calls a procedure h 
that uses B, G. Where is the relevant context for f? When his active (i.e., 
its frame is on the top of tbe stack), A and B are saved in g's stack frame, 
C in h's stack frame, and finally, D still in the register! To save f's context 
and reswne it later, we must find where they are. Information is not present 
in stack frames as to which callee-save registers are used by a procedure or 
where they are saved. Even if it were present, interpreting inJormation and 
restoring registers would make context switch prohibitively slow. The way in 
whid1 we handle callee-save registers instead relies on au assumption about 
the code generation style of C compilers. The assumed code generation style 
of C compilers is that a procedure saves callee-save registers at the entry (or 

4 SP :u.1d FP are also a."isnnted lo he preserved across a procedure calL For our purpose, 
however, we consider them as special regist,e.rs and distinguish them from regular callee
save registers. 
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prologue) of the procedure and restores them at the exit (epilogue) of the 
procedure, all at once. In other words, a procedure does not incrementally 
save them depending on the control path. The assW!1ption is true of all 
the compilers we know of including GNU C compilers. The programmer's 
manual of Mips [42] explicitly states that caJlee-save registers are saved at 
entry. This assumption validates an interesting technique for blocking a 
thread and resuming the parent in a consistent state, called epilogue code 
threading, which is further described in Section 2.4.3. 

2.3 .3 Summary: Where is Context? 

When a procedure invocation I is inactive (i.e., its stack frame is not at the 
top of the st.ack), the relevant context for I consists o(: (1) the local and 
temporary variables of I, (2) the incoming parameters of I, (3) the stack 
pointer and frame pointer of I 's frame, ( 4) and the callee-save registers of 
I. Locals and temporaries are in I's frame; incoming parameters are in the 
frame of I's caller. The frame poioter is saved in the frame of the direct child 
of I (unless the direct child does not save it at all). The stack pointer is the 
frame pointer of the direct child of I. Hence it may still be in the register 
or saved in the frame of the grandchild of the thread. Finally, callee-save 
registers are hard to locate. The next section further details how to locate 
the first three constituents and how to capture the callee-save registers. 

2.4 StackThreads: Framework and Implementa
tion 

2.4-1 Overview 

The ba.,ic execution scheme of Stack Threads is simple and has already been 
published elsewhere by the authors [71]. When we fork a new thread that 
evaluates a procedure I , we call I just as a sequential call. When I blocks, 
it can resun1e its caller by moving its frame from the stack to the l1eap 
and unwinding the stack. Since the caller can be rescheduled even if the 
callee blocks, we effectively create a new thread of control in this sequence. 
When I is later rescheduled, the context is restored on top of the stack and 
control transfers to the point where I blocked. What needs to be clarified is 
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which part of a stack frame and registers must be saved/restored and how 
lo correctly capture them from conventional C stack frames. 

2.4.2 Creating Threads by C Procedure Calls 

Suppose we wish to fork a new thread which evaluates the body of a C proce
dure f . The parent of the thread just calls f, passing parameters in ~xactly 
the same way as normal C procedure calls. If f successfully terminates its 
execution without blocking, the result value is obtained as the return value 
of the procedure call. In StackThreads, however, control may return to the 
caller even if f does block, in which case the return value from f is un
specified. Once f bas blocked, it does not make sense for f to return the 
result value by means of C's return statement, as the caller may no longer 
be scheduled immediately after the return. Hence, it is often necessary for 
a thread to tell the caller whether it terminated or blocked, and, if blocked, 
the location through which these two threads thereafter communicate. In 
particular, so-called sequential calls must be implemented using this kind of 
protocol, if the calls may be blocked. StackThreads does not define any fixed 
protocol for this, based on the observation that an appropriate protocol is 
often language dependent and sometimes unnecessary. The protocol is, for 
example, unnecessary in pure Actor-based languages where all method invo
cations are done via an asynchronous message and the result value is passed 
via another asynchronous message. Section 2.6.3 shows example protocols 
for passing the result value for a future-like commun:ication primitive. 

2.4.3 B locking a Thread by Epilogue Code Threading 

StackThreads provides a way in which a thread saves its context into heap 
and resumes the frame just below the current frame (the cu.n·ent parent of 
the thread). The current parent is the original caller (creator) when the 
thread blocks for the first time. When a thread A was blocked and another 
t.hread B later resumes A, B becomes the current parent for A. Notice that 
Sta.ckThreads by no means forces the runtime system of the language to 
resume its current parent immediately when a thread blocks. It may spin 
a while, try to find other work locally or from the network, or even run 
the garbage collector when appropriate, and thread libraries alone cannot 
determine the right action. This is the reason why Stack Threads supports 
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the parent resuming as a library, rather than as a built-in response to a 
thread blocking. 

Suppose a thread P forked f, which now wishes to resume P again. 
It allocates a heap frame of appropriate size by calling library function 
alloc_ctxt and then calls switch_to_parent to trigger the actual context 
switch, passing the allocated frame to switch_to_parent. The procedure 
switch_ to_parent fills the heap frame with the context off and resumes 
the current parent of f. When f is resumed later, control returns to f as if 
switch_ to_parent returned normally. The allocation and the actual con
text switch are separated because the cont~xt switch code needs to perform 
a language-specific action on the context (e.g., storing the pointer to the con
text somewhere for later resumption). The typical context switch sequence 
is to first allocate a heap frame, save the pointer to the frame somewhere to 
implement the language construct, and then call swi tch_to_parent. This 
interface also allows the language implement rs to reuse the same memory 
for sav ing context over multiple suspensions in a single procedure. 

Let us see bow the procedure switch_to_parent works. For now, let 
us make an assumption for simplicity, which we will rela..-.: later, that f di

rectly calls sYitch_to_parent , thus switch_to_parent knows the frame 
of the blocking thread is just below the current frame. Stack frames and 
the control flow when swi tch_to_parent is just called directly by f are 
illustrated in Figure 2.2. Thick lines denote prologue or epilogue code se
quence of procedures. To later restart f as if switch_to_parent returned 
to f, we have to (1) capture and save the state of f at the point when 
f called switch_to_parent (G, in the figure), and (2) transfer control to 
the return address off (R1 in the figure) , with the values of stack/frame 
pointers and callee-save registers at the point when P called f (GJ in the 
figure). The state of f consists of local variables in the frame, incoming 
parameters of f , and callee-save registers. For saving locals, we need the 
highest and the lowest address of the local variable save area in the frame 
off, and for incoming parameters, we require its size (its offset is a con
stant through all procedures). Saving callee-save registers is more complex. 
Since we do not know which callee-save rcgL~ters switch_to_parent de
stroys, the only feasible way to capture the callee-save registers at C, is to 
l•ctually run the epilogue code of switch_to_parent and then capture callee 
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Rr 

Prologue code 

switch_to_parent-

the currenl/lOSition 

f 
Epilogue code 

p 
The handler which captures 1--------' 
all callec save register~ 

Figure 2.2: Control flow and stack frame layout when P forked f , which 
called svitch....to_parent to block f. The control is at the point denoted 
by the current position and we now resume P. We copy local variables, 
temporaries, and parameters off to heap within switch_to_parent and 
capture callee-save registers in a special handler that saves all callee-save 
registers. Dotted line indicates the control path along which we resume P. 

save 1·egisters there.5 We achieve this by modifying the return address of 
svitch_to_parent so that it jumps to a special handler routine after run
ning the epilogue of switch_to_parent. The special handler routine saves 
all callec-save registers defined by the register usage convention and then 
jumps to the epilogue code of f. The epilogue code of f then restores the 
callee-save registers f uses and retur-ns to P. The control path along which 
we save cal\ee-save r egisters for f and. resume P is indicated. by the dotted 
Line io Figure 2.2. otice that the control path is equivalent to the regular 
control path, except that. the rest of the procedur-e body of f is just skipped. 

6'A'e might uow which caJlee-sa.ve registers svitch _to_pa.rent is using by looking at 
assembly code generated from it , or by writing it in assembly in the first place. In gen
eral, however, svitch_to_parent is called indirectly from f. ln that case, restoring only 
caUee-save regh; ters dest.royed by svitch_t o_parent does not. restore callee-save registers 
correct ly. 
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Figure 2.3: Control path along which we resume the current parent of f 
(general case). R turn addresses of all parents but the direct child off (b 
in the figure) are redirected to the epilogue code of its parent. The return 
address of b is redirected to the special handler that saves all callee-save 
registers. 

We have so far asswned that svi tch_ to_parent is directly called from 
f. Let us relax this assumption and now consider a general case where 
switch_ to_parent may be called indirectly from a procedure that is called 
from f . Suppose P forked f , which called a function b, which finally decides 
to call svitch_to_parent to block f , perhaps from another procedure which 
is called from b. The generalized situation is illustrated in Figure 2.3. The 
semantics we implement is that f later restarts computation as if b returns 
to f. Io other words, switch_to_parent saves the context off and resumes 
P , while aborting all computation j1·om switch_ to_parent back to f. 

Obviously, the above semantics is rather inconvenient for language imple
menters. A much more convenient and natural semantics would be that we 
resume P when f is blocked and we later restart f as if svitch_to_parent 
returns to its direct caller. In other words, we save the context of all the call 
cha ins between f and switch_to_parent and restore all of them when f 
later restarts. As we will discuss later, this semantics is hard to implement 
in some procedure calling conventions. Our semantics needs to save/restore 
only one frame per blocking/ resuming. 

31 



........ ~~~--~~~~------------------------------------------~~~----------------~~--------------------

StackThreads allows switch_ to_parent to be called indirectly for the 
sake of language implementers. If it were calla.ble only from the toplevel of 
the thread itself, a thread must always inline a code sequence that determines 
whether the thread continues or blocks.6 In such cases, inlined sequences 
sometimes become unpleasantly long, so we wish to inline only frequent 
cases in which a thread can continue with a small overhead and leave other 
ca.~es in a separate procedure. 

To implement the above semantics, we modify the ret urn address of all 
procedures from switch_to_parent back to b. Every frame but b is redi
rected to the epilogue code of its caller and b is redirected to the handler 
which saves all callec-save registers. The control flow from switch_to_parent 
to P is threaded through all the epilogue sequences in the call chain, as is 
indicated by the dotted line in the Figure 2.3. 

2 .4.4 Resuming a Blocked Thread by Call Chain Reconstruc-
tion 

Suppose a thread A satisfies the condition whereby a blocked thread f can 
now restart execution. Thread A can restart f by callingrestart _thread(c), 
where cis the heap context filled by sYitch_to_parent . The basic oper
at ions are as follows; build local variables and incoming parameter regions 
for 1 on top of the stack, restore callee-save registers for f, set FP and 
SP to the new frame location and jump to the restarting point. Care 
must be taken so that, after I finishes or blocks again, I correctly returns 
to restart_ thread with the correct callee-save register state. Since we 
directly jump into the middle of I , I does not run the regular prologue 
sequence. This in turn implies that executing the epilogue sequence of f 
does not return to restart_thread, but to the original caller of I, with 
values of callee-save registers, SP, and FP for the original caller. Our so
lution for this consists of two parts. First, restart_ thread overwrites the 
slots of f's frame which hold the link to the caller, so that f returns to 
restart_thread with t he correct values of FP and SP. More specifically, it 
overwrites the slots that save the FP of the caller and the return address. 

°For c.xn.mple, in our implementation of ABCL//. checking whether or not to block at 
a potential blocking poiul includt."'S four conditionaJs. Such in lined decis ioJlS increase code 
size aud obscu-re the back.cnd C com piler. 
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A restart_ thread .f 
( 1 )a llocate stack frame i{>r f. 
(2)copy local variables and pammcters off, 
(3)rep lacc the link to the parent off, 
(4)savc all callec-savc registers. 
(5)rcstorc caUec-save registers off, and 
(6)jump to the re~tarting point R,. 

(invalid) epi logue code 

F igure 2.4: Control path along which we restart a blocked thread f. After 
building a stack frame for f on top of the ·tack (1 and 2) , we replace 
the return address and the FP of the parent at (3) so that f returns to 
restart_thread. We then save callee-save registers ( 4), restore callec-save 
registers captured when f was blocked (5), and jump to the restarting point. 
The epilogue off is no longer valid. Hence restart_ thread restores callec
save registers saved at (4) by itself. 

Second, restart_ thread saves callee-save registers before restarting f , and 
restores callee-save registers by itself after f returns. 

To summarize, restarting a blocked thread involves the foUowing steps: 
(1) allocate a stack frame for I , (2) copy local variables and incoming param
eters onto the stack, (3) replace the li nk to the parent (return address and 
the FP of the parent) with the link to restart_ thread, so that f returns 
to restart_ thread, (4) save all callee-save registers, (5) restore all c:allee
save registers captured when f was blocked, and (6) jump to the restarting 
point . Since f returns to restart_ thread with invaHd callee-save register 
state, restart_thread restores aU call e-save registers saved at (4) after 
I returned. The control path along which we restart f and f eventually 
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returns to restart_thread i illustrated in Figure 2.4. 

2.4.5 Limitations and Discussion 

While StackThreads aims to support as wide a range of programming prac
tices in C as possible, there are certain limitations. 

First, StackThreads fundamentally relies on the fact that stack frames 
are mobile, or more precisely, stack- allocated data are accessed relative 
to the FP or SP. This is not the case for all-C programs and compilers, of 
course. StackThreads prohibits taking the address of stack-allocated objects 
and assuming the address remains valid across context switches. Worse, 
even if a procedure does not explicitly take the address of stack data, an 
optimizer can cache such an address in a general-purpose register and use 
the address throughout a procedure. This is done for aggregate data (arrays 
or structures) allocated on the stack. Overall, StackThreads discourages 
alloca ing any aggregate data structure on stack. vVe believe this is not a 
fata.l restriction for garbage-collected languages. 

Second, the reader might realize that there are alternative choices As 
to which primitives StackThreads supports. It supports saving the context 
of a single stack frame (recall that in Section 2.4.3, when a thread j calls 
switch_to_parent indirect.Jy through a procedure call chain, only the frame 
of j is saved and other frames in the call chain are simply discarded). A 
consequence is that a sequential call to a possibly blocking procedure must 
check a flag after the procedure returns and cascade the unwinding oper
ation if the return value is not present. We investigated the possibility of 
supporting a sequential call by the library, so that in a sequential call, the 
control transfer to the caller implies the presence of the return value. We 
finally concluded t his is hard to implement on some calling conventions. 
To support the above sequential call semantics, the library must unwind 
multiple stack frames in a single library call and later move them to an
other location, maintaining the call chain between frames. Moving multiple 
frames together would be simple if stack frames would be linked with only 
relative addresses. Unfortunately, however, this is not the casein some pro
cedure linkage conventions including Spare; each frame stores the absolute 

address of the frame pointer of the caller. To reconstruct call chains in such 
conventions, e11.ch frame would have to supply information about the frame 
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before making a sequential call. On Spare, tllis takes about 10 instructions 
per frame, nullifying the advantage that the value present check is unnec
essary. Our current implementation instead imposes no overhead before a 
call and the overhead is paid after the call by checking a Bag and cascading 
unwinding operations as necessary. 

Finally, StackThreads cannot utilize live variable information to mini
mize context switch cost. We save and restoxe the entire region that holds 
all local variables for a procedure. Although this is potentially a problem, 
the performance evaluation in Section 2. 7 indic11.tes that other factors are 
more dominating. 

2.5 Implementation and Machine Specific Details 

2.5.1 General Description 

StackThreads exposes the following three interfaces to the programmer. 

• alloc_ctxt (desc, don'Ljree, add_nq ) 

• switch_to_parent(desc, ctxt) 

• restart_ thread (ctxt) 

Desc is a small data structure (frame descriptor) which describes the frame 
format of the direct caller of each procedure and ctxt is a pointer to the 
context returned by alloc_ctxt. Set don 'Lj1·ee? to 1 to request that the 
context should be freed by the runtime system before the thread is resumed. 
Set add_req to request additional memory co-allocated with the context. 
This is provided because it is often the case that the language implemen
tation must allocate a language-specific data structure a.~sociated with a 
context switch. The following discussion ignores these parameters for the 
sake of simplicity. 

A frame descriptor at least contains a fi eld t.hat links itself to the de
scriptor of the caller. The chain ends at the descriptor of the thread that 
is about to block. It may also contajn some machine dependent fi elds 
that provide information hard to achieve from the current procedure. As 
a design criterion, the overhead for setting up a descriptor should be as 
sm11.ll as possible, because a descriptor should be setup when a thread 
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call~ a procedure that potenlially blocks the thread. Macros for setting 
up frame descriptors of a thread and an intermediate procedure between 
a thread and alloc_ctxtfsvitch_to_parent are provided. We call the 
former SET_THREAD_DESC and the later SET_LINK_DESC. 

We have implemented StackThreads on two platforms, Spare and Al
pha. Below we schematically illustrate each procedure and how it obtains 
necessary information on each platform, with non-trivial part underlined. 

First, alloc_ctxt is shown as follows. 

alloc_ctxt (desc don'Lfree, add_,·eq) 

{ 

} 

TL, TH = the lowest/highest address of the th?'ead 's frame; 

c = malloc ( TH - TL + argument size + adtL•·eq) ; 

initialize c with doTI'Lfree, arg?tment_size etc.; 

return c; 

By traversing the descriptor until the end, we can easily locate the de
scr iptor of the thread. On both platforms , we obtain the argument size from 
the descriptor of the thread. That is, before the thread makes a call to a 
procedure that may block the procedure, it sets the size of arguments by an 
extension supported by GNU C compiler __ builtin_args_info(O), which 
returns the size of paran1eters of the current procedure. 

A less obvious is bow to obtain the lowest and highest addresses of the 
thread's frame. We must be able to traverse the real chain of stack frames 
in parallel with traversing the chain of descriptor. It turns out tbis part is 
very machine specific. We describe details in subsections for each platform. 

svitch_to_parent is schematically shown as follows. 

switch_to_parent (desc, ctzt) 

{ 

fm· each frame £between the current and the grandch-ild's frame { 

set f 's return address to the epilogue of its parent; 

} 

cta:t->m = the child's 1'et1<rn address; 

set the child's return address to the special hand leT that saves 

<1ll callee save •·egiste1·s; 
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} 

dump the thread 's fmme to ctxt ; 

dump the thread's arguments to ctxt; 

I* tell the handler necessary informatioTI •I 
R = ctxt->m; 

C = ctxt->callee_save_regs; 

return; I* act~<ally begins epilogue code th1·eading •I 

We modify the return address of every intermediate frame from the cur
rent frame up to the frame for the grandchild of the thread, to its parent's 
epilogue code. On both platforms, we obtain the epilogue code of a proce
dure by an extension supported by GNU C, which allows the address of a 
label to be used as value. That is, before a thread calls a procedure that 
potentially blocks the thread, it writes its epilogue code to the descriptor. 
A code fragment is illustrated in Figure 2.5 

After all intermediate frames have been redirected , the child frame's 
return address is set to a special handler that saves all callee-save registers 
in ctxt. The handler requires the address where callee save registers should 
be stored and where to transfer the control after that. They are provided via 
global variables shown as Rand C in the figttre. When svitch_to_parent 
returns, it actually returns to the epilogue code of its parent, which in turn 
returns to the epilogue code of its parent, and so on. When the child of 
the thread returns, it jumps to the spec,ial handler. The handler saves all 
callee-save registers, whose state is now valid for the thread, and returns to 
its parent, obtaining the address via R. Again, we postpone the discussion 
as to how to traverse the real frame chain in parallel with descriptor chain 
and l10w to find the return address in each frame. 

Finally, restart_ thread is shown below. 

restart_thread (ctxt) 

{ 

cs[N]; 

frame = alloca (adequate size for ctxt 's args and f•·ame) ; 

build fmme of ctxt in the new frame; 

build args of ctxt in the new frame; 

link the new frame wi'th the CU1Tent frame; 

copy ctxt->callee_save_,.egs to cs; 
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} 

ra = ctxt->ra; 

I • ctxt can be freed here • I 
restore_proc ( new_fp, new_sp, ra, cs) ; 

RETURN: 

•·est01·e callee save registers for itself from cs; 

That is, it expands the stack via aUoca by the size t.hat adequately con
tains both parameter area and the frame of the thread being resumed and 
restores dumped images on the newly allocated area. So far, nothing is 
tricky. We then link the new frame to the current frame, so that the re
sumed thread returns to this procedure. This actually overwrites the return 
address of the new frame to the address labeled as RETURN in the above. The 
parent FP is modified similarly. Finally we transfer control to the thread, 
wltich is done by an assembly routine called restore_proc. Before calling 
restore_proc, we copy the dumped callee save registers on stack. It is nec
essary for being able to free ctxt before restarting the caller. Restore_proc 
swaps the current contents of the callee save registers and the contents in 
cs, and jump tom, setting SP and FP appropriately. Care must be taken 
in calling conventions where a procedure may not use FP. In such calling 
conventions, a procedure may use the frame pointer register for arbitrary 
puxpose. Setting FP 'appropriately' in such calling conventions requires us 
precisely know if the frame pointer register is used as FP, used as a general 
purpose register, or not used at all by a procedure. We clarify how to know 
it on Alpha in Section 2.5.3. What happens when the thread returns? It 

returns to the label RETURN. There, the state of the callee save registers is in 
general invalid , but FP is valid. FP is valid because we appropriately over
wrote the saved frame pointer in the new frame before restarting the thread, 
thus set appropriately in the epilogue code of the restarting thread. Tltis 
guarantees that cs after RETURN is addressed correctly. 7 Here we must clar
ify how t.o find the location in the thread's frame where the return address 
and the frame pointer of the parent are saved. 

The discussion so far made it clear t-hat we must be able to: 

• traverse the real frame chain in parallel with the descriptor chain. 

• locate wltere the return address is saved in a frame, and 
7Since restart_thread use.o;: alloca, cs must. be addressed via FP. 
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int f (x, y, z) { 
if (x > 0) { 

return 

} else { 
&&EPILOGUE; 

switch_to_parent ( ... ); 
} 

EPILOGUE : 
} 

Figure 2.5: The skeleton of a StackThreads procedure. The label EPILOGUE 
is put at the end of the procedure and captured by && operator. EPILOGUE 
refers to the epilogue sequence of the procedure. 

• know if a procedure uses FP, and if it does, for what purpose and 
where the register for FP is saved in the frame for a procedure. 

We now clarify machine specific details on Spare and Alpha. 

2.5 .2 Spare 

Implementation on Spare has been done using GNU C compiler version 
2.7.2 under the Spare version 8 calling convention [68). As the register 
usage convention, we used the - mflat option, which does not use register 
windows. This convention retains interoperability with legacy C binaries 
that use register windows. 

In -mflat convention, non-leaf procedures always setup FP in the reg
ister %i7. Hence any non-leaf procedure saves the parent FP in its stack 
frame. Obtaining the location of them is not straightforward. The stack 
layout of the -mflat convention is shown in Figure 2.6. It locates them at 
the lowest two words of the local variables save area, pu tting the caller FP 
at the bottom and the return address next. The offset of this area from 
both the FP and the SP varies from one procedure to another . Fortunately, 
however , t he space just below the local variables area is for stack allocation 
via alloca and we can obtain the address of the bottom word by r questing 
zero(!) bytes using the aUoca (i.e., alloca(O)) before making any other 
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alloca rcquest.8 

To swn up , before a thread calls a procedure which may eventually call 
switch_to_parent, it writes the result of alloca(O) to the frame descrip
tor. Every intermediate procedure between the thread and alloc_ctxt (or 
switch_to_parent) simi larly writes the result of alloca(O) in its frame 
descriptor. Having the cha in of descriptors each of which contains the lo
cation where the parent FP is stored, traversing the real stack frame is 
straightforward. 

2.5.3 Alpha 

Alpha uses register $15 for frame pointer. However, the calling convention of 
Alpha (25, 26] is much more complex than that of Spare. First, a procedure 
may not establish a frame pointer. Such procedures acce.ss all local variables 
via SP and may use $15 as a general-purpose register or may not use it at all. 
Second, even if $15 is used and thus is saved in a frame, its location is not 
stylized at all. $15 is treated as a regular callee-save register and the location 
where it is saved depends on all the details of which callee-save ·registers are 
used by the procedure. Finally, even if $15 is used as FP, it does not point 
to the highest address of t he current stack frame (stack grows downward). 
It instead points to the lowest address of the fixed area of the frame. That 
is, a prologue code of a procedure .first expands stack by subtracting the size 
of the frame from SP, and copies the new SP to $15. SP may be changed by 
alloca, but $15 is constant through the invocation and is used for accessing 
local variables hereafter. 

The ftrst problem may not be fatal , because one can force a procedure to 
establish FP, either by a compile option supported both by GNU C and the 
native C compiler of Digital UNIX, or by calling a!loca. The third problem 
may still not be fatal. Without a pointer to the highest address of the 
frame of the blocking thread, we cannot precisely determine which portion 
of the stack should be saved. However , as the last resort, one may be able to 
overestimate them somehow. Probably, t be second problem is the most fatal 

8The reality is slightly more complex. There ma.y be one word gap between the address 
returned by alloca(O) and the address where the caller FP is saved. U.l that ca'5e, the 
returned address con-tains not.hing. Fortunately, we cau distinguish these two cases by 
reading the oue word above tbe retur.ned add ress and testing if this word contains the 
address of a text segment or an address in the stack. 
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1 Stack Growtb 

Figure 2.6: Stack frame layout of GNU C Compiler OIJ Spare with -mflat 
option (ignore register windows). The two worcls just above the aUoca region 
are the caller's FP and return address. 
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one. Without knowing where the parent FP is saved, we cannot establish 
link between the restarting thread and restart_ thread. 

All these features are problerna.tic not only for Sta.ckThreads, but also 
for other language constructs, most notably, exception handling. Operating 

systems on Alpha {Digital UNIX and Windows NT) supports mntime pro
ced~tre descriptor for implementing this kind of \musual control constructs. 
It basically provides mapping from a function {actually, any code address 
within a fun,ction) to the descriptor of the stack frame for a fuoction. The 

descriptor provides various kinds of information for the frame, including its 
size (of the fixed part), whether or not it establishes FP, which callee-save 
registers are saved, where the return address is saved, and so on. With such 
support, everything becomes at least implementable. 

Traversing stack in alloc_ctxt jswitch_to_parent does not have any 
difficulty. lL first looks up its own procedure descriptor. It tells us where the 

return address of the current procedure is saved. Vie read it and then ask 
for the procedure descriptor of the caller, using the obtained return address. 
In this way, we can trivially traverse the real stack frame chain in parallel 
with the chain of {StackThreads) descriptors. 

Setting FP and SP appropriately for restarting a procedure should be 
done carefully, but possible with runtime procedure descriptor that tells us 
how does the restarting procedure use $15. If the procedure does not use $15 

at all, we do not have to set $15 before restarting it. Since it does not access 
$15, the current value of $15 does not matter for it, and since its epilogue 
code does not destroy $15, it will retain the original value, when lhe control 
reaches restart_thread again. \lfhat if it uses $15 as a general-purpose 

register? $15 is set to the original value captured wl1en it blocked. When 
it later ret.nrns to restart_ thread again, its epilogue code will restore the 
FP of restart_thread. Finally, when if it uses $15 as FP, we set $15 so 
that it points to the appropriate point in t he newly constructed frame. 

While this kind of support is very attract ive, the ost for associating a 

code address to its frame descriptor may be significant. Although we have 
not fully examined the typical cost of the lookup, it seems to take roughly 
a hlmdred instructions. 
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2.6 Implementing Higher Level Abstractions on 

Top of StackThreads 

2.6.1 Remote Read 

Figure 2. 7 illustrates a simple example in which a procedure suspends its 

computation when it needs to read remote data". It first checks whether the 
data is local. If the data is remote, it allocates a conte..xt, sends a request 
message to an owner node, and calls switch_to_parent to suspend the 

procedure. A protocol is defined so that the read datum is put in the global 
vadable R before the procedure is later reactivated. Prior to blocking, a 
descriptor of the stack frame is filled by SET_THREAD_DESC(td) and passed 

to alloc_ctxt and switch_ to_parent to carry the information necessary 
to save and restore the stack frame. 

2.6.2 Fork-Join 

Consider the simple fork-join protocol illustrated in Figure 2.8. A master 
thread (master) forks a number of child threads {task) and waits for a ll the 
crea.ted threads to finish. The master and all the children share a counter 

(a sync object) which keeps the number of unfinished tasks. The master 
forks child threads simply by calling the C procedure task in a loop and 
then calls join_children to wait for their completion. Assume each task 

may block during its computation. The master blocks if some tasks are still 
unfinished when the master tries join_children. There are basically two 
scenarios. If no children actually block, every procedure call to task simply 

decrements t he counter before returning to the master (line 13). The master 
then checks t he counter in join_children, to find the counter is already 

zero, and falls through (line 42). If, on the other hand, any child is blocked, 
the counter may not be zero when the master checks it in join_ children. 

In that case, the master allocates the heap context, writes the context to the 
counter, and calls switch_to_parent to block itself (Line 43- 51. When the 

last child finishes, it will find the context written in the counter and restart 
the master {line 16- 18). This example illustrates how to design and irnple

ment synchronizing operations (i.e., operations that may trigger a context 
switch) on top of Stack Threads primitives in a simple case. In t hjs example, 
join_children is the synchronizing operation. In general, a thread which 
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1 : { 

2: 

3: 

4: 

5: 
6: 

7: 
8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16 : 

17 : 

18: 

19: 

20: 

21: 

22: 

static struct thread_desc td[l] ; 

I• try to read DATA to x •I 
if (is_local (data)) { 

x = data->val i 

} else { 

} 

char * c ; 

SET_THREAD_DESC(td); 

c = alloc_ctxt (td); 

remote_read_request (data, c); 

s~itch_to_parent (td, c); 

I • returns here when unblocked • / 

x = R->val; 

I• X has now the right value •/ 

EPILOGUE: 

Figure 2.7: A simple code fragment which blocks the current procedure if 
data is remote. Tf remote, it fills a frame descriptor, allocates context, sends 
a remote read request, and switches to its parent. 
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~----------------------------------------------------~--=---~-------------

calls a synchronizing operation must ca.Il SET_TI!READ_DESC( td), which puts 

information of the current frame in t he area pointed to by td, and pass td to 
the synchronizing operation. The synchronizing operation checks th~ syn
chronizing condition and when it decides to block, calls SET_LINK_DESC(Ink, 

td) , which fills the area pointed to by l7Jk with information about the current 
frame and links Ink to td . 

2.6 .3 Return Value Passing Protocols 

StackThreads a llows a thread to return a value via the normal C return se

quence when the thread terminates without blocking. Once a thread blocks, 
however, it does not make sense for a thread to return a value in t his way, 
because the original caller may not be present just below the current frame. 

This is inconvenient when building future-like primitive or even a sequent ial 
call. Here, we sketch how to express such abstractions in StackThreads, 
using two previously published schemes as examples. 

Concert Hybrid Execution Mode l 

Figure 2.9 shows a variant of lazy context creation scheme in the Concert 

hybrid execution model [57], changing unimportant deta.ils for the presen
tation. Lazy context creation defines how a potentially blocking procedure 
passes its r sult value to the caller, given that control may return to the 

caller even if the callee has not finished. Suppose procedure f calls proce
dure g, which may block. If g finishes without blocking, g dears the global 
flag blocked and returns the result value via C's ret urn statement (line 45-

46).9 If 9 blocks, on the other hand, g allocates a heap context, sets t he 
flag to point to the context, and switch to f. After control returns to j , j 
tests the flag and cascades blocking if the flag is non-zero (linel6- 28). To 

maintain the call chain between f and 9 after 9 blocks, f links 9's context to 
f 's context before blocking (line 23). When 9 is later resumed and finally 
finished , 9 checks if another context is linked from 9 's context and if one is, 

resumes it. The return value is written in f 's context (line 47- 50). 

9 The original lazy context aUocation does t.he reverse; return value is written into 
memory, while t.he Ciag is returned to the procedure. 
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1: 
2: 
3: 
4: 
5: 
6 : 
7 : 

t ypedef struct sync { 
int count; I• # of unfinished tasks • I 
char • wai t; I• waiting context •I 

} • sync_t; 

void task (s) 
sync_t s; 

8: { 
9: . . . do v ork . assume we may 

block during computation 

I• I am nov finished •/ 
s->count--; 
I • if everybody has finished and the 

master is w·aiting., wake up the master • I 
if ( s ->count == 0 && s->wait) { 

restart_thread (s->wait); 
} 

EPILOGUE: 

void master 
int n ; 

10 : 
11 : 
12: 
13: 
14: 
15 : 
16: 
17 : 
18 : 
19: 
20: } 
21: 
22: 
23: 
24: { 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39 : 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 

(n) 

static struct thread_desc td [1]; 

I • fork N child tasks • I 
sync_ t s = ma.ke_sync (n) ; 
for ( i :::: 0; i < n; i++) task (s); 

I • wait for everybody to finish • / 
SET_THREAD_DESC(td); join_children (s, td); 
I • continue work . . . •I 

EPILOGUE: ; 

I• TD = descriptor of MASTER •I 
void join_children (s> td) 

sync_t s; thread_desc_t td; 

if (s->count > 0) { 

} 

I • when there are unfinished 
tasks, we switch to parent • I 

struct thread_desc ln.k.[1] j char • c; 
SET _LINK_DESC (lnk, td) ; 
I • allocate context. write it to S, 

and SWITCH_TO _PARENT • I 
c = alloc_ctxt (lnk) ; 
s->wait = c; 
s witch_ to_parent (lnk, c); 

EPILOGUE: ; } 

Figure 2.8: A simple fork-join protocol. The sync object (s) counts the 
number of unfinished tasks. The master blocks on a. sync object by leaving 
the context in it. A finished task decrements the counter and the last task 
wakes up the master if the master is waiting. 
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---------------~-------------

1: 
2: 
3: 
4: 

typedef struct ct:xt 
{ 

char • ctxt; I • StackThreads context •I 
int result_val; I• result value •/ 
struct ctxt • cont; I• link to caller •I 
• c txt_t; 

5: 
6: 
7: 
8: 
9: 

c txt_t blocked; 
void f () 
{ 

static struct thread_desc td [1] ; 
int r; 

I • code template which calls may-block procedure G •I 
r = g (); 
if (blocked) { I • G has blocked , thus F also blocks •I 

char • c ; ctxt_t f_ctxt; 

} 

ctxt_t g_ctxt = blocked; 
SET_THREAD_DESC(td); 
c = alloc_ctxt (td); 
f_ctxt = make_ctxt (c); 
I • link G' s ctxt -> F's ctxt • I 
g_ctxt ->cont = f_ctxt; 
I • tell the caller of F that F has blocked • I 
blocked = f_ctxt; 
switch_to_parent (td, c); 
r = f _ctxt->result_val; 

printf (!•result = \ %d\ n 11
, r); 

EPILOGUE: 

10: 
11: 
12 : 
13: 
14: 
15: 
16: 
17: 
18: 
19 : 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33 : } 
34: 
35: 
36 : 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: } 

int g () 
{ 

computation of G takes place. during which G may block 

I • return sequence of may-bl ock procedure •I 
if (g_ctxt->cont) { 

I • G has blocked. 'Write result value and wake up F . • I 
g_ctxt->cont->result_val = result; 
restart_thread (g_ctxt->cont->ctxt); 

e lse { 
I• G has never blocked •I 
blocked = 0; return result ; 

} 
EPILOGUE: ; 

Figure 2.9: A variant of the Concert lazy context allocat ion scheme. When a 
procedure .9 blocks, it allocates a context and sets the global variable blocked 
to it . After .9 returns, the caller (f) checks the flag and blocks if it is not 
zero. The coot field of the g's context is set to the f 's context so that .9 
can later wake up f when .9 finishes. 
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First Class Communication Channel Protocol 

In the authors' previous work [71], we have proposed an implementation 
echeme for efficient first-class communication channels. The computation 
model has no inherent notion of sequential calls. All procedure calls are, 
at. least conceptually, asynchronous calls. Threads communicate and syn
chronize via communication channels. To return the result value of an in
vocation, each procedure, in addition to normal parameters, take an extra 
parameter, called the reply channel. A future call is expressed by a channel 
creation, a procedure call that passes tbe new channel as the reply channel, 
and receiving the result later from the reply channel. A sequential call is 
just a special case of a future call. Given that thread creat ion is sufficiently 
fast, the key question is how to implement channels efficiently. 

When a thread passes a new empty channel to a new local thread, it 
merely sets a special flag value that indicates an empty channel, without 
al locating memory for it. When the callee wri tes a value to an empty channel 
that is not yet assigned to a heap location, it merely writes the value to 
a register and sets the flag of the channels to indicate it is full. When 
a procedure t rminates leaving one value on the reply channel, it simply 
returns t.he value as the return value of the procedure. When a procedw:e 
is blocked, on the other hand , the reply channel is converted to a boxed 
representation- a heap memory is allocated for it and the flag is set to the 
pointer to it. This boxing operation is also performed when the reply channel 
escapes from the ca!lee's context; for example when it is passed to a remote 
processor or stored into a data structure. When the callee tries to receive the 
result value, it checks the flag and if the flag indicates full , the value is simply 
extracted as the return value of tlle procedure. A notable point of th:is model 
is its generality and simplicity. There are no inherent notions of sequential 
calls or even asynchronous calls. Many primitives can be constructed from 
threads and communication channels, including result value passing and 
mutual exclusion. Efficiency of frequent cases is preserved by efficient thread 
creation am! the elaborate representation of communication channels. 

Chapter 5 describes how t llis scheme is used in ABCL/ f and Appendix B 
details the implementation. 
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2. 7 Performance Evaluation 

2.7.1 Micro Benchmark 

In StackThreads, a thread creation is just a procedure cal l. Thus the over
head for a thread creation is that of a procedure call on the target ma
chine + whatever necessary for implementing a specific language construct. 
Therefore, the interesting numbers are the cost of blocking and resuming. 
Table 2.2 and 2.3 breaks down the cost of blocking and resuming in cases 
where sYitch_to_parent is directly called from the blocked thread. Cur
rently, the cost was mea~ured only on Spare. Numbers are given as in
struction counts on Spa.rc. The overhead depends on the number of local 
variables of the procedure (l), the number of incoming parameters of the 
procedure (P) and the number of callee save registers in the convention 
(1·). The cost of blocking also depends on whether we must allocate a fresh 
context or can reuse the context of previous blocks of this procedure. In 

the register usage convention of Spare where r = 14 and a typical procedure 
where l = 16 and p = 3, a block costs 267 instructions (when we allocate 
afresh context) or 179 instructions (when we reuse a context) and a resum
ing costs 191 instructions. Copying locals and parameters accounts for one 
third of the total instruction count for a block or a resume. In the sim
ple benchmark program in which a thread repeats blocking and resumjug, 
the time taken for a block-resume pair was 2.31J.ts on l 50Mhz RyperSparc 
processor. This is comparable to the re ult reported by P levyak et al [57]. 
As is already discussed in Section 2.4.5, our scheme totally ignores live vari
able information, copying all locals and parameters between stack and he.ap. 
Nevertheless, these figures show that this possible limiting factor is not a 
big problem in practice. Exp)ojting live vadable information would make l 
(or p) the number of live local variables (or parameters) at the point, rather 
than the total number of slots allocated for local variables (or parameters) 
of the procedure. Even assuming l = p = 0 would save at most one third of 
the blocking or the resuming cost. We also note that almost all instructions 
for context switch are shared in a library. In the benchmark program, the 
inlined sequence for blocking is only nine instntctions. All other jnstructions 
are shared by a ll context switch sites or are necessary anyhow (such as the 
ep.ilogue sequence). This is difficult to achieve if we inline context S\\'itch 
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Category Description # of Instructions 

1. Allocate context 1-1. Calculate context size 33 

l-2. MALLOC 28 

l-3. Initialization 27 

2. Switch to parent 2-1. Return adclress modification 22 

2-2. Copy locals and temporaries 16 + 3.251 

2-3. Copy parameters 10+ 5p 

2-4. Set buffer for callee-save registers 11 

2-5. Epilogue 6 

3. Save callee-save regs 3-1. Save all callee-save registers 7+r 

3-2. Epilogue of the thread n'" 
Others 15 

Total (with fresh 
context allocation) 186 + 3.251 + 5p+ r 

Total (without fresh 
context allocation) 98 + 3.251 + 5p + r 

Table 2.2: Breakdown of the blocking cost in# of instructions. Parameters l , 
p , and,. refer to the number oflocals and temporaries, incoming parameters, 
and caliee save registers , respectively. In 2-4., we set the address of the buffer 

to a global variable, in which callee save registers are written in 3-1. 

sequences to exploit live variable information. 

2.7.2 Application Benchmark 

Experimental Conditions 

We measured performance of three applications listed in Table 2.4, which 

also shows how threads are forked and switched in each application. 
For each application, we first wrote a pure sequential algorithm in C++ 

and compared it with ones that are augmented with calls to StackThreads 
primitives. For the evaluat ion i:n this chapter, the augmented versions use 
Stack Threads prin1itives directly from C++ programs, rather than indirectly 

from ABCL/f. Applications are compiled with GNU C++ (g++) with the 
highest ( -04) optimization level and all programs run on ;~ ingle processor 
(HyperSparc 150"Mbz) workstation. There are two augmented versions, one 

9depends on the Lhread 
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Description # of instructions 

1. Setup 21 

2. Copy locals and temporaries 16 + 3.251 

3. Copy parameters 10 + 5p 

4. Reinstall caller links 13 

5. Copy callee-save registers to stack 1+ 2r 

6. Check if it should free the conte.xt 6 

7. Swap callee-save registers with stack 1+ 2t• 

Total 68 + 3.251 + 5p + 4•· 

Table 2.3: Breakdown of the resuming cost in # of instructions. Param
eters l , ]l, and r refer to the number of locals and temporaries, incoming 
parameters, and callee save registers, respectively. 

for evaluating fork overhead and the other for evaluating fork overhead as 

well as switch overhead. More specifically, we evaluated the following three 

versions: 

SQ: True sequential execution in C++. No multithreading overhead is 

in1posed. 

FK: SQ + fork overhead. This version forks threads and checks synchro
nization conditions, at every point where they would be required in 

a true parallel/ distributed execution. It also forks a new thread at 
each sequential call to a potentially blocking procedure. A potentially 
blocking procedure is a procedure that may check a ynchronlzation 
condition in its body. This is necessary because Stack Threads does not 

directly support a sequential call to potentially blocking procedures. 
The return value from a potentially blocking procedure is obtained via 

a first class channel protocol presented in Section 2.6.3. 

SW: FK + switch overhead. We artificially block the thread at some po
tential blocking points. The exact conditions in which a thread blocks 

differ from one application to another. 

FK is intended to estimate the overhead imposed on single processor exe

cution of parallel binaries, whereas SW is meant to emulate execution on 
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parallel processors, assuming zero communication overhead. We assume 
zero overheads for communication so that switch overhead is not masked by 
other sources of overhead. 

BH simulates motion of particles that interact with each other by New
tonian force. It builds a large tree structure (BH-tree) and force calculation 
for a particle traverses a part of the tree. A true parallel version parti
tions particles among processors and processors work in paraU.el. A thread 
blocks when it accesses a node of a BH-tree that is not present locally. SW 
version emulates this behavior on a single processor, by blocking a thread 
when it accesses a node that has not been accessed 'recently.' When a force 
calculation starts, no BH-nodes have been accessed recently. When a node 
is accessed, the computation is blocked and the node is marked "recently 
accessed." Once a node is marked, accesses to the same node do not cause 
further blocking. We clear aU the marks every 128 particle. This emulates 
an execution where each processor is responsible for 128 particles. Since 
each recursive call to a BH-node potentially encounters a remote oode, each 
recursive call is a potentially blocking procedure call. Hence we fork a thread 
at each recursive call bot.h in FK version and SW version . 

RNA is a combinatorial tree search problem with pruning. A true parallel 
program extracts parallelism simply by making recursive calls in parallel 
when the recmsion depth < D , where D is given at command line. The 
processor on which a parallel recursion is invoked is determined randomly. 
A thread blocks to wait for the completion of recursive calls. SW version 
of R..'NA emulates this behavior by blocking a thread at every recursive call 
whose recursion depth < D. In the true distributed memory execution, 
the caller of a remote call is not blocked if it has other works when the 
remote processor is evaluating the remote call. Thus, this pessimistically 
emulates execut ion on a true distributed memory machine in terms of switch 
frequency. A thread is forked at each recursive call both in FK version and 
SW version, regardless of the depth. 

CKY is a parser for context free grammars. Given an input sentence of 
length n, it calculates 1/ 2 n(n + 1) sets of symbols, which we denote asS;,;. 
(0 :o; i < j .::; n). A true parallel version forks a separate thread for each 
S; ,3 and distributes them on processors. The thread which computes S;.; 
requires S;,k and SkJ for any k (i < k < j) and blocks if data bas no t been 
produced wheu necessary. 
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Application FK/SW fork a thread at: SW switches a thread when: 

BH each visit at BH tree node the node is not accessed 
recently 

RNA each visit to a node in the the depth of the node < D 
search tree ( D is a constant) 

CKY each computation of S;,; S;,; accesses S; ,k or Sk J 

before computed 

Table 2.4: Benchmark Applications 

SQ version of CKY calculates S;.; (0 ::; i < j ::; n) , one after another, in 
an order that S;,; with smaller j -i are computed before S; ,; with larger j -i. 
This naturally guarantees that necessary data has already been produced 
when necessary. FK attaches a thread for each computation of S;,;. SW 
reverses the order in which S;,; are computed. This scheduling order blocks 
all threads with j - ·i > 1 at least once. 

Benchmark Results 

Figure 2.10 shows the execution time (relative to true sequential execution) 
of the FK and SW version, on Spare and Alpha. FK estimates the overhead 
that appears when we e.xecute the parallel program on a single processor. 
The sources of overhead include forks, synchron ization condition cber.ks, and 
creation of synchronizing data structures. SW estimates the fork and switch 
overheads that appear in true parallel execution on distributed memory par
allel computers (other sources of overheads such as communication overhead 
is not included) . In all the benchmarks, FK overhead is within 15% and SW 
overhead is within 30%. In CKY, the fork overhead is relatively high be
cause accesses to S;,k and Sk ,J by the thread which computes S;.;, which are 
just an array reference in true sequential version , are performed by synchro
nizing accesses. The overhead also includes creation of synchronizing data 

structme for each S;J. 

Table 2.6 and Tab! 2.7 show the execution t ime of each version (call 
them TsQ, TFK, and Tsw, respect ively) in milliseconds on Spare and Alpha, 
respectively. Table 2.5 shows the number of forks (F), lbe number of syn
chronizations (S), and the number of blocking (B) which occurred in t he 
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Figure 2.10: Overhead of each version relative to true sequential program 
on Spare and Alpha. 
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Application No. of forka (F) No. of syncs (S) No. of blocks (B) 
BH 1,298,124 1,323,554 68 ,360 
RNA 160,411 177,341 33,861 
CKY 14,560 941,690 28,524 

Table 2.5: Number of forks in FK/ SW (F) , synchronization or potential 
blocking points in FK/ SW (S) , and actual blocks in SW (B). 

Application TsQ TpK Tsw 
BH 5,224 5,321 6,338 
RNA 1,095 1,101 1,395 
CKY 5,803 6,602 6,746 

Table 2.6: Execution time for each version (T.sq , TpK, and Tsw) in millisec
onds (on Spare). 

Application TsQ TpK Tsw 
BH 1,016 1,126 2,351 
RNA 371 398 570 
CKY 3,438 3,664 3,869 

Table 2.7: Execution time for each version (Tsq, TPK , and Tsw) in millisec
onds (on Alpha). 
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benclunar)<. In other words, S is the number of potentially blocking points, 
and B the number of actual context switches. Execution times are given in 
milliseconds on HyperSparc 150Mhz processor and Alpha 333 lhz processor. 
As expected, the cost of switch is somewhat hlgher on Alpha. 

(Tsw - TpK) / B gives us a rough approximation of the cost of a switch. 
Although they vary depending on application they are roughly from 51's to 
15J'S on Spare and from 5!'5 to l8J'S on Alpha. We have no fully analyzed 
the source of the different switch cost in the applications. 

2.8 Summary 

StackThreads offers a practical approach to implementing efficient multi
threading languages. It supports very efficient thread creation and thread 
switching between normally 'vr.itten 0 procedures. Unlike previous imple
mentations of efficient multithreading, it does not require extensive coopera
tion from the code generat,or. Thus, the compiler writer can map the sequen
tial constructs of the language straightforwardly onto C, wh ile using the low 
overhead multithreading support of StackThreads for parallel/ concurrent 
primitives. Performance measurement through three parallel applicat ions 
shows encouraging results on Spare. Overheads for fork and synchroniza
tion checks are never significant ( < 15%). Switch cost is comparable to one 
of the best-known results [57] which, unlike ours, needs a cooperat ing com
piler. Finally, switch frequency in these applications is low enough to make 
the overhead of switches acceptable in practice ( < 30%). 
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Chapter 3 

Garbage Collection 

This chapter describes the design and implement.ation of a garbage collection 
scheme on large-scale distributed-memory computers and reports various 
experimental results. The collector is based on the conservative GC library 
by Boehm & Weiser. Each processor traces local pointers using the GC 
library while traversing remote pointers by exchanging "mark messages" 
between processors. It exhlbi ts a promising performance. In the most space
intensive settings we tested, the total collection overhead ranges from 5% 
up to 15% of the application running time (excluding idle time) . We not 
only examine basic performance figures such as the total overhead or latency 
of a global collection , but also demonstrate how local collection scheduling 
st rategies affect application performance. In our collector, a local collection 
is scheduled either independently or synchmnously. Experimental results 
show that the benefit of independent local collections has b een overstated in 

the literature. Independent local collections slowed applicat ion performance 
to 40%, by increasing the average communication latency. Synchronized 
local collections exhlbit much more robust performance characteristics than 
independent local collections and the overhead for global synchronization is 
not significant. Furthermore, we show that an adapt ive collection scheduler 
can select the appropriate local collection strategy based on the applicat.ion's 
behavior. 
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3.1 Introduction 

Although many high-perfo1·mance parallel programming languages and their 
implementation techniques have been studied, the performance of garbage 
coJ!eclion on large-scale paraJ!el machines is not yet weJI understood. In par
ticular , performance studies of garbage coJ!ection on distributed-memory 
paraJ!el computers are rare, presumably because of the complexity of im
plementation. This chapter describes the design and implementation of a 
garbage collector for large-scale distributed-memory paraJ!el computers and 

examines its performance. 
We extended Boehm & Weiser's conservative garbage coJ!ection library 

[15, 16] to distributed-memory parallel machines. Our coJ!ector preserves 
the spirit and advantages o{ Boelun & Weiser's GC including the capability 
of working with C a.nd C++ p.rograms and a modest heap expansion policy. 
The collector is used as part of the runtime system for a concurrent object

oriented language ABCL/ f. 
Like other collectors, our coJ!ector consists of two levels-local and global . 

In addition, it has two kinds of local coJ!ection, namely, independent (or 
a.synchf'onous) and synchronized. An independent local collection is a collec
~ion in which a coJ!ec~iug processor independently reclaims its local garbage 
without any coordination with other processors. A synchronized local col
lection is a collection in which all processors perform a local collection at the 
same ti.nle. These two local collections diller only in bow they are scheduled. 
Au independent coJ!ection is invoked without any notification being sent to 
other processors, while for a synchronized one, notification is sent to a mas
ter processor, which requests aJl other processors to do a local coJ!ection. 
A global collection is a simple distributed marking coJ!ectiou in which aJI 
processors cooperatively traverse the entire object graph, exchanging "mark 
messages" to trace remote pointers. 

We investigate performance characteristics of the collector using four 
applications that exhibit various allocation and communication behaviors . 
Conclusions derived from the experiments include: 

• The cost of barrier synchronization for synchronized local coJ!ectiou 
and global collection is insignificant, at least in our e:xperimeutal en
vironments (up to 256 processors). They are implemented with a 
simplel- to-N communi ation and can certainly be improved. 
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• Several simple techniques significantly reduce the overhead of the dis
tributed marking collection. With these techniques, the overhead of 
global coJ!ections becomes insignificant. Global coJ!ections occupy 
from 5% to 30% of the total running time of the application exclud
ing idle time d1.e to load imbalance and communication. In the most 
space-intensive setting in the experiments, they occupy at most 15%. 

• Application performance is affected not only by allocationjcoJ!ection 
performance per se, but also by how collections are scheduled. In par
ticular, synchronous applications, which frequently use synchronous 
communication and have little intra-node parallelism, are very sensi
tive to the scheduling skew introduced by independent local coUections. 

• We can adaptively select the appropriate local collection strategy by 
examining application behavior. The adaptive scheduler synchronizes 
local collections by default and uses independent coJ!ectious when it 
presumes that the application tolerates long communication latency. 

The rest of lhe chapter is organized as foJ!ows. Section 3.2 reviews previous 
work on coJ!ection schemes in paraJ!el and distributed environments. Sec
tion 3.3 describes Ute design and implementation of our coJ!ector. Section 3.4 
devotes to the collection selection and heap expansion policies of our collec
tor. Section 3.5 describes the experimental conditions. Section 3.6 shows 
the overall coJ!ection overhead. Section 3. 7 demonstrates the i.nlportance of 
collection scheduling strategies. After discussing alternatives and limitations 
of the work in Section 3.8, we summarize this chapter in Section 3.9. 

3.2 Related Work 

Many proposed collection schemes on parallel and distributed systems are 
multilevel. They typicaJ!y consist of local coJ!ectious and a global collection 
and local coJ!ections are typically scheduled independently. On distributed
memory machines, global collection schemes are roughly classified into two 
categories, which are reference counting schemes and distributed-marking 
schemes [1, 39, 56]. Reference counting schemes keep track of how many 
references exist for each object and delete objects to which there are no refer
ences. Distributed-marking schemes are natura.! e.xtensions to local-marking 
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collectors. They traverse the entire object graph, which spans mnl&iple pro
cessors, exchanging "mark messages" to trace remote references. 

3.2.1 Local Collection + Reference Counting 

There have been many proposals that extend reference counting schemes 
to distributed-memory machines [10, 11, 30, 55, 77]. Implementations of 
distributed programming languages typically favor reference counting [12) 
and some parallel languages adopt them [3 , 60]. Since managing reference 
counts on every pointer duplication and deletion incurs very expensive over
head, reference counting in distributed environments is often combined with 
a local tracing collector and keep track of reference counts only for 1·emote 

references. Each processor independently performs local collections and the 
local collector counts how many remote references the processor still holds 
for each remote object [11, 38, 46]. 

It is still an open question under what circumstances distributed-marking 
collectors perform better than reference counting collectors, and tills thesis 
does not address that issue. Here, we just make a few remarks that contrasts 
distributed-marking and reference counting. 

• Reference counting collecto.rs send messages (so called delete messages) 
along 'dead' edges of the global object graph (i.e., references that 
point to dead objects), whereas distributed-marking collectors send 
messages (so called ma1·k messages) along ' live' ones. Therefore, as in 
uniprocessor collectors, whether or not one scheme is more favorable 
than the other depends on the live/dead ratio; distributed-marking 
collectors will be favorable when the percentage of live objects in heap 
is relatively small . 

• In typical reference counting collectors, each processor triggers local 
collection on its own ·initiative, followed by sending delete messages 
along remote references no longer used by the processor. These delete 
messages contribute to reclaiming space in the next local collection 
at the remote processors. In other words, a processor performs a lo
cal collection when that processm· runs out of space, but whether or 
not the coli ction is successful depends on how many delete messages 
reached that processor , or, how many local collections have occurred 
in other processors that send delete messages to that processor. This 
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form of ' uncooperative' local collection scheduling, which we believe 
is typical in state-of-the-art systems, may unnec ssarily delay recla
mation of garbage that would otherwise be collected more promptly. 
For example, reclamation of a data structure that spans N proce sors 
must wait for those N processors to perform their local collections on 
their own initiative. A data structure that remains mmecessarily long 
degrades local collector performance, which in turn affects the overall 
performance significantly. 

• Our observation that independent local collections often degrade per
formance of synchronous applications (as will be presented in Sec
tion 3.7) should apply to reference counting schemes as well. 1 This 
partially nnllifies the conventional wisdom that an advantage of refer
ence counting is t11at it allows processors to collect independently. 

3.2-2 Distributed Marking 

Many algorithms based on distributed marking have been proposed (37, 40, 
56]. Since they have been studied mainly in the context of loosely cou
p led distributed environments, attention has mainly been focused on how 
to avoid barrier-synchronization or tight coordination between processors. 
Most of them are complex in order to overcome problems in distributed 
environments such as faulty processes or lost messages, and have not been 
implemented. There has been little work in the context of parallel high
performance computing. One study [41] focuses on superficial aspects such 
as the number of messages or the total overhead of global collections. How 
they affect overall a.pplication performance has not yet been studied. Com
pared to the many proposed algori thms, our global collector is rather simple. 
Our global collection assumes reliable message delivery, no faulty processors, 
and no concurrency with user programs. We are interested in the perfor
mance of such collectors and how such global collections should be combined 
with local collections to achieve overall application performance. 

1The same observat;ion has been reached by others, although not. published; imple
mentation of the KLl on PIM [38J uses reference counting aud provides a primitive by 
whlch the programmer can explicil.ly trigger local GCs on all processors. The primitive 
was found to be useful by application writers r21J. 
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3.3 Design and Implementation of the Collection 

Scheme 

3.3.1 Overall Design 

Our collector defines local and global collections, and local collections are 
further classified into synchronized and independent collections. We reuse 
the basic functionality of the GC library such as heap management, pointer 
identification, local pointer traversing, and local allocation. The heart of our 
extension is (1) how to adapt it to distributed-memory parallel computers 
where an object may be referenced from other processors and (2) when we 
should invoke which collections. 1n the following subsections, we first briefly 
summarize relevant information about the GC library and then describe our 

extensions. 

3.3.2 Boehm & Weiser's GC Library 

Boehm & Weiser's conservative GC library [15, 16] is a garbage collector 
that can work with C and C++ programs. An important design goal is to 
minimize cooperation required from application programs. The programmer 
sin1ply calls GC_MALLOC(size), instead of malloc, to allocate size bytes of 
memory. Unlik malloc in the C standard library, the programmer does 
not have to e>.-plicitly free the allocated memory. The garbage collector au
tomatically reuses blocks of memory that are no longer being used. Since 
the runtime data stmcture of C programs does not have enough information 
that precisely distinguishes pointers from non-pointers, the collector conser
vatively assumes that any value that appears to be a pointer is in fact a 

pointer. 
Omitting irrelevant details, free memory is managed via free lists that are 

segregated by their object sizes. When an allocation request is made, the al
locator tries to find a block of memory from the appropriate free list. When 
an allocation request cannot be met from the current heap, the allocator ei
ther invokes a garbage collection or expands the heap by requesting memory 
from the operating system. It iuvokes a garbage collection if the application 
has allocated enough memory since the last collection. This places an upper 
bound of the collection frequency, as long as the request to the operating 
system is successfully served. The user can customize the threshold value 
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that determines whether to invoke a garbage collection. More precisely, let· 
ting H be the current heap size, A the amount of memory allocated since 
the last collection, and r the customizable parameter, the allocator decides 
to invoke a collection when: 

H/r < A. 

That is, a collection is invoked when at least one •·th (1/r) of the current 
heap size has been allocated since the last collection. Smaller values of r 
tend to produce less frequent collections at the expense of space. 

To understand the impact of parameter ,. , let us estimate the heap size 
for an application, assuming a very simple allocation behavior and a lifetime 
distribution. We assume the application holds L bytes of long-lived objects 
and continues allocating short-Jived objects. By "long-Jived" objects, we 
mean objects whose lifetime is beyond the typical collection interval. 1n this 
case, the collector tries to keep the size of the heap (H) at 

H=-
1
·- L 

r- 1 

The application behavior in this state is to repeat the allocation of H /r = 

L/(r- 1) bytes, followed by a collection which retains L bytes while freeing 
H-L = L / ( r -l) bytes for the next allocation cycle. For exam pie, when ,. is 
minimum (i.e., ,. = 2), 2 the heap is expanded to 2£ bytes, leaving L bytes for 
allocating short-Jived objects. 'Vhen r = 4., which is the default setting, the 
heap is expanded to 1.33£ bytes, leaving 0.33£ bytes for allocating short· 
lived objects. Notice that the heap usage of the collector is much more 
modest than that of typical collectors used in implementations of heap· 
ir1tensive programming languages such as SML/NJ [3]. 

Our extension preserves the simple interface to C and C++ programs 
and the modest heap expansion policy of Boehm & Weiser's GC. 

3.3.3 Representation and Management of Remote References 

Exit Table 

A reference to a remote object is repr sented by a pointer to a special type 
of object called a stub (a.k.a. proxy). A stub for an object remembers the 
processor number and the address of the object body. 

'lBy definitiotl, r = 1 effectively it)hibiis garbage collection. The value for r can only 

be specified as an integer. Thus the minimum value for r is 2. 
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Proce sor P 

,--
' , 
: , 

------l 

Processor Q 

uJ ruJdre'iS .1·. 

-----® 

Figure 3.1: Object. A on processor Preferences object B allocated at add.ress 
x on processor Q. A actually points to stub B' which is allocated on P. Stub 
B' holds processor number Q and the bit-wise negation of x. 

A stub actually holds the bit-wise negation of the address of the object 
body, rather than the address itself, so that the local conservative collector 
does not misidentify the address as valid in the local processor.3 Figure 3.1 
illust-rates a situation where an object A on processor P references another 
object B, which was created by processor Qat address x. 

All stubs in a processor are registered in a hash table called an exit 
table . When a processor receives a reference to a remote object for the 
:first time, the receiver registers the object in the exit table of the receiver 
processor. Upon subsequent receptions of the same address, the receiver 
looks up the address in the exit table to avoid having multiple entries for 

the same address. 

Entry Table 

To enable local colle tions, each processor keeps track of objects that are 
created by the processor and may still be referenced from other processors. 
Such objects are registered in a table called an entry table. Wben a pro
cessor sends a reference to an object to another processor for the first time , 
the object is registered to the ent ry table of the sender processor. Once 

3 Lei.. II be the ma.xlmwn heap address, M the greatest possible pointer value, and X 

any vaJid heap address. If JJ < .M /2 1 as i:; t.he case in most address space configurations, 
bitwise negation of x (;::::;: ~.t[- :t) is larger tl1<u1 M - M/2 ::::::: /Ill / 2, hence is not a valid heap 
address. The idea is borrowed fr.om t.he fmalizat.ion code of Boehm & Weiser's GC. 
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registered, the object is never reclaimed without cooperation from other 
processors. The local collector simply regards the entry table as a root of 
a local collection, so that objects that are referenced from other processors 
are retained. In our collector, references can be removed from an ent-ry table 
only by a global collection. 

AU objects that may be referenced from other processors as well as all 
stubs have the following co=ou header fields: 

Flag: A flag that distinguishes the type and the status of the object. The 
flag is either a stub, a body of an object registered in the entry table, 
or a body of an object not registered in the entry table. 

Export Count: The number of messages that contain a reference to the 
object and have not been delivered to the app lication program. 

The runtime system checks the :first word of an object to see whether the 
object is a stub or the body of an object. If the object is not a stub, the 
flag also indicates whether the object is registered in the entry table. The 
role of the export count will be described in Section 3.3.3 

We currently store these items of informat ion in the header of an object. 
Thus, every object that may be referenced from other processors as well 
as every stub must conform to this format. A better interface to C and 
C++ applications would be to allocate them in a separate space so that 
programmers would not have to be aware of the format. We chose to embed 
the header in an object just for simplicity of implementation and for fast 
access to the headers. 

Obtaining Consistent Snapshots 

In distributed-memory computers where references to objects are carried by 
messages, the garbage collector must traverse a globally consistent snapshot 
of the object graph. The definition of a snapshot includes messages that 
have not yet been delivered to the application program [18]. In other words, 
the garbage collector must somehow find references in undelivered messages . 
An implementation of a garbage collector could achieve this by examining 
the message buffer. This approach however requires the message format used 
in the application be known to the collector , reducing both the reusability 
and the flexibility. Alternatively, the collector could run concwTently with 

65 



the application and traverse a message when the application unpacks it. 
This also requires a very tight coordination between the application and the 
collector. The application must notify the collector whenever it unpacks 
a message. Another problem with this approach is that it is difficu.lt to 

guarantee that the collector will make enough progress. 
The approach we took in our collector reduces the cooperation from the 

application and simplifies the interface to the collector. As shown in Sec:
tion 3.3.3, all objects as well as stubs have a counter that stores the export 
count. When an application sends a reference to an object to another pro
cessor, it increments the export count of the object. Conversely, when an 
application receives a reference to an object from another processor, it decre
ments it. These operations are local-the creator of an object operates on 
the body of the object, while other processors operate on their local stubs 
for the object. The invariant is that the global summation of the export 
counts over the body and all stubs for an object equal to the number of 
messages that have been issued by a sender but have not been delivered 
to the receiver. Before a global collection, all processors synchronize and 
retain all objects whose e>.'])Ort count is positive. This can be implemented 
on top of any send/receive-type message-passing interface and makes the 
communication layer and garbage collector independent. The interface to 
the application is also quite simple. The application simply calls export (o) 

when it sends a reference to an object o and calls import (p, o) when it 
receives a reference to an object o that is allocated at processor p. These 
procedures increment and decrement the export counts. As long as tl:ris co
operation is given to the collector, the application freely chooses its message 
format, buffering policy, flow control, and so forth. 

One expense of this mechanism is that all processors must synchronize 
and calcu.late the global su=ation of e>.'])ort counts. We report the over
bead of t'his process in Section 3.6. 

3.3.4 Collection Algorithms 

Local Collections 

When a processor decides to invoke au independent local collection, it simply 
invokes a local collection, regarding the entry table of the processor as a root. 
It is a completely local operation. 
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When a processor decides to invoke a synchronized local collection, on 
the other hand , it sends a request to a master processor. The master ar
bitrates almost simultaneous collection requests from other processors and 
broadcasts a request message to all the processors. When a processor re
ceives the message, it performs a local collection and then continues. This 
way, a synchronized local collection is implemented with a single request 
plus a broadcast. 

Global Collections 

When a processor decides to invoke a global collection, it sends a request to 
the master processor, just as in a syn.chronized Jocal collection. After arbi
trating simultaneous requests, the master controls the progress of a global 
collection in the following steps. 

Sync phase: stops the user program, 

Undelivered phase: finds objects that are referenced from undelivered 
messages, 

Mark phase: marks objects starting from local roots of all processors, and 

Finish phase: fiulshes a collection. 

The sync phase guarantees that, after this phase, user-level activities 
are stopped and no user-level messages are being transmitted in the net
work. This is done as follows. For each pair of processors (P, Q) (P i= Q), 
processor P maintains two counters which count the number of user-level 
messages sent by P to Q as well as those received by P from Q. That is, each 
processor maintains 2(p- l ) counters where p is the number of processors. 
Each processor requests all other processors to return the number of received 
messages from that processor and stops delivering incoming messages to the 
application. These received, but undelivered messages are buffered and de
livered to the application after the current globaJ collection. Each processor 
signals the end of this phase when all the user-level messages have reached 
the receiver processor. Notice that this does not mean that messages have 
been delive•·ed to the application. It simply rneans that all the user-level 
messages have been delivered to the application or buffered by the collec-
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tor running at the receiver processor. After this phase, the global collector 

exclusively receives GC-related messages.4 

The undelivered phase finds objects referenced from undelivered mes
sages, which are buffered during the previous phase. As mentioned in Sec
tion 3.3.3, we achieve this without examining the buffered messages directly, 
by maintaining the export count for each object. Each processor scans its 
exit table, reads the counter of every stub, sends counters to owner pro
cessors, and zeros the counters of stubs. Each processor then accumulates 
received counts into object bodies. Objects whose exported count is zero 
are the subject of the current global collection. Other objects, whose export 
count is positive, are simply retained. When tllis exchange has been done, 
each processor clears entries in the table for objects that are the subject of 

the collection. 
The mark phase begins marking from the root in each processor. This 

phase proceeds as follows. Each processor initiates marking from its local 
root. When the marking is finished, each processor finds stubs that are 
marked during the marking and sends "mark messages" to owner processors. 
Upon receiving a mark message, the receiver processor registers objects in 
the mark message to the entry table. The processor then resumes local 
marking from these newly registered object,s. 

In this way, each processor continues local marking as far as possible and 
then performs remote marking from all the stubs that were marked during 
the previous local marking. In this way, senders reduce the message overhead 
by requesting several items of work with a single message. In addition, we 
found a similar buffering policy at the receiver side equally important for 
further reducing the message exchange overhead. Upon reception of a mark 
message, the receiver buffers the mark message and tries to receive further 
mark messages. A processor buffers mark messages until the buffer for 
mark messages becomes full or until there are no incoming messages in the 
network. Figure 3.2 illustrates the main loop of this phase. 

An acknowledgment for a mark message is returned when all objects 
reachable from the mark message have been marked. The mark phase fin
ishes when all the processors have received a!J the acknowledgments for their 

4This phase is unnecessary if the user-level program can be separated from GC mes
sages, as is the c:ase when, for example, tbe user-level program and the collect.or use 
separate message buffers. 
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Figure 3.2: The main loop of the mark phase of a global collection. Each 
processor traverses local pointers as far as possible, finds marked stubs in 
the local traversal, and sends mark messages to other processors. Mark 
messages from other processors are buffered until the buffer is fuU or until 
no messages are found from the network. 
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first. remote mark in g. 
There are some subtle implement<ttion issues. First, since Boehm & 

Weiser's GC recognizes the exit table as a root, simply invoking a local 
collection marks all the stubs in the first local marking. Therefore, we need 
to deceive the local collector. Before marking from the local root, each 
processor overwrites all the pointers from the exit table to stubs with bit
wise-negations of these pointers. This way, we effectively hi.de all the stubs 
from the local collector, while correctly retaiiting the structure of the exit 
table. These pointers are restored when the first local marking is finished. 
Second, it is inefficient to scan the entire ex.i t table after every single local 
marking. We need a way of quickly finding objects that are marked during a 
local marking. This is a tricky task again because the local collector has no 
special knowledge about stubs. We solve this problem by using a clever data 
structure for the exit table. Stubs in the exit table are grouped into several 
bins. Stubs in a bin all share a one-word object. When the one-word object 
for a bin is not marked after a local marking, there is no possibility that any 
object in the bin has been marked, so we can skip all the stubs in t hat bin. 
Mark bits for the one-word objects are cleared after every local marking. 
We found this technique very important. This was particularly important, 
particularly because second or later local markings actually mark few stubs. 
That is, most live objects are reachable from the root with a small number 
of remote links. 

Finally, the finish phase finishes collection by reclaiming unmarked oh
jects. Boehm & Weiser's G C defers the reconstruction of the free lists until 
an allocation r quest demands it. 

3.4 Collection Scheduling and Heap Expansion Poli

cies 

3.4.1 Problem Statement 

When an allocation request cannot he served from the current heap, the 
allocator has tlu·ee choices, namely, a local collection, a global collection, 
or a heap expansion. There are further choices as to which local collection 
should be invoked, namely, independent or synchronized. The goal is to 
avoid unnecessarily frequent garbage collections with a reasonable heap-size. 
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Figure 3.3 illustrates our policy that is explained below. 

Remark: We note that the goals of most current garbage collectors, in
cluding Boehm & Weiser's GC and ours, are not to maxintize speed, but to 
achieve a reasonable speed with a reasonable space. As a matter of fact, 
the most aggressive policy that expands the heap until it exhausts a large 
fraction of the physical memory would achieve a nearly optimal speed in 
most cases (at least for small applications that are unlikely to exhaust the 
physical memory, and thus unlikely to be swapped ont)s Most collectors do 
not behave in this way, however. This is partially because it is clifficlllt to 
correctly capture the tradeoff between time and space--we can save time by 
using more space in normal circumstances, but such policy occasionally in
curs a large cost in events which occur unpredictably (e.g., swap out). Thus 
the primary policy taken in most collectors is to play safe by keeping the 
heap size reasonable and expanding it only when there is a strong motiva
tion to do so (i.e., when collections would otherwise become too frequent). 
Our policy as to when and which collections should be invoked is based on 
the same policy. 

3.4.2 Local Collections 

As mentioned in Section 3.3.2, when an allocation cannot be served from the 
current heap, Boehm & Weiser's GC invokes a collection if the application 
has allocated at least H f•· bytes since the last collection, where H is the 
heap size and ,. a parameter chosen by the user. A natural adaptation of 
thls policy to distributed-memory parallel computers would be to invoke a 
local collection when at least H /r bytes have been allocated on a processor 
since the last local collection, where H is the 'local heap size of the processor. 

We slightly modified this policy to take synch1'0nized local collections into 
account. Each processor is informed of the largest local heap size over all 
the processors. Let us call the value M, which is made consistent at every 
global collection. When a processor's local heap size is smaller than eM 
where cis a constant close to 1.0 (we currently set c to 0.8), the processor 
expands the heap without invoking a garbage collection. In other words, 

5 Ln particular, this is almost always the case in single-task environment.s such as the 
default operating system for AP1000+. 
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Figure 3.3: The decision diagram when an allocation cannot be served. It 

unconditionally expands he heap to around the maximum heap size among 
processors. If enough allocation has been done since the last local GC, it in
vokes a local GC. Or if enough allocation has been done since the last global 
GC, it invokes a global GC. Otherwise it tries to expand the heap. Whether 
or not to synchronize local GC is determined by the cri teria e>..-plained in 
the main text. 
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a processor invokes a local collection when at least H /r byt.~.s have been 
allocated on that processor ince the last local collection and its local heap 
size is close to the maximum heap size among all the processors. Th.is policy 
applies both to synchronized and independent local collections. 

The policy is justified based on the following observations. If any proces
sor has already expanded its heap size to M bytes, it is reasonable for other 
processors also to expand their local heaps to around M bytes. In other 
words, if any processor requires Nf bytes, it is reasonable in distributed
memory computers to expand the total heap size to around nM bytes, where 
n is the number of processors. In fact, if any processor requires M bytes, 
other processors are, sooner or later, likely to require roughly the same 
amount of space. Thus if this policy would not be taken, synchronized local 
collections would become unreasonably frequent. If any processor is wlU
ing to do a synchronized local collection, other processors are also forced 
to do so. The net effect would be that the frequency of synchronized local 
collections becomes the maximum local collection frequency over all the pro
cessors. We avoid th.is effect simply by allowing any processor's local heap 
size to be e>..-panded without garbage collection until it catches up to any 
other processor's local heap size. 

3.4.3 Global Collections 

A global collection is invoked when a local collection is not invoked by the 
criterion in the previous section aud when enough allocation has been done 
since the last global collection. More precisely, letting H be the local heap 
size, A1 the amount of allocation done since the last local collection, A 9 the 
amount of allocation done since the last global collection, and r a customiz
able parameter, we invoke a global collection when: 

That is, when enough allocation has not been done since the last local col
lection, but bas been done since the last global collection. 

3.4.4 Choices b etween the Two Local Collections 

When a processor decides to invoke a local collection, it must then decide 
whether the collection should be independent or synchronized. The most 
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important point is that processors that are collecting do not respond to 
requests from other processors. Thus a request to a locally collecting pro
cessor is delayed until the local collection is finished , increasing the latency 
of the communication. As we will see in Section 3.7, tills sometimes affects 

application performance significantly. 
Thus the criteria of the local collection scheduler are: 

• Synchronize by default (at startup or uncertain cases) 

• Switch to independent mode when the system is sure that the program 

is Iaten ·y tolerant 

• Quickly recover from the independent mode if the decision turns out 

to be wrong. 

The main problem lies in the second it.em- how to detect if an application, 
currently running in synchronized mode, is actually latency-tolerant. We 
achieve th is by examining how mauy times each processor enters the idle 
state dnriug an interval. From the number of idle state periods, each pro
cessor calculates bow performance would be degraded if idle periods would 
be made longer by the receivers' local collections. Each processor reports 
tills number and its processor ut ilization to the master. The master pre
swnes that the application is currently latency-tolerant if most processors 

report a small degradation factor. 
More precisely, suppose the system is currently in the synchronized mode 

and we are about to start a synchronized local collection. For each processor, 
let L be the interval between the last synchronized collection and the current 
one and n be the number of times the processor became idle during that 
interval. We define the degr·adation factor (D) of this interval by: 

D = __!!:!!!!____ 
2(L+g) 

where G is the estimated time of a single local collection and p = G /(L + 
G), which approximates the probability that a given communication would 
be delayed by a local collection on the destination processor. Given the 
estimated single local collection time, G, the average additional delay when 
the receiver processor happens to be locally collecting is G / 2. By multiplying 
np and G / 2, we obtain the total additional delay that would have been 
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imposed if the last interval were in the independent mode. 'I'o sum up, D 
represents how much the last interval would have been affected if it were 
in the independent mode. Together witl1 D, processor utilization is also 
collected in the master. The master presumes that independent collection 
is more desirable if: 

• the number of processors that report D larger than a threshold (= 0.3 
in the current implementation) is less than a threshold (= one eighth 
of the total number of processors), and 

• the number of processors that report utilization smaller than a thresh
old (= 0.5) is less than a threshold (= half the total number of pro
cessors). 

The first condition says that few processor. would be damaged by the in
creased average latency, hence the application will be latency-tolerant. The 
second coudition rules out cases where many processors are idle, so having 
global synchronization on each local collection unlikely to matter. In such 
cases, we prefer to insist on synchronized local collection for safety. 

When the system is running in independent mode, on the other hand, 
each processor individually checks its processor utilizat.ion after each inde
pendent collection. If utilization is lower than a threshold (= 50%) the 
processor notifies the master. The master decides to revert to the synchro
nized mode when a predetermined number ( = one sixteenth of the total 
number of processors) of notifications have accumulated. 

The actual state transition is controlled by a three-state ( (l, 0, or -1) 
saturating counter. When the system detects that independent collection 
is more desirable, it decrements the counter and switches to independent 
mode if the counter is -1. This avoids oscillation between t lte two modes 
when an appl ication has alternating latency-tolerant and latency-sens itive 
sections. On the other band, when the system is in independent mode and 
detects that the application is latency sensitive, it directly sets the counter 
to l and immediately reverts to synchronized mode. 

Limitation: We note here a potential limitation of this formulation. It 

assumes that the number of idle periods is does not significantly change by 
making each idle time period longer. This is a reasonable approximation for 
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(1) SPMD-style parallel programs with rare communication, (2) SPMD-style 
parallel programs without latency hiding, and (3) asynchronous applications 
with plenty of parallelism in each processor. Our formulation is a reason
able model for (1) and (3) because such applications exhibit very small n 
tmder whatever commw1ication latency, so the nwnber of idle periods will 
not differ much. It is also a reasonable model of (2) because, without any 
latency hiding, the number of idle periods is approximated by the num
ber of request messages, which is not affected by communication latency in 
SPMD applications. Irn portant applications that we do not know can be 
modeled with our formulation are "moderately latency-tolerant" programs 
where each processor tries to mask latency by techniques sucb as prefetching 
and producer-in itiated communication or by a moderate nwnber of threads 
on each processor. If the latency tolerance is large enough to completely 
mask the latency in normal circumstances, but not enough to hide an en
tire local collection latency, the system observes a very small n in synchro
nized mode and might wrongly switch to independent mode, even though 
the application does not actually tolerate it. Note that this happens only 
when latencies in synchronous mode are almost completely hidden so that 
each processor exhibits no idle periods for almost all the remote communica
tions. On the other hand , our formulation works correctly as long as latency 
hidlng is typically partial, i.e., the application still observes approximately 
the same number of idle periods even with latency hidlng. They should be 
examined in more detail for further clarification. 

3.5 Experimental Conditions 

This section briefly describes characteristics of applicat ions relevant for the 
following experiments. They are summarized in Table 3.1. 

In BH, we build a tree which represents an entire simulation space (BH
tree ), traverses the entire tree one , and then traverses part of the tJ:ee many 
times to calculate force for each particle. Live data at a global collection 
ma,inly consists of the entire BH-tree, particles, reply channels, and activa
tion frames . The force calculation phase dominates computation time and 
determines the overall behavior of the application. A commlmication occurs 
when a processor accesses a tree node whose copy is not present in the local 
processor. Each processor sequentially processes particles. Hence, a remote 
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Application Main Data Parallelism Communication 

BH BH-tree nodes, part i- SPMD frequent, syn-
cles, frames, and chan- chronous 
nels 

OKY CKY matrix, parse communicating frequent, syu-
trees, frames , and threads chronous 
channels 

RNA Frames and channels parallel reeur- infrequent , 
sion asynchronous 

GA Workers and genes SPMD infrequent, syn-
chronous 

Table 3.1: A brief description of parallel applications 

access stalls the accessing processor, making this application very sensitive 
to commwlication latency. 

In CKY, we invoke l / 2n(n + 1) concurrent threads for parsing a sen
tence with n words. Since the length of a sentence is between 35 and 45, we 
create from 1,000 to 2,000 concurrent threads for each sentence. A thread 
COilSwnes from 0 to 2n values produced by other threads and produces one 
result using these values . We implement a data structure for tbe procedure
conswner synchronization (the GKY matrix) by concurrent objects. Live 
data at a global collection mainly consists of the entire CKY matrix, parse 
trees under construction, activation frames, and reply channels. Commu
nication is frequent and synchronous. The amount of parallelism on each 
processor depends on the number of processors and the input sentence. For 
example , while it is enough to have 2,000 threads on 16 processors, it is 
not enough to have 1,000 threads on 256 processors. Thus we cannot easily 
predict whether or not CKY is latency-tolerant. 

In RNA , parallelism is extracted via parallel recursive calls to a tree
search procedure. There are few globally shared objects. Live data at a 
global collection mainly consists of activation frames and reply channels. A 
communication occurs when a processor makes a parallel recursive call, a 
branch of recursive call terminates, and a processor broadcasts an improved 
solution to other processors for pruning. RNA typically forks 250K concur-
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rent threads, all of which can run independently. Thus each processor has 

plenty of intra-node parallelism. 
ln GA, there is one worker on each processor. Workers independently 

mutate local genes or crossover two genes that belong to the worker. Live 
data at a global collection mainly consists of workers and genes. A commu
nication occurs when they exchange their genes. Thus each processor alter

nates computation-only phases and short communication-intensive phases. 
We briefly summarize the performance of the non-GC part of the ap

plications. For BH, CKY, and RNA, we also wrote a sequential version in 

C++ and compared the sequential performance of ABCL/ f with C++. We 
ran parallel ABCL/ f binaries that are executable as pa rallel applicat ions 
on workstation clusters. The speed of the ABCL/ f versions ranged from 

about 40% to 55% of that of the C++ versions. These results indicate t hat 
ABCL/f has reasonable sequential performance. The speed-up factor for 
running these applications on 256 processors ranged from 20 to 160, show
ing t hat they are reasonably scalable. To sum up, both the application and 
the hmguage are fa~t enough to reveal any significant inefficiency in garbage 

collectors. 

3-6 Collection Overhead 

Figure 3.4 breaks down the npplication time into busy, parallelization over
head, local GC, and global GC. Times are totaled over all the processors. 
Tht> parallel.ization overhead includes commun.ication overhead and context 
switch overhead. The breakdown does not include idle time, because it never 

involves allocation requests. By excluding idle time, we effectively estimate 
an upper bound of the relative overhead of garbage collect ions. We tested 
various values for the threshold parameter ,. that determines whether we 
collect garbage or expand t he heap when an allocation request cannot be 
served. For each application, we set r to 2, 3, and 4 and ran the application 

on AP1000+ using 16, 64, and 256 processors and on a single processor· Ul
traS pare workstation. In the experiments in tlJ..is section, we turned off the 
adaptive selection strategy of local collections; we always used synchronized 

loca l collections. 
Overall , the collection overhead ranges from a few percent up to around 

oue fourth of the total time. More importantly, in all appl.ications except 
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Figure 3.4: Breakdowns of application time into busy, overhead, local GC, 
and global GC (from bottom to top). Times are totaled over all the proces
sors. Id le times are excluded. The overhead refers to communication and 
context switch overhead. 
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RNA, the time spent on collections is essentially constant regardless of the 
number of processors. Most cases that exhibit large collection times on 
AP1000+ (BH and CKY when r = 3 or 4) also have correspondingly large 
collect ion times on th single processor. This indicates that the garbage 
collection in these applications was at least as scalable as the application 
itself. Only in Ri'<A did the collection time significantly increase with the 
number of processors. It turned out that RNA was highly scalable, exhibit
ing 160 times speed-up on 256 processors. The result merely indicates that 
our collector is less scalable than RNA; it is not noticeably worse in RNA 
than in other applications. 

Table 3.2 shows the number of local/global collections and average pause 
time of a local/global collection in each application. We only present data 
for r = 2. Numbers in other settings are sirnjjar. Figure 3.5 breaks down 
the overhead of global collections into the following five parts . 

Sync: for the sync phase. 

Undelivered : for the undelivered phase. 

Local: for local marking 

R emote: for scanning the exit table and the remote marking. 

Idle: Idle time. 

For each application, we show the case for r = 2 on 256 processors. 
We see there is no phase that dominates the total collection time in all 
applications. We also note that the overhead of the undeliv red phase is 
not significant, justifying our design decision as to how to find references in 
undelivered messages, which was described in Section 3.3.3 

3.7 Impact of the Local Collection Stra t egies 

This section examines the impact of the two local collection strategies. Fig
ure 3.6 shows performance of the following four scheduling strategies: 

Fixed-Synch ronized (FS): Always synchronize. 

F ixed-Independent (FI): ever synchronize. 
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App. No. of No. of collections pause time 

processors (local/global) (local/global) 

BH 16 33/ 6 253/395 
64 12/5 122/365 

256 4/3 141/461 

CKY 16 0/31 -/904 
64 0/5 -/994 

256 0/1 -/1059 

RNA 16 19/21 80/95 
64 10/ 15 55/94 

256 2/15 60/115 
GA 16 77/5 99/74 

64 38/3 56/60 
256 14/2 61/100 

Table 3.2: Number of local/global collections and their average pause times. 

BH CKY RNA GA 

Application 

Figure 3.5: Breakdown of the overhead of global collections into sync, un
delivered, local, remote, and idle (from bottom to top). 
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Adaptive-Synchronized (AS): Adaptive, with the initial strategy being 
synchronized. 

Adaptive-Independent (AI): Adaptive, with the initial strategy being 
independent . 

Adaptive strategies choose an appropriate strategy based on the criteria 
described in Section 3.4.4. The graphs break down the application time into 
busy, idle, GC (both local and global), and parallelization overhead. Times 
are totaled over all the processors. 

When we compare the two fixed scheduling strategies, neither is consis
tently better than the other, but we can make several useful observations. 

• BH on any number of processors and CKY on 64 and 256 processors 
significantly suffer from independent collections. More interestingly, 
the collection time per se does not increase at all. It is the idle time 
that increases significantly. That is, a processor that is locally collect
ing becomes unresponsive to requests from other processors, causing 
idle time on those requesting processors. 

• When the fixed independent strategy is better than the fixed-synchronized 
strategy, gains are small. Although the number of appli ations we 
tested was too small to conclude that this usually holds, we can con
jecture that it holds for a wide range of applications based on the 
following discussion. When allocation rates of processors arc fairly 
well balanced, the synchronized strategy merely triggers collections 
slightly earlier than necessary on each processor. I t only adds a little 
extra work on the collector. A relatively large penalty is added to the 
master , but the overhead is still one broadcast. When allocation rates 
are very unbalanced, on the other hand , non-intensive processors must 
perform marking which would not be necessary at all. This typically 
occurs in the initialization phase of a program. Fortunately, in such 
circumstances, the critical path of the application typically exists on 
intensive processors and adding extra work on less-intensive processors 
will not affe -t overall performance. 

• In all cases, adaptive strategies are better than the worst fixed strategy, 
regarrUess of the initial strategy and close to the best fi.xed strategy. 
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From application logs, we confirmed that adaptive strategies success
fully select the right strategy when one fixed strategy is clearly better 
than the other. 

3.8 Discussion 

An important conclusion drawn from our experiments is that performance 
of frequently communica.ting synchronous applications is heavily damaged 
by a scheduling skew introduced by independent collections. However, syn
chronized local collection is not the sole strategy for fight ing this problem. 
Here we discuss alternat ives and potential problems. 

3.8.1 Incremental/Interruptible Local Collection 

The most straightforward approach would be to make an independent lo
cal collector interruptible. An independent collection would periodically 
poU the network and schedule incoming messages, even in the middle of a 
collection. This is just an adaptation of .incremental collection techniques 
[39]. Expenses include additiona l memory overhead, polling overhead, and 
implementation complexity. The viability of this approach will depend on 
memory requirements of the application. If each processor has plenty of 
available memory, additional memory overhead caused by incremental col
lection will cause no problems. However, if memory shortage is detected 
and the collector wishes to restrain. the progress of the application, that 
processor becomes unresponsive. After all, the system must still have a 
synchronized collection as the last resm;t in cases many processors exhibit 
memory shortage, just as single processor incremental collectors must have 
full collections in case where memory is so constrained. 

3.8 .2 Latency-Tolerant Algorithms 

As we have seen in Section 3.7, programs in which communication is in
frequent or very latency tolerant do not suffer from a scheduJing skew. It 
might be possible for a compiler of a programming language to automati
cally g nerate Iaten y tolerant code or at least encourage latency-tolerant 
programm.ing styles. However, latency-tolerance is acltieved at the expense 
of additional memory requirements and additional scheduling overhead. In 
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general, it is not a feasible idea to force a programming style in which the 
programmer must create otherwise useless parallelism just in case the re
ceiver processor is performing a local collection. In order to make sure that 
the latency is masked when it is very unpredictable, the programmer must 
overestimate it, leading to excess parallelism and poor utilization of the local 
storage in usual cases. 

3.9 Summary 

The suitability of collection schemes on large-scale parallel machines has not 
been studied enough and has often been misunderstood. In particular, the 
expense of global synchronization and the benefit of independent local col
lections have been overstated. Performance of complex systems like garbage 
collections should be empirically examined, taking their space requirements 
and interaction to the application into account. Our experiments have shown 
that the independent local collection is a dangerous strategy that severely 
slows synchronous applications, by up to 60% in our experiments (CKY on 
256 processors) . The synchronized local collection exhibits much more ro
bust performance characteristics, despite the cost of global synchronization 
and the extra work imposed on collectors. With simple techniques which 
reduce the overhead for message passing and scanning exit tables, the cost 
of global marking becomes insit,'lli:ficant. In a heap expansion policy which 
is the most space-intensive in om· experiments (t = 2), but stiJI not as 
intensive as collectors used in heap-intensive languages, garbage collection 
occupies at most 15% of the appUcation time (excluding idle time). Our 
results indicate that an efficient global collection can be implemented by a 
simple global marking together with a careful collection scheduling strategy, 
at least in dedicated parallel computers. Our hope is that this work outUnes 
a 'baseline' implementation strategy of garbage co llectors on distributed
memory parallel machines, from which more efficient collectors are derived 
in the future, under a right definition of "efficiency" and a right framework 
for performance evaluation. 
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Chapter 4 

ABCL/f-The Language 
Design 

This hapter describes design of ABCL/f, a concurrent object-oriented lan
guage. Implementation is outlined through giving mappings from ABCL/f 
constructs to runtime primitives introduced in Chapter 2 and 3. ABCL/ f 
supports future as the meaJJS to creating parallelism, first-class channels as 
the me3Jl5 to synchronization, and concurrent-objects as location-transparent 
mutable data structures accesses to wh:ich are automatically protected. 

The rest of this chapter is organized as follows. After giving a brief 
design overview of ABCL/ f in Section 4.1, we introduce basic concurrency 
primitives of ABCL/ f in Section 4.2. Section 4.3 and 4.4 devote to the 
two data type definition constructs in ABCL/ f , namely, concurrent objects 
and immutable data. Section 4.5 shows program examples that some pre-
vious concurrent object-oriented languages have difficulty with. Section 4.6 
compares the design of ABCL/ f with other language designs. 

4.1 Overview 

Synta1t and sequential constructs of ABCL/ f are borrowed from Common 
Lisp (69]. Unlike Common Lisp, ABCL/ / bas a simple stat ic type sys
tem and enforces type declarations for procedure/ method parameters. The 
curreut implementation of ABCL/ f lacks parametric polymorphism and in
heritaJJce. Types for local variables are normally in£ •rred but monomorphic 
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type declarations are necessary where types are otherwise inferred as poly
morphic.l To summarize, the type system of ABCL/ f is similar to that of 
Pascal and certainly much less powerful than today's modern languages. We 
currently side step implementation issues that come from powerful type sys
tems. By concurrent object-or·iented languages, we simply mean languages 
which support and encourage concurrent objects- mutable data structure 
accesses to which are automatically protected 2 

ABCL/ f can be most concisely understood as a concurrent and object
oriented extension to simple statical.ly typed procedural languages. The 
following is the su=ary of key extensions key extensions. 

Channels: As the fundamental primitive for synchronization, it provides 
first-class channel.~. A channel is a data structure on which synchro
nizing read/write can be performed. Chann Is can be passed to other 
processes or stored in any data structure. 

Future: As the fundamental construct for creating parallelism, it intro
duces a variant of the future construct originally proposed by Halstead 
(33]. The result value of a future expression is a channel, which we 
call reply channel of the future expression, via which the result of the 
invocation can he extracted. 

Explicit Reply: The reply channel of an invocation is visible from the in
voked process and subject to any first-class manjpulation. This feature 
allows us to construct many flexible commtmicationjsynchronization 
patterns in a natural way. For example, by an explicit reply hannel , 
multiple invocations can share a single reply channel, or an invocation 
can delegate the rep ly channel to another invocation. 

Concurrent Objects: Concurrent objects are supported as a convenient 
3Jld recommended way for sharing mutable data stTuctures among 
concurrent processes. A concurrent object is a data strncture where a 
method invocation can roughly be regarded as an instcmtaneous trans
action on that object , in the sense that methods never observe inter
mediate state of other t ransactions. 

1 For example, (leu ( (r • ())) ... ) requires a. monomorphic Lype dt.oc larat.ion for r , 
since the type of r is ot.berwise inferred as Vcr list cr . 

2Such languages are sometimes lerm d as concurreut object~ based languages. 
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Concurrent Accesses: While achieving the instantaneousness of a method 
invocation, we still allow a certain amount of concurrency between 
multiple method invocations on a single concurrent object. In partic
ular, we guarantee that read-only methods are never blocked by other 

methods. 

4.2 Parallelism and Synchronization Primitives 

4.2.1 Channels 

Channels are the fundamental entities that realize synchronization and com
munication between processes. Channels can be explicitly created via the 

following form: 

(make-channel type), 

though they are most often implicitly created as the result of a proce
dure/method invocation as will be described in Section 4.2.2. Type denotes 
the type of values that are stored in the channel. The type of a channel that 
accepts values of type is (future type). 

When c is a channel, we can perform following operations on c: 

• (touch c) -e:"<tracts a value from c. The extracted value is supplied 
to the enclosing expression. If there are no values in the channel, 
the evaluation of the enclosing expression is blocked until the value is 

supplied by reply. 

• (reply x c)-puts x in c. The enclosing expression immediately gets 
a unit.3 If there is suspended touch operations, the value is feed to 
one of these touch operations. 

Again, these operations can be explicitly used at any place, but are most 
often called implicitly. As we will see in Section 4.2.2, reply and touch are 
implicitly used for commWlicating the result value of an invocation between 

the caller and the cal lee. 
There may be multiple values stored in the channel when a touch occurs. 

In that ase it may get any one from the stored values. Similarly, there may 
be multiple suspended touches when a reply occurs. In that case, it may 
resume any suspended touch from them. 

3 A special const<tnt typically used when L.be value returned does not mat;ter. 
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4.2.2 Procedure Invocation 

In ABCL//, procedures or methods are called either asynchronously or syn
chronously, and either locally or remotely. In addition it adds a further 
Hexibility in the way the caller and the callee communicate the result value. 
In distributed memory machines, a remote procedure call normally requires 
two messages (i.e., request and reply). This sometimes results in unneces
sary round-trip communication. For example, consider processor P wishes 
to create a local copy of a remote object 0. This could be done by writing a 
method that creates a replica of the receiver object (self) on P and invoking 
the method from P. This involves an extra round-trip co=Wlication be
cause the created replica is first returned back to 0, which is then forwarded 
to the original requester. Instead, the replica created at P should be dir ctly 
returned to the original requester. We address this kind of issues by allow
ing the progra=er to specify the location to which an invocation should 
return the result. The way we view a procedure invocation is as follows: 

• Any procedure or method takes, in addition to regular parameters, 
another parameter called 1·eply channel via which the caller and the 
callee can communicate result values. 

• The caller creates a new (unique) channel and passes it to the caller 
as the reply channel unless otherwise specified. The caller can specify 
any channeJ as the reply channel when desired. 

• Any pwcedure invocation creates a new thread of control. Whether 
or not an invocation is synchronous call is a matter of when the caller 
happens to require the msult. 

Suppose f is a procedure or a method defined by defun or defmethod con
structs described below. The canonical form of a procedure invocation is 
written as follows: 

(future (/ a.o a1 · · · an- 1) :reply-to,. :on o) 

This creates a thread which evaluates the body of f on processor o and 

passes ao, a1, · · ·, and a,.-1 as arguments and r as the reply channel of the 
invocation. The value of this expression is ,.. From this canonical form, 
shorter and more frequently used forms are derived. 
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• H keyword :on is omitted, f is evaluated on the local processor. 

o If :reply-to r is omitted, a new channel is created and supplied as 

the reply channel. That is, 

(future (/ ao a1 · · · Un- 1) :on o) 

= (future (j ao a1 · · · an- !) 

:reply-to (make-channel type) :on o), 

where type is the type of the reply value of f. 

• A synchronous invocation is done by immediately touching the result 

of the fu ture. Tbis is written by now e;>cpression: 

(now (/ ao a1 · · · an- !) :reply-to,. :on o), 

which is actually an abbreviation of: 

(touch (future (j ao at ·· · an- ll :reply-tor :ono)). 

o Finally, when neither : reply-to nor :on are specified, now e;>cpression 

can be simply written: 

(j ao a1 · · · an- ll 

wbich is the most frequently used form of procedure/method invoca

tions. 

4 .2.3 Procedures 

A procedure in ABCL/ f is defined by a top level form called defun. Its 
syuta.x reflects the way in which we view a procedure invocat ion described 

in the previous section. The canonical syntax of defun is: 

(defun name (po P1 · · · Pn- ll :reply-to r 

(declare · · ·) ;; type declaration 

body), 

where p0 1 p1 , · · • , Pn- ! refer to arguments and ,. to the reply channel of the 

invocat ion. Unlike Common Lisp, declare clause is mandatory in ABCL/ / 

and has the following syntax: 
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declare-clause 

type declare 

(declare type decla,·e•) 

(type-expression { variable-name}• ) 

(reply-type type-expression) 

Here, (type-expression { variable-name}•) declares listed variables to be of 

type type expression, whereas (reply-type type-expression) the type of lhe 
reply value to be of type type-expression. 

A defun defines a template of threads that, when invoked, execute its 
body . The body typically replies a value tor, though neither the compiler 
nor the runtime system enforces this property. The programmer could write 

a procedure which reply values multiple times , or do not reply any value at 
all to, .. For example, a procedure may store r somewhere without replying 
any value and another procedure may obtain the reference to ,. and reply a 
value. We later show some examples where this is useful. 

The clause :reply-to ,. can be, and in fact often is, omitted . In that 

case, the definition denotes a template of threads that, when invoked, eval
uate body and reply the evaluated value to the reply channel. That is, 

(de fun name (po Pl · · · Pn- 1) 

(declare · · ·) ;; type declaration 
body) 

(defun name (po PI · · · Pn- ll :reply-to r 
(declare · · ·) ;; type declaration 

(reply body 1-) 

For example, the following code defines a simple procedure which computes 
the nth Fibonacci number, which takes an integer (f ixnum) as the parameter 

and returns an integer. 

(defun fib (n) 

(declare (fixnum n) (reply-type fixnum)) 
(if (< n 2) 

1 

(+ (fib (- n 1)) (fib (- n 2))))) 
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As tllis example indicates, defun in ABOL/ f is syntactically similar to the 
defun in Common Lisp. Differences are it has a declare-clause and optional 
:reply-to clause, and a declare-clause has a reply-type declaration. 

Implications to Implementation: The semantics of a procedure call in 
ABCL/ f is strictly based 011 the view that each procedure invocation has an 
independent thread of control. There is no inherent notion of "sequential" 
call; it is j ust a particular combination of the behavior of the caller and the 
callee. Even if the caller invokes a procedure by now expression , the callee 
may reply a result before its termination and continue. In that case the 
rest of the callee and the caller are semantically parallel. This implies that 
an implementation of ABCL/ f r.annot serialize a given invocation solely by 
looking at its call site; it must consult the definition of the called procedure 
as well. For e.xample, the call to f in the following code is apparently 

sequential: 

(progn 
(acquire- lock x) 
( f x) 

(release-lock x)) 4 , 

bu t if the definition off was: 

(defun f (x) :reply-to r 
(declare ( ) ) 
(reply 10 r ) 
(acquire-lock x) 

), 

the compiler cannot serialize the call to f. Under the correct semant ics, the 
implicit touch which occurs at (f x) is resumed when (reply 10 r) is done. 
Then the caller performs (release-lock x) , making (acquire-lock x) 
in J successful. If the compiler would (wrongly} serialize the ca.U to J, 

4pr ogn executes its constituent sequentially. acquire- lock and release-lock are hy
pot.het.icaJ mutual exclu.sion constructs which lock and unlock the given datum, ·re~pec

tively. This is act.ually a lower-level representation or a method thai updates an object in 

ABCL/ / . 
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(acquire-lock x ) in f would never succeed , resulting in a deadlock which 
should not occur. We will fully describe our implementation of procedure 
calls in Section 5.3. 

4 .3 Concurrent Objects 

In ABCL/ f , a concurrent object plays two roles. First, it serves as a means 
to sharing data in a location transparent fashion. A method invocation au
tomatically locates the receiver object and emits a message when the object 
is remote. Second, it serves as a safe and a stylized means to sharing muta
ble ( updatable} data st.ructure among concurrent threads. The programmer 
can assume concurrent accesses to an object interleave at the granularity 
of a method invocation, rather than individual load and stores, without 
explicitly locking/unlocking objects. 

4.3.1 Classes and Methods 

Defining Classes 

A class is defined by defclass and a method by defrnethod or defmethod! . 
For example, 

(defclass point () 
(real x) 

(real y)) 

defines class called point, each instance of which has slots called x and y. 

What follows a.fter the class name i' the list of inherited classes, which is 
not yet supported in the current implementation and thus is a lways empty. 

A clefclass implicitly defines a function with the class name that creates 
an instance of the class. For exam pie, an instance of point class is created 
by: 

(point 2.0 3.0) 

Defining Methods 

The following defines a method that returns the distance between the point 
and the origin. 
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(defmethod point distance () 
(declare (reply-type real)) 
( sqrt ( + ( * x x) ( * y y) ) ) ) 

This can be, as usual, called by: 

(distance p) 

where p is an instance of point. Note that the first argument of a method 
invocation specifies the receiver object, wWch does not appear in the pa
rameter list of a method definition. It is implicit and can be referred to by 

self in the body of a method. 
Unlike regular procedures, an invocation of a method cannot specify : 

on clause and is always performed on the owner processor5 of the receiver 
object. In all other aspects, a method invocation shares the same model as 
a regular procedure invocation described in Section 4.2.2; it can be called 
either synchronously or asynchronously and explicit reply channels can be 
used in methods as well. For example, method distance could also be written 

by: 

(defmethod point distance () :reply-to r 
(declare (real dx dy) (reply-type unit)) 
(reply (sqrt (+ (• x x) (• y y))) r)), 

though this is just a clumsy coding style of the previous simpler definition. 

4 .3 .2 Updating States 

Updating the state of an object is not expressed by an individual update 
to instance variables. Instead, it is expressed by become construct, which 
specifies new values for updated slots and atomically update all the specified 
variables. To our knowledge, this idea iB first described by Yariv in Sympal 
[7]. For example, the following method increments x and y by dx and dy 

respectively. 

(defmethod! point move! (dx dy) 
(declare (real dx dy) (reply-type unit)) 
(become (redraw! self) :x (+ x dx) :y (+ y dy))) 

6 The cu.rrent implementat ion of ABGL/ f never perfonns software caching. The owner 
processor of an object always refru-s to lhe procr.ssor that created the object. 
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The first argument of a become ((redraw! self) in this case) is called •·e.~!Llt 
expression of the become and specifies which value the become is evaluated 
to, whereas the rest part the up·dated values for slots. Values for unchanged 
slots can be simply omitted. A become expression first evaluates all the new 
values {or updated slots, update the slots atomically, and then evaluate the 
result expression. 

Notice that we used defmethod! above, rather than just defmethod. 
The rule is that a become cannot appear in the body of defmethod. We 
put a further restriction on the position of become inside the body of a 
defmethod! , so that become is performed exactly once in a method invo
cation. In general, this cannot be precisely verified at compile time, hence 
some syntactic rules that conservatively reject suspic ious programs are nec
essary. Rules must be simple so that they can be told to the programmer. 
Unfortnnately, the syntax of ABCL/f is borrowed from Common Lisp and is 
not structured enough to express restrictions in a sufficiently simple manner. 
Specifically, it has an unstructured goto statement, in the presence of which 
there does not seem to be sufficiently simple and precise rules that describe 
the restriction. At present, the implementation resorts to rnntime checks 
and performance evaluation turned off the runtime check, assuming that 
we have more structured constructs in which we can defin.e the restrictions 
syntactically. 

4 .3.3 Concurrency and Consistency 

ABCL/f object model allows certain amount of concurrency between meth
ods operating on a single object , wWle preserving a simple way of reasoning 
about state of an object. Let us call a section between an invocation of an 
update method and its become an !Lpdate section. Simply stated, ABCL/f 

object model serializes all update sections on a single object. All other ac
cesses to a single object (either by a non-update section of an update method 
or by read-only methods) may overlap with other accesses {including update 
sections). For example, it is safe to invoke a read-ouly method and waits 
for its completion from within another update method and vice versa. It is 
also safe to invoke an update method from within a non-update section of 
another update method. 

Row should the programmer reason about state of an object, when 
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method executions may be interleaved in such a way? First, we guaran
tee thai a become updates all the specified instance variables atomically. 

That is, a method never observes a combination of slot values that are par
tially updated. Second, once a method is invoked, the body of the method 

consistently observes the same values of instance variables, even if slot val
ues are changed by other methods. Intuitively, a method atomically copies 
all the instance variables at the beginning and operates on the copy, and a 

become writes back the new slot values atomically. 
A special care must be taken when a read-only method (M) calls an 

update method (M!) on self and uses instance variables after the completion 

of M. M does not observe state updated by M! directly from M. M can 
observe updated state by making another method invocation to self from 

within it. 
Except for this tricky part, ABCL/ f object model is simple and intuitive; 

it provides a model in which all invocations on a single object appear to be 
serialized and the serialization respects the order implied hy synchronizations 
in the program in the following sense. (1) Let M and M' be update methods 

invoked on an object. If either invocations or becomes of M and M' are 
ordered in the program, the serialization preserves the corresponding order 
between M and M'. If the order implied by the invocations contradict the 
ordP.r impli d by becomes, the program is unsafe (results in deadlock). A 

salient example is an update method called from within an update section 
of another update method. (2) Let M be an update method and M' be 
a read-only method invoked on an object. If the become by M and the 
invocation of .M' are ordered in the program, the serialization preserves the 

corresponding order in the serialization. 
Notice that when an update method M calls a read-only method M' 

the invocation of M' proceeds the become by M in the program, thus M' 
proceeds .M. in the serialization, despite that A1' is called from withln M. 

4.4 Immutable Data 

ABCL/f has immutable data and distinguishes them from concurrent ob

jects by its synt~;tx and static type system. An immutable data type is 
defined by deftype con truct, which is analogue of the datatype construct 
in ML. An inunutable datum may have a reference to a concurrent object, 
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thus it can be a part of large mutable data structure. For ~.xarnple , 

(deftype complex () 

(rectangular real real) 

(polar real real)) 

defines a complex number. This defines a new data type called complex, 
two procedures (constructors) called rectangular and po lar, each of which 
creates a new complex data from two real numbers. For example, the type 
of both 

(rectangular 3.0 4.0) 

and 

(polar 5 . 0 (/ *pi• 3)) 

is complex. To access fields of a datum, ABCL/ f provides a pattern match 
expression. For example, the following defines the absolute value of a given 
complex number. 

(defun complex-abs (z) 

(declare (complex z) (reply-type real )) 
(match z 

((rectangular x y) 

( sqrt ( + ( • x x) ( • y y)) ) ) 

((polar r _) 
r))) 

The functionality provided by deftype can be in theory subsumed by classes 
with inheritance. Hence, deftype might be somewhat redundant from the 
language designer's point of view. Vve incorporated a special construct for 

defining immutable data because in distributed-memory parallel programs, 
it is often desirable for the programmer to pass a linked data structure by 

structure copy, rather than by a reference. Copying a potentially mutable 
data on distributed-memory ma.chlnes implies that some coherence proto
cols must be implemented by software. At present, we sidestep this problem 

by distinguishing mutable and inunutabJe data. immutable data are struc
turally copied on remote communication, while mutable data (concurrent 
objects) are simply passed by reference. 
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4.5 Examples 

4 .5.1 Concurrent Tree Updating 

This exli.II1ple demonstrates how the concurrency semantics of our model, 
the notion of before/after-stage in particular, allows natural description of 
a concurrent data structure. Consider a binary tree search algorithm where 
each node of the binary tree L~ a concurrent object. The example is a model 

of the tree construction method io Barnes-Hut N-body algorithm. Here is 

the definition of each node object. 

(defclass bintree-node () 

;; this node associates mapping 

;; between KEY++ VALUE 
(fixnum key) 
(fixnum value) 

;; children is void when it does not exist 
(bintree-node left) 
(bintree-node right)) 

Each node has its key and associated value. It holds that the key of the left 

child is less t han that of self and the key of the right child ls greater than 
that of self. Hence binary search operation is very straightforward. 

II> 

;;; Lookup the value associated j01· K. 
;;; retum -1 if not found 

(defmethod bintree-node lookup (k) 
(declare (fixnum k) (reply-type fixnum)) 

(cond ((= k key) value) ; found 

( ( < k key) 
;; look fo,· the left subtree if K < KEY 
(if (voidp left) -1 (lookup left k))) 

(true 

;; look for the 1ight subtree if K > KEY 
(if (voidp right) -1 (lookup right k))))) 
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Since this operation does not update the tree, we use define-method, hence 

multiple lookup invocations can simultaneously operate on a iugle tree. The 

following method associates element vaJ with key k. 

;;; Establish association K ++ VAL maintaining the 
;;; following int1ariant: 

,, "KEY of LEFT < KEY of SELF < kEY of RIGHT" 

(defmethod! bintree-node insert! (k val) 
(declare (fixnum k val) (reply-type unit)) 
(cond ((< k key) 

(if left 

; ; if there is already left child delegate this value 

;; to the child unlocking self 
(become (insert! left k val)) 

; ; if there is no left child CTeate it 
(become unit 

:left (make-leaf-bintree-node k val))) 

((= k key) 

;; an object is already installed in the same key do nothing 
(become unit)) 

(true 
;; the same alg01ithm as the first case but for the 1·ight child 
(if right 

(become (insert! right k val)) 

(become unit 
:right (make-leaf-bintree-node k val))))))) 

This method first finds the appropriate place to which we insert t he item and 
then installs a new node to the place. An interesting case happens in internal 

nodes; an internal node recursively calls insert! met hod for an appropriate 
chi ld after it un1ocks self for subsequent requests. This is expressed by: 

(become (insert! left k val)) 

at li.ne 6 and 
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(become (insert! right k val)) 

at line 15. As has been described in Section 4.3.3, these recursive calls are 
done after the object has been updated, hence do not result in deadlock. 

4.5.2 Synchronizing Objects 

To demonstrate the expressive power of explicit reply channels, consider an 
implementation of an object that embodies an application-specific synchro
nization constraint. That is, upon a method invocation, the object may 
not be ready for executing the method and wish to defer the execution of 
the method until certain synchronization constraints are satisfied. Since the 
synchronization constraints may be satisfied only by subsequent methods 
the same object, the method cannot simply block computation inside the 
method. We wish to have a way to terminate the current method without 
replying any answer. This situation actually arose in our implementation of 
CKY algorithm [54] for parsing context free grammars. 

For a simple example, consider implementing a "barrier synchronization" 
object. A set of processes shares a barrier object and each process invokes 
finished! method on the barrier object when its local computation has been 
done. Finished! method does not reply any acknowledgement to the process 

until all the processes ir•voke a finished! method. 
Here is the definition of barrier class. 

(defclass barrier () 
ii numbe1· of finished to wait 
(fixnum n) 
ii number of finished so far processed 
(fixnum count) 
ii list of reply channels 
((list (future unit)) waiters)) 

An instance of a barrier class has three instance variables n, count, and 
waiters where n is the number of finished! calls to be synchronized, count 
the number of finished' which have been made, and waiters the list of reply 
channels of previous calls. When synchronization is realized, that is, nth call 
to this object is made, it replies value unit to all the channels in waiters as 

well as the current reply channel. 
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Method finished! facilitates explicit reply channel for deferring the 
replies. 

, , Jillhen this finished is the last call it unblocks 
iii all the waiters by explicitly calling reply otherwise 

iii it does not 1·eply anything so that the caller is blocked. 

(define-method! barrier finished! () :reply-to r 
(declare (reply-type unit)) 
(if (= (+ count 1) n) 

ii reply unit t·o every channels 
(become (dolist (x (cons r waiters)) (reply unit x))) 

ii reply nothing 
(become unit :n n :count (+ count 1) 

:waiters (cons r waiters)))) 

In the above, the reply channel is named, .. If(+ count 1) < n (i.e., this 

is not the last invocation), the method stores r· in list waiters , replying 
nothing to r. In the last invocation, the method broadcasts a reply for 
every reply channel so far received. 

4.6 Comparison to Other Language Designs 

4.6.1 Concurrent Object-Oriented Languages 

A concurrent object refers to data that embodies some access arbitration 
mechanisms so that an execution of a method never observes inconsistent 
state of an object. Several object models have been proposed and they 
differ in the degree of concurrency on a single object, therefore the range of 
deadlock free programs. 

Actors and Early Concurrent Object-Oriented Languages 

The original Actor model [2] and some early concurrent object-oriented lan

guages such as ABCL/ 1 [79, 80] and Cantor [8] achieves the instantaneous
ness of a method execution by mutually exclnding all the method invocations 
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on an object. This is often explained by ·'an autonomous object that has 
its own thread and message queue." Although the traditional Actor model 
gives us the instantaneousness and a v ry simple model in which the pro
grammer reasons about deacllock, it is often criticized to serialize too much. 
This not only loses performance gain that is otherwise possible by exploiting 
parallelism, but also enforces unnatural description of algorithms to solely 

avoid potential deadlock. 

Concurrent Aggregates 

Concurrent Aggregates (CA) [19] supports aggregates in addition to regular 
objects. A regular object is a traditional Actor and an aggregate is internally 
composed of multiple objects, but externally viewed as if it were a single 
object. By processing multiple method invocations on an aggregate by mul
t iple internal objects, an aggregate can serve as a non-seriali.zing object. 
Maintaining the consistency among multiple internal objects, if required, is 
the responsibility of the programmer. 

UFO and Sympal 

An object in more recent languages such as UFO [62, 63] and Sympal [7] 
allows/guarantees more parallelism than the traditional Actor. ABCL/f 
also belongs to this category and UFO, Sympal, and ABCL/f are common 
in many ways. First they support multiple paradigms, in the sense tha.t 
they do not force programmers to use concurrent objects wherever concur
rency is required. This avoids serializing computation that does not require 
shared mutable dat.a. Second, a method in those languages allows subse
quent methods on an object to overlap with tbe current method after the 
current method reaches a certain point. In UFO, the compiler statically 
identifies a point after which instance variables are never updated and un
locks the object when the e..xecution rea hes that point. Become construct 
in ABCL/ f was first proposed by Yariv in the language Sympal, under the 

name finally [7]. 

C++ Dialects 

Here we only discuss C++ dialects that support object-wise concurrency . 
control m chani.sms and do not discuss a notable data-parallel extension 
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pC++ [13, 14]. 
CC++ [17] does not directly support concurrent objects, but the similar 

effect can be achieved by atomic member functions. By declaring a mem
ber function as atomic, the member function locks/ unlock the object at 
invocation/termination as in the traditional Actors. Thus the object model 
of CC++ has the same problems with early concurrent object-oriented lan
guages. Non-atomic functions can run concurrently with others, but this 
merely leaves consistency issues for the programmer. 

Objects in ICC++ [20] allow two methods M and M' to operate on a 
single object in parallel if there are no read/write or write/write conflicts 
between them on any instance variable of the object. The main difference 
between ICC++ and the UFO, Sympal, and ABCL// group is that the 
ICC++ model performs mutual exclusion on per instance variable basis, 
rather than per object basis. 

The range of programs which are guaranteed to be scheduled without 
deadlock do not seem quite different between ICC++ and ABCL/f. A 
foreseeable problem with the ICC++ object model is that each object now 
potentially has to have mnltiple locks to serialize only conflicting methods. 
The worst case requires a lock per instance variable and removing redundant 
locks requires global information on the source code. 

4.6.2 Other Parallel Languages 

Multilisp 

Mnltilisp [33] is the language that originally embodies tbe future construct . 
The central idea of future that a future expression returns something that 
later becomes the result value is adopted not only in parallel Lisps but also 
in some concurrent object-oriented languages [36, 78]. 

ABCL/ f also supports a variant of future. An apparent difference be
tween the future in Multilisp and the one in ABCL/f is that in Multilisp, 
producer-consumer synchronization of a future invocation i.s implicit in value 
reference, whereas ABCL/f requires explicit touch operations. For exam
ple, invoking (f x) and (g y z) in parallel and then adds the two resnlts 
is written in M ultilis p as: 

( + (future (f x)) (future (g y z))), 
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whereas in ABCL// it is written as: 

(let ( (l (future (f x))) 
(r (future (g y z)))) 

(+ (touch l) (touch r))). 

Informally, the Multilisp view of a future is that what is immediately re
turned by a future expression is a placeholder object, which later becomes 
the result value for itself, whereas the Schematic view is that a future ex
pression returns a placeholder into which the result value is sto1·ed. 

There are tradeoffs between the implicit and the explicit version. The 
implicit version, as the above example indicates, often results in a terse 
expression but loses some flexibility. By making touch explicit, we can 
distinguish a reference to the placeholder itself from the reference to the 
value that is stored in the placeholder by the program text. This not only 
guarantees fast value reference without additional compiler analysis (67], 
but also gives us more expressive power by making t.he placeholder first
class citizens. Examples have been given in Section 4.5.2. 

Another difference is their positions on shared mutable data. Multilisp 
provides Scheme built-in data as the basis for mutable data and some atomic 
memory operations such as replace-if-eq (analogue of compare & swap). 

No higher- level mechanisms for defining safe mutable data are provided. 
ABCL/ f supports and encourages the use of concurrent objects to represent 
mutable data, concurrent accesses to which are arbitrated by the runtime 
syst m. 

Concurrent ML 

Concurrent ML (CML) [58] extends SML by first-class channels and fork 
(spawn). The main difference is that channels in CML are very orthogonal 
to the original sequential constructs, whereas channels in ABCL/ f are in

tegrated into sequential constructs. For example, any procedure or method 
in ABCL/ f are callable both in asynchronoualy and synchronously, while 

flmctions i.n CML are not. 
Consider how to perform two CML funct ion calls f x and g x in parallel. 

Since the results must now be extracted from a channel, let us define a 
'wrapper' .Function that takes a channel and sends the result of f x to the 
channel. 

lOG 

fun vrapper f x c = send (f x, c) 

What remains is to create two channels, pawn two wrappers, and wait for 
the result. 

let cO 
and c1 
in 

channel () 
channel () 

(spawn (fn () => vrapper f x cO); 
spawn (fn () => vrapper g x c1); 
accept cO; accept c1) 

end 

Presumably, a fragment like this will appear very often and should be more 
stylized, as in ABCL/ f. In fact, a restricted version of future can be defined 
in CML by 

fun future f x = 
let c = channel () 

in 

(spavn (fn ()=>send (c, f x)); c) 
end. 

Except that it can only invoke a unary function, the above future takes any 
function and any argument and returns the reply channel. This is more 
monolithic and less flexible than futures in ABCL/ f, in that a future now 
always creates a reply channel and the caller loses the chance to specify a 
reply channel. 

Given that a fnnction is the fundamental building block of CML pro
grams, CML should support and encourage a convenient way for invoking 
functions in parallel. ABCL// is designed based on this principle, while 
leaving chances to construct customized communication structure whenever 
desired. 
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Chapter 5 

Implementation of ABCL/f 

5.1 Overview 

The compiler translates ABCL/ f programs into C++ programs, which are 
then compiled by G U C++ compiler. The generated code (syntactically) 
relies on extensions supported by GNU C++ compiler. In particular, it 
extensively uses statement expressions,1 which are e.xpressions that may 
contain arbitrary control statements ins.ide. Since the implementation of 
StackThreads already relies on GNU C++ in much more fundamental ways, 
we did not hesitate to rely on it also in the code generator. 

The compilation from ABCL/f to C++ roughly consists of two phases. 
The first phase (or, "frontend") transforms constructs that are apparently 
different but are actually similar into a combination of "essential" constructs. 
For example, va rious loop constructs such as do, dolist, and dotimes are 
translated into a combination of blocks and goto expressions. Toplevel 
definitions such as defmethod and defun are translated into a canonical 
procedure-definition construct, which defines an asynchronously invoked 
procedure. Diverse calling sequences including synchronous call, asyucl1ronous 
call without an explicit reply channel, and asynchronous call with an explicit 
reply channel, are converted into a combination of a channel creation, touch, 
and a canonical sequence in which the reply channel is explicit and the in-

1The syntax of a statement expression is almost equivalent to that of a cor.npound 
statemenl in C, except that statements are enclosed by ' ( {' and '})' instead of just braces. 
and Lhe last statement rnust be an expression. A statement expression is evaluated to the 
value of the last e.x·pression. 
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vocation is asynchronous. The two data definition constructs (i.e. , deftype 
and defclass) are also unified into a canonical type-definition construct 
that names a data format. The task carried out by the frontend is essen
tially a simple macro expansion that reduces the nun1ber of primitives that 
must be recognized by later phases. 

The second phase (or, code generator) takes the expanded form and gen
erates C++ code. A procedure definition (expanded either from defmethod 
or defun) is converted into a single C+ + procedure which takes parameters 
as well as a reply channel as its parameters. A type definition (expanded 
either from deftype or defclass) is converted into a C++ typedef statement . 
An ABCL/ f expression is converted into a. single C++ statement expression 
that represents the value of the ABCL/f expression in C++. The gener
ated C++ expression retains roughly the same control structure and variable 
scopes as the original ABCL/ f expressions. T hat is, the transformation is 
relatively straightforward, in the sense that it does not introduce many tem
porary variables or breakdown compound expressions into small sequences. 
Although not empirically verified, this tends to produce a C++ code that 
is likely to be successfully optimized by the backend C++ compiler. 

This style of relatively simple code generation scheme should not be 
taken as granted, especially in the context of parallel languages. In fact, 
parallel programming languages are typically compiled into an assembly or 
assembly-like C code in which compound statements are converted into se
quences of small operations. This is partially because a thread may block 
execution in the middle of a compound e>..-pression, and values that are live 
across the blocking point must be preserved. If one wishes to implement 
a compound expression by a corresponding compound expression within a 
single C procedure, there must be a way to restart a computation from the 
middle of a C procedure. Traditional thread libraries accomplish this by al
locating a stack for each thread and by switching stack pointer on blocking, 
suffering from the large resource requirements and thread creation overhead. 
Therefore fine-grain parallel languages typically manage context explici tly 
to bypass the stack frame management mechanism of C. When a blocking 
occurs, generated C code explicitly saves live values into an explicitly man
aged frame. However , we cannot precisely detennine the set of live values 
at a point within a compound expression , because it depends on the or
der in which sub-expressions of a compound expression are evaluated . For 
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example, suppose we straightforwardly compile a compound expression: 

A+B 

into a C expression: 
A'+B' 

where A' and B' are generated from A and B, respectively. Notice that the 
evaluation of A' and B' are not P_xplicitly ordered. We further assume that 
A may block. If the C compiler evaluates A' before B' and A' blocks, live 

values at the blocking point include all the values which the evaluation of 
B' requires. If we evaluate A' after B', on the other hand, live values at the 
blocking point does not include these values, but instead include the result 

value of B'. Thus we must exp licitly order therij as in: 

or, 

t= A'; 
s=B'; 
r = t + s; 

s = B'; 
t= A'; 
1· = t+s 

Note that we not only must order them, but also name each intermediate 

result, so that they can be saved at blocking points. 
Our code generator emits straightforward C code; when blocking occurs, 

the generated code calls a C procedure, which saves callee-save registers and 
Ww whole stack frame for the calling procedure. No matter how expressions 

are evaluated, the C compiler preserves necessary information on the stack. 

5 .2 P rocedures 

The frontend generates t hree C++ procedures from a regular procedme (one 
defined by a defun), and two C++ procedures from a method (one defined by 
defmethod or defrnethod!). It generates body stub, a.nd handler for a regnlar 

procedure, whereas body and handler for a method . A stub is a small C++ 
procedure called either when non-trivial :on clause is supplied or the called 

procedure is not known. ln addition to ABCL/f-level parameters and the 
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reply channel, it takes a parameter that receives ~be value specified after the 
:on keyword. It checks if the :on parameter refers to the local processor and 

either calls the body or generates a remote procedure call. request depending 
on whether the call is locaL I t returns the reply channel as the result value. 

The skeleton of a stub is shown below. When : on+ clause is not specified 
and the called procedure is known, the caller directly calls the body. For 

defrnethod, we do not generate a separate stub. The body first checks if tbe 
receiver object is local and either generates a remote procedure call request 
or simply continues the method execution, depending on the location of the 

object. A handler is a small 0++ procedure that is invoked when a remote 
procedure call request arrives at a processor. It extracts arguments and the 

reply channel from the message and invokes the body. Since we generate a 
specialized handler for each defun a.nd defrnethod, and the garbage collector 
does not require buffered messages be understandable by the coll.ector, a 

message does not have to be tagged. A body is a 0++ procedure that takes 
ABCL/ !-level parameters plus the reply channel as C- leve! parameters. It 
returns the reply channel as the return value. Figure 5.1 shows a skeleton 
of a stub, a handler, and a body of a regular procedure and a method. 

The different code placement between regular procedures a.nd methods 
comes from the typical calling sequence for each type of procedures. In 

the current implementation, our compiler never optimizes away the locality 
check for a method invocation, although the receiver is often local at runtime. 
Thus it is important to optimize the sequence tha.t performs a locality check 
followed by the execution of the method body. For regular procedures, on 

the other hand, many calls are statically known to be local , thus we wish to 
avoid comparing :on parameter and the local processor number. Note that 
in either case, we do not duplicate the body. 

A simple ad-hoc optimization that has not been implemented is a recog
nition of simple procedures that: 

• never block, 

• do not explicitly access the reply channel, and 

• is small. 

For such a procedure, it may be worth generating two versions of its body. 

Ou.e is for the re1,'l.llar calling sequence that takes the reply channel as a 
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I • A skeleton of a stub for a regular procedure It takes an additional 
parameter on • I 

cha.nnel<T> * f (channel<T>• r, ao1 a1 , · · · , an - 11 int on) 
{ 

} 

if (on == local_FE) { 
f_body (r, ao 1 a, , 

} 

else { 
msg [0] = f_handler; 
push_msg (r, msg) ; 
push_msg (ao, msg) ; 
push_msg (a 1 , msg); 

push_msg (a n-1 , msg) i 
send_msg (on, msg) ; 

return r; 

I • A skeleton of a handler for a regular procedure or a method It 
extmcts pammeters from the message and executes body •I 

void f_handler (char • msg) 
{ 

} 

r = extract_msg 0; 
ao = extract~msg () ; 
al = extract_msg () ; 

an- 1 = extract _msg () ; 
f_body (rl ao, al , ... ' an- 1) i 

I • A skeleton of a body for· a regular procedure • I 
channel<T> • f_body (channel<!>• r, ao, a1 , · · · 1 an- 1• int on) 
{ 

} 

I • body of f . no locality check. • I 
.. · I• do whatever •I 

return r; 

I • A skeleton of a body for a method • I 
channel<T> • f_body (channel<!>* r, 
{ 

} 

if (is_local (self)) { 
I• execute body of f 

else { 
msg [0] = f_handler; 
push_msg (ao , msg) ; 
push_msg (a I, msg) i 

pus.h_msg (a,. _ I . msg) ; 
send_msg (on, msg) ; 

return r; 

•I 

Figure 5.1: A skeleton of a stub, handler , and a body of a regular procedure 

and a method. 
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parameter. The other is a specialized interface for local calls without an 
explicit reply channel. The specialized interface does not take the reply 
channel and returns the vaJue of the body. A synchronous call can be per
formed by a direct procedure call to the specialized body. An asynchronous 
call is done by first caUing the specialized body, and then creating a reply 
channel that stores the return value. Note that the version for general call
ing sequences are still necessary for supporting remote calls, explicit reply 
channels, and first-class procedures. 

5.3 Procedure Invocations and Context Switches 

The frontend expands any type of calling sequence into the following canon
ical form: 

(future (/ ao a1 .. · an - Jl :reply-tor) 

where f is either a body of a regular procedure, a stub of a regular procedure, 
or a body of a method. The code generator simply translates this call into a 
0++ procedure call. Recall that stubs and bodies return the reply channel 
as the return vaJue. Thus this correctly transforms an ABCL/ f e.xpression 
into a 0++ expression that represents the value of the expression in C++. 

A procedure blocks when a touch operation does not find any vaJue in 
the channel. A touch may be explicit in the source code, or automatically 
inserted by the frontend to implement a synchronous call or a mutua.! ex
clusion for a concurrent object. When a touch fails , the procedme allocates 
its heap context, enqueues the pointer to the context into the channel, and 
unwinds the stack by calling sll'i tch_ to_parent. 

When a thread later writes a value to the channel, the thread moves the 
resumed heap context to a globaJ scheduling queue. The globaJ scheduling 
queue is periodicaJiy checked and threads in the global scheduling queue are 
resumed by restart_thread. Alternatively, when a reply finds a thread 
sleeping on a channel , it could immediately resume the thread by directly 
calling restart_ thread, rather than inserting the thread in the global 
scheduling queue and later picking it up. This approach would eliminate 
the queue manipulation overhead. Unfortunately, this approach has a bad 
interaction with the conservative garbage collector. A procedure typically 
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performs a reply at the end, because typical procedures do not have an ex

plicit reply channel. When this is the case, the context of the current thread 
should desirably be removed from the stack before pushing the context of 
the next thread. Otherwise, the context of the current thread, which is ac

tually no longer necessary, is identified as a root by the garbage collector. 
By inserting the restarting thread in the global scheduling queue, we effec

tively defer pushing the context of the thread. If the reply is the last or near 
the last action of the current thread, the context of the thread will soon be 

removed from the stack. 
By the same reason, we free a heap context as soon as the thread is 

resumed. That is, when a single procedure invocation blocks multiple times, 
it does not reuse the heap context, though StackThreads itself allows the 
reuse. When a procedure would reuse the heap context, after a resume, all 

the live values of t he procedure at the time it blocked last time would be 
retained until the context is overwritten by subsequent blocks. We instead 
simply free the heap context by calling GC_FREE2 explicitly, which nullify 

the context. Other options that we have not tested include: 

• Only nullify the context, without freeing the context. This saves allo
cation cost and initializations unnecessary for second or later blocks. 
A disadvantage is that it retains the heap context that would other

wise be reused by other purposes, including blocking other procedure 
invocations.!! 

• Do nothing. Just let the garbage collector reuse the heap conte.xt. This 
is locally an optimal solution, since this incurs no overhead. Hidden 
cost .is unnecessary heap growth or more frequent garbage collections 

when we do not have enough memory. 

Stated above are all the basic mechanisms we have for implementing proce
dure calls . This correctly implements all the calling sequences supported by 

ABCL/ f , including synchronous and asynchronous calls, local and remote 
calls, and calls with or without explicit reply channels. Everything is derived 

2 A _procedure supplied by Boehm & \Yeiser's GC that frees a region of memory allocated 
by GCJ!ALLOC. 

3 Many heap contexts have more or less a similar size. Renee freed heap contexts have 
n plenty of chances lo be reused soon. 
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from the canonical calling sequence, touches, and replies. Let us see several 

typical examples to understand how this mecl1anism works. 

Example 1, Synchronous calls: A synchronous call is just a combina

tion of an asynchronous call + touch immediately after the call. For 
example, a synchronous call: 

(f x) 

is expanded by the frontend into the following canonica l form: 

(touch (future (f x) :reply-to (make-channeltype))), 

where type is the reply type of f. Suppose this call is local (i.e., either 

f is a regular procedure or f is a method and x is a local object). A 
channel is created, f is called with the channel and x as arguments. 

Since the call is local, f starts its computation. F returns to the caller 
either when f terminates or blocks. Either case, the caller then tries 
to touch the channel. If the value exists, the caller simply proceeds. 
Otherwise it blocks. Now suppose the call is remote. In this case, f 

emits a remote procedure call message to the remote proces or and 

immediately returns. The caller then tries to touch the channel, finds 
the channel to be empty, and blocks. Note that the caller does not per

form a particular check to see iff is blocked, or the call was performed 
locally. It simply checks if it can proceed. 

Example 2, Asynchronous calls : Suppose we have: 

(let* ((1 (future (f x))) 

(r (future (f y)))) 

(+ (touch 1) (touch r))), 

where f is a method, and we do not know statically whether objects 

are local or remote. Let ns further assume f is a small method that, 
once started, always reply a value without blocking. First consider the 

case where both x and y happen to be local at runtime. In tltis case, 
both method invocations schedule f , which reply a value to the reply 
channel before it returns to the caller. When the caller later tries to 
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touch 1 and r , it will find a value from both. Next consider the case 
where x happens to be remote. The invocation (future (f x)) sends 
a remote procedure call request to the remote processor, returns to the 
caller with an empty channel. Then (future (f y)) is called and the 
caller further proceeds to' ... '. Meanwhile, the reply from (f x) may 
or may not arrive. When it does, (touch 1) will find a value in l. 
This is a representation of latency biding in ABCL/ J. Only when the 
reply has not arrived until (touch 1) , does the caller block. 

Example 3, A chain of Synchronous calls: Suppose a ·hain of proce
dure invocations fo, ft, · · ·, fn- 1 where/; calls fHl synchronously and 
locally and J,._1 blocks. We further assume every procedure replies a 
value to the reply channel if and only if it terminates. Since fn- 1 calls 
f,_2 synchronously, blocking fn- 1 will cause fn - 2 a.lso block, which 
will in turn cause fn - J also block, and so forth . In this way, this cas
cading block continues until fn - l is resumed. When f,. - 1 is resumed, 
its context is copied on stack (via restart_ thr ead) to restart it. It 
will eventually terminate and resume fn- 2. which in turn eventually 
resun1e f, _3, and so on. Notice that no particular mechanisms are 
provided for maintaining the call chain between /; and h+ 1· They 
are implicit ly maintained through sharing the reply channels between 
them. Also notice that heap contexts are lazily copied back to the 
stack; when fn - l is resumed, the copied back to the stack is only the 
frame for j,._ 1 . Other frames still remain in the heap. That is, if fn - 1 

blocks again, only the frame for fn- 1 must be saved. 

5 .4 Unboxed Channels and Efficient Communica

tion via Channels 

We have seen that how the combination of the canonical calling sequence 
and cha1mels implement various calling sequences uniformly. What is left 
unclear is how to implement channels, which are ubiquitously used in the 
mechanism . A naive implementation would represent a channel as a pointer 
to a heap-allocated datum that has two queues, one for values and the other 
for threads sleeping on it. With this naive implementation, however, the 
above mechanism is just an expensive representation of various calling se-
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qu nces. The goal of this section is to develop a mechanism that implements 
the semantics of the first class channels correctly, while achieving efficiency 
where more specialized mechanisms are be applicable. 

Omitting details, we apply a special ( unboxed) representation for chan
nels that satisfy conditions described below and lazily convert them to the 
normal (boxed) representation (i.e. , pointer to a heap-allocated datum) when 
they no longer satisfy the conditions. An unboxed channel represents its en
tire state in local variables (which will hopefully be allocated on registers) 
and reply/touch on it simply update the local variables. The essential condi
tion under which this "in-place update" correctly implements the semantics 
of channel~ is that the channel is not aliased, or if it is aliased, a protocol 
correctly propagates the change to other references. 

In our protocol, a channel is created in its unboxed form and remains 
unboxed as long as: 

• it is empty or it has only single value stored in it, 

• it is not referenced from heap, 

• the thread that creates it references it through at most one local vari
able, and, 

• other threads that reference it do so only through the reply channel 
and have not blocked. 

Put differently, a channel is created in its unboxed form, passed to another 
local thread via the reply channel parameter as is. It must be converted to 
the boxed representation, however, when it is stored into heap data, passed 
to a remote thread, passed to another thread via a regular parameter, or 
aliased to multiple local variables within a thread. How to generate code 
that maintains the invariant is yet unclear and we detail the code generation 
scheme in Appendix B . 

As long as a channel is referenced only from a single thread, this mech
anism works with no surprise. Since it is referenced only from a single 
variable, updating the variable sufficiently updates all the references to the 
channel. Less obviously, a channel can be shared among multiple local 
threads, as long as it is passed to these threads via the rep ly channel pa
rameter and these threads have not blocked. For example, an expression: 
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(let• ((r (future (f x) :reply-to (make-channel fixnum)))) 

( touch r)) 

creates a channel at the future call and shares it between f and the caller 
through the reply channel parameter. We define a protocol by which an 
invoked procedure propagates the updated state of the reply channel to its 
caller. More precisely, an invoked procedure receives a (possibly unboxed} 
channel via the reply channel parameter, keeps it unboxed as long as the 
conditions are met, and notifies the caller of the updated representation when 
it returns to the caller (whether by termination or blocking). If it blocks, 
the channel must be boxed, so that tbe caller and the callee may share them 
afterwards. If it terminates, on the other hand, it returns the d:tannel as is, 

which is hopefully still unboxed. 
A channel is represented by a single 32-bit word represented either in 

boxed form or in unboxed form. A boxed form is simply a pointer to a 

heap-allocated channel. An unboxed form is either: 

• a special value UNBOXED_EMPTY , or 

• a pair (11alue, UNBOXED_ONE_ VALUE) 

Current ly, we assign one to UNBOXED_EMPTY and three to UNBOXED _ONE_ VALUE. 

Due to the limitation of the word size, we can use only 30 bits for en
coding the value stored in a channel. Hence, the current implementation 
uses unboxed channels only for channels of unit, boolean, character, and 
fixnum , assuming fixnum is r epresented in 30 bits. We encode the pair 
(value, UNBOXED_ONE_VALUE) by (4 x value+ UNBOXEO_ONE_vALUE) . 

It is clearly desirable to use unboxed channels for other data, especially 
for floating point numbers and pointers, and there are in fact no fundamental 
difficulties. We do not so simply because of t he urrent implementation 
artifacts . Since a floating point nwnber fully utilizes 32 or 64 bits, in order 
to use unboxed channels for floating point munbers, a channel must be split 
into two words, one for the value and the other for the tag. This can be done 
by representing them with a C++ struct value or two separate C++ values 
in the generated code. The former cannot be used because it invalidates the 
restriction imposed by StackThreads that aggregate data are not allocated 
on the stack. Thus, we must use the later . However, the current code 
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generation scheme works by translating a single ABCL/ f expression into a 
single C statement expression and there a.re no ways to represent multiple 
C++ values by a single C++ e':pression. Using unboxed values for pointers 
should be even easier, because two lowest bits of a pointer are in any case 
zeroes. This is really a silly limitation of the current implementation that 
uses only a single encoding scheme over all types of channels. 
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Chapter 6 

Application Benchmark 

Although results shown in Chapter 2 and 3 demonstrate multithreacling and 
memory management overhead are not significant, we are still interested in 
how good was the performance of such systems overall, especially relative to 
pjficient sequential systems (such as C and C++). This chapter examines 
the overall performance of the ABCL/ f system by application benchmark. 
We tested the same applications with Chapter 2 (BH, CKY, and R.l'<A) . 
For each application, we show single processor performance, breakdown of 
parallel execution overhead, and overall speed-up. Refer to Appendix A for 
a more though description of each application. 

6.1 Single Processor Performance 

For each applicat ion , we wrote programs both in C++ and ABCL/ / , us
ing an essentially the same algorithm and ran them on a single processor 
workstation (Ult raSparc, 167 Mhz with 128 MB memory). The baseline 
C++ programs are sequential. For ABCL/ / , we wrote both parallel and 
sequential version. T he parallel version exploits parallelism when executed 
on multiprocessor systems. The sequential version does not have overhead 
for polling and locality checks of concurreut objects. It also eliminates some 
application specific overheads that are unnecessary on single processors and 
are easily removable without significantly restructttring tbe application. The 
sequential version still incurs, however, overhead for fork , channel creation, 
communication vja channels, and object locking. They are, in general, nee-
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essary for implementing semantics of ABCL/f . C++ programs use Boehm 
& Weiser's conservative garbage collector. ABCL/ / and C++ programs ex
hibit similar heap-allocation behavior, except that some ABCL// programs 
allocate many (boxed) channels on heap for synchronization and obtaining 
results of procedure calls. Using garbage collector for C++ is not meant 
to underestimate performance of C++ programs. In fact, the conservative 
garbage collector has an allocation speed superior to malloc. It allocates a 
small fixed sized block in 11 Spare instructions in the common case. For al
location intensive applications, the overall performance is much better than 
programs that use malloc and free on a per datum basis. Of course, it may 
incur high overhead compared to programs that ustomize allocation meth
ods, taking advantage of the application specific knowledge about allocation 
behavior and lifetime distribution of objects. When this is the case, we also 
write a C++ program with such a customized memory al locator. 

Figure 6.1 shows performance of the three applications. Graphs show 
the relative performance of various versions, with the C++ program that 
use Boehm & Weiser 's GC as the baseline. For each program, "ABOL/f 
(parallel)" refers to the parallel ABCL/f binary, "ABCL/ f (sequential)" 
the sequential binary, and "C++ (gc)" the baseline C++ program. 

For BH, the parallel binary runs about 2.2 times slower than the baseline 
C++ program. The sequential version removes overhead for polling, local
ity checks, and (most importantly) software caching overhead. It is still 1.8 
times slower than the baseline. It turned out that this high overhead was 
due to the lack of using unboxed channels for pointer data, as mentioned 
in Section 5.4. The execution time of BH is dominated by the force cal
culation, whose main procedure is a recursive method that returns a three 
dimensional vector, which is represented by a ( deftype) record in ABCL/ f . 
The representation of the three dimensional vector is a pointer to a heap
allocated record , thus a result of a recursive call is always written in a boxed 
channel by the callee and then fetched by the caller. The instrnction count 
at leaves of the call tree, which essentially computes a Newtonian force be
tween two particles, is about 65-70 instmctions in C++, while it is 90-100 
instructions in ABCL/ f. The difference comes from the cost for writing the 
result to the (boxed) reply channel, which is about 25 instructions in the 
current implementation. The 25 instructions involve ones to make sure that 
no threads are waiting on the channel, to make sure that the value queue 
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Figure 6.1: Single processor performance of ABCL/ f programs, relative to 
sequential C++ programs. C++ (gc) refers to the baseline C++ program. 
ABCL/ f (sequential) does not incur overhead for object locality checks and 
polling. It still incurs overhead for fork , communication via channels, and 

object lock. ABCL( f (parallel) refers to a true parallel binary. 
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is empty, and to write the value to the channel. Non-leaf nodes of the call 
tree perform recursive calls to children and each recursive call t;tkes about 
25 instructions (at the call site) in C++, while it takes 45 instructions in 
ABCL/ f. The difference again comes from the cost of obtaining the result of 
recursive calls from a channel, wWch is about 15 instructions. They include 
instructions to make sure that only one value is stored in the channel, to 
read the value, and to make the channel empty. In addition to the differ
ence in the call site, non-leaf nodes must create a channel for these recursive 
calls (we manually optimized the program so that all recursive calls from a 
node share a single reply channel, thus each internal node at the call tree 
creates only 011e boxed channel). They all together explain most of the dif
ferences between ABCL/f and C++. The performance of ABCL/f should 
become much closer to C++ when we implement a better code generator 
that applies unboxed channels to pointer data. 

The baseline C++ program allocates the result of recursive calls on heap, 
only to return the result to the caller. This is clearly unnecessary. We wrote 
an optimized version that returns the result of recursive calls on stack. In 
this program, no heap allocations occur during the force calculation phase. 
"C++ (stack)" shows the result of tWs version, wWch was about 30% faster 
than the baseline version. 

Both sequent ial and parallel versions of CKY in ABCL/f run about 
2.0 times slower than the baseline C++ program. Again, a large overhead 
comes from communication via boxed channels. Moreover, the problem is 
slightly harder than in BH. CKY builds a large matrix (CKY matrix) during 
parsing a sentence. Parse trees are constructed in a bottom up fasWon; parse 
trees for shorter sub-sentences are bnilt first and then combined to form 
parse trees for longer sub-sentences. The C++ program naturally acWeves 
this bottom up behavior by building parse trees one after the other. The 
parallel ABCL/f program overlaps construction of parse trees for smaller 
sentences with that for longer sentences as much a~ possible. Hence threads 
which build a parse tree must synchronize with threads that produce its 
sub-trees. ln t.he source code level, the C++ program obtains sub-trees 
simply by array references , whereas the ABCL/ f program by method calls 
to concmrent objects that implement synchronizat ion between the producer 
and consumers. Worse, since this method returns a pointer, the result of a 
method call must be communicated via a. boxed channel. Again, we expect 
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a significant improvement is possible when we implement unboxed channels 
for pointer data. 

Performance of CKY is inlproved by customizing memory allocator for 
the particular lifetinle clistribntion of parse trees. That is, all intermediate 
parse-trees for a sentence remain live until near the end of parsing the sen
tence, and they become dead, en messe, when parsing is finished. Hence, 
instead of requesting memory from a general memory allocator on a datum 
by datum basis, we can request a large block and allocate memory for parse 
trees from the block. They are sinl ply recycled when we finish one sentence. 
Performance of C++ program with this op irnized allocator is shown as 
C++ (fast alloc). 

The above two applications suffer from the overhead of communication 
via boxed channel. RNA does not use channels of floating point or channels 
of pointer data in its kernel , and thus exhibits performance very close to 
C++. The overhead of the sequential version is in fact negligible. The 
parallel version incurs an overhead for performing asynchronous recursive 
calls until a certain depth of the call tree. Making future calls, per se, do 
not make any difference. The overhead is incurred because reply channels 
for the future calls are stored in cons cells and therefore boxed. In this 

benchmark, there were 65,000 future caUs out of 1,300,000 total calls. That 
is, one out of twenty calls makes the reply channel boxed and performs an 
additional heap all.ocation for a cons cell. 

6 .2 Speed-up 

F igure 6.2 shows speed-ups obtained on AP1000+ for various problem sizes. 
The baseline is the estimated tinle of the parallel ABCL/ f binary executed 
on one processor of APlOOO+. The sing.le processor execution time on 
AP1000+ is estimated from the execution time on a faster workstation (Ul
traSparc 167 Mhz) and the ratio between those two processors in a small 
problem. For some applications, we were unable to directly measure the 
single processor execution ime on AP1000+, because they take too long 
time or run ont of memory (16 MB). 

For BH, we set the number of particles to 8,192, 24,576, and 49,152 
particles. On 256 processor., they correspond to having 32, 96, and 192 
particles on each processor , rm;pcctively. ·when we have 49,152 particles, 
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Figure 6.2: Speedup on AP1000+. RNA is quite scalable especially for large 
problem sizes. See the main text for performance limit ing factors. 

we observe 42 times speed-up on 256 processors, which is admittedly much 
lower than it ought to be. To understand the source of inefficiencies and 
how could it be improved, we analyze where time goes on various numbers 
of processors. Figure 6.3 breaks down the execution time of the force cal
culation phase into four categories, namely, busy, overhead, GC, and idle. 
The y-a..·-ds refers to the number of processors and times are totaled over all 

the processors . "Busy" refers to the time spent on user program, including 
calculation and replication, "overhead" the time spent on communication 
(send and receive) and context switches (block and resume) , and "GC" the 
time spent on lo(:al/global GC {including idle time during global GC). "Idle" 
literally means the idle time, excluding idle time during global GC. First of 
all, the busy part clearly includes a portion that is proportional to the num
ber of processors. The overhead part is also roughly proportiona l to the 
number of processors. This is because each processor must replicate a part 
of the BH t ree, and thus the total amount of replications increases as we 
have more processors. The graph indicates that this poor scalability could 
be alleviated by optimizing communication layer or by having a (possibly 
built-in) more optimized layer for software caching. Next, t here is a large 
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Figure 6.3: The breakdown of the execution time of BH into busy, overhead, 
GO, and idle. Times are totaled over all the processors. The amount of work 
(busy and overhead) noticeably increases as the number of processors. This 
is because each processor must replicate a part of BH-nodes. Idle time is 

also large due to inadequate load balancing method we currently implement. 

fraction of idle t ime. Th.is comes from an inadequate load balancing method 
we currently implement. We sort particles according to the Morton ordering 
[75] and assign the same number of pa1·ticle.s to each processor. Since the 
density of particles significantly varies from one place to another, assigning 
the same number of particles cause processors assigned to a dense region to 
be heavily loaded. We examined an application profile and observed that 
most idle times appear at the end of the force calculation, confirming that 
the idle time is due to load imbalance, rather than latency of synchronous 

communication. 
For OKY, we tested sentences of various lengths, namely, 35-45, 65-

75 , and 95-105. Longer the sentences are, better speed-up we ach.ieved. 
Breakdown of the application time is also shown for the short sentences (35-
45) and the long sentences (95-105) in Figure 6.4. Unlike BH, the amount 
of work (busy, GO, and overhead) is essentially constant. 

In gen ral, OKY exhibits an even severer speed-up than BH, and it is 
much harder to establish a simple performance model for it. Our analysis 
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so far indicates that speed-up is limited by several factors . First, a critical 
path inherent in the algorithm limits speed-up for short sentences. Recall 
that parsing proceeds from bottom to top. To completely finish parsing 
the entire sentence (call it w 1w2 · · ·wn), we must wait for the completion 
of parsing both sub-sentences w1 w2 · · · Wn-1 and W2W3 · · · Wn because there 
are possibilities that parse t rees for those sub-sentences constitute an entire 
parse tree. In general, to complete parsing a sentence of length n , we must 
wait for the completion of parsing its sub-sentences of length n- 1, and 
then examine if they constitute a parse tree of the entire sentence. This 
places a severe upper bound on the achievable performance, particularly for 
short sentences. Refer to [54] for a more detailed analysis. From an appli
cation profile, we attribute the poor speed-up for sentences of length 35-45 
to the critical path length. Second, for sentences of any length , communica
tion overhead between a thread that produces a sub-tree and other threads 
that read it places an upper bound on the efficiency {the ratio between the 
achieved speed-up and the ideal speed-up). Our OKY implementation cre
ates a thread for l\ny sub-sentence of the given sentence. That is, for any 
p, g such that 1 $ p < g $ n, we create a thread which builds parse trees for 
sub-sentence Wp · · · tvq· The thread that is assigned to this sentence must re
ceive results from threads that produce parse trees for its sub-sentences. The 
ratio between the cost of this communication + associated context switches 
and the cost of useful computation (i.e., combining parse t rees to form a 
larger tree) limits the efficiency. Finally, load imbalance limits processor 
utilization. From the lower graph in Figure 6.4, we observe that there is 
a significant amount of idle time even for long sentences where the critical 
path should not be a problem. By profiling the amount of work done by each 
processor, we attribute this to load imbalance. Since the work performed 
by each thread is highly uneven and depends on input, and the number of 
threads at each processor is at most 40 or so on 256 processors, the total 
work performed by each processor is unlikely to be balanced enough. 

RNA just exhibits an encouraging speed-up, at least for large problems. 
This is because RNA is a simple parallel tree search problem where threads 
do not synchronize and communication is not frequent. n refers to the size 
of the problem and the size of the search space is exponential ton. A similar 
br akdown of the application time for the maximum problem size (n = 230) 
is shown in Figure 6.5. The amount of work is approximately constant, but 
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Figure 6.5: The breakdown of the execution time of RNA into busy, over
head, GO, and idle. The amount of work slightly varies unpredictably, prob
ably due to the inherent indeterminacy of the application. 

slightly varies unpredictably. This is probably due to the inherent indeter
minacy of the application. How much prurting occurs depends on timing 
and may differ from one invocation to another. 
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Chapter 7 

Conclusion and Future Work 

The main contribution of this thesis is efficient and reusable implementation 
of multithreading and garbage collection and empirical results obtained by 
building a new programming language ABCL/ f and writing applications in 

it. 
Multithreading mechanisms have been studied in many contexts and by 

various approaches, including hardware solutions [53, 61], compiler-centric 
approaches [6, 64, 65 , 73], and runtime-centric approaches (which are, of 
course, not exclusive with each other). Our study clearly falls into the 
runtime-centric approach. Previous work, Lazy Task Creation (LTC) in 
particular, has proposed the basic execution mechanisms in this area and 
it has been studied in the context of a parallel Lisp on shared-memory ma
chines. Additional contributions of this work are two folds. First, LTC has 
been studied with relatively sma11 and mostly functional applications, as
swning hardware-supported shared heaps, 1 while we study our mechanism in 
the context of larger and more complex app licat ions on distributed-memory 
machines. As an environment in which multithreading is studied, mostly 
funct ional programs with hardware upported shared heap was somewhat 
less severe than our setting. I.Yhen data are mostly read and remote data 
can be fetched quickly by hardware, one does not have to seriously worry 
about switch cost or switch frequency. Having object-oriented applications 
in which data are frequently locked with fine granularity and distributed 

1 F'eeleyjs message passi.ng protocol J29} does not assume shared stack, but. assumes 

shared heap. 
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memory machines in which stalling the entire processor on a remote access 
is undesirable and sometimes difficult to implement , empirical studies were 
needed to verify that fine-grain multithreading is really feasible. Second, 
previous runtime-centric approaches are, although in principle applicable 
to other languages, not readily sharable by other language implementers. 
Previous runtime-centric approaches were in fact compiler-centric, in the 
sense that extensive cooperation was required from the code generator. As 
a consequence, it has not been clear to which extent LTC-like mechanisms 
can be efficiently implemented in such a way that strictly preserves the se
quential calling standard as well as many compilers and support tools built 
on top of it. Our multithreading mechanism maximally exploits informa
tion ah-eady present in standard C stack frames as much. as possible and 
has been successfully implemented on two different platforms (Spare and 
Alpha). Thanks to such runtime mechanism, we were able to implement 
a programming language whose sequential speed is as fast as C and whose 
thread creation overhead is as low as LTC, without re-designing runtime 
data format, calling convention, and code generator which conforms to the 
convention from scratch. Performance studies so far indicate that support
ing multithreading languages in this way is indeed feasible. Assuming data 
distribution with reasonable amount of locality or appropriate replication 
strategy, multithreading overhead (overhead for preparing potential blocking 
and overhead for thread switch) is never significant, as shown in Chapter 2. 

Garbage collections have also been studied in broad contexts. Even when 
we restrict our attention to ones on distributed memory environments, va
riety of algodthrns have been proposed in the literature. Our garbage col
lection algorithm is very straightforward, compared to many previous algo
ri thms that deal with issues such as faulty processes or lost messages. Most 
of previous studies, however, only present algorithms and have not been im
plemented on real machines. Performance is often studied only qualitatively. 
Our primary contribution to the community is an empirical and qualitative 
performance study with a reasonable heap expansion policy clearly men
tioned. Garbage collection overhead is necessarily relative to behavior of 
the application and how much memory is allowed to use, thus performance 
studies without reasonable heap expansion policies may not be reproducible 
when the amount of available memory differs. We show that, under a modest 
heap expansion policy that preserves that of the original Boehm & Weiser's 

133 



collector, t.he garbage collection overhead is in the ballpark of that in the 
sequential program. We also show that local collections should be typically 
invoked synchronously on aU the processors, at least in our experimental 
settings (256 processors and heap expansion policies stated in Chapter 3), 
despite its synchronization cost and potential extra work. In essence, this 
is a restatement of the "co-scheduling benefit" of local collectors, but has 
been overlooked by the community, because we have an intuition that a 
global synchronizat ion is expensive and does not scale. Furthermore, an 
adaptive scheduling strategy that selects the appropriate strategy has been 
developed. Our experiments so far indicate that it selects the right strategy 

when one is clearly better than the other. 
Applications have been written il1 ABCL/ f and their performances have 

been compared to equivalent sequential C++ programs. The overhead of 
ABCL/ f on a single processor workstation varies from 30 % to llO %. A 
large sourc,e of the sequential overhead was a current limitation of the com
piler that always boxes reply channels of pointer data. This will certainly 
be fixed in the future. Another, more serious problem is allocation and (lo
cal) collection overhead. In spite of the allocation performance of Boehm 
& Weiser's collector that is superior to usual malloc + free, C++ programs 
can manually customize allocation performance by taking advantage of the 
application-specific allocation bellavior and lifetime distribution. There may 
even be cases where data can be allocated on stack. We do not have an im
mediate answer to this problem. Applications exhibit from 40 to 160 times 
speed-up on 256 processors and speed-up is often limited by communica
tion overhead. This is partially due to current implementation that favors 
portabili ty across different message passing interfaces. Reengineering com
munication code will produce a better result. 

Many issues should be investigated more extensively. Below we list only 
ones that will immediately follow the present work. 

Portability Guarantee of StackThreads: Although StackThreads has 
been shown to add little restrictions to the current C compilers and 
it bas been ported to Spare and Alpha, we wish to guarantee the 
portability of the approach in any reasonable calling conventions for 
Cor C++, hopefully under more relaxed assumptions. We roughly 
made three assumptions, namely, ability to thread epilogue code se
quences through a call chain , ability to traverse the chain of stack 
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frames , and mobility of stack frames. First two assumptions would 
be most conveniently satisfied by a set of simple extensions Lo C that 
provide information about the current procedure such as the size of 
parameters and the offset where return address is saved. Such exten
sions may not be available on existing compilers, however. In a short 
term, a more practical approach will be providil1g procedure descriptor 
by post-processing assembly code generated by C compilers. Such de
scriptors will be a modest extension to exception handling mechanisms 
provided on some operating systems such as Digital UNIX and IR.IX 
and may hopefully be incorporated into a standard. Mobility of stack 
frames seems to be a valid assumption as long as aggregate data are 
not allocated on stack. For StackThreads to be more useful , however, 
we wish to guarantee the safety of code that allocates aggregate data 
on stack, as long as the address is not explicitly taken. Such guaran
tee seems to necessarily require compiler extensions. Right now we 
do not have a better alternative to tlus problem. 

Study of the adaptive local collection strategy in various settings: 
While the adaptive collection strategy investigated in Section 3.4.4 
chooses the right strategy where one strategy is clearly better than 
the other, it was not substantially better than a simpler "always
sync.hronous" approach. In fact , independent local collections have 
(if any) little gain over synchronous ones, thus the adaptive strategy 
can always resort to the synchronous strategy whenever the right strat
egy is not clear. This may not be the case in other settings. First, we 
suspect that this was the case partially because of our heap expansion 
policy. Our heap expansion policy assumes that if any processor has 
expanded its local heap up toNI, it is reasonable for any processor that 
has much smaller heap size to expand its local heap up to around M. 
This policy avoids too frequent local collections when many processors 
are simultaneously expanding heap sizes. On the other hand , this may 
still expand heap too aggressively, particularly when live data among 
processors are highly unbalanced. Right now, we do not have an al
ternative expansion policy that i less aggressive under unbalanced 
live data distribution and does not lead to unreasonably frequent col
lections when processors are simultaneously expanding their heaps. 
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Assuming the presence of such a policy, the policy would be likely 
to favor independent collections more than the current policy does, 
and thus the importance of the adaptive strategy would accordingly 
increase. Second, the advantage of synchronous collections may be 
reduced in multi programmed environments (network of workstations) 
where synchronization delays may be more unpredictable. Right now, 
we simply do not know how do they perform on today's commod
ity operating systems in whlch processes are scheduled independently. 
While future operating systems for high performance workstation clus
ters will support some form of co-scheduling for synchronous SPMD 
applications, the advantage may be smaller than in dedicated parallel 

computers such as AP1000+. 

Comparison to reference counting methods: Our experimental results, 
which favor synchronized collections over independent ones, partially 
contradicted previous scalability criteria of collectors on large-scale 
systems. We suspect naive reference counting sch me suffer from the 
same problem with the independent collection scheme and tend to re
quire a larger amount of memory than stop-the-world type collector 
does. It will be fruitful to examine this conjecture through experi
ments and explore the possibility for a combined strategy. The com
bined strategy reclaims small and locally shared data incrementally by 
reference counting and reclaims large and globally shared linked data 
structure by global mark & sweep, with one stroke. 

Dynamic load balancing: One thing that is overlooked in this work de
spite of its importance is dynamic load balancing, where a computation 
migrates to another processor in the middle of it. In addition to per
formance considerations, implementing migration was already hard a 
problem in the conte>.'t of our work. It would require precise identifica
tion of pointers in a C stack frame or a lower level software support for 
shared address space. As large-scale shared-memory machines are get
t.ing popular and more widely available, assuming hardware support 
for shared-memory will not become a severe restriction in the future. 
Hence, we wish to explore the pos ibility for implementing dynamic 
load balancing again with existing sequential C/C++ compilers. The 
execution mechan.ism will naturally be similar to Lazy Task Creation, 
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but again the problem is how to make it implementab.le under the 
current C stack frames and calling conventions. In the presence of 
callee-save registers, it seems unavoidable that a task stealing requires 
some cooperation from the victim. Hence, the mechanism will be based 
on the message passing protocol investigated by Feeley [29]. Here we 
vaguely describe the task stealing mechanism under standard C staek 
frames and calling conventions. When a victim picks up a task-stealing 
request, it unwinds stack frames using the epilogue code threading un
til an appropriate fork point. At that point, we transfer control to a 
special routine that handles the request on a separate stack. The 
handler copies the stolen continuation and makes it available to the 
requesting processor. It then modifies the original continuation so that 
when control reaches to the continuation, the stolen frames are sim
ply discarded, again by epilogue code threading. The handler fu1ally 
resumes the original comptttation . 
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Appendix A 

Description of Benchmark 
Applications 

For BH, CKY, and RNA, we describe the problem, basic algorithm, par
allelization and its description in ABCL/ f , and behavior of the parallel 
program. 

A .l BH 

A.l.l Problem 

Given initial velocities and positions of particles, simulate motions of them. 
Any pair of two particles interacts with each other via Newtonian force: 

F=GmM ,.2 

where r is the distance between the two particles and m and M arc masses 
of them. 

A.1.2 Basic Algorithm 

Since naive algorithm that calculates interaction between all pairs of parti
cles takes O(n2), we use an approximation method widely known as Barnes
Hut method [9], or BH-method in short. When we calculate a force exerted 
on a particle, we regard a s t of particles whose center of gravity is far 
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from the particle as a single (virtual) particle located on the center of grav
ity. More precisely, let r be the distance between the particle in question 
and the center of gravity of the particles, and let d be the diameter of the 
particles. We regard the set of particles as a single particle if: 

~ <8, 
r 

where (B is a constant (1.0 in our experiment). 
To enable this approximation, we construct au Oct- tree each node of 

which represents a cubical cell in the simulation space. The root of the 
t ree represents a cell that is big enough to contain the entire particles. The 
(direct) children of a node represent subdivisions of the parent, derived by 
cutting the parent cell into eight equally sized sub-cells. A node has children 
when two or more particles fall into the cell represented by the node. In other 
words, at leaves of a BH-tree are nodes that contain at most one particle. 
The tree is constructed at each step from scratch. To summarize, each step 

of a simulation proceeds as follows: 

Tree-construction phase: constructs a BH-tree, so that leaves contain at 

most one particle, 

Augment phase: augments every node of the tree with the center of grav
ity and total mass of the particles contained in it, 

Force-calculation phase: calculates force exerted on each particle, and 

Update ph ase: updates position and velocity of each particle. 

The sequential algorithm for the tree coru;truction phase begins wit.h an 
empty tree that holds no particles. From this initial state, we ' load' particles 
one by one from the root of the tree. Whenever the second particle is loaded 
into a node, which currently contains only one particle, we create children 
of the node and load the particle to the appropriate child. Subsequent 
particles loaded into a cell that already has children are just forwarded to 
the appropriate child. Once the tree has been constructed, the augment 
phase sets the center of gravity and the total mass of the particles contained 
in each node by a depth-first traversal of the tree. The main procedure of 
th force-ca lculation phase is a recursive procedure that takes a position of 
a particle and a node of a BH-tree as parameters. It tries to calculate an 
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acceleration that the particles contained in the node exert on the particle. 
It simply returns the Newtonian acceleration if the node is either a leaf or 
an internal node that meets the approximation criterion described above. 
Otherwise it recursively applies the procedure to all its children and sums 
up the results. When all the accelerations are calculated, the update phase 
updates velocities and positions of all particles. 

A.1.3 Description in ABCL// and Parallelization 

We represent a node of a BH-tree by a concurrent object. The tree-construction 
phase is implemented by au update method (i.e., a method defined by 
defmethod!) for node objects, which takes a particle as the parameter and 
loads the particle into the tree. The method updates self when it was orig
inally a leaf, or otherwise simply forwards the given particle to the ap
propriate child. The augment phase is implemented by a recursive update 
method that traverses the tree and augments every node by its total ma.s 
and the center of gravity. The force-calculation is implemented by a read
only method tl1at recursively traverses the tree until leaves or nodes that 
meet the approximation criterion. 

The source of parallelism can be easily identified. Force-calculation phase 
can calculate forces of all particles in parallel. Augment phase can traverse 
different part of the tree in parallel. Less obviously, the tree construction 
phase can load all particles in parallel, as long as method invocations on a 
leaf node are properly serialized. A difficult part is how to remove bottleneck 
and obtain a load balance. 

The most time-consuming phase is force-calculation, which occupies more 
than 80% of the total execution time. Tree-construction approximately takes 
15% and other two phases the rest 5% . V{hile force-calculation is domi
nant , it is yet important to achi.eve reasonable speed-up for other phases; 
for example, if only the force-calculation would be parallelized, the total 
execution time would be at best reduced to 20% of the sequential execution 
time. 

In tbe original description, neither the force-calculation nor the tree
construction achieves satisfactory speed-up, because almost all recursive 
calls become remote, introducing large overhead. Moreover, nodes near 
the root are much more frequently accessed than nodes near leaves are, in-
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troducing a significant load imbalance. Caching node objects appropriately 
alleviate these problems. In our experiments, we manually replicate objects 
in ABCL/ f level. Each processor maintains a hash table that associates 

remote objects to their local copies. 
The caching protocols take advantage of application-specific knowledge 

about access patterns. In the force-calculation phase, nodes are read-only. 
Hence we simply replicate objects without any provision for future invali
dation. A processor calculates forces to its particles, one particle after the 
other. A calculation for a particle utilizes replicas created by previous par

ticles. The entire cache is discardccl at the end of the phase. 
The protocol for the tree construction phase is less straightforward. We 

take advantage of the fact that a node becomes read-only after it once be
comes a non-leaf noue. The protocol works as fol.lows. Before a processor 
calls a method on a BH-node, the processor first looks up its cache. If the 
replica is in the cache, it simply calls the method with the replica as the 
receiver object. Otb rwise, it asks the BH-node to create a copy of itself on 
the requesting processor and returns it to the requesting processor, as long 

as the IJFI node has already become a non leaf node. What happens if the 
node is still a leaf? It simply returns self to the requesting processor. Ei
ther case, the requesting processor invokes a method on the returned object, 
which may be a local copy or the original object. Again, the entire cache 
is discarded at the end of the phase, hence the protocol does no have any 

provision for invalidation. 
One remaining problem is bow to assign particles to processors. An 

obvious requirement is load balance. Another, less obvious one is locality, by 
which we mean particles physically close to eac:h other must be co-located on 
the same processor as much as possible. This comes from the access patterns 
implied by the above approximation criterion. Since particles close to each 
other access a similar set of BH-nodes, co-lo ·ating such particles better 
exploit the above introdtJced software caches. [76] describes a method that 
achi ves both load balance and locality. We only partially in1plement this 
method, achieving only locality. As for the load balance, we currently assign 

the same number of particles to each processor. 
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A.l.4 Behavior and Performance Limiting Factors 

We only describe the behavior of the force-calculation phase, which dom
inates the overall behavior. Since each processor sequentially calculates a 
force exerted on a particle, there is no intra-processor parallelism. A proces
sor stalls when a copy of the receiver object is not in the cache. In an early 
stage of a force-calculation phase, processors stall very frequently. Each ac
cess to a BH-node that has never been accessed by the processor in this step 
causes the processor to stall. Stalls become less frequent as caches are get
ting filled. This synchronous behavior makes this application very sensitive 
to latency. 

Performance of tllis algorithm is currently limited by the following fac
tors: 

Replication Overhead: Since each processor starts witl! an empty cache 
and fills it with necessary data on demand, the total work carried out 
by a processor is force-calculation + copying part of a BH-trec nec
essary for the force-calculation. The replication overhead actually in
volves communication overhead, switch overhead, and object creation 
overhead. It accounts a large fraction of the total execution time, as 
we have seen in Section 6.2. 

Load Imbalance: Since we assign the same number of particles to each 
processor, processors being in charge of dense regions tend to be heav
ily loaded. This results in load imbalance we have observed in Sec
tion 6.2 

A.2 CKY 

A.2.1 Problem 

Given a context free grammar {CFG) in its Chomsky Normal Form and an 
input sentence, judge if the sentence is produced by the CFG and if it is 
leave sufficient information to reproduce the derivation tree (p~se tree). ' 

In Chomsky Normal Form, a rule is either a lexical rule: 

a~w, 
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where a is a non-terminal and w a terminal , or a production rule: 

a-t b c, 

where a, b, and c are non-terminal symbols. That is, the right hand side of 

a production rule is binary. 
The actual benclunark first copies the grammar to all the processors and 

feeds many input sequences one after another. We parallelize parsing of a 
single entence and do not overlap processes for multiple sentences. We also 

exclude the time to broadcast the grammar from the benchmark. 

A.2.2 Basic Algorithm 

We use CKY algorithm (43]. Let Wt w2 · • · Wn be the input sentence, S;,; a set 

of non-terminal symbols that derive sub-sentence 'UJi+t · · · w;. The probl m 
now is to find So,n, a set of non-terminal symbols that derive the whole 

sentence, and check if it contains the start symbol. The CKY algorithm 
calculates {S;.;} (0 ~ i < j :::; n) in a bottom up manner, i.e. , from S;,;s for 
shorter sentences to ones for longer sentences; it first calculates S;- J,i for 
all 1 :::; i :::; n, using lexical rules. By the definition of S;,; , S;- t ,i refers to a 
set of non-terminal symbols that derive sub-sentence w; . Hence, for each a 

such that a-t w;, we include a in S; - 1,;. Once all S;- l ,i (1 :5 ; :5 n) have 

been calculated, we can calculate S;- 2.i (2 :5 i :5 n). To calculate an S;- 2,;, 

we find all production rules a--+ b c, such that bE Si- 2,i - l and c E S;- J,i 

and include a in 8; _2,;. That is, if b derives sub-sentence 1V;- t, c derives w;, 

and there is a production rule a-t b c, then we have that a derives w;- tW; . 

In general, to obtain an S;.; where j > i + 1, we find all combinations of 

an index k (i < k < j) and a production rule a -t b c, such t hat b E S;, ~o, 
and c E S~o.; , and include all such a. in S; ,;. That is, if b derives sub-sentence 

1Vi+ l ·.·'Wk. c derives 1Vk+l · · · w;, and there is a production rule a --+ b c, 
then we have that a derives Wi+ t · · · w;. To describe how to compute S;.; 

more procedurally, for each k (i < k < j), we generate all pairs (x, y) such 

that x E S;,k, and y E Sk,;, and for each pair, we consult the grammar to 
find rules whose right hand side is x andy. Include the left hand side of all 

such rules iuS;,; , removing duplications (Figure A.1). 
Along with S ;,j, we build data structure E;,;, which record derivation 

trees. E;,
1 

are not consulted during parsing, but necessary to later reproduce 
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1: I• calculate a set of non-terminal symbols, each symbol in which 

2: derives sub-sentence w;+l · · · Wj. +I 
3 : calc_Sij (i, j) 
4: { 
5: ,. = 0; 
6: foreach k (i < k < j) 
7: foreach x E S;,k 
8: foreach y E Sk,j 
9: r = ,. U { a I a --+ x y E P } ; 

10: 

11: 

12 : 

return r; 

13: I• •·eturn SUCCESS if non-terminal symbol S de1ives 

14: WJ • · · Wn. return FAIL otherwise.+/ 

15: CKY Cwt· .. w,., S) 

16 : { 

17: foreach i (1 < i < n) 
18: Si- t ,i = { a I a --+ w; E L } ; 
19: for (I= 2; I <= n; I++) { 
20: for (i = 0, j =I; j <= n; i ++, j++) { 

21: S;.; = calc_Sij (i, j); 

22: 
23: 

24: if CS E So,n) return SUCCESS; 
25 : else return FAIL; 

26: 

Figure A.1: CKY algorithm. CKY takes a sentence w1 · · · Wn and a start 
symbol S as parameters <tnd returns whether or not S derives WJ • · · w,. in a 
given grammar. In the program, Prefers to the set of produ tion rules and 

L the set of lexical mles. The algorithm first calculates S;.j for sub-sentences 
of length 1 (i. e., S; 1,,) and proceeds to longer sentences. An iteration of 

the for loop at line 19 calculates S;,; for sub-sentences of length I. 
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the derivation process as necessary. For each symbol a E S;.,j , we record k 

and the production rule used to include a in Si,j· 

As revealed from the above description, the process is bottom up in 
nature. More specifically, computing S;J needs S;,k and Sk.j for all k (i < 
k < j) , thus S;,k and Sk,j must be computed before Si,j· A sequential 
algorithm satisfies this constraint by the order in which S;,; are computed. 
It calculates S;,; sequentially, from ones that have smaller j - i to ones that 

have larger j - i. 

A.2.3 Description in ABCL// and Parallelization 

We fork a thread for each S;,; using the future construct of ABCL/f. The 
thread that calculates S;,j processes j- i- 1 pairs (S; ,k. SkJ) (i < k < j) 
sequentially, waiting for S;.,k and Sk,; to be produced for each k. When a 
thread processes all pairs, it produces S;,j resuming threads waiting to con
sume it. To accomplish this producer-consumer synchronization, we define 
a cell object which has two methods, put! and get!. They are implemented 
using explicit reply channel in the manner described in Section 4.5.2. 

Let us examine how much parallelism are there in this algorithm. Obvi
ously, computations for all S;,;s of the same length do not depend on each 
other, so they run fully in parallel. In other words, the inner loop at line 
20 of Figure A.1 is a 'doall ' loop. How about the outer loop? Since compu
tation of an S;,; depends on computations of its sub-sentences of the form 
S;,k or SkJ , it is not clear how much parallelim are there between iterations 

of the outer loop. 
Fortunately, we can e..xtract a significant amount of parallelism from the 

outer loop by carefully ordering the computation. When a thread calculate 
S;,; from {S;,k} and {Sk,j} (i < k < j), we first process pairs that are likely 
to be produced early. To achieve this, we begin with A: which is most close 
to (i + j)/2 and step towards both edges (i and j). For example, a thmad 

that computes S0,20 first processes pair (So,.1o, Sto,2o), next (So,9, Sg,zo) and 
(S1t,20 , S11 ,20}, and so on. Both So,Jo and S10,20 will probably be produced 
much earlier than S0,19 or S1,2o- Thus, there is significant overlap between 
computations for S;,j of different lengths. Roughly, threads that compute 
S;,j where j -i = c overlap with threads that computeS;,; where j -i > c/2. 

The amount of work carried out by each thread is neither constant nor 

154 

very predictable. In general, S;,; with larger j- i represent more tasks than 
those with small j- i, because S;,; is computed by processing j- i -1 pairs. 
Further details are, however, dependent on the input sentence. Threads are 
mapped onto processors so that each processor is in charge of approximately 
the same number of threads and threads with large j - i are not assigned to 
the same processor. More specifir.ally, we first allocate So,n to processor 1, 

next So,n- l and S1,n to processor 2 and 3, respectively, then So,n- 2, S1 ,n- t . 
and S2,n to processor 4, 5, and 6, respectively, and so on. The cell object 
that stores S;,; is co-located with the thread that produces it. 

See (54) for more detailed description. 

A.2.4 Behavior and Performance Limiting Factors 

When a thread that computes S;,; processes a pair (S;,k, Sk,j ) , it is likely to 
stall due to remote communication. Recall that S;,k and Sk,j are co-located 
with the threads that compute them, and threads are mapped onto proces
sors in a round-robin fashion. Thus, threads for S;J and S;,k (or Sk,;) are 
unlikely to be mapped on the same processor. The latency involves not only 
the latency of remote communication, but also that of producer-consumer 
synchronization whose delay is unpredictable. The latency is partially (or 
hopefully completely) masked by other threads on the same processor. When 
we parse short sentences on many processors, it is unlikely to be; sentences 
of 30 words yield only (30 x 31)/2 = 465 threads, which are not much larger 
than the maximum number of processors we have. On the other hand, i[ 
the length of the sentence is 100, we create (100 x 101)/2 = 5050 threads, 
meaning that we have 20 threads on one processor even on 256 processors. 
In this case, we have a reasonable chance to utilize processors while one 
thread is waiting for a value from another thread. This application allocates 
a large amount of memory for S;,; and E;,;. These data remain live until 
parsing the current sentence is finished. 

There are several factors that currently limit the performance of this 
algorithm. 

Overhead : When a thread processes a pair (S; ,k,SkJ) , it first fetches the 
two lists from appropriate processors, with associated context switches, 
and then processes them locaJly. The local computation is a doubly 
nested loop that, for every pair (b, c) E S,,k x Sk,j, looks up production 
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rules whose right hand side is b and c, generates symbols included in 
S; ,;, and updates E;,j- The ratio betweeJl the local computation and 
the communication + switch overhead determines an upper botu1d of 

the achievable speed-up. 

Critical Path: This is relevant for short sentences. We denote the process 
that operates on the pair (S;,k, Sk,j) as Pi,kJ (That is, calculation of 
S; ,j consists of (j - i - 1) processes {P; ,k,j} (i < k < j)). Since P; ,k,i 

depends on the result of S;,k and Sk,j, there can be no overlap between 
P;,k,j and computation of S;,k or Sk,j· In other words, there cannot be 

any overlap between P; ,k,i and any of P;,.,k or Pk,•J. 

Let us write P;,k,i > P;' ,k' J' to denote that there cannot be overlap 

between P;,k,j and P;' ,k'J'· Thus, we have: 

and 
P;,kJ > P;,x,k 

P; ,kJ > Pk,x,i 

(i <X< k), 
(k <X< j) 

Using this fact recursively, we have a chain of P;,k ,i s each of which can 
never overlap. The length of a chain can be as long as the length of 

the input sentence minus one. For example, 

Load Imbalance: Critical path is not a relevant limiting factor for long 
sentences. Even so, processor ntilization is limited by load imbalance. 
Our current mapping of threads onto processors seems not adequate 
in several ways. First, the amount of work performed by each thread 
is not constant and depends on input. As a general hint, threads for 
long sub-sentences tend to perform large tasks, but an accurate esti
mation of the work performed by threads seems very difficult. Second, 
even when sentences are very long (say, have 100 words), the number 
of threads we have is not sufficiently large to make the round-robin 
distributiofl very effective. As a result, we consistently observe fairly 
large idle time in Chapter 6, even for longest sentences on small num

ber of processors. 

In summary, CKY imposes severe implementation challenges. Wh n we 
look at results in Chapter 6, where proce sors spent approximately the same 
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amount of time on busy, overhead, and idle, overhead and load imbalance 
are both significant limiting factors. As uming we would eliminate all these 
idle times, the overhead alone would still limit the achievable speed-up on p 

processors to something aronnd 0.5p. Assuming the overhead would become 
very close to zero, the idle time caused by load imbalance alone would still 
limit the achievable speed-up on p processors to something around 0.5p. 
Improving load balance requires us generate more threads and distribute 
them on processors in a smaller unit, but this in turn makes the overhead 
limit severer. Similarly, shortening the critical path by making threads finer 
raises the overhead. 

A .3 RNA 

A.3.1 Problem 

The problem really is to predict feasible secondary structures of a given 
RNA sequence. Here we omit all such biological aspects and describe the 
problem only from computational point of view. 

Let us begin with some preliminary definitions. A stack 1·egion is desig
nated by its position and energy. A position is represented by a quadruple 
of integers, though details are unimportant. Energy is specified by a positive 
floating point number. We assume there is a binary relation that determines 
if two stack regions are compatible. A set of stack regions is feasible if any 
pair of its elements is compatible. The energy of a set of stack regions is the 
total energy of all the elements. Here is the problem. 

Given a set of stack regions Sand a parameter 11, find all feasible 
subsets of S t hat have an energy no smaller than (Emax - 11) , 
where Emax is the optimal energy over any feasible subsets of S. 

Typical problem sizes (the number of stack regions in S) we tested are 
between 170 and 230. The maximum size we have so far solved on 256 

CPUs is 280. 

A.3 .2 Basic Algorithm 

Since the problem is to find all feasible subsets that have certain energies, we 
must use a combinatorial brute-force search algorithm, rather than heuristics 
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to obtain an approximation. We can, of course, do better than the naive 
algorithm that tests zn possible combinations. As preprocess, we divide S 

into disjoint partitions, each partition of which does not have any pair of 
compatible stack regions. Each partition is called incompatible islet [27]. 
This preprocessing takes O(n2 ). We also augment each incompatible islet 
with the maximum energy among its elements. We call it the achievable 

energy of the islet. 
Once S is partitioned into incompatible islets, a subset of S is specified 

by selecting one or zero element from each incompatible islet, because, by 
the definition of the incompatible islet , we cannot choose two or more stack 
regions from any single incompatible islet. We form the search tree along 
this view. That is, let S = h + · · · + Im where h is an incompatible islet. 
The root node has (#It+ 1) direct child nodes, # h nod s of which indicate 
cases where an element bas been committed from It and the last child node 
the case where none has been selected from h. Similarly, each direct child 
of the root has ( # !2 + 1) children. As a heuristics, we sort islets by its 
size, from smaller ones to larger ones. This makes pruning described later 
more effective. Assmning depths at which pruning occur are approximately 
constant regardless how islets are ordered, expanding smaller number of 
branches near the root of a search tree tends to produce less work in totaL 

How do we prune unnecessary branches? We keep track of the maximum 
energy achieved so far and prune a node that can never achieve that value 
under the node. Incompatible islet plays an important role to estimate the 
value achievable under a given node of the search tree. The estimated value 
for a searCh node is the total energy of already committed stack regions + 
the total achievable energies over the incompatible islets yet examined. This 
value is actually computed incrementally; the estimated value for the root is 
the total achievable energies over all the incompatible islets. Whenever we 
go down the tree, committing one region or none from an islet, we subtract 
the difference between the achievable energy of the islet and the energy 

actually committed. 

A.3.3 Description in ABCL/ f and Parallelization 

Parallelization is really simple. We simply e>..1>ress the search algorithm using 
recursion and extract parallelism by recursive future calls. Load distribution 
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is simply done by making calls remote until a certain threshold depth and 
then proceeding locally. Load balancing is achieved simply by making much 
larger number of remote calls than the number of processors and distributing 
them randomly. In the experiments we specified the threshold value in the 
command line.l We typically fork from 601< to 200K threads by remote 
future calls. 

All processors share the maximum energy so far achieved (M) and keep 
them consistent. Since Af monotonically increases and there are no problems 
about underestimating it, the strict consistency is of course Wllle essary. 
Processors merely have to update M promptly enough to make pruning 
effective. A processor broadcasts the value when it achieves a value of energy 
that is significantly better than M at any intermediate nodes of the search 
tree, or when it ac.hieves a value of energy that is better than M at leaves 
of the search tree. The threshold value that determines exactly when a 
processor updates M in intermediate nodes is chosen arbitrarily by the user. 

A.3.4 Behavior and Performance Limiting Factors 

Since so many threads are randomly distributed on processors and threads 
never synchronize until termination, each processor has plenty of parallelism, 
any of which can be scheduled at anytime. Tlus makes this application very 
latency-tolerant, as we have observed in Chapter 3. 

Two potential limiting factors are load imbalance and overhead. As we 
have observed in Chapter 6, when the problem size is large, each accounts 
for less than 10% of the execution time on any number of processors. To 
summarize, as far as this problem is concerned, the current sin1ple approach 
that Chops the work into small pieces and distributes them randomly is suc
cessful. Further improvements are of course possible by more sophisticated 
load balancing method that minimizes the number of remote fork, while 
achieving a similar or a better load balance. 

1 Determining an appropriate value adaptively is not actually difficult . Given thread 
creation is inexpensive, we do not. hav(~ to 11piupoint" the right threshold. We merely have 
to guarantee that the nu.mber of threads are not too small. We let the user to specify 
simply for benclunarking pu·rpose. 
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Appendix B 

U nboxed Channel Scheme 

This chapter details a code generation scheme that implements the unboxed 
channel scheme outlined in Section 5.4, using a simple language that models 
ABOL/ f. The model language has all the essential features in ABCL/J , in
cluding variable bindings, assignments, conclitionals, operations on channels, 
and asynchronous procedure invocations. Heap locations are not explicitly 
included, but, for our purpose, sufficiently modeled by channels. We first 
define the synta.x of the language and then develop a source to source trans
formation scheme that inserts explicit boxing operations wherever necessary. 
The transformed e:>,pression guarantees that channels are never escaped in 
their unboxed representation to places where we cannot maintain the se

mant ics of first class channels. 
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B. l Essential Syntax 

We define the essential syntax of the language as follows. 

E (constant) 
$ (new channel) 
v (variable) 
v:=E (assignment) 
let v = E in E (let) 
if E then E else E (conclitional) 
E <= E (reply) 
•E (touch) 
op (E ,E) (primitives) 
E (E) ~ E (invocation) 

c is a constant, which we assume is not a channel. $ is a special con
structor that creates a new empty channel. v is a variable. A variable is 
introduced either by a Jet, a regular parameter of a procedure, or a reply 
channel of a procedure. v := e assigns the value of e to v. The value of an 
assignment is nnit. let v = e in e' binds e to v and evaluates e' under 
the extended environment. The value of the let expression is the value of e'. 
e <= e' is the reply expression. It puts the value of e' to the value e, which 
is a channel. The value of this expression is unit. •e is a touch expression. 
It extracts a value from the value of e, which is a. channel. The value of a 
touch eJq>ression is the extracted value. op (e, e) is a primitive operation, 
which we assume takes two parameters and returns a value that is not a 
channel. We further assume a primitive operation does not allocate chan
nels or write values into channels. e (e1

) ® e11 is the canonical procedure 
invocation expression. It invokes procedure e, passing a regular parameter 
e' and a reply channel e"- The value of this expression is the value of e". 

The syntax of a procedure definition is: 

v (v') ~ u" = E, 

where v is the name of the procedure, v' the name of the regular parameter, 
v" the name of the reply channel, and E the body expression that is eval
uated when this procedure is invoked. For example, a procedure that calls 
two procedures f and g in parallel is written as follows. 
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f_and_g (x) Cll r let s f (x) Cll $ 

in 

let t = g (x) Cll $ 

in 

r <= *s + *t 

That is, two channel~ are created and procedures f aud g are called with 
the created channels as the reply channels. The new channels are bound to 
variable rands and finally touched at the last line. In examples that follow, 

we use a Jet expression to bind multiple variables sequentially and to have 
multiple expressions in the body. It is a syntactical abbreviation of nested 

let expressions. 1 

We note differences between ABCL/f and the simple language devel
oped. First, ABCL/f has mutable records that encode concurrent objects 
and deftype data. For the purpose of developing code generation schemes 

for unboxed channels, any heap data can be modeled by channels. Specif
i ally, a record creation can be modeled by a channel creation + putting 
the elements into the channel. Reading a value from a record is modeled by 
getting a value from a channel and writing a value to a channel by putting 

a value to a channel. This captures all the aspects we are currently inter
ested in- where and how to insert boxing operations. Second, ABCL/f has 
block expression of Common Lisp, whose value is the value of its last ex

pression or any expression specified by return-from expression in the block. 

For example, a block expression: 

(block L 

(if 

y) 

(return-from L x) 

... ) 

returns x as soon as (return-from L x) is evaluated. Otherwise, it returns 

y when control reaches the last line. For our purpose, the only important as
pect of a block expression is that multiple expressions can become the value 
of the entire e>:pression. Thus it is sufficient to model a block expression as 

1Tbe scope rule ofthee.xte!lded Jet binding is that. of MUs let val bindings1 o·r Common 
Lisp's let• bindings. That. is , the scope of a variable is the body and all bound expressions 
that follow the binding. 
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a (possibly nested) if expression whose branches correspond to all possible 
return expressions of a block. 

B .2 Locations 

Below, we use term "locations" to mean variables introduced by let , regu

lar parameters of procedures, reply channel parameters of procedures, and 
channels. The first three categories are just called "variables". Variables 
introduced by let or regular parameters are called "regular variables." 

We say a value is bound to a location when the location holds the ref
erence to the value. We say a value channel is bound if it is bound to at 
least one location. Assignment, let, touch, reply, and procedure invocation 
change the binding bet,ween locations and values. 

B.3 Boxing 

Where the compiler inserts a boxing operation is represented by three trans

lation functions Bo, B+l, and B00 • Each function takes an expression and 
returns another expression in which boxing operation is explicitly performed 
by box operator. The operand of a box operator is either a channel creation 
expression ($) or a variable. 

Bu(c) 
Bu($) 

Bu(v) 

Bu(v :=e) 
Bu(let v = e in e') 
Bu(if e then e! else e") 
Bu(e <= e') 
Bu(*e) 
Bu(op (e,e'J) 
Bu(e ( e') ~ e") 

Bn (v (v') Cll v" =e) 

c 
box $ (u = oo) 
$ (otherwise) 

box v ( u = + 1 or oo and v is either a let
variable or the reply channel of a procedure) 
v (otherwise) 

v :=B+t(e) 
let v = B+l (e) in B.u(e') 
if Bo(e) then B00(e' ) else B00 (e") 
Bo(e) <= B00 (e') 
*Bo(e) 

op (Boo(e),B00 (e')) 

Bo(e) (B+ t(e')J ill Bu(e") 
v (v') ill v" = Bo(e) 
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The above definition of 8, actually defines three functions Bo ,B+'!. and 
Boo simultaneously. Each of them takes an expression and returns an aug
mented expression. Bv transforms a procedure definition. The returned 
expression or definition is identical to the original, except that some vari
ables and channel creations ($) are wrapped by the boxing operator box. 
When x is a channel, box x allocates a heap channel according to the state 
of x and returns the boxed channel as the value of the expression. Fur
thermore, if x is a variable, box x updates x by the pointer to the boxed 
channel. When x is not a channel, it is nop. In stat ically typed monomor
phic languages like ABCL/ f, whether an expression is a channel or not is 
checked statically. In the following examples, we omit box operations where 

the operand is obviously not a chanr•el. 
An expression returned by 8, guarantees the following two properties. 

• An unboxed channel is never bound to multiple regular variables, a 
regular variable + a reply parameter, or channels. 

• For any sub-expression that may be evaluated to a bound unboxed 
channel, the compiler can find a variable that (must) reference it. 

The first condition says that the set of locations that binds an unboxed 
channel include at most one regular variable and (possibly multiple) reply 
channel parameters. We require the second condition to guarantee that 
operations on a bound unboxed channel can correctly update the variable 

that ref< rences it. 
Let us illustrate the augmentation using a imple example. 

f_and_g (x) ~ r = let s = f (x) ~ $ 
t g (x) ~ $ 

in 

The augmentation of f (x) ~ $ proceeds as follows: 

B+1 (f (x) ~ $) Bo(f) (B+I(x)) ~ B+1($) 
f (box x) ~ $ 

Thus, the entire procedure definition is augmented as follows. 
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f_and_g (x) ~ r let s = f (box x) ~ $ 

t g (box x) ~ $ 

in 
r <= *s + •t 

The regular argument to f and g, which is x, is boxed because it may be a 
channel that is used after these invocations. If x were passed in its unboxed 
form, the sharing relationship between f, g, and the caller would not be 
properly maintained. The reply channels of these invocations , $, are not 
boxed, on the other hand. The protocol described in Section 5.4 guarantees 
that f and g return the updated representation of the reply channel to the 
caller. If, for example, f escapes its reply channel to heap, the reply channel 
is boxed there and the boxed representation is returned back to the caller. 

Consider another example that demonstrates a channel may be box d 
because we otherwise violate the second condition. For example, 

f_or_g (p) ~ r = let s = f (0) ~ $ 
t g (1) ~ $ 

in 

r <= •(if p then s else t) 

is augmented as follows. 

f_or_g (p) ~ r = let s = f {0) ~ $ 

t g (1) ~ $ 

in 
r <= •(if p then (box s) else (box t)) 

In this example, s (t) is boxed despite it is the only location that references 
the channel. This is because otherwise the surrounding • expression would 
not know which channel it should touch, and thus it does not know which 
variable should it update in place. 

B.4 Correctness 

Since we have not developed a formal semantics of the model language, 
we caru10t formally prove the correctness of the above augmentation. In 
this section, we argue the correctness of the above augmentation under the 
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informal semantics described in Section B.1 and the following assumptions 
about code generation: 

• Boxing operation on a variable, box v where v is a variable, updates 
v in place and affects any subsequent references to v. Tills is most 
easily maintained by mapping a variable in the model language to a 
single location in the generated code (e.g., a single C variable) and 
implement ing box v by updating the variable. 

• On a procedure invocation, the callee is scheduled £rst, and, when 
control returns back to the caller, the callee passes the reply channel to 
the caller. The reply channel is boxed when the callee's local variables 
still reference the reply channel. If a caller's local variable references 
the reply channel after the invocation, the caller updates the variable 
by the value passed by the callee before proceeding. 

• In effect, the protocol introduced in the second item 'postpones' the 
bmdng operation, which would normally have to be done as soon as 
a channel is bound to the reply channel parameter of the callee. It 
defers the boxing operation until the caller is scheduled again . In 
other words, a reply channel can remain unboxed as long as it is no 
longer referenced by the callee when control returns to the caller. 

Let E00 , E+1, and Eo , be the sets of expressions that are produced by 
B 00 , B +1 , and Bo, respectively. From the above augmentation rules, it fol
lows that E 00 ,E+1, and Eo are generated by the following syntax: 

Boo c 
box $ 

box v 
v :=E+l 

let V = E+t in Boo 
if Eo then E00 else E 00 

Eo <= Eoo 
•Eo 

op CE ,E 
Eo CE+tl Ill Boo 
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Eo 

c 
$ 

box v 
v:=E+1 

let v = E +J in E +l 
if Eo then Boo else E00 

Eo <= Eoo 

*Eo 
op CE00 ,Eoo l 

Eo CE+1l Ill E +1 

c 
$ 

v 

v :=E+l 

let v = E +1 in Eo 
if Eo then E 00 else E 00 

Eo <= Eoo 

*Eo 
op (E00 ,Eool 
Eo CE+,) Ill Eo 

From the above syntax, we observe the following properties about E 00 , E+ 1, 

and E0 . 

• E00 is never evaluated to an unboxed channel. 

• When E+1 i~ evaluated to an unboxed channel, the value is not bound 
to any location at moment the expression has been evaluated. 

• When Eo is evaluated to an nnboxed channel, the locations that bind 
the value include at most one variable at moment the expression has 
been evaluated. 

Except for procedure invocations in E 1 and Eo, claims are easily verified 
by checking how E 00 , E+1, and Eo are constructed (a formal proof would 
require an induction on the structure of expressions, which we omit because 
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our discussion is already informal). The claim about procedure invocations 
is subtler and requires a precise definition of "the moment the e>:pression has 
been evaluated." From the protocol assumed above, a procedure invocation 
first transfers control to the callee, which eventually resumes to the caller 
either by blocking or termination. We define a proeedure invocation has 
been evaluated when the control returns to the caller, whether the callee 
terminated or not. 

Suppose that an (augmented) procedure invocation f (x) \!l r ( E E+l U 
Eo) has been evaluated to an unboxed channel. The protocol introduced 
above guarantees that, at moment it has been evaluated, the ca!lee's local 
variables no longer bind the value of, .. Furthermore, the value of r is not 
hound to channels, because if it were, the callee must have evaluated an 
expression c <= x, where x is evaluated to the channel. The argumeutation 
rules guarantee that x E E00 , which implies that the reply channel would 
have been boxed. To srun up, at moment f (x) \!lr has been evaluated to 
an unboxed channel, there are no references to the value of ,. either in the 
callee or channels. Now let us verify claims about E+ 1 and EO in turn. 

Whe.n f (x) ®1· E E+ h r E E+l also hold. By the inductive hypothesis, 
we have that the value of r is not bound to any location at moment r has 
been evaluated. This implies that when f (x) \!l r E E+l has been evaluated, 
the value of,. is not referenced by the caller. Since the callee or channels 
do not reference the value of r either, it is not bound to any location at 
all. Similarly, when f (x) <01· E Eo, r E Eo also hold. By the inductive 
hypothesis, we have that the value of ,. is bound to at most one variable 
at moment r has been evaluated. This implies that when f (x) <Or E Eo 
has been evaluated, the value of ,. is bound to at most one variable in the 
caller. Since the callee or channels do not reference the value of,. either, it 
is referenced by at most one variable. 

Having shown the claims about E00 ,E+ h and Eo, we have that: 

• Wllenever a channel is stored into channel, it is boxed. 

• Whenever a cl1annel is bound to a regular variable, either by an assign
ment, a let binding, or a procedure invocation, the channel is either 
boxed or not referenced from any other location. 

• Whenever a channel is bound to a reply parameter, it is either boxed 
or bound to at most oue local variable. 
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What remains to be shown is how to generate code from *C or e <= e' 
where e may be evaluated to an unboxed cllannel. Specifically, we must 
clarify how to determine the variable to update? The following function 
V takes an expression in Eo that may be evaluated to an unboxcd channel 
referenced from a variable. It returns an empty set if the value i not bound 
to any variable or returns the variable that refers to the value, if it is bound 
to a variable. 

V($) 
V(v) 

V(let v = e in e') 

V(e (e') IDe") 

{} 
{v} 
V(e') 

V(e") 

When the code generator emits the code for *Cor e <= e' where e is a cllan
nel, the generated code checks ifV(e) is still unboxed and if it is, updates it. 
Note that a conditional expression is never evaluated to an unboxed channel, 
so we can precisely determine the variable to update, which mu.qt reference 
the channel we a.re operating. 
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