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Abstract

The gravitational potential of an ellipsoid of revolution can be
expressed by a sum of low degree terms in ellipsoidal harmonics.
However, the derivation methods which have already been introduced
are somewhat complicated. This short article introduces a simpler
method using a series of the ellipsoidal harmonic expansions.

Picture an ellipsoid of revolution whose semimajor and semiminor
axes are a and b, respectively. The gravitational potential of the ellipsoid
at an external point P can be expressed as an integral over the total
volume v of the ellipsoid :

V=6 o

In the above equation, G is Newton’s gravitational constant and [ the
distance between P and the variable mass element di.

The ellipsoidal coordinates (u, 8, 1) are related to the rectangular
coordinates (x, ¥, z) by the equations:

z=~u'+e cos B cos 2

y=~u’+e® cos B sin2 (2)
z=usinp
where
e=vVa —b? (3)

is the focal distance. The coordinate « is the semiminor axis, S the
reduced latitude and 2 the geocentric longitude. The equation w=>b repre-
sents an ellipsoid of revolution having semiaxes of a and b.
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According to HOBSON (1931), the reciprocal of [ is expanded into a
series of ellipsoidal harmonics with the associated Legendre function of
the first kind P™ and the second kind QF, of degree n and order m:

F=B-3 B Sl o o (1)

.pm <ﬂ>pnm(sin B)Pr(sin f') cos m(2A—2), 4)

&

where (u/, p, 2’) are the ellipsoidal coordinates of the mass element di/
and

2 for m=0
en= (5)
1 for m=0.
Substitution of (4) into (1) gives
V= GM i ﬁ] Qg(w/ﬂ(C? cos mA-+S% sin mA)Pisin B), (6)

b acomzo QU(ibje)

where M is the mass of the ellipsoid and C% and S? are the constant
coefficients to be determined from

(CZ‘)Z 2ib(—1)™(2n+1) QZ”( b >{ (n—m)! }2

5% Meep, € (n+m)!
) cosm2’> m(ﬂ) e
SSSv<sin ma’ P c Pi(sin g)dM . )

by using the orthogonality relation of spherical harmonics. This equation
indicates the fact that these coefficients can be determined from the mass
distribution inside the ellipsoid.

The shape of an ellipsoid of revolution is rotational symmetry, so that
V does not depend on A. Therefore, with all non-zonal terms of V
removed, (6) then becomes

_ GM & Qaliufe) .
1% ; = Q0. (ib)e) CPy(sin p) . (8)

Accordingly, (7) can be rewritten as

o B 0 (B[ . o

In the above equations, the zonal terms are usually denoted by C,, P,
and Q, instead of C%, P% and @), respectively.

Zero-Degree Term
In the special case n=m=0, (9) becomes
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From the known relations

Q[)( i )———z"can‘1 ¢
and
M=SS§ am,
we obtain
Co=sitan“—2—. (10)

Therefore, the zero-degree term of V

GM tan~i-&_ (11)

13 w

Vo=

is easily verified by straightforward computation from (8). Furthermore,
it can be proved that V, converges to GM/u when ¢fu is very small.
Although (11) has already been introduced by MOLODENSKII et al. (1962)
and HEISKANEN and MORITZ (1967), their derivation methods are more
complicated.

First-Degree Terms
The rectangular coordinates of the gravity center of the ellipsoid
(2o, Yo, 20) are expressed as

X x

_ 1 ,
Yo —MSSSU y'|au
20 2’

V¢ cos § cos X
:iggg VW cos f sin 2 |aM. (12)
M Yo
' sin §
Meanwhile, coefficients of three first-degree terms C,, C! and S! are ob-
tained from (7). Taking (12) into consideration, we get

o ()

% xOQ}( ib ) C3)

3

Si= 30 on%< b )
2¢* €

Ci=
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These relations indicate that the first-degree terms correspond to the
coordinates of the gravity center of the ellipsoid. When ¢ is very small
compared to b, Qr(ible) converges to

or( ) ottt ()
for a very large value of bfe, so that (13) is approximated to
i~ (15)
sizyT"

The gravity center of an ellipsoid, in general, is set at the origin of
the coordinates. In other words, (%, %, %, are set zero, and hence the
three first-degree terms become zero.

Second-Degree Terms
Moments of inertia with respect to the x, ¥ and z-axes are denoted
by A, B and C, respectively. They are given by

A yrr2?
B |=\{{ | 2+0m |am
C 27y
(w?+&% cos’f sin®A’+u” sin®f’
S w? sin?f’+ (u?+¢?) cos’8 cos’A’ |dM . (16)

=\,

Meanwhile, C, and C? are obtained from (7) as follows:

(u?+e% cos’f

Cy= 45]‘?53* Qz( ii) )Ssgv(3zc’z+sg)(1-—3 sin®g’) AM

and

C

1oL

5’Lb 2 ib 2 207 ’
= 29 Me® Q3< . )Sggv(u +¢%) cos’8” cos 22" dM .

Our purpose here is to describe these two coefficients in terms of A4,
B and C. Using algebra, it can be proved that C, and C; become

e R
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and

o Bib n avea( b
c=- 20 (p a)63( L ), (18)

respectively. For a very large value of bfe, (17) and (18) can be approxi-
mated to

. A+B—2C
% 2Mb* (19)
and
Co= e (20)

As an ellipsoid of revolution is rotational symmetry, the moment of
inertia of the z-axis is equal to that of the y-axis, i7.e. A=B. In this
case

N Qf i ){M52+3<A—C>} (21)
~ A—Q
Mb?
Ci=( (22)

Furthermore, the product of inertia with respect to the x, ¥ and z-
axes are defined as

D y'z
( 2 [ 25 Jan

w Vu+e sin ' cos ' sin A’
:S\g w' vVu 4+ sin f' cos f’ cos A’ |dM. (23)
(u?+¢% cos®’f” sin A’ cos A’

Then Cji and S; can easily be expressed in terms of E and D, respectively,
by means of (7) and (23), such as

( C ): 51 _ o/ b >SSSD<COS Xl)u' Vu+é sin f cos f dM

St oM N\ & sin X/
= AN 3)- e

Similarly, S3 is expreséed in terms of F), 7.e.

o 5ib 2< ib )
5 teae LA (25)
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Using the approximate formula (14) for a very large value of b/, these
three coefficients can be approximated to

Ci E
) 1
~ ) 2
S )% e | P (26)
S: /2

D and E are zero if the coordinate axes coincide with the principal axes
of inertia of the ellipsoid. F also becomes zero when A=RB holds on, <.e.
the ellipsoid has rotational symmetry. Hence

3=S85=S8:=0. (27)

In the five second-degree coefficients, only C, remains non-zero as

mentioned above. Accordingly, the second-degree term of V can be ex-
plicitly written in the form:

V= — DIGM. Q2< i:f >P2(sin ) {52+ ﬁ%)_,} : 28)

Principal Moments of Inertia

The normal gravity potential of an ellipsoid of revolution, which
rotates around the z-axis with an angular velocity of w, is the sum of
the gravitational potential of the ellipsoid and the centrifugal potential.
The shape of the ellipsoid of revolution, whose semiaxes are a and b, is
an equipotential surface which is defined as the sum of these potentials
to be constant. HEISKANEN and MORITZ (1967) formulated the normal
gravity potential by using Stokes’ constants a, b, GM and w.

According to HEISKANEN and MORITZ’s results, the gravitational
potential of the ellipsoid is given by

GM - w0’ Q4(Tu/s) .
= G pap-t & @ANUNE p 2
Vv —— tan™ + 30.(ibJe) o(sin B) (29)
The first term of the rigthand members of (29) is quite similar to the
zero-degree term (11), and the second term corresponds to the second-
degree term (28). A comparison of (28) with the second term of the
righthand members of (29) gives

IO (o) BA0) Jo () vt
28 {€+ M }QZ 3

From the above relation we can derive an equation for the pricipal
moments of inertia :
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_ 2 ,
Qﬁ:%{u#&m : (30)
where
me— o’a’b
GM
and the second eccentricity
e'= —Z—

The equation (30) is also introduced by HEISKANEN and MORITZ (1967) in
the mathematical process of expanding the normal gravity potential in
spherical harmonics.
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