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Abstract

A study of infinitesimal and finite amplitude convections in two
layered immiscible fluids heated from below is presented. In the
marginal stability analysis, changing the parameters, e.g. geometrical
constraints and viscosity, we find that there are two modes of coupling
between the upper and lower convecting fiuids as was previously pointed
out by UKAJI and SAWADA (19704, b, 1971). The first is the ‘mechanical
coupling’ in which the horizontal component of the velocity near the
interface between two fluids runs in the same direction. The second
is the ‘thermal coupling’ in which the horizontal component of the
velocity near the interface runs in the opposite direction. If one of the
two fluids becomes more unstable, it drags the other. This is clearly a
modified ‘ mechanical coupling’ mode which we tentatively call the
‘dragging mode’. The thermal coupling may be a more excited state
than the ‘mechanical coupling’. Several stability curves obtained by
the analysis can be roughly explained in terms of the instability in
each layer. In the study of the finite amplitude convection with the
infinite Prandt! number, we calculate the Nusseldt number, temperature,
stream function and vorticity for various Rayleigh numbers for three
kinds of models. The calculated Nusseldt number—Rayleigh number
relations are explained by a simple parameterized analysis in spite of
the non-linear nature of the problem. This parameterization is possible
because the interface between the two immiscible fluids is a plane of
almost zero shear stress and the temperature at the interface is nearly
constant. Thus, the efficiency of the heat transport can be estimated
as follows;

1) caleulate ‘local’ Rayleigh numbers defined for each layer.

2) assume that the Nusseldt number—*local’ Rayleigh number

relation for each layer is the same as that of ‘one’ layer.

3) formulate the equation of continuity of the heat flux at the

interface.
As a result of procedure (3), we can obtain the temperature at the
interface and also the total heat flux flowing through the convection
system. Well developed thermal boundary layers are formed at the
top and bottom surfaces and the interface, when appropriately defined
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Rayleigh number many times exceeds the critical Rayleigh number. All
the flow fields obtained in the study of the finite amplitude convection
are of the ‘mechanical coupling’ mode. This mode may exist in the
mantle, if the mantle consists of several independently convecting layers.

1. Introduction

There are two main kinds of models of the covection in the mantle.
One is the ‘whole mantle convection’® model having the cell size of
mantle-wide scale (DAVIES, 1977; ELSASSER et al., 1978), and the other is
the ‘layered convection’ model in which the mantle is divided radially into
several convecting systems between which no or only a small mass ex-
change exists (MCKENZIE and WEISS, 1975, RICHTER, 1979). A distinction
between these two models may be found from observations such as heat
flow, gravity field, world-wide plate motions and geochemical evidence.
Unfortunately, as discussed frequently, because plates screen the infor-
mation from the under-plate structures, inverse problems of revealing the
pattern of the convection in the mantle from the surface data is difficult
to solve. For example, the first order heat flow distribution in the oceanic
area can be explained by the simple plate model in which a plate cools
as it moves away from the ridge (SCLATER et al., 1980), so that we cannot
easily find the thermal anomalies which may be related to the flow
beneath the plate.

Previous arguments on the convection in the mantle were mainly
based on the theory and experiment of ‘one’ layered convection (e.g.
MCKENZIE et al., 1974; RossBY, 1969). The main results concerning the
simple Rayleign-Benard type convection (i.e. constant physical properties,
heated from below. etc.) obtained up until now may be summarized as
follows:

(1) Convection (or instability) sets in only when the appropriately defined
Rayleigh number becomes equal to or greater than a certain eritical
Rayleigh number of about 1000 which is weakly dependent on the boundary
conditions (CHANDRASEKHR, 1961).

(2) The effciency of heat transport is measured or represented by a
Nusseldt number (the ratio of the total heat flux carried by the convec-
tion and conduction to the hypothetical heat flux carried when only the
conduction is assumed). If the Rayleigh number is much greater than
the critical Rayleigh number and the Prandtl number is also many times
larger than one, the relation between the Nusseldt number (Nu) and the
Rayleigh number (Ra) is roughly expressed as,

Nu=>b(Ra/Rc)" (1),
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where @ and b are constants of about 0.3 and 1 respectively and Rc is
the critical Rayleigh number. This formulation has been confirmed by
both experiment (ROssBY, 1969) and numerical simulations (MOORE and
WEIss, 1973).

(3) When the Rayleigh number is large enough, there appears a
boundary layer where the temperature varies rapidly, and a viscous core
where a nearly constant temperature (or adiabatic temperature gradient,
if the compressibility cannot be neglected; JARVIS and MCKENZIE, 19'79)
is attained (TURCOTTE and OXBURGH, 1969).

(4) The above simple formula for Nu and Ra (equation (1)) can be
derived from the boundary layer theory (TURCOTTE and OXBURGH, 1969;
McKENZIE et al., 1974).

(5) The aspect ratio of the convection cell is nearly one. This is one of
the reasons for rejecting the simple correspondence between the plate
system and the convection (especially so when the convection is supposed
to be confined in the upper mantle).

If the mantle is divided into a few convection systems radially (RICHTER,
1979: ANDERSON, 1980), there arises a situation different from that of
‘one’ layered convection because of the thermal and viscous coupling
between convections. In this study, to investigate these problems, we
first conduct a marginal stability analysis and secondly we model the
‘pseudo’ (the meaning of this terminology will be given in section 4 of
this paper) two-layered convection. We will show that, if the convection
becomes highly vigorous, a simple parameterization in the sense of super-
position is applicable in spite of the non-linearity of the problem. To
understand the dependence of the convection on specific parameters (e.g.
viscosity, geometry) we construct a fairly generalized model instead of
attempting to make the model as real as possible. Results obtained by
our approach will be useful, when, in the future, we will have determined
the parameters which are not well constrained now. Also, we may be
able to use the results in the study of the earth’s thermal history by the
‘parameterized’ convection approach (MCKENZIE and WEISS, 1975; SHARPE
and PELTIER, 1979).

2. Marginal Stability Analysis

The model which we are considering is illustrated schematically in
Fig. 1, which is modified from ZEREN and REYNOLDS (1972). The convec-
tion system consists of two immiscible fluids, distinguished by subseripts
1 and 2 (1=upper, 2=lower), having constant physical properties. When
the upper layer is initially denser than the lower, this system, known as
Rayleigh-Taylor instability, is intrinsically unstable. However, in this study,
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Fig. 1. Schematic view of the two-immiscible fluids model. The system is
initially stably stratified (i.e. p2>p;). The top and bottom surfaces are both
shear stress free.

we consider the case where the lower layer is denser than the upper so
that the system is initially stable. This problem was partly solved by
SMITH (1966), ZEREN and REYNOLDS (1972), UkAJI and SAWADA (1970a,
b, 1971) and RICHTER and JOHNSON (1974). SMITH (1966) and ZEREN and
REYNOLDS (1972) studied the same problem as the present one including
the effect of surface tension. Because their main interest was on the
surface tension, their results are not directly applicable to the convection
in the mantle on which our main interest lies. Although UkAJI and
SAWADA’s studies (1970a, b, 1971) were only sporadically reported, they
contain some important results on the coupling between two fluids as will
be described later. RICHTER and JOHNSON’s work (1974) is the first study,
as far as we know, to apply the layered convection model to the earth’s
mantle, but only the symmetric (d,=d,) and constant viscosity cases were
investigated. We intend to extend their work, and show some important
aspects of the interaction of the two convecting fluids.

Important symbols used in this study are listed and explained in
Appendix 1. The basic equations which govern the imcompressible Bous-
sinesq fluid motion are those on the conservation of mass, momentum and
energy, i.e.

diveu,=0, (2a)
D, Fvilut il 2 D)
i = —VPiTvidu,rTau;g,
o Dt rp g
DT; .
—=rp?T;, (t=1, 2) 2¢)

Dt
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where the constitutive equation for Newtonian fluid and Boussinesq
approximation are assumed. In these equations, u;, i, D/Dt, pi, vi, @i, 05
g, T, k; are velocity vector, density, material derivatives, pressure,
kinematic viscosity, coefficient of volume thermal expansion, perturbed
temperature, gravity, temperature and thermal diffusivity. Complementary
conditions to these basic equations are boundary conditions at z=d,, —d,
and 0. They are, at the upper and lower surfaces, (1) zero vertical
velocity, (2) constant temperature, (8) zero shear stress, and at the inter-
face between two fluids, continuity of (4) velocity, (5) temperature, (6)
heat flux, (7) shear stress and (8) normal stress. One other special con-
dition at the interface is the kinematic condition, that is, the deformation
velocity of the interface is equal to the vertical component of the velocity
of each fluid.

The essence of the usual marginal stability analysis is that the
perturbations caused by the instability is small and all the cross products
of them can be neglected. Also we assume that the perturbations are
expressed as

w= W(2) exp (tkx+1k,y+nt), (3)

where w and W are the perturbations of vertical component of velocity
and amplitude. After following the usual techniques described in CHA-
NDRASEKHAR’s classic work (1961), we can eliminate the variable except
for w by the combination of equations (2a) and (2b). The resultant equ-
ation is a six order ordinary differential equation of W with regard to z.
As a result, W can be expressed by a linear combination of six eigen
functions. This implies that twelve constants are undetermined (six for
the upper layer and six for the lower layer). In addition, there is one
additional constant related to the deformation of the interface. Combined
with the boundary conditions, we can obtain thirteen linear equations for
thirteen constants. To get non zero thirteen constants, we must require
that the determinant derived from the coefficient matrix (13X13) of
thirteen constants is zero (for details see ZEREN and REYNOLDS (1972)).
This characteristic equation determines the neutral state which is obtained
when the real part of » is equal to zero. We set m=0 to obtain the
neutral state. This assumption, that is, exchange of stability, is rather
artificial. RICHTER and JOHNSON (1974) found that the real part of = is
equal to zero but the imaginary part of n is not, that is, the overstable
solution. As their overstable solutions seem to be found in the cases of
small density difference, and because of mathematical simplicity, we
assume the exchange of stability in this paper. Non-dimensional parame-
ters which control the instability are (1) geometrical factors d,,* d.* =1—d,*,
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that is, the depth of each layer normalized by the total depth, (2) non-
dimensional wave number k*=/kd where % is the wave number and d is the
total depth of fluids, and (8) differences in the physical properties between
two fluids such as the ratio of density, thermal conductivity, ete. We
assume that differences exist only in density and viscosity and all the
other properties are the same. These assumptions may be suitable for the
mantle convection study. In this case, the controlling parameters are the
viscosity ratio v*, Rayleigh number Ra, dimensionless wave number k*
and RICHTER and JOHNSON’s Rp defined as,

v¥=y,/y, (
Ra=ga,p,d*|(v,x,), (
k*=kd, , (
Ro=g4pd’[(ow:k,), (4

)
)
)

d)

where f and 4p are the temperature gradient and density difference
between the lower and upper fluids (do=p,—p,>0, 4p<p,, p.). Rp is the
equivalent Rayleigh number calculated by the density difference 4o instead
of padT. We studied three cases,
(A) convection is divided into two equal parts, d*=d,*=1/2,
(B) convection is divided unequally, d;*=1—d,*=1/3,
(C) the same as (B) but the viscosity ratio (the lower to the upper) is

set at 100.
Rp is set at 10° in all the cases. This value is an order of magnitude less
than the one suggested by RICHTER and JOHNSON (1974), but there seems
to be little difference in the results both in quantity and quality. The
eigen Rayleigh number which defines the neutral state is multiple function
of wave number k*. We basically took the lowest eigen Rayleigh number
at each k*. However, when it is found that the corresponding eigen
function is not the same type as found before, we adopt such an eigen
Rayleigh number, even if it is not the lowest Rayleigh number.

Case (A) is investigated to understand the effects of the insertion of
a boundary in the fluid, case (B) is to understand the effect of the non-
symmetry in geometry and case (C) is to understand the effects of
viscosity differences on the coupling between the upper and lower con-
vections. In the earth, several authors (McKENzIE and WEISS, 1975;
RICHTER, 1979) assume that the convection is divided at a depth of about
700km, where the deepest earthquakes are observed, corresponding to the
ratio d,* of about 700/3000=0.2. However, because of the sphericity of
the real earth and the constraints imposed by the numerical calculations,
we choose a d,* value of 1/3 tentatively for cases (B) and (C). The viscosity
of the earth is one of the most uncertain quantities in the earth science.
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Recently, CATHLES (1975) proposed an earth model having an almost
uniform viscosity (about 10% poise) and a low viscosity channel under the
elastic plate, whereas YOKOKURA (1979) proposed a model consisting of
10 poise in the upper mantle and 10* poise in the lower mantle from the
analysis of the dynamic support of the subducting plate. Considering
these investigations, we choose the viscosity ratio to be 1 and 100. The
calculated neutral stability curves represented in Ra—k* (i.e., Rayleigh
number—wave number) plane are shown in Figs. 2, 4, and 6 for cases (A),
(B) and (C) respectively. Now, we will discuss each case briefly.

Case (A)

This is a case having a symmetry. The viscosity of each fluid is the
same and the interface is in the middle (d,*=d,*=0.5). The lower curve
(1) in Fig. 2 coincides with the usual stability curve of the Rayleigh-
Benard convection with stress free top and bottom surfaces and with a
depth of d/2 as may be easily inferred from the straight intuition (see
Appendix 2). Fig. 3a shows the corresponding eigen functions of the
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Fig. 2. Marginally stable Rayleigh number as a function of wave number
for case (A). R, is set at 10° and all the ratios of the other physical properties
are set one. Note that the stability curve for the usual Rayleigh-Benard case
with a depth of (1/2) d coincides with that for curve (1). Curves (1) and (2)
correspond to the ‘mechanical coupling’ and the ‘ thermal coupling ’* respectively.
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Fig. 3. Eigen functions of velocity and temperature normalized by the
maximum value. T means temperature and W vertical component of the velocity.
(a) for curve (1) in Fig. 2 (Ra=1.247% 105 k*=2z) and (b) for curve (2) in Fig.
2 (Ra=1.509%10% k*=2rx). Asexpected, a symmetrical pattern can be observed.
Note the differences of the ‘mechanical coupling’ and the ‘thermal coupling’.

vertical component of velocity and temperature in relation to the depth
for the representative case. We can see a reversal in the sign at z=0
(i.e. the initial interface between two fluids). The upper curve (2) of Fig.
2 is the new state produced by the introduction of the separation in the
fluid. Fig. 3b shows the amplitude of the perturbed vertical component
of velocity and temperature for the curve (2). There is no change in
sign for the velocity at the interface. That means the upper flow goes
up where the lower flow goes up. UKAJI and SAWADA (1970a, b, 1971)
considered a similar problem and found the same phenomenon and termed
the state represented as the curve (1) ‘mechanical coupling’ and curve (2)
‘thermal coupling’. Since this terminology appears appropriate, we will
adopt it throughout this paper. According to our results, the main effect
of the separation is the emergence of the ‘thermal coupling’ that will not
be observed when the finite amplitude convection is considered as will be
shown later in this paper.

Case (B)

In this case the interface is introduced at one third of the total
depth (d,*=1—d,*=1/3), and the viscosity of each fluid is the same. It
may be inferred that there is a mode which is coincident with the ordinary
Rayleigh-Benard convection having two nodes, one of which is the plane
of the separation. This mode is curve (2) in Fig. 4 and the perturbed
amplitudes of vertical component of velocity and temperature are shown
in Fig. 5b. By analogy with case (A), we identify that the curve (8) in
Fig. 4 represents the ‘thermal coupling’ as demonstrated clearly in Fig.
5¢. The most unstable mode (curve (1) in Fig. 4), where the lower layer
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Fig. 4. Marginally stable Rayleigh number as a function of wave number
for case (B). The dotted line in the figure shows the usual Rayleigh-Benard
stability curves for the lower fluid (see text and Appendix 2). Curve (1) corres-
ponds to the modified ‘ mechanical coupling’ i.e. ‘dragging mode’ in which the
lower layer drags the other. Curves (2) and (3) correspond to the ‘mechanical
coupling’ and the ‘thermal coupling’ respectively.

is unstable but not the upper layer, is recognized as the mode in which
the lower convection ‘drags’ the upper fluid. This circumstance will be
understood from the figure of the velocity and temperature shown in
Fig. 5a. This mode is, apparently, a ‘mechanical coupling” slightly modi-
fied by the non-symmetry between the upper and lower fluids. The
dotted line shown in Fig. 4 represents the stability curve of the usual
Rayleigh-Benard convection with the depth of (2/3)d and both free sur-
faces (see Appendix 2). We can recognize that it almost agrees with
the most unstable mode. The small difference between them may be
explained by saying that since the lower fluid must drag the upper, the
interface between them is not completely free, so the situation becomes
less unstable.

Case (C)
In this ease the interface is at one third of the total depth (d*=
1—d,*=1/3) and the viscosity of the lower fluid is 100 times that of the




Fig. 5. Eigen functions of velocity and temperature normalized by the
maximum value. T means temperature and W vertical component of the
velocity. (a) for curve (1) in Fig. 4 (Ra=3.817x103k*=x), (b) for curve (2) in
Fig. 4 (Ra=9.741x10*k*=x) and (c) for curve (3) in Fig. 4 (Ra=1.071%10°
k*=n).

upper fluid. There is no exact correspondence of the stability curves
with that of the ordinary Rayleigh-Benard convection because of the
viscosity difference between the upper and the lower layers. We can
expect that there are two modes, i.e. ‘dragging mode’, in which the upper
layer drags the lower, and a mode in which both the upper and the lower
layers are unstable. Curve (1) in Fig. 6 is the ‘dragging mode’ and curve
(2) is the latter mode as shown in Figs. 7a and 7b. The dotted lines in
Fig. 6 represent the stability curves of the usual Rayleigh-Benard con-
vection with depth of (1/3)d, v=v, (the lower dotted line) and (2/3)d,
v=vy, (the upper dotted line) and both free surfaces. The two modes
described before exist between these dotted lines. This is because in the
case of curve (1), the upper fluid must drag the lower one and in the
case of curve (2) the upper fluid is already moving and the lower one
becomes easily unstable compared to the free surface case. There is no
‘thermal coupling’ mode within the range of our caleculations.
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Fig. 6 Marginally stable Rayleigh number as a function of wave number
for case (¢). Curve (1) is the ‘dragging mode’ in which the upper layer drags
the lower layer because of the combined effect of the non-symmetry in the
geometry and differences in the viscosity making the upper layer more unstable
than the lower. Curve (2) is the ‘mechanical coupling’ or ‘both unstable
mode’ in which the lower layer also is unstable. The ‘thermal coupling’ may
disappear at least in the range of our calculations. The dotted lines in the
figure show the usual Rayleigh-Benard stability curves for each fluid (see text
text and Appendix 2).
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Fig. 7. Eigen ifunctions of velocity and temperature normalized by the
maximum value. 7 means temperature and W vertical component of the velo-
city. (a) for curve (1) in Fig. 6 (Ra=7.821%X10% k*=2rx) and (b) for curve (2)
in Fig. 6 (Ra=5.605x10% k*=2r).
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3. Summary of Marginal Stability Analysis

The ‘mechanical coupling’ and ‘thermal coupling’ as defined by UraJi
and SAWADA (1970a, b, 1971) were found to exist. However, it seems
that the ‘thermal coupling’ may emerge only when the layered convection
system satisfies some specific conditions, because the ‘thermal coupling’
does not appear in case (C). Also, the ‘thermal coupling’ is the more
excited state than the ‘mechanical coupling’. Probably a more interesting
point that we discovered in the marginal stability analysis is the fact
that some of the neutral stability curves can be approximately explained
by those of each fluid. Similar result will be found later when we con-
sider the case in which the amplitude of convection becomes finite.

4. An Analysis with Finite Amplitude Convection

In the treatment of the finite amplitude convection, we make the
following assumptions in addition to those described in the previous
section.

(1) The convection is a roll type, ie. two-dimensional convection is
assumed.

(2) The interface between the lower and the upper layers is fixed.

(8) The Prandtl number is infinite.

The assumption (1) will be, for a certain range of the Rayleigh
number, incorrect because both experiments and theories show three-
dimensional nature of the flow regime (Busse, 1967; BUSSE and WHITE-
HEAD, 1971). However, if the flow in the mantle is two-scaled as
suggested by RICHTER (1978) and RICHTER and PARSONS (1975), the
assumption of the roll type convection may be valid for the small seale
convection. In their two-scaled convection, one is the large scale flow
accompanied by the movement of plate and the other is the roll type
small scale flow produced by the secondary instability and aligned with
the direction of the shear flow induced by the plate motions. We
also think that the general nature of the convection such as the efficiency
of the heat transport will be well described by the analysis of the two-
dimensional convection (for example, compare the results of MOORE and
WEIss, (1973) with those of RossBY (1969)). The assumption (2) is
uncertain because this assumption leads to discontinuity of pressure and
must be checked by further empirical and/or theoretical investigations.
If the lower fluid is much heavier than the upper fluid, this assumption
may be valid. The assumption (3) seems to be well established because
the Prandtl number for the mantle is about 10*>1 implying that the




Numerical Analysis of Layered Convection 285

Reynolds number is small and the intertia term can be neglected in
comparison with the buoyancy and viscous terms. Following the non-
dimensional scheme of RICHTER (1973), that is,

where asterisks denote the dimensionless values, and applying these
schemes to equation (2), we obtain the basic non-dimensional equations
describing the layered convection as follows;

1 9T*
*

Vzwi* =Ra where (71*-:1; Tz*:‘pi>’ (6&)

Y1

where ¢.* is the stream function, »* is the y-component of the vorticity
and Ra is the Rayleigh number that are defined respectively as,

K — a¢'1* _ a¢'$*
w ”( Y (7a)
wF=(rot w*),=p%*, (7b)
Ra=9094T (Te)

Vi,
where AT=T(bottom surface)— T(top surface). The boundary conditions,
are,
O = (zero vertical velocity)
0,*=0 (zero shear stress)
=0 (
,*=0 (
ofi* _ 0gy*
0z* 0z*

zero vertical velocity)
zero shear stress)

(continuity of horizontal velocity) (8e) |

0 *F=¢*=0 (fixed interface and the continuity
of vertical velocity)
oT* _ oT.*

S o (continuity of heat flux)

T*=Ty* (continuity of temperature)
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In solving these equations, we adopted essentially the same finite difference
method as RICHTER (1973) except for the integrating techniques of
Poisson’s equations by SOR (Successive Over Relaxation method, see, for
example, ROACHE, 1978) which is simpler in programming. The boundary
conditions at the upper and the lower surfaces are easily fulfilled by
applying the conditions ¢*=constant and w*=0 at the surface. Also,
the conditions concerning the conservation of energy and the continuity
of temperature at the interface are easily satisfied. The problem is the
combined conditions of the continuity of the horizontal component of
velocity and tangential stress at the interface that requires the appro-
priate choice of w* at the interface in order not to violate the continuity
of velocity at z*=0, i.e. u,*=u,*. These situations are also encountered
when the synthesized flow field of the plate moving at a constant speed
and the thermal convection are investigated (RICHTER, 1973; LUX et al.,
1978). This is based on the physical fact that the tangential stress is
derived from the vertical gradient of the horizontal component of the
velocity. To avoid these difficulties, we adopt the modified iterative
scheme proposed by RICHTER (1973). The (k+1)-th «* at the boundary
between the two fluids is derived from the k-th flow field according to
the equation,

B+ e (k % (k O o
wbaundaly wba(un)dary + a(ubaun)dary,L - u;)ko(urgdary, U) ’ ( 9 )

where the subscript ‘boundary’ denotes the value at the interface bet-
ween the lower and the upper fluids, § is an appropriate constant which
must be determined by trial and error, and L implies the value deduced
from the lower layer and U from the upper layer. Iteration is repeated
until a satisfactory convergence of w* is obtained. The condition of the
continuity of the vertical component w,*=w,*=0 (that is, the interface
is fixed) can be expressed as ¢*=constant at z=0. This rather artificial
condition of w*=w,*=0 gives no assurance of the continuity of the
normal stress at the boundary. In this regard we call our calculation a
‘pseudo’ layered convection. Other boundary conditions are the conditions
at the sides because the calculation must be executed within a finite
space. The symmetric boundary conditions in temperature (i.e., no heat
is transmitted through the side boundaries) and the anti-symmetric con-
ditions in the velocity field (i.e. zero shear stress is assuemd) were
adopted. The aspect ratio of the box, in which numerical integrations
were made, of the vertical to the horizontal (strictly speaking, the wave
length of the convection) is important because of its influence on the
efficiency of heat transport (see MOORE and WEIss, 1973). However, for
various reasons (e.g. computer time or money), it was restricted to 1:1,
when we considered the usual Rayleigh-Benard case and case (A) described
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Fig. 8. Relations between the Nusseldt number (Nu) and the Rayleigh
number (Ra) in the usual Rayleigh-Benard case. Crosses in the figure are the
values obtained numerically by Moore and WEiss (1973). Solid circles show the
values obtained in the present study. The line shows Nu=2.0X (Ra/Rc)!/* which
can approximately explain Moore and WEIss’ results. Rc is the minimum
critical Rayleigh number of 657.5 for both free surfaces (CHANDRASEKHAR, 1961).

in the preceding section, and to 1:2 for cases (B) and (C). The mesh
design is also important in the calculations. For the same reasons as
above, however, it was selected to be 11Xx11 or 21x21 for the case of
aspeet ratio of one, and 16X 31 for the other cases. The calculation was
started by adding an initial perturbation, which was either sinusoidal
temperature perturbation or a flow field previously obtained for a different
Rayleigh number. The calculation was continued until the steady or
sufficiently stable state was obtained. To check the accuracy of this
method, we calculated the Nusseldt number of the usual Rayleigh-Benard
convection having the aspect ratio of one and compared the results with
those of MOORE and WeIss (1973) (Fig. 8). The Nusseldt number is
calculated at the depth near the middle of the convecting fluid as was
done by MOORE and WEISS (1973) according to the following equation

oT™*
oz*

Nu=w*T*— (10)

where the upper bar means the horizontal average of quantities. The
results obtained well coincide with those of MOORE and WEISS (1973),
which is approximately expressed as Nu=2.0X (Ra/Rc)'" where Ec is the
minimum critical Rayleigh number of 657.5=27x'/4 (see Fig. 8). In the
following calculations, we figured out the Nusseldt number near the middle
of each layers according to the equation (10). The effect of the aspect
ratio of the box used in the numerical calculation on the convection is
not fully studied in this paper. Although MOORE and WEISS (1973)
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reported that a maximum of about 20% difference in the Nusseldt number
exists when the aspect ratio was changed with the same Rayleigh number,
we believe that the general nature of the heat transport shown in this
paper does not change substantially.

The calculations for the layered case were checked by comparing the
velocity amplitude obtained by the finite difference method in the range
of small departure from the critical Rayleigh number, i.e. Ra/Rc=1, with
those calculated by the marginal stability analysis. Fairly agreeable
results were obtained in cases (A) and (B). Slight discrepancies were
found in case (C) in the lower layer. However, because the amplitude in
the lower layer is much smaller than in the upper, we do not consider
these diserepancies critical.

Case (A)

In this case, the interface is in the middle (d,*=d,*=0.5) and the
viscosity of each layer is the same. The calculated Nusseldt number in
relation to the normalized Rayleigh number Ra/Rc¢ and the flow field,
that is, the stream lines, the vorticity and the temperature of typical
cases are shown in Fig. 9 and Fig. 10. The definition of Rayleigh number
is the same as the equation (4b) described in the preceding section, that
is, the Rayleigh number defined by assuming that the fluid of the upper
layer extends throughout the whole layer. The same definition of the
Rayleigh number will be used in the following analysis. Re¢ is the mini-
mum critical Rayleigh number of 657.5 for the usual Rayleigh-Benard
case. In Fig. 9, the obtained Nusseldt number is shown by the black
dots and also the Nu—Ra relation of usual Rayleigh-Benard convection

NU Nu = 2.0 x (;—z-)l/]

10

~

1 1L i 1
1 10 10° 10°

Ra
two layer ( df=05) Rc

Fig. 9. Nu-Ra relation obtained for case (A). Rc is the minimum critical
Rayleigh number for ordinary case, 657.5. Calculated Nusseldt numbers are
shown by solid circles. Solid lines are Nu-Ra relation for the usual Rayleigh-
Benard convection (Nu=2x(Ra/Rc)!/?) and the curve obtained by the simple
parameterization for the layered convection (see Section 5).
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10 Mu= 2.0 x (‘3_2)1/3 ~——

1 10 10 Ra 10’
two-layer (d,*=1/3) Rc

Fig. 11 Nu-Ra relation obtained for case (B). Rec is the minimum critical
Rayleigh number of 657.5 (see figure caption of Fig. 9 for detail).

(Nu=2X (Ra/Rc)"?) is included. The other line shown in Fig. 9 is obtained
by the simple parameterization for a two-layer convection that will be
described in a later section. In the following figures of the Nu—Ra,
the same style will be adopted. From this figure, we can find that the
layered convection is less effective in transporting the heat than the
one-layer convection. This is because the large scale motion is inhibited
by the interface and there is a conductive layer near the interface.
As seen in Figs. 10a and 10b a highly symmetrical pattern of convection
appears as might be expected. Well developed thermal boundary layers
are formed at the top, at the bottom and at the interface when Ra be-
comes large compared to the ecritical Rayleigh number as in the case of
the ordinary Rayleigh Benard convection (see Fig. 10b). The flow pattern
is of the ‘mechanical coupling’ mode. However, it may be noted that
the shear stress at the interface, being easily derived from the value of
the vorticity, is nearly zero. This means that the coupling is achieved
almost in the shear stress free state. Note also that the temperature
at -the interface is 0.5 as can be expected from the symmetry.

Case (B) ,

In this case situation different from case (A) occur, because the in-
terface is at one third of the total depth (d,*=1—d,*=1/3) with constant
viscosity throughout the whole layer. However, the calculated Nusseldt
number shown in Fig. 11 shows that the Nu—Ra relation is nearly the
same as that in case (A) in spite of the difference in geometry. This
result can be simply explained by the parameterized analysis as will be
described in section 5. The flow field, stream lines and temperature in
this case are non-symmetric (see Fig 12). If Ra lies between the states
of the ‘dragging mode’ and the ‘mechanical couping’ mode, the lower
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STREAM FUNCTION TEMPERATURE VORTICITY
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Fig. 12a Distributions of stream function, temperature, vorticity and that
of the horizontally averaged temperature with relation to the depth for case (B)
with Ra=2x10% Contours show the iso-value lines. All values are normalized
by the maximum absolute value, that is |¢|max=4.81 and |w|max=264. Thermal
boundary layers are formed in the lower part of the fluid in contrast to the
upper implying that the lower fluid drags the upper.

Fig. 12b. Same as Fig. 12a for case (B) with. Ra=8%105. Values used for -
the normalization are |¢|max=34.3 and |o]max=1990. Both in the lower and
the upper fluids well developed thermal boundary layers are formed. Note that
at the interface between the two fluids the temperature and vorticity are almost
0.5 and 0 respectively.- o ‘

fluid, being more unstable than the upper, evidently drags the upper
fluid as observed in the figure of the vorticity, that is, the zero vorticity
line is in the lower layer and the vorticity is negative along the interface
(Fig. 12a). The thermal boundary layer in the lower layer develops
more rapidly than in the upper as Ra becomes greater. Finally, with a
high Ra the boundary layers appear in both the upper and the lower
fluids (see Figs. 12a and 12b). Although many features of the flow field
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1
< Nu=z.0x(:—:)/3

Nu
10

y1/3

10° 10° 10

two layer (d? = 1/3)
viscosity ratio=100

Fig. 13. Nu-Ra relations obtained for case (C). Re is the minimum eritical
Rayleigh number of 657.5. (See figure caption of Fig. 9 for details.)

are different from case (A), it must be noted that the horizontally ave-
raged temperature and shear stress acting on the interface are nearly
0.5 and 0 respectively, when the Rayleigh number becomes large.

Case (c)

In this case, the viscosity of the lower fluid is 100 times greater
than that of the upper, and the interface is at one third of the total
depth. The calculated Nusseldt number versus the normalized Rayleigh
number is shown in Fig. 18. Like the other cases, there is a clear de-
gradation in the ability of transporting the heat. In Fig. 14a, we show
the ‘dragging mode’ in which only the upper layer is unstable. When
the Rayleigh number is small, the double cell appear in the lower part
of the fluid that agrees qualitatively with the marginal stability analysis
(see Figs. 7a and 14a). While, in Fig. 14a, vague boundary layers develop
in the upper layer, well developed boundary layers appear both at the
top, at the bottom, and at the interface in the case of Fig. 14b where
both layers are unstable. The interface temperature is about 0.2 to 0.8
and the zero vorticity line is in the upper fluid, suggesting that the upper
layer is slightly dragging the lower layer. (Note that in the lower layer
we show the vorticity multiplied by the viscosity ratio of 100). The
lower temperature at the interface compared to cases (A) and (B) will
be explained by the effect of the difference in the viscosity in the next
section.
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Fig. 14a Distribution of stream function, temperature, vorticity (here in
the lower fluid we show the vorticity multiplied by the viscosity ratio of 100)
and the horizontally averaged temperature with relation to the depth for case
(C) with Ra=2x105. Contours show the iso-value lines. All values are nor-
malized by the maximum absolute values, that is, |¢[max=3.76 and |w|max=
993. Thermal boundary layers are formed in the upper part of the fluid in
contrast to the lower, implying that the upper fluid drags the lower.

Fig. 14b. Same as Fig. 14a for case (C) with Ra=1x108. The values used
for the normalization are |¢|max=35.6 and |o|max=6.97x10% Both in the lower
and the upper fluids well developed thermal boundary layers are formed. Note
that at the interface between two fluids the temperature is almost in the range
of 0.2 to 0.3 and the zero vorticity line slightly penetrates into the upper fluids.

5. Application of Simple Parameterization

In the ordinary Rayleigh-Benard convection system, the relation
between the Nusseldt number and the Rayleigh number is roughly ex-
pressed as,

Nu:b( Fa )’,‘ (1)

Re,
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where a and b are constants of about 0.3 and 1. Re¢, is the minimum
critical Rayleigh number of 657.5. MOORE and WEISS (1973) showed that
a=1/3 and 5=2.0 in the case of the infinite Prandtl number with both
free surfaces. This is also confirmed by our study (see Fig. 8). If we
assume that the above relation is valid independently in both the upper
and the lower convecting fluids, the continuity of heat flow at the inter-
face requires the following equation (HONDA, 1980)

At Pl .

where Ra; and A4T; are the locally defined Rayleigh number and the
temperature difference as follows,

Ra,=9%4Td? (12a)

VK,
AT, =T(at the interface)— T'(at the top surface), {12Db)
A4T,=T(at the bottom surface)—T'(at the interface). (12¢)

We denote the total temperature difference between the top and bottom
surfaces as A4T. Then,

From the equations (11) and (12d), we obtain,

ATl—*—A
1+a’ | (132)
A= 1 g7, (131)
. 1+al
‘ 3a—1
where « —<v2 )‘*“( >‘+" (18¢)

(Note that a;=a,, £;=#,). Changing the locally defined Rayleigh number
Ra; into the ordinary Rayleigh number Ra (Ra=ga,dTd? (v.r,)), we obtain
the heat flux carried by the convection @ as,

SO Sl
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a+l d 3a—1 RU/ a AT
—b )k . 14
(l—i—a ) ) Re, Yd 14)
Thus, the ‘theoretical’ Nu— Ra relation becomes,
Nu= Qd _b o a+l @ sa-1/ Rg u . 15
U TdT <1+a’> <d> Rco) (15)

This equation says that, although the magnitude of Nu is varied, the
slope obtained from the semi-log plot of Ra and Nu does not change as
observed in Figs. 9 (case (A)), and 11 (case (B)), although in case (C) this
relation does not hold well as seen in Fig. 13. To check the magnitude
of Nu, we give the values of a=1/3 and b=2, and get

AT, =—M—AT, 16
1 1+ (U1 yz)m ( a)
1 . ‘
AT,=— =~ AT, 16b
R | e
N 2 Ul/vz 1[4 4/3 Ra 1/8. 16
w= <1+ (02/52) " ) Rco> (16c)

This result is rather surprising, because the temperature at the interface
and the Nusseldt number do not apparently depend on geometry. This
fact is already shown for cases (A) and (B). If we consider cases (A) and
(B), i.e. v/v,=1, then we get,

AT,=AT,=0.54T, | (17a)
. 1 4/3 Ra 1/3

Nu=2( L) —0.79 | 17b

v < 2 ) Re, ) Reo ) (17b)

The equation (17b) is shown in Figs. 9 (case (A)) and 11 (case (B)). These
figures show that the agreement between the finite amplitude calculation
and parametrized theory is good. For case (C) i.e. v/r,=100, we get,

AT, =0.244T, - (18a)
AT, =0.764T, . (8h)
Ra \'3
Nu=0.30( - .
% ( Rco> , (18¢)

As mentioned before, the mean.temperature at the interface for case (C)
is in the range of about 0.2 to 0.3. This agrees fairly well with the value
of 0.24 obtained by simple parameterization. In Fig. 13, equation (18c)
is shown. The Nusseldt numbers calculated by the finite amplitude cal-
culation are found to be close to those predicted by the equation (18c).
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Mechanical coupling Thermal coupling

Fig. 15. Schematic view of the ‘mechanical coupling’ and the ‘thermal
coupling’. Also see UKAJI and SAWADA (1970a, b, 1971).

The small disciscrepancy may be caused by the strong mechanical coupl-
ing between the upper and the lower layers. However, further study is
required because the calculations have been made only in a limited range
of Ra and the accuracy of the calculation is not very high.

6. Conclusions and Discussions

The marginal stability and finite amplitude analysis of the convection
in which two immiscible fluids are initially stratified and heated from
below are presented.

In the marginal stability analysis, we find two types of coupling be-
tween the two fluids as previously pointed out by UkAJI and SAWADA
(1970a, b, 1971). One is the ‘mechanical coupling’ in which flows near the
interface have the same horizontal direction, that is, the upper convect-
ing fluid goes up where the lower one goes down. The other type is the
‘thermal coupling’ in which the fluids flow in an opposite horizontal direc-
tion near the interface, that is, the upper convecting fluid goes up where
the lower one goes up. These two types of convection are schematically
shown in Fig. 15. If one of the two fluids is more unstable, there ap-
pears a modified mode of the ‘mechanical coupling’. Tentatively we name
this the ‘dragging mode’, because the more unstable layer drags the less
unstable layer. The ‘thermal coupling’ mode will probably be the more
excited state than the ‘mechanical coupling’ mode as deduced from the
stability curves and appears when the upper and the lower fluids satisfy
some specific conditions. In all the cases in which the ‘thermal coupling’
appears, the difference in the properties of the upper and lower fluids is
very small. We may need further studies on the ‘thermal coupling’.
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Another important result revealed by the marginal stability analysis
is the simple explanation of the stability curves. That is, the neutral
stability curves for layered convections are well deseribed by the stability
analysis of the individual layers with free boundaries at least for the
case of ‘mechanical coupling’ mode.

Next, we calculated the finite amplitude convection of the ‘pseudo’
layered convection. Only the ‘mechanical coupling’ is observed. Fairly
complex patterns are observed in temperature, stream lines and vorticity.
Well developed thermal boundary layers are formed at the upper and
lower boundaries and at the interface, when the Rayleigh number becomes
many times greater than the critical Rayleigh number. The appearance
of the boundary layers can be easily inferred from the usual Rayleigh-
Benard case. The Nu - Ra relations for the layered convection can be
interpreted by the simple linear combinations of two independently con-
vecting fluids. This is probably because the shear stress free condition
and the constant temperature condition are almost satisfied at the inter-
face. In the case of a great difference in the viscosity, in which the
shear stress free surface lies in the less viscous fluid (more unstable
layer), there may be a possibility of the breakdown of the simple para-
meterization because of the strong coupling. We also investigated a case
in which the interface is assumed to be shear stress free. Preliminary
results show the appearence of the ‘thermal coupling’ mode. This may
be inferrable, because the ‘mechanical coupling’ is suppressed. The in-
teresting point is that the Nusseldt number for this case seems to be
larger than that of the ‘mechanical coupling’. A possible explanation
for this is given below. In the ‘mechanical coupling’, the cold plume from
the top surface is heated up at the interface by the hot plume coming
from the bottom surface so that fairly uniform temperature will appear
at the interface. However, in the ‘thermal coupling’ the cold plume from
the top surface will sink down where the cold plume forming at the
interface sinks down. On the contrary, the hot plume from the bottom
surface will go up where the hot plume forming at the interface goes
up. As a result, the temperature in the fluids will be more vigourously
mixed than in the ‘mechanical coupling’. This implies that the ‘thermal
coupling’ can transport heat more effectively than the ‘mechanical coupl-
ing’. In the mantle, the cause of the separation of the convection and
even the existence of the layered convection are not clear so that the
nature of the interface is also unknown. If the low viscosity zone exists
between the two convections, the ‘thermal coupling’ may occur. The
existence of the low viscosity zone, for example, is suggested by Sammis
(1976) who stressed the importance of the transformational super plasticity
which may occur in the polymorphic phase boundaries.
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Recently, RiICHTER and MCKENZIIE (1981) studied a similar problem by
both theory and experiments. Their studies are mostly restricted to the
symmetrical case with the viscosity ratio of one (case (A)). They showed
by experiment that the mixing of whole layers occurs when the density
difference between two fluids are almost the same as that caused by the
temperature difference. Also their experiments revealed that the coupling
of the convections is more complex than that we have studied. This
complexity may occur because of the deformation of the interface which
we could not model.

The dominant wave length of the convection is not clear, although a
numerical experiment with the aspect ratio (horizontal to vertical) of 1:2
for case (B) showed that the convection having three cells, which may
be the dominant mode of the lower (more unstable) layer, appeared in
spite of the one cell initial perturbation. These results may have possible
importance in considering the relation between the plate tectonics and
convection. Application of the present results on mantle convection pro-
blems will be made in another paper.
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Appendix 1

List of symbols ,
d: total depth of convecting layer d=d,+d,
d,: depth of the upper fluid
d,: depth of the lower fluid
g or g: gravity or gravity vector
k: thermal conductivity or wave number
Nu: Nusseldt number
: pressure
_r: position vector
Ra: Rayleigh number
R,: see text for definition
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minimum ecritical Rayleigh number for the usual Rayleigh-
Benard case

time

temperature

temperature difference between the top and bottom surfaces
velocity vector

: horizontal component (x) of the velocity

horizontal component (y) of the velocity

vertical component (z) of the velocity

one of the axis lying in the horizontal plane

one of the axis lying in the horizontal plane

vertical axis, positive upward

coefficient of the volume thermal expansion

temperature gradient when the instability does not begin
dynamic viscosity

perturbed temperature

thermal diffusivity

kinematic viscosity

viseosity ratio

density

density difference defined by (0.—p0.)

stream function

y component of vorticity

Cn oSN mYaS s S e NN

Appendix 2

Inferrence of the minimum Rayleigh numberr required to generate an
instability

The stability curve in the wave number-Rayleigh number space for
the usual Rayleigh-Benard convection having both free surfaces is ex-
pressed as

Rc_.__ (k12+n27z.2)3

e 2.1),

where %’ and m are the normalized wave number by the depth of
convection and degrees of the eigen function having (n—1) nodal planes
in the fluid (CHANDRASEKHAR, 1961). The ‘local’ Rayleigh number in each
fluid can be defined as, : ' :

Ra;= 9B (=1, 2) 2.2).

Vik;
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If the upper layer is more unstable than the lower, marginal state may
be derived from

Ra,=Rec. 2.8

Modifying this equation by the use of our definition of Ra and consider-
ing the definition of non dimensional wave number, we obtain the critical
Rayleigh number Ra as,

ey,

Ra,=Ral<—él‘l—1>4=Rc(%1 =

EO

The least stable degree is the case of n=1, then,

G}

Ra=-—r"" "~
(%)
d
The minimum value of Ra is obtained when k*d,/d=z/v2, that is,

Ra m,.,,=657.5(%1)4. (2.6)

Essentially the same procedure can be executed, if the lower fluid is
more unstable. Results are,

ENTERT
Ra—{<k*d> +”} <%2>4%j

&)

d \ty T d
R ,,.,-,,=657.5(— Yoat =T 0
¢ 4/, 2 V3 d,
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