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Abstract

A representation theorem of the linear piezomagnetic field is
formulated for a homogeneous and isotropic magneto-elastic material.
The tectonomagnetic field is given by surface integrals of the displace-
ment and its normal derivatives over the strained body. This is a
corrected version of previous results (Sasar 1980). Applying the
theorem to a medium including a dislocation surface within it, we
find that the dislocation surface behaves as a magnetic sheet. For a
special type of dislocations where all the stress components are con-
tinuous across the dislocation surface, the magnetic sheet is simply a
double layer, of which moment is given by the inner product of the
displacement discontinuity and the magnetization vector. The seis-
momagnetic moment thus defined is useful to intuitively presume
coseismic magnetic changes, which is demonstrated for the seismo-
magnetic effect accompanying the 1946 Nankaido Earthquake of M
8.1. With the aid of potential theory, the tectonomagnetic field at
the Earth’s surface is found to contain some information of the strain
field at the observation site. This gives a measure of sensitivity of
the magnetic measurement as a strain sensor, which amounts to
roughly 10 g-strain per nT in a strongly magnetized region. The use
of representation theorem greatly reduces efforts of tectonomagnetic
calculations in comparison with the traditional dipole force law. It
is exemplified by actually applying the theorem to the Mogi model.

1. Introduction

SASAI (1980) developed a Green’s function method for calculating the
piezomagnetic anomaly field associated with an arbitrary dislocation model.
In the last section of that paper, another method for tectonomagnetic
modelling was suggested : the piezomagnetic potential can be expressed by
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an integral of the model displacement field and its derivatives over the
entire surface of the strained body. The latter approach has merit in
that we can deal with tectonic models including some differently magnet-
ized blocks, in contrast to the limitation that a Green function derived
by SASAT (1980) is available only to a uniformly magnetized single layer
of horizontally infinite extent. An error was found, however, in the pre-
scribed surface integral formula. Corrections are made here on some of
the previous results. A surface integral approach for tectonomagnetic
modelling is reformulated properly. We will hereafter refer to the pre-
vious work (SASAI 1980) as paper L.

A new theoretical approach to tectonomagnetic modelling was devised
by BONAFEDE and SABADINI (1980). From thermodynamical considerations,
they derived constitutive relations of aeolotropic magneto-elastic materials.
Combining those with the equation of motion and the Ampére-Maxwell
equation, they presented a system of equations in which the coupling be-
tween the displacement and magnetic field explicitly appears. On the
assumption that the Green function exists for the above equations a
representation theorem was formulated for the piezomagnetic vector po-
tentials. Applying the theorem to a magneto-elastic body including a
dislocation surface within it, they showed that the magnetic field due to
a dislocation event such as faulting is equivalent to that of a distribution
of magnetic dipoles on the fault surface, of which intensities are propor-
tional to the seismic moment tensor density through a set of piezomagnetic
coefficients.

This is a clearcut physical image on the tectonomagnetic field caused
by dislocation events. A similar feature was noticed by the present writer
for the basic characteristics of the elementary piezomagnetic potentials,
which are the Green functions associated with point dislocations within a
semi-infinite medium (§ 4 in paper I). He found that elementary potentials
consist of dipoles and some higher-order multipoles placed at the disloca-
tion point and its image points with respect to the Currie depth, so that
a dislocation surface can be regarded as a magnetic sheet. Its entity was
obscured by some mathematical details, partly by taking into account the
Currie point isotherms, which was entirely ignored in Bonafede and
Sabadini’s results. Although Bonafede and Sabadini dealt with the iso-
thermal process, the theory was extended to include a more general thermo-
elasto-magnetic coupling by BONAFEDE and BOSCHI (1980).

Since the Green function for a general aeolotropic medium is assumed
a priori to exist but its definite form is not presented, we cannot actually
calculate the tectonomagnetic field for such a complicated state of matter.
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In fact, Bonafede and Boschi’s seismomagnetic calculation of the Teal
Creek fault (i.e. faulting induced by the Cannikin explosion) was made
for a uniformly magnetized Earth. Very little has been known about the
anisotropy of the piezomagnetic parameters. Hence we are obliged to
regard the Earth’s crust, at most, as an assemblage of differently magnet-
ized blocks : each segment consists of a homogeneous and isotropic magneto-
elastic material. A surface integral representation for a homogeneous and
isotropic piezomagnetic body is still of some practical use.

The present formulation follows traditional Iines of tectonomagnetic
modelling as initiated by STACEY (1964). Some points are discriminated
from Bonafede and Sabadini’s method.

1) The source of the magnetic field is the magnetization in contrast
to the conduction current in Bonafede and Sabadini’s formalism. This
enables us to describe the magnetic field in terms of the scalar potential
rather than the vector potential.

2) The basic equation of the magnetic field is the Gauss law for the
magnetic induction instead of the Ampére-Maxwell equation.

3) An important simplification is that we neglect the coupling terms,
namely the magnetostrictive stresses in the stress equation and the second-
ary induced magnetization due to the incremental piezomagnetic field in
the magnetic induction equation. The problem is thus reduced to an
uncoupled one, in which we may solve a Poisson equation with definite
magnetic sources expressed by the known displacement field.

4) The constitutive law of the linear piezomagnetism is based on the
uniaxial compression tests and its extension in three dimensions by super-
position (e.g. NAGATA 1970, STACEY and JOHNSTON 1972). Apparently it
has the same tensor form as Bonafede and Sabadini’s piezomagnetic para-
meters. The formula applies to stress-induced changes in the remanent
magnetization as well as the susceptibility change, while Bonafede and
Sabadini’s results are derived only for the remanence change.

5) We are concerned here with the static problem. The elasto-dynamic
magnetic change is a future subject.

2. Fundamental Equation and Representation Theorem

The basic equation for the scalar potential of the piezomagnetic field
is given by

P*W =4z div 411, k=2, y, 2) (2.1)

AM, indicates the stress-induced magnetization vector. The above equation



766 Y. SAsAlI

can be derived from the Gauss law:
div B=0 (2.2)

and interrelations among the scalar potential W, the magnetic field H, the
magnetization M and the magnetic induction B as

H=—grad W
B=H+4tM

(2.3)

The displacement field of the elastic material bearing the magnetization
AM, satisfies the equation of static equilibrium under the body force F:

(Z—I—,u)—a%—div Ut 1wt Fy=0 2.4)
k

where 2 and g are Lamé’s constants. We consider a simple case where
the magnetic and elastic properties of the strained material are homo-
geneous and isotropic. We also assume that wu,(r) is already known by
solving the equation (2.4) under appropriate boundary conditions.

The two basic equations (2.1) and (2.4) can be combined to yield the
fundamental equation of the piezomagnetic potential through constitutive
laws of linear piezomagnetism and elasticity. SASAT (1980) presented a
linear relationship between the magnetization change and stress components
as follows :

47, Tex ™ ‘T’yy%i; %sz s %sz (JJ:
i 4], =P —grw s Tyy= f—”‘;ﬂ, —g-ryz Jy | (2.5)
1
1 3 3 _ Tax T Tyy
L 4J, ‘é“fzx ’ ?sz 5 T2z G J,

where S is the stress sensitivity. Note that the equation (2.5) is opposite
in sign to the previous one (eq. (2.18) in paper I). This is because we
now follow the standard sign convention in elasticity (i.e. compression is
negative) in the definition of 8. The new convention has been introduced by
HAO et al. (1982) in order to avoid confusion in the modelling process. It
is noteworthy that eq. (2.5) can be written as

4]= % BT'J (2.5

where 7" is the deviatoric stress tensor, whose component is given by
T =Tma—1/3 Omazy. On the other hand, the constitutive relation of linear
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elasticity is Hooke’s law :

Crm =8 AiV 1+ ,u( SZ’" + g;‘ ) (2.6)

Let us consider the piezomagnetic field associated with each Cartesian
component of the magnetization separately. The stress-induced magnetiza-
tion vector 4M, is obtained by substituting J=J,e, into (2.5): e, is the
unit vector in the k-th direction. With the aid of (2.6), we have the fol-
lowing expression :

By making use of (2.7) and (2.4), we arrive at the fundamental equation
of the piezomagnetic potential :

VW, =4z div AM, =4fer<V U ‘gﬁl‘g‘; F ") (28)
where
1 32+2p
o1 B2+2p 2.9

The boundary conditions at the surface of the magnetic body are the con-
tinuity of the potential itself as well as of the normal component of B.
These are expressed as follows:

Wi=W,_ (2.10a)
[-al@]+= — 4z dM,-n (2.10b)
on J-

where n is the outward normal to the boundary surface S surrounding a
volume V. Thus the problem is reduced to solving the equation (2.8)
under the conditions (2.10).

The above institution of the problem involves some approximations
as summarized in the following :

1) The magnetization of ferromagnetic materials consists of induced
and remanent magnetizations: M=XH-+J, Precisely speaking, 4M, on
the righthand side of eq. (2.1) should include the secondary induced mag-
netization caused by piezomagnetic field changes. This effect is, however,
by two orders of magnitude smaller than the primary part. Thus we
may regard 4M, as a function of stress alone and not that of W.

2) In the stress equation (2.6), we neglect magnetostriction, which is
too small to compare with mechanical strain.

The solution of eq. (2.1) satisfying the boundary conditions (2.10) is
well established (e.g. STRATTON 1941) :
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Wk(r)=—SSS div 4M AMk,,dv+SS AMy-n 2.11)
Vv 10 N ‘0
This is identical to the dipole law of force:
w=\\{ amer(L)av 2.12)
JYV p

which has been utilized in ordinary tectonomagnetic modelling. The func-
tion (47p)~' is the fundamental solution of the Laplace-Poisson type equa-
tions, which satisfies

dﬁp) =—3(r—7) ] (2.13)

p=|r—r|
Substituting the third identity of (2.8) into (2.11) and applying Green’s

theorem together with (2.13), we obtain

C 1
7 (o . . el it
W) =4zCa(r)f(re V)+ 52424 SSSVFk av

+\f,{-c D) oAb e }%Jr (Coau () a?@,(%ﬂdé" (2.14)

where
1 reV)
oreV)= [ (2.15)
0 rev)

The equation (2.14) is a representation theorem of the linear piezomag-
netic field. The previous result (eq. (6.11) in paper I) lacks the term
AM,-n in the single layer potential, so that it cannot fulfill the boundary
condition (2.10b). The continuity of the potential on S is guaranteed by
a jump in the potential value across the double layer, which has already
been discussed in paper 1.

Since we are mainly concerned with the piezomagnetic change in the
free space, we will present here a formula for the potential outside the
magneto-elastic body :

V()= _owr) | 204 g 11 v 5“<_1_>} /
Wr) CkSSS[[ on' T anios dm,-n } p+{“k(, )} o\ dS

G b
JEEYRE:P S‘»F’*;d‘ , (2.16)
where
:_?:. aﬂk .J-,a,,ul )_ by .
A 2(3.@[ Tow, ) M divae. (2.17)
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3. Magnetic Source Equivalents and the
' Seismomagnetic Moment

We have derived eq. (2.16) with the aid of Green’s theorem. This
implies that the displacement field wu(r) and its first order derivatives
must be continuous in V+S, while its second order derivatives be piece-
wise continuous within V. When the magnetoelastic body V involves an
internal dislocation surface %, eq. (2.16) no longer holds as it is. In this
case, we divide V into two parts with a surface S’ including ¥, as shown
in Fig. 1. Then we apply the formula (2.16) to each part separately and

add each other. The unit normal is assigned to point outward, and we
define

Fig. 1. A magneto-elastic body V with its surface S and an internal
dislocation surface 3. n and v are unit normal vectors. S’ is a
subdivisional surface including 3.

y=y_=—y, on 2
(8.1)

Rs . =—Ng. - on S’ besides Y

The contribution of the surface integral from S’ except for ¥ becomes
zero owing to (3.1). IHence we have

Wk: Wk(‘y)"i‘ Wk(S)+ Wk(F) (3.2)

where

=] femnir 2250 am o2

o e @ (1]
[ <F> lax (3.3)
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I4’k<s’=CkSSsH"grad up(r) -+ Adt ) Am"} °n(%>

32-+2p
m 0 (1 } o
<2, (—p—) ds (3.4)
and
o Cr Fy 3
W= g ou SSSV o av (3:5)

The symbol [ 1t represents the discontinuity of the quantity within the
bracket.

Let us investigate the characteristics of the dislocation-related potential
W.®. 1In case of natural dislocation events within the Earth such as seismic
faulting, dyke formation by intrusive magmas and so on, no external force
acts upon the dislocation surface. Hence the traction across 2 must be
continuous. Then we obtain

WS =C, SS: { |:grad w (1) — % (div u)ek]: . u(%)

- [uk(r’)]i—;;e‘)—)}d)? (3.6)

Further, we often prefer a simple model, in which all the stress com-
ponents be continuous across the dislocation surface, as is the case with
the Volterra dislocations. In this special case, all the spatial derivatives
of the displacement become continuous, and the single layer term in (3.6)
vanishes. Eq. (3.6) reduces to

Wk‘):>:-CkSS [uk(r’)]t—a—<—l->d2 @)
z ov \p
Summing up for k=%, ¥, 2, we have a resultant potential W as follows :
we=(| mi<l>d2 | 3.8)
z Oy \p
where
m=—Cye,;-du (3.9)
1 3224
c=1 ‘- 10
0 5 ABJ/" 1+ p (3.10)

es is the unit vector in the magnetized direction, du the vector representa-
tion of the displacement discontinuity and J the intensity of the total
magnetization. Thus the piezomagnetic field accompanying a dislocation
surface is equivalent to that of a double layer X, whose magnetic moment
is given by (3.9).
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At far-field distances, where we may regard the earthquake fault as
a point source, we have an expression :

W<f>=M_a_<l) (3.11)
dv \p
where
1 ,31+2
M=— g 242" JM, cos
2P gy sy (3.12)
o=(J, du)

M, is the seismic moment (i.e. My=pduA; A is the fault area. See
text: e.g. AKI and RICHARDS 1980). ¢ indicates the angle between the
magnetization and the slip vector. The magnetic moment given by (3.9)
or (3.12) is suitable for measuring the seismomagnetic effect. For an
earthquake fault, we may call M the total seismomagnetic moment and
m the seismomagnetic moment density.

The important result in this section is that the dislocation surface
within a magneto-elastic body is nothing but the sources and sinks of the
magnetic lines of force. The surface magnetic source distribution in eq.
(3.6) corresponds to the magnetic source equivalents as named by BONAFEDE
and SABADINI (1980). In general Somigliana dislocations, we have not
only the double layer but also the single layer. The total intensity of
these monopoles summed over the dislocation surface should vanish, or
else their counterpart should appear in the surface integral term W, .

(a) (b)
Fig. 2a. The total field magnetic change associated with a vertical rectangular
strike-slip fault with the magnetic N-S orientation (reproduced from Fig. 8(d)
in paper I).
Fig. 2b. The total field magnetic change of the same fault but with the magnetic
E-W orientation (reproduced from Fig. 10(d) in paper I).
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The concept of the seismomagnetic moment is useful for intuitively
understanding the dislocation-related magnetic field near the dislocation
sources. Note that the type of dislocations is not limited to the shearing
offset but is allowed for the tension crack. Moreover, eq. (3.9) tells us
that the intensity of the magnetic source equivalent or seismomagnetic
moment depends on the angle between the magnetization and the disloca-
tion vector. In some instances the seismomagnetic moment becomes null,
e.g. an E—W striking fault. In fact the magnetic field significantly
diminishes in the case of the E—W striking vertical transcurrent fault
as compared with the N—S fault, which is demonstrated in Fig. 2a and
2b as reproduced from paper I. However, the magnetic field does not

completely disappear, owing to additional terms W, and W,* in the
total potential (3.2).

The Seismomagnetic Effect of the 1946 Nankaido Earthquake

Now we are to interpret the coseismic magnetic change associated
with the 1946 great Nankaido Earthquake of M 8.1, Japan (KATO and
UTASHIRO 1949 : Fig. 3). This is one of the most notable seismomagnetic
effect detected with a reliable observation technique, as reviewed by
NAGATA (1969). Fig. 4 shows the fault model of the Nankaido earthquake
determined by IWASAKI and MATSU'URA (1981). Their model consists of
two thrust-type fault planes. Notice that Katsu-ura observatory is located

WESTWARD DECLINATION AT KATU-URA. XIl PENINSULA
207 -
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{AFTER KATO and UTASHIRO}
Fig. 8. Changes in the declination at Katsu-ura Hydrographic Observatory associated
with the Great Nankaido Earthquake of 1946. Unit in minutes of are. Westward

positive. Referenced to Kakioka Magnetic Observatory. (Original: KATO and UTA-
SHIRO 1949. Reproduced from NAGATA 1969).
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132° 134° 136°

L] T T

Fig. 4. A fault model of the 1946 Nankaido Earthquake, consisting of two thrust-type
faults F1 and F2. The black circle at the eastern edge of F1 indicates Katsu-ura
observatory. (After IwASAKI and MATSU’URA 1981).

Table 1. Fault parameters of F-1 and the field direction
(After IWASAKI and MATSU’URA 1981)

fault length 122 km
fault width 38 km
depth of burial 2.3km
dislocation (thrust) 3.0m
dip angle 158 deg.
slip angle —112 deg.
mag, inclination 47 deg.
mag. declination (West) 6 deg.

Jjust on the eastern edge of the fault F-1. Fault parameters and the
direction of the ambient magnetic field are listed in Table 1.

The slip vector is roughly anti-parallel to the geomagnetic field, so
that the seismomagnetic moment of this earthquake is expected to be
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large with its magnetized direction being upward. A uniform slip over
the whole fault surface produces a uniformly magnetized plate magnet,
whose magnetic field is equivalent to that of a line current along the
perimeters of the fault. The current circulates anti-clockwise as viewed
from above. Katsu-ura is just above a line current flowing northward
along the eastern periphery of the fault, which results in the horizontally
east magnetic field. Thus an idea of the seismomagnetic moment success-
fully explains the eastward coseismic change in the declination as de-
picted in Fig. 3.

Another remarkable phenomenon is the gradual recovery of the co-
seismic change of up to 30—40 % T after a five months’ period. HAMANO
(1979) argued that the coseismic change may be ascribable to the production
of PRM, and the postquake recovery to its disappearance because of the
magnetic instability. In this paper, we do not deal with the PRM and
the irreversible piezomagnetic effect, which are not in linear relation to
stresses (NAGATA 1970). It is not clear at the present stage that the
PRM effect could interpret the coseismic change. Another possibility was also
suggested by Hamano that any gradual crustal movement might have caused
the postseismic changes in the D component. If this were the case, it
would be natural to presume an eastward extension of aseismic faulting.
The equivalent line current beneath Katsu-ura recedes eastward : the hori-
zontally eastward magnetic fleld diminishes while the upward field prevails
instead. Thus we might expect the decrease in the inclination at Katsu-
ura during the postquake period. Unfortunately, observations of the geo-
magnetic dip were not conducted in those days at the Katsu-ura hydro-
graphic observatory (UTASHIRO 1982 : personal communication).

4, Tectonic Strain and the Corresponding Magnetic Field

In paper I, we discussed the general relationship between the crustal
strain and tectonomagnetic changes as deduced from the representation
theorem. Some portions of the previous argument should be altered ac-
cording to the revised theorem (2.14).

In an infinite magneto-elastic medium, the correspondence between the
piezomagnetic potential and the displacement field is most precise. Disre-
garding the source terms W, and W,“”, the potential is simply propor-
tional to the displacement :

W (r)=4zCu(r) (4.1)

The total field change in the medium is given by
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AF =—4zC, a;;g (4.2)
where
u,=u, cos y+u, sin I 4.3)
0 ] . 0
—_— . praaad —_— I —_— 4.
57 ey COSIOa.’I: +sin L— (4.4)

C, is already defined by (3.10). The unit vector e, indicates the direction
of the ambient field which is assumed to coincide with that of the uniform
magnetization e,. For a model earth with material constants f=1.0X10"*
bar~!, J=1.0xX107*emu/cc and 1=p=35x10"cgs, 1 nT change in the total
field corresponds to a strain change of 1.8X107°. This gives a measure of
the sensitivity of a magnetometer as a strain gauge. Since we follow the
standard sign convention of the stress field, the simple extension along e,
axis brings about the decrease in the total field.

Actually, magnetic measurements are made in the free space, where
the analogy between the strain and the piezomagnetic field fails. The
surface magnetic field, however, does contain some information of the
crustal strain just at the observation site. Applying the formula (2.16)
to a magnetic medium bounded by the free surface z=0 and the Currie
point isotherm z=H, we obtain the potential in the free space (2<0):

Wir)=W, 0+ W, D+ WS+ WP (4.5)

where

I I

Wk(H):CkSgw H~ au,k~+dmkz}l+{uk(r')} 0 (—l-ﬂ da'dy’ (4.7)
Joo 0z 0 02" \ p/lu=n

We take the z axis in the magnetic north direction and the =z axis
positive downward. Taking into account the traction free boundary con-
dition at 2’=0, we obtain

o= ]| 2L~y 2 (%)}dxdy
- (4.8)
vl 228 (2] (2], e

Now we apply two theorems on the derivatives of single and double
layer potentials when a point approaches the source layer. Proper condi-
tions should be assumed for the surface curvature and the smooth-
ness of the surface density distribution (KELLOGG 1929). The normal
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derivatives of a single layer potential U with a surface density o¢(p) on
the positive and negative side of the layer are given by

<ag:> >+:_2M<p>+SS;<p a?@' <%>d5/ 1

(30 oot 1 £, (2o |

‘On the other hand, tangential derivatives of a double layer potential U
with a surface moment density p(p) have a similar property :

(agtw >+:2”a/ﬂa(tp) SS #) atan ( )ds’

(P57 ) =225 o (1)‘”

ot ot

A proof of this theorem is found in COURANT and HILBERT (1937).
(The sign of the first terms on the righthand side should be exchanged
in eq. (6.17) in paper I, which was a misprint.) Since the
source layer is simply a plane, integral terms in egs. (4.9) and (4.10)
vanish.

Applying these formulas to derivatives of W, and W.,®™, we obtain
the magnetic field arising from the free surface potential W, :

4.9)

(4.10)

du; o AU,

AX(O):’_27CCO a o—afx— (4.113.)
0
AYO=—27C, %% ¢, 00" (4.11b)
oy oy
47® = —9:C, W0 ¢, OV (4.11c)
0z 0z
where
Up=U;— —Q%Fﬂuz sin I, (4.12)
U,;°>=SS uy 1 } do'dy’ (4.13)
Y o der=+0
0 — - __a_<_]_~_> ’ ’
o=\ Ju,L : ], ady 414

The contribution to the total field is given by

_ ouy _ 2(2+p) Ou. I)
A4AF —2r Co( TR N 7 sin
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0
—Co< U, cos I,+ ov,® sin Io> (4.15)
ox 0z

The first term of eq. (4.15) represents a linear combination of the surface
strain components just at the observation site. In paper I, the correspond-

ing term was simply —ZnCo—aﬁf-(i. e. eq. (6.22) in paper I: the sign is

of
opposite because of new stress convention for g), which was incorrect.
owing to overlooking the boundary condition (2.10b).

If the first term of 4F“ in eq. (4.15) is a representative of the
resultant total field as estimated from the total piezomagnetic potential
(4.5), the tectonomagnetic observation is nothing but a kind of strain
measurement. However, things are different from such simple circum-
stances. In the next section, we will apply the representation theorem to
obtain the piezomagnetic field associated with the Mogi model, in which
we will find each term in eq. (4.5) having the same order of magnitude:
some cancel and other augment each other. Moreover, the latter integral
terms in eq. (4.15) are comparable with the first one. In the special case
of the Mogi model, 4F® is actually zero: the first and the latter terms
completely cancel each other.

Thus we cannot say anything definite about the strain change just at
the observation site by the magnetic measurement. Although the direct
correspondence between the piezomagnetic field and the pointwise strain
fails in the free space, we may say that a few n7T changes are expected
around the strain fleld of 107° with a magnetization of 107* emu/cc.

5. Piezomagnetic Field Associated with the Mogi
Model—Application of the Theory

The Mogi model was introduced to interpret surface deformations:
accompanying volcanic eruptions (MOGI 1958). Mechanically it is a center
of dilatation within a semi-infinite elastic solid. The piezomagnetic change
associated with the Mogi model was computed numerically by DAVIS (1976).
SASAT (1980) analytically solved the problem for the point pressure source.
The latter approach was essentially based on the dipole force law (2.12),
in which the volumetric integration was achieved by the double Fourier
transform and its inverse. By applying the representation theorem (2.16)
we can easily get at the same result.

The displacement field due to a center of dilatation at a point A(0, 0, D)
within a semi-infinite elastic medium is given by (MINDLIN and CHENG
1950, YAMAKAWA 1955)
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2p @ 2+3p . _ 6xz(z-+-D) 1
s ok + it RS RS (5.1a)
2p  _ 2—D (2—p)z—(A+3p)D __ 62(z+D)* 5.1b
C T TR T T G Ry 7 (5.1b)
where
Ry ={w*-+y"+ (= D}
(5.2)
Ro={a®+ g+ (2 DY)
The moment of a strain nucleus C may be given by
C=—Lgap (5.3)

2

provided that a small sphere of radius a centered at A is pumped by
hydrostatic pressure 4P. The upper crustal layer bounded by z=0 and
2=H is assumed uniformly magnetized. When the Currie point isotherm
is deeper than the pressure source, the singular point A is included in the
integrated area. We then subdivide the magnetic layer into two parts:
the upper layer is bounded by z=0 and z=D—¢, (¢,—0), while the lower is
bounded by z=D-t¢, (,—0) and z=H. According to the surface integral
formula (2.16), the total piezomagnetic potential consists of contributions

from these four sheets.
The contribution from the free surface is represented by

_ZLWZ(O):___ 2(2’!"2#) C SSN ’V_:))?:Di 1 +i, i{]dx/dy/ (5'43)

c e NSRS R
2u o 2(2+2p) SS“’ < 1 8D2)1 D z} i
LR W= SLTAR — == = |dx'd
C Z_‘_# _Jr R03 Roﬁ Po+ R03 P03 ».’X/' Y
(5.4b)
where
Ry=(a"2+y"?+ DY)
. (5.5)
= la =)+ (y—y ) 2

By taking the Fourier transform, the convolution integrals in (5.4) are
converted into the products of each transform in the wave number domain.
All the required Fourier transforms and their inverses are tabulated in
SASAI (1979). The Fourier transforms of W,™s are given as follows:

20 7 0t 2 [ g -]
C A+ « a

=0 (5.6a)
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—?—;—I——WZ(O)=47r A+2p C, e—a(D+|zl)+_z_e-—a(D+lzl)}

=0 ¢ j2l=—2, 2<0) (5.6b)
Thus we have
WO=W,0=0 (5.7)

Although the integrands in eq. (5.4) are not pointwise zero, the single and
double layer terms are equivalent to dipoles placed at A and they com-
pletely cancel each other. Such a circumstance is not generally seen
because the vertical strike-slip fault, for example, has a non-zero W,?

component,
The contribution from the Currie point isotherm is expressed as
follows :
2p "y _ K * { 32+4p o' (H—D) ( (2—/1 6 >
2L W, =C, 3i— — + H
C . S_J: 32+2p RS + A+p 324+-2p
+<2+3y . 2p )D\\ % 4. 1032+44) H(H+D)2x'}i
At p 32+-2p /) R} 32+2p Ry On
. x _ /Z""S[,t @ 66U’H(H“i‘D) } Z“—‘H:|d 'dy’ 5.8a
{ R13 /2"‘[,! R23 + st ‘0113— vy ( ) )

20t SS” { 3-+dp [ 1 | 3(H—Dy _a—p 1
S-W. =, —. - —
C I— 32“"2/,5 R13 + R15 /2"["/1 st

—00_

+3( TA+5u Ha A M D\ H+D 30H(H7—I—D)3J

At pt Atp ) RY R,
L 8¢ [ 1 _3(H+D)2}} 1 —{_H
32+2y L R Ry 02 R?
+<— ;;z H+ ';iiﬂ D) }%23 . GH(JIijD)Z} z‘;g{}dx’dy’ (5.5b)
where
Ry={z"+y"+(H—D)}" ]

Ry={a"+y"*+(H+ D)} (5.9)
on={(w—2")+(Yy—y' )+ (z—H)}"” J

Taking the Fourier transforms of (5.8a) and (5.8b) and inverting them, we
obtain
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2u . x |, 6(A+p) ¢y 3xD
AE Ty an—y Cxl:_*‘-ﬂ—”*i“*” 202 3
C T 32+2p pf  3A+2p 05

— 3+ &ﬁ} (H>D)

32+2 3
oo (5.10a)
wﬂ__ﬁ} (H<D)
32+2un pf
2# Hy . [ ﬂ D3 6(2"*"#) < 1 3D32 >
L W =ypC,| H g MTE g — =
C i 3A+2p o + 3242 0 05°
— _?’Q_":ﬁ)_&} (H> D)
312 o)
~ (5.10b)
— *!1,7/21] H<D
l sirap or)  HSD
where
o0:=(x*+y*-+ D"
(5.11)

D,=D—z, Dy=2H—D—z, D,=2H~+D—z

Finally, the contribution from the pressure source W,” is considered
as the sum of W,2-*® and W,P**® passing to a limit by diminishing e

and ¢, infinitesimally :

WP = lm (7,20 W0+ (5.12)

£1—0

£0—0

WP-0 ig obtained simply by replacing H with D—e in eqgs. (5.8), while
W, P+ is equal to the negative of egs. (5.8) replacing H with D-e
because the outward normal vector points upward. Correspondingly we
have solutions for W2~ as the H<D case of egs. (5.10) in place of H
with D—e, and for W,2*® as the negative of the H> D case of egs. (5.10)

in place of H with D+¢. Thus we have

20 17— A4y w

2 gy w=yre, 34T L 5.13
C gy pf (6.13a)
28 gy = grC, Do (5.13b)
C Pl

These terms appear only when the pressure source is buried in the mag-

netic layer.

Summing up (5.7), (5.10) and (5.13), we arrive at the piezomagnetic

potential associated with the Mogi model:
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z_ﬂwzzzmcx[ Z ( @ _i>+ 6(2+ 1) 77 30D,

C 32+2p F P33 32+2p p35
3(A+p) (_x__ x)J H>D
[ 32+2p p13 ? ( ) .
(4.14a)
l 0 ] (H<D)
20 [._ﬂ*<&__£s_> 6(+p) (1 31);)
c Wz 47rCz 3/2’{‘2[1 p13 p33 -+ 32—]—2‘(1 ( P33 p35
3(Z+‘u)<D1__£2_'{ IS D
[ 322 »pwf’r p23) (H#>D)
. (5.14b)
[ 0 J (H< D)

These are quite identical with previously obtained solutions by SASAI
(1979), in which more complicated and lengthy manipulations are required.

The same procedure as exhibited in this section is applicable to derive
elementary piezomagnetic potentials. It would diminish much of the
effort of volumetric integrations as conducted in paper I. Applying the
representation theorem to dislocation sources within a semi-infinite elastic
medium, we can discriminate each term of elementary potentials as orig-
inating from the Earth’s surface, the Currie point isotherm and the
dislocation source respectively.

6. Discussion

Since the magnetic layer occupies only a limited portion of the crust,
we must be careful to apply the concept of the seismomagnetic moment
to the actual Earth. How can we imagine the seismomagnetic effect if
the earthquake fault intersects the Currie point isotherm or the whole
fault lies beneath the Currie depth? To answer the question, we must
know the displacement field caused by dislocations in a semi-infinite elastic
medium (i.e. MARUYAMA 1964). In paper I, we have obtained the piezo-
magnetic potentials associated with elementary dislocations on the basis
of Maruyama’s solutions. The elementary piezomagnetic potentials consist
of dipoles and multipoles at the dislocation source and its image points.
This is true even if the dislocation point is located beneath the magnet-
ized layer.

Fig. 5 illustrates a typical example: i.e. the equivalent magnetic
sources of the seismomagnetic effect associated with a two-dimensional
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Fig. 5. Equivalent plate magnets showing sources of the seismomagnetic effect asso-
ciated with an infinitely long vertical strike-slip fault in the N-S orientation. H
is the Currie depth. 0, H and Y indicate that the magnets correspond to the
surface integral terms W@, W% and W2’ respectively. (Rewritten from Fig.
T in paper I).

vertical strike-slip fault. Now we can interpret these magnets as those
corresponding to three surface integral terms W,, W, and W.* in eq.
(4.5), which are specified in the figure. Clearly the seismomagnetic mo-
ment alone is insufficient to totally represent the coseismic magnetic field.
When the fault lies within the magnetic crust (case I), the overall feature
of the coseismic change can be described by the seismomagnetic moment,
but its intensity should be doubled owing to the term W.,®. When fault-
ing occurs beneath the Currie depth (case III), the dislocation-related term
W, does not exist. Nonetheless the term W,® produces a bar magnet
Jjust at the fault position, its intensity being the same as the seismomags
netic moment which might be defined in a semi-infinitely magnetized
Earth. Case II is rather complicated, in which the Currie depth term
W, has a certain influence. In any case we may qualitatively presume
the coseismic magnetic field by a plate magnet at the fault position, whose
magnetization is given by the seismomagnetic moment. The rigorous solu-
tion should be obtainable by integrating elementary potentials over a
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dislocation surface. Seismomagnetic calculations of a rectangular fault
with an arbitrary orientation, dip angle and slip vector are now in pro-
gress and will be published elsewhere (OHSHIMAN and SASAI, in prepa-
ration).

In case the magneto-elastic body is too complicatedly shaped to obtain
analytic expressions for the displacement field, we need numerical values
of the displacement and its derivatives at discrete points on the surface.
The boundary element method (BEM) seems suitable for such a purpose
(see text: e.g. BREBBIA and WALKER 1980). The surface integral method
developed in this paper is similar to the BEM. Actually the basic idea
of reducing the volume integral to a surface one is common in both
methods. Only the boundary values of the displacement field are required
to get at the tectonomagnetic field. They would be obtained by numeri-
cally solving the boundary integral equation for the static equilibrium
problem (2.4).

The representation theorem tells us that surfaces of an isolated
magnetic body are sources and sinks of the magnetic lines of force. Hence
we may expect the enhancement of tectonomagnetic signals near the edge
of differently magnetized blocks even if these boundaries are not mechani-
cally singular points. In computing the tectonomagnetic field in such
cases, the surface integral representation (2.16) will provide us with a
powerful means for more accurate and less laborious modelling than the
ordinary volumetric integrations.
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35. WMIPv= VHSELOmE T X 5EE

HoFEBFET 7 H O —

ek (1980) X —EEEE A MIEARDTBA TSI, = VKR TETBREY, o
ROFMAEN L BREMH OEWI S TEERT IR B, ZOERLO—FICE Y 23 - LD TEE
L, b¥®THHID ZDSRIANE EEYTRTc. EHELTHTRE, RAU X5 7T ERMERN
BONAFEDE and SABADINI (1980) i X » T fTisdbh, —IROBEERMEMIEAEDIED BtGD~
7R BT VY e ARDOWTORBEIESELR TS, EHOFE T, BMEEBEOREGR &
Ly AW T — o BF vy 5 LTHEREMRTS. STACEY (1964) LIROKEICHE~T, BWEEZR
WHER LR EE L, B GBI OIC IR RS- 7. WBROWTDF Y AD
LA E A ORH2 Y B OoREE, HMIAMEROHEEN = vyREARE7 v 708
A CRAE LT, AEHTERAEL. ChREMG TELINLERELFOHE T VY vIHERC K
% REDHEASDEDOREY 7 ) —vOARYACTEFR LT, LRoRBEEYEL. coR%
SWIBWEZEUHERCERATS &, WERVEADCMBIC MAW—ER L ZHEABlbh S,
L WEWH L T TOIRIRS B EF S (TarT IR VLEWEIRIhIRYS), —EHE
DIPEEDY, FOWRE— 4 VIFELVEVWEIBENZ P v ORBTELORS. ZoRIHE
BT EDOKR ELXFELTORRELDOT, IhEPHEHHMRE— 2V P ERESZ LT 5. b
BHHERE—~ 2 v POELYRVE &, WECH S MK Lo B IRT 5 OB ES
Zind. —fl& U TRARBIEECE - R ZE{t (KATO and UTASHIRO, 1949) #324%
L, BZNED, BAOHREINEINWS Z ERR L. EREROHM L. BEARKTF VY »
LYY, RS LBOEEGEATHINS. HF vy » AROTEEEY BT, HZFHTOREZL
NEDEDOBEADH BT L EBE S LR L. Ak, 10 p-strain BEEOT K
LT, 1nT OMBEL bt ds. L LEROBSELRZ TR UADEOTENAEL,
BN E BB EOBLET 2T - Tob Eitwb 2o, BRERR A L (M0GI 1958)
CHALT, ZhicfEd MRSy RDI:. FHRIZERBLh T IS & 57 (SASAI
1979) L& —F, T35, AROFBECIZFNELLHERLZHNTES. HBOMER TR
OEIUIERL Thioiod, HEHMBEES T— AV F OELYFOEEI[ATERN L1 S
W LU 2 kT E e STl JER o ER B d, B EMENRS T~ AV M &
FLVWESTEEN LIS, RECAROFESERERE LFEMCRATZ 220 Tn 3
ok, WREMTIROMEMIERT X DS RERCRD 5 DI, BREEEIENTHSE
i,



