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Abstract

The concept of storage coefficient was discussed based on the theory of poroelasticity. Several
different storage coefficients can be defined by different mechanical boundary conditions and
assumptions on the physical properties of constitutive materials. The specific storage, which is
usually used in the field of hydrogeology, is shown to be defined when the representative elemen-
tary volume is maintained in a state of zero lateral strain and constant stress perpendicular to that
plane. This means that the specific storage is not measured in most laboratory pore pressure tests
because the boundary condition of zero lateral strain is not satisfied. Instead, we measure a
three-dimensional storage coefficient.

In the latter sections of this paper, we present a new method to determine both the hydraulic
conductivity and the storage coefficient through simultaneous measurements of fluid pressure and
strains. In this study, a new endplug with a built-in valve was developed to accurately measure the
poroelastic parameters. Our experimental assembly significantly reduces the extra volume of the
system and is readily adapted to the various pore-fluid boundary conditions. The three-dimensional
storage coefficient was calculated from the volumetric poroelastic parameters obtained from
quasi-static strain data, and the hydraulic conductivity from the transient pore pressure diffusion
data. Transient strain behavior during the pore pressure diffusion stage was used to self-check the
accuracy of the parameters obtained. This technique does not require complicated inversion

calculations and can be used easily for parameter identification.
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1. Introduction

Hydraulic conductivity and storage coefficients
are two parameters necessary to analyze fluid flow
process through porous media. There have been
extensive researches and discussions on the hydrau-
lic conductivities of geological materials.

There have been several researches on determin-
ing the storage coefficient (specific storage) of the
porous medium: one is the transient pulse method
(Neuzil et al. 1981, Wang and Hart 1993, Zhang et al.
2000, Hart and Wang, 2001), and another uses the
transient stage of the flow-pump experiments (Olsen

et al. 1988, Esaki et al. 1996). According to error esti-
mates of the transient pulse method (Wang and Hart
1993), the storage coefficient is measured much less
accurately than hydraulic conductivity. Also, the
transient process of the flow-pump experiments is
affected by the storage capacity of the equipment
(Esaki et al. 1996), and it is not a straightforward task
to determine the storage coefficient of the porous
medium from experimental pore pressure data
(Kameya et al. 2001).

In this paper, we first review the concept of
storage coefficient based on the theory of poroelastic-
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ity. As will be shown in the following section, an
accurate definition of the storage coefficient is given
(Green and Wang 1990), in which the coefficient is
explained by the elastic properties of a porous me-
dium and the compressibility of pore fluid. Thus, it
can be expected that both hydraulic conductivity
and storage coefficient are determined by simultane-
ous measurements of fluid pressure and strains in
experiments designed originally to measure the hy-
draulic conductivity of the medium. In the latter
sections of this paper, we present a new method to
determine both hydraulic conductivity and storage
coefficient directly by measuring both fluid pressure
and strains of the porous medium.

2. Poroelastic theory and the storage coefficient

The storage coefficient is defined as the volume
of water released from storage under a unit decline of
average hydraulic head within the unit volume
(Narasimhan and Kanehiro, 1980; Green and Wang,
1990). This definition is expressed mathematically
as:

1 d?’I’Lf dmf> 1)

dh
where S is storage coefficient, p, is pore fluid density,
mys is fluid mass per unit bulk volume of porous
material, # is hydraulic head, g is gravitational accel-
eration, and P is pore fluid pressure. Because expan-
sion of the water and compression of the framework
both contribute to the released water volume, it is
necessary to understand the precise definition of the
storage coefficients and to use the coefficient that fits
the physical conditions of the problems considered.
In this section, we derive several different storage
coefficients based on the theory of poroelasticity and
show the relationship between these coefficients and
mechanical boundary conditions and/or assump-
tions on the physical properties of constitutive mate-
rials.
2.1 The theory of poroelasticity
The theory of poroelasticity was introduced by
Biot (1941), and developed in the field of applied
mechanics. Recently, this theory has been applied in
the field of earth sciences and hydrogeology (Rice
and Cleary, 1976; Detournay and Cheng, 1993; Wang,
1993; Wang, 2000). The constitutive equations for
linear isotropic poroelastic materials can be written
(Rice and Cleary, 1976; Wang, 1993) as:
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where G is shear modulus, g;; is bulk strain tensor of

1
ms=p0s K

the representative elementary volume (REV) of a
porous medium, gj is total stress tensor on an REV, K
is drained bulk modulus, K is unjacketed bulk modu-
lus, 0;; is Kronecker’s delta, and B is Skempton’s B
coefficient. The total stress g is the total force in the
th direction acting per unit area on the face whose
normal is in the j™ direction. The area is that en-
closed by the perimeter of the face and includes both
solid grains and pores (Wang, 2000). The sign con-
vention follows that of general elasticity; that is,
tensile stresses are positive, extensions are positive
for strains, and increases of pore pressure and fluid
content are taken as positive. The linear approxima-
tion can be considered valid for rocks if strains,
stresses, and fluid pressure are considered to be incre-
mental quantities relative to some reference state.
Thus, the material constants are anticipated to be
functions of the stress and the fluid pressure of the
reference state.

Fluid flow in a porous medium is generally con-
sidered to follow Darcy’s law. Darcy’s law is written
as:

K OP
qi= _,o/—g o (4)
where g; is specific discharge (fluid volume per unit
area per unit time) for i'h direction, and « is hydraulic
conductivity. In the case where fluid source/sink
does not exist in the system, the conservation of fluid
mass is expressed as:
0€psq:) I omy
0x; ot

Assuming that hydraulic conductivity and fluid den-

=0 (5)

sity do not change in space, and substituting equa-
tions (3) and (4) into (5) yields
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where « is Biot-Willis coefficient (Wang, 1993) and is
defined as

_,_ K _1/ K
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where K, is the undrained bulk modulus. Skemp-
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ton’s B coefficient can be written (Wang, 1993) as
1 1

N <___

and hence the equatlon (6 ) 6) becomes

1 0 B
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where ¢ is porosity, K, is bulk modulus of pore fluid,

and K, is reciprocal of the unjacketed pore com-
pressibility. When the solid phase of the porous
material is composed of a single constituent, Ky is
equal to K (Berryman, 1992). Equation (9) is the
general form of the governing equation for fluid flow.
This equation suggests that, in general, the fluid flow
process is coupled with the deformation of a porous
material, because mean normal stress (1/30..) ap-
pears in the equation.

The governing equation for deformation can be
obtained by substituting constitutive equation
(equation (2)) into force balance equation:

00;']' _
—ax,» 0 (10)
and it becomes
3K(1—2v) Y+ 3K 0Oe — OP (11)

2(1+v) 2(1+v) 8x; o
where v is drained Poisson’s ratio, «; is displacement
for i direction, and ¢ is volumetric strain. To obtain
equation (11) we use the relationships among the
drained elastic parameters; that is,

3K(1—2v)
2(1+v)

2.2 Derivation of storage coefficients

G= (12)

In this section, we derive several storage co-
efficients for different mechanical boundary condi-
tions and assumptions on the physical properties of
constitutive materials. We also show that the three-
dimensional storage coefficient (storage coefficient
defined at constant mean normal stress) is the one
that we measure during ordinary laboratory perme-
ability experiments using a triaxial vessel.

(1) Constant mean normal stress

In this situation, the stress term on the right side of
the equation (9) becomes 0 and the equation is treated
as a homogeneous diffusion equation for fluid pres-
sure. Here, the storage coefficient (S’) becomes

_ 1 __bs8a
S pfg[K K, ¢<K, ¢]_ kg 19

Using the style of equation (1), S’ is defined as

0 =0

S’ is named a three-dimensional storage coefficient
(Kimpel, 1991).

Note that during the ordinary laboratory perme-
ability experiments using a triaxial vessel, the mean
Thus, the three-
dimensional storage coefficient is the one we meas-

applied stress is kept constant.

ure.
(2) Uniaxial strain and constant vertical stress
This condition is mathematically written as
en=éen=0,03=0 (15)
This is usually assumed in the horizontal confined
aquifer. Calculating &;; and &y, using equation (2) and
summing them up yields
Ok _ 4KG

3 3K+4G

This equation shows that the mean normal stress

(16)

under this condition is proportional to the pore pres-
sure. Substituting equation (16) into equation (9)

gives
K
6(-E)
1 1 3
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Thus, the storage coefficient is defined as

K
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This storage coefficient is usually used in the field of
hydrogeology and is termed the specific storage
(Green and Wang, 1990). By comparing equations (13)
and (18), the relationship between S’ and S, becomes

_ofy__4GaB
Se=S (1 3K+4G (19)
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Using the style of equation (1), this storage coefficient
(specific storage) can be defined as:

dm
f>£..fe“ 0, 0w =0 (20)
(3) Constant bulk volume
This situation is written as
En=&n=en=0 (21)

It is also possible to define a storage coefficient (S.)
for this particular situation. S, becomes
K/1
se=ore| - +o( L

K K Kf Ky :|
Comparing equations (13) and (22), we can get the

(22)

relationship between S’ and S., and it is written as

—5— 11080
s=8"-mek (-5 ) =5"% (23)
Using equation (1), S; can be written as
en=¢en=€enp=0

(4)
The assumption for incompressible solid constitu-
ents means K/K,<<1 and K/K,<<l.

Biot-Willis parameter becomes unity.

Incompre531b1e solid constituents
In this case,

Thus, the
three-dimensional storage coefficient and the specific
storage become

)

(25)

Table 1.

—+— 26
ng(K K, (26)
respectively. Ky in equation (26) is the drained bulk
modulus under the uniaxial condition and is defined
as

46
3

In this situation, the condition for S. becomes the

Kv=K+ (@7

same as that for the condition of an undeformable

porous framework. See subsection 2.2. (6) for a de-

tailed definition of this coefficient. Equation (26) is

the same as the specific storage defined by Jacob

(1940) and Cooper (1966).

(5) Incompressible solid consituents and pore fluid
This situation assumes K/K,<<1,K/K;<<1,and K/

K;<<1. Here, equations (25) and (26) become

r_ Pr&

S'= K (28)
_ Pr8

S Ky (29)

Under this condition, Biot-Willis parameter and
Skempton’s B coefficient become unity. Note that
the physical properties and the boundary conditions
for equation (29) are the same as those for the Ter-
zaghi consolidation.

(6) Undeformable porous framework

When the porous framework is not deformable, K,

Values of several different storage coefficients calculated from published data. Fluid density is assumed

to be 1,000kg/m? and 9.8m/s’ is used for gravitational acceleration. To calculate storage coefficients with aste-
risks, bulk modulus for fluid is assumed to be 3.3 GPa for data from Detournay and Cheng (1993) and 2.3 GPa for

data from Hart and Wang (1995).

Material G K a B ] s Ss S, S* Ss* s Ss S* S Reference
(GPa) (GPa) (1m) (Um) (Um) | Wm) (Um) | Wm) @/m) | (I/m) | (1/m)
Material K/Ks<<1 K/K<<1 K—oo | K—oo
properties K/K,<<1 K/K,<<1 K~ | Ke—00
K/Ki<<1 Ky;—© | Ky—©
Koo
Ruhr 13 13 0.65 088 0.02 56E-7 3.8E-7 2.4E-7|8.1E-7 3.8E-7 | 7.5E-7 3.2E-7| 5.9E-8 0 Detournay
sandstone and Cheng
Tennessee 24 40 0.19 0.51 0.02 9.1E-8 8.7E-8 8.2E-8 | 3.0E-7 2.0E-7 | 2.5E-7 14E-7| 5.9E-8 0 (1993)
marble
Charcoal 19 35 0.27 055 0.02 14E-7 1.3E-7 12E-7|34E-7 22E-7 | 2.8E-7 1.6E-7| 5.9E-8 0
granite
Berea 6.0 8.0 079 062 0.19 16E-6 1.2E-6 8.0E-7|18E-6 12E6|12E-6 6.1E-7| 5.6E-7 0
sandstone
Westerly 15 25 0.47 085 0.01 22E-7 1.8E-7 1.3E-7|4.2E-7 2.5E-7 | 3.9E-7 2.2E-7| 3.0E-8 0
granite
Weber 12 13 064 0.73 0.06 6.6E-7 49E-7 35E-7|9.3E-7 5.2E-7 | 7.5E-7 3.4E-7| 1.8E-7 0
sandstone
Ohio 6.8 84 074 050 0.19 17E-6 14E-6 1.1E-6|1.7E-6 1.1E-6|12E-6 5.6E-7| 5.6E-7 0
sandstone
Pecos 5.9 6.7 083 0.61 020 20E6 15E-6 98E-7|2.1E-6 13E-6|15E6 6.7E-7| 5.9E-7 0
sandstone
Boise 4.2 4.6 0.85 050 0.26 3.6E-6 28E-6 2.1E-6|29E-6 17E-6|2.1E-6 9.6E-7| 7.7E-7 0
sandstone
Berea 5.6 66 077 0.75 0.19 15E-6 1.1E-6 6.4E-7|23E-6 15E6|15E-6 7.0E-7| 81E-7 0 Hart and
sandstone Wang
Indiana 12 21 0.71 046 0.13 7.2E-7 62E-7 49E-7|1.0E-6 8.2E-7 {4.7E-7 2.7E-7| 5.5E-7 0 (1995)
limestone
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K. and K, become infinity. In this situation, the
storage coefficients become
§=§'=5,=5,= L89 (30)
K,

(7) Undeformable porous framework and pore fluid

The storage coefficient becomes zero under this
condition, and the fluid flow process in the porous
media must be steady state.

Values of several different storage coefficients
calculated from published data are shown in Table 1.
The magnitudes of the different storage coefficients
are in the following order:

§'>8.=85, (31)
S’ is greatest because the least restraint is placed on
the framework as fluid pressure is decreased. S, is
smallest because the bulk volume is held constant,
which means that the volume of fluid released is due
primarily to fluid compressibility. It should be noted
that S” and S, can be different more than two times
for some rock samples (e.g., Ruhr sandstone, Berea
sandstone, and Pecos sandstone). Considering that
pore pressure decay is controlled by hydraulic diff-
usivity (c=k/S), an accurate understanding of the
concept of the storage coefficient and an appropriate
choice of the coefficient for the problems considered

are indispensable.

Air actuator

/

L} T'o fluid pressure

line
- _>

Alr pressure

| - Air-actuated

@: i i valve
=

Rack & |
pinion

To sample

Fig. 1. Schematic figure of the newly developed
endplug with built-in valve,

3. Experiments
3.1 Development of a new endplug

To accurately measure the physical properties of
poroelastic materials, reducing the extra fluid vol-
ume in the measurement system is crucial. For ex-
ample, Wissa (1969) suggested that the total volume
of extra fluid in the system should be less than 3% of
the pore volume in the test specimen. Here, we have
developed a new endplug to accurately measure the
physical properties and to easily control the fuid
boundary condition.

The developed endplug (Figs. 1 and 2) contains a
built-in plug, in which we applied a rack and pinion
mechanism and activated it by an air actuator. The
other (lower) endcap contained a pressure transducer
and measured the pore pressure at the bottom of the
sample (Fig. 3). The concept of the lower endcap is
the same as that used by Green and Wang (1986) and
Hart and Wang (1995). As a result, the extra fluid

volume during the undrained experiments derives

from the fluid between the built-in valve and the

Fig. 2. Photographs of the endplug used in this
study.
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) O S —
Pore fluid Line for
pressure line confining
pressure

Fig. 3. Schematic figure of the experimental system.

sample top (about 0.1 cm® and that between the pres-
sure transducer and the sample (about 0.06cm?),
which is about 1% of the pore volume of the sample
used in this experiment (about 15c¢m?®. Thus, the
physical properties measured with this system are
treated as those for the tested sample without any
problems. Also, changing the fluid boundary condi-
tions (e.g., from undrained to drained conditions) is
easily accomplished using the air actuator.
3.2 Sample description

The sample used in this experiment is Isahaya
sandstone. Isahaya sandstone is of the Eocene age
and has a porosity of about 8%. Isahaya sandstone
has weak bedding planes and we cored samples per-
pendicular to the planes. The cored sample was 5.0
cm in diameter and 10cm in height, and was satu-
rated with dégassed water.

3.3 Experimental procedure

Our experimental procedure was as follows:
1. Four strain gages were glued 90 degrees apart at
the center of the sample (two for circumferential
strains and two for axial strains), and the core side
was sealed with silicone gel and a jacket.
2. Samples were submerged into degassed water
under a vacuum for four to seven days to achieve
saturation.
3. The sample was placed in a hydrostatic pressure
vessel. A nylon mesh 0.2mm thick was inserted
between the endplug containing the built-in valve

Opened the valve

!
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o
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o
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!
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T I
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o
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P
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Fig. 4. Strains and fluid pressure data obtained.
Note that extension is positive for strains.

and the sample to assure that the dewatering occurs
through the whole upper surface of the sample.
4. The confining pressure was increased to 4.9 MPa,
while the built-in valve was kept open for about
three days. Then, the confining pressure was re-
duced to 44MPa and kept constant for one day.
During these stages, the pore fluid line pressure was
kept at 0.78 MPa.
5. The built-in valve was closed and the confining
pressure was increased to 4.9 MPa.
6. The built-in valve was opened, and strain and
pore pressure changes were measured.
7. Similar experiments were conducted by chang-
ing the initial confining pressure to 3.9 MPa and 2.9
MPa (Table 2).

The triaxial vessel was placed in a room at a
constant temperature to minimize the effects of tem-
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perature fluctuations on pore pressure and strain
measurements. Temperature fluctuations were less
than 0.5 degrees Celcius during the experiments.

The data sets obtained from the experiment with
the initial confining pressure at 4.4 MPa are shown in
Fig. 4.

4. Evaluation of experimental data

Our experiments can be divided into three
stages; i.e., undrained, pore pressure decay, and final
steady (drained) state. The deformation at the first
and third stages can be explained by undrained and
drained poroelastic parameters, respectively. And,
the second stage can also be explained by poroelastic
parameters, as long as the sample behaves as a poroe-
lastic medium.

We can get the undrained bulk modulus from
the ratio between the strain during the undrained
state (A in Fig. 4) and the increase of confining pres-
sure (0.5 MPa), the drained bulk modulus from the
ratio between the drained strain (B in Fig. 4) and the
increase of confining pressure, and the Skempton’s B
coefficient from the ratio between pore pressure in-
crease (C in Fig. 4) and the increase of confining
pressure. Poroelastic parameters obtained from data
sets shown in Fig. 4 appear in Table 2.

During the experiments, the circumferential
strains are slightly larger than the axial strains. This
difference may be due to anisotropy of the sample,
however, the reason has not yet been clarified. In
this analysis, the bulk moduli were calculated using
the mean value of measured circumferential and ax-
ial strains.

Because only three independent parameters are
necessary to explain the volumetric behavior of
poroelastic material (Detournay and Cheng 1993), it is
possible to calculate the storage coefficient using
measured K, K,, and B. By substituting equation (7)

into equation (13), we can obtain

, K
s= (%) @

The calculated three-dimensional storage coefficient

was 25X 107% (1/m) (Table 2).

Transient pore pressure and strain behavior dur-
ing the second stage can be explained by solving
equations (6) and (11) simultaneously. To solve these
equations, it is necessary to introduce a fourth pa-
rameter, v (drained Poisson’s ratio). The value of the
Poisson’s ratio must be between 0 and 0.5. Using the
poroelastic properties obtained by our experiments
and changing the drained Poisson’s ratio (0.01 and
0.49), we calculated pore pressure and strains during
pore pressure decay. Figure 5 shows the calculated

—_
]

axial strain (X 107

r
—

(X10°)
)

axial strain
—

|
'21 10"
v =0.01
------- v =0.49

Fig. 5. Calculated axial strains during the pore
pressure diffusion process. Note that the drained
Poisson’s ratio is not sensitive to strains.

Table 2. Parameters determined from this analysis. P. indicates the initial confin-
ing pressure, AP, the change of confining pressure, P, the initial pore pressure.

K Ku B S’ K (m/s) P APc Pp Data
(GPa) (GPa) (1/m) (MPa) (MPa) (MPa)

4.9 11.8 0.68 2.5X106 3.5X101 4.4 0.49 0.78 Figs.4,6,7

4.5 129 0.71 2.8X106 3.8X101 3.9 0.49 0.78 Fig. 8a

3.7 13.6 0.81 2.9X106 3.5X101 2.9 0.49 0.78 Fig. 8b
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%)
I

fluid pressure(MPa)
—_ b

-]
[

time (sec)
------- calculation( k =4 X 107" (m/s))
—— calculation( k =3.5 X 10" (m/s))
----- calculation( k =3 X 10'“(m/s))

o measurement

Fig. 6. Comparison of calculated and measured fluid pressures at the bottom of the sample.
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Fig. 7. Comparison of measured and calculated strain behavior. See text for details.
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axial strains. As shown in the figure, for the initial/
boundary conditions applied in this particular ex-
periment, the drained Poisson’s ratio is not sensitive
to the strains (and not relevant to pore pressure
change). Aoyagi (2000) measured drained Poisson’s
ratio of Isahaya sandstone, and obtained the value
0.10. Thus, we assumed the drained Poisson’s ratio of
the sample to be 0.10.

Then, hydraulic conductivity is the only pa-
rameter necessary to describe strains and pore pres-
sure during the second stage. Figure 6 is a compari-
son of measured and calculated pore pressure per-
formance. The best-fit result for pore pressure decay
was obtained when hydraulic conductivity was set
at 3.5x 107" (m/s) (Table 2).

Figure 7 shows a comparison between measured
and calculated strain behavior at the center of the
sample. Here, the transient extension of the axial
strains at the early stage (about 10 seconds) and
contraction afterwards were recognized both in
measured and calculated results. Circumferential
strains show monotonic contraction. This phenome-
non is the same as that pointed out by Hart & Wang
(1998); that is, by opening the built-in valve, the pore
pressure at the top of the sample is reduced and the
effective stress at the sample top is increased. The
increase of the effective stress made the sample top
contract, and the central part of the sample was
forced to expand to keep the strain compatible.
Then, as pore fluid pressure diffused through the
sample, the center of the sample shrank due to the
increase of the effective stress at that location.

Figure 8 shows a comparison between the ex-
perimental and calculated results under other initial
confining pressure conditions. The measured strain
behavior was reproduced well by the parameters in
Table 2. Considering that the transient strain behav-
ior was not used for determining the parameters, it
can be said that the parameters obtained were reli-
able. In other words, the comparison between meas-
ured and calculated strain behavior during the sec-
ond stage can be used to self-check the accuracy of
the parameters obtained.

5. Conclusions

The concept of storage coefficient was discussed
based on the theory of poroelasticity. It was shown
that several storage coefficients can be defined by

different mechanical boundary conditions and as-
sumptions on the physical properties of constitutive
materials. It was also shown that three-dimensional
storage coefficients were measured in most labora-
tory experiments, because we usually use triaxial
and hydrostatic vessels. Calculations of several stor-
age coefficients from published data suggest that an
accurate understanding of the concept of the storage
coefficient and the appropriate choice of coefficient
for the problems considered are indispensable.

A new method to determine both hydraulic con-
ductivity and storage coefficient through simultane-
ous measurements of fluid pressure and strains dur-
ing experiments that were originally designed for
measuring hydraulic conductivity was presented.
We developed a new endplug to make it possible to
reduce the extra volume of fluid in the measurement
system (less than 1% of the pore fluid volume of the
sample). Using the endplug, the storage coefficient
was easily determined from direct measurements of
poroelastic parameters. By analyzing the pore pres-
sure diffusion process as a problem coupled to fluid
flow and deformation, hydraulic conductivity was
determined; and more importantly, a self-check of
the accuracy of the parameters obtained became pos-
sible. ' This technique does not require complicated
inversion calculations and can be used easily for
parameter identification. Because hydraulic conduc-
tivity and storage coefficient are important parame-
ters for modeling many geologic processes including
the fluid movements and because there have not
been much data on the storage coefficient, while
accurately defining boundary conditions during
measurements, the method developed in this paper
helps to increase our understanding of the fluid flow
process through geological formations.

Notation

B: Skempton’s B coefficient

c¢: hydraulic diffusivity

G: shear modulus

g: gravitational acceleration
h: hydraulic head

K: drained bulk modulus

K:: bulk modulus of pore fluid
K: unjacketed bulk modulus
K.: undrained bulk modulus
Ky: drained bulk modulus under the uniaxial condi-
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tion

Kg: reciprocal of the unjacketed pore compressibility

m¢: fluid mass per unit bulk volume of porous mate-
rial

P: pore fluid pressure

gi: specific discharge

S: storage coefficient (general)

S’: storage coefficient at constant mean normal
stress (three-dimensional storage coefficient)

Ss: storage coefficient at uniaxial strain and con-
stant vertical stress (specific storage)

S.: storage coefficient at constant bulk volume

u;: displacement

a: Biot-Willis coefficient

0i: Kronecker’s delta
volumetric strain

g;: bulk strain tensor of the representative elemen-
tary volume (REV) of a porous medium

k. hydraulic conductivity
drained Poisson’s ratio

or: pore fluid density

o;: total stress tensor on an REV

¢: porosity
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