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Abstract

The two-dimensional steady-state convection patterns are analyti-
cally obtained from the solutions of the equations of viscous fluid
motion, continuity, thermal conduction and state. The emphasis is
especially put on the derivation of convolution-type transformation
formulas connecting gravity anomaly and horizontal fluid velocity with
terrestrial heat flow. The simple frequency domain expressions in
the Fourier transform can allow immediate recognition of the rela-
tionship between gravity anomaly and the other relevant quantities.
The model calculations are made using values of the transformation
formulas.

1. Introduction

The presence of convection currents in the earth’s mantle can be
supported from the simple premise that the solid mantle may behave as
a fluid with respect to stress acting for a long term. The hypothesis
that the horizontal motion of lithospheric plates is driven by the under-
laid convection currents seems capable of explaining the global tectonic
system that the plates are produced at mid-ocean ridges and move away
toward deep-sea trenches. The high heat flow along mid-ocean ridges is
presumably associated with up-coming fluid materials of the mantle heated
below, and the low heat flow along trenches may be an indication of the
down-going convection current.

If the thermal convection actually exists in the mantle, the gravity
anomaly may reflect an effect of the convection-related density distur-
bance on the gravity field. A negative gravity anomaly is expected in
high heat-flow regions because of low density related to the thermal
expansion of the mantle material, while a down-going flow along subduc-
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tion zones may possibly generate a positive gravity anomaly.

The gravity anomalies over mid-occan ridges and deep-sea trenches
have been discussed in relation to the mantle convection or the plate
motion by many authors, whose papers have been reviewed (MCKENZIE
et al., 1974). The analytical treatments and the numerical experiments
on simple two-dimensional models have been attempted to estimate steady-
state or time-dependent behaviors of convection currents from the gravity
field as well as terrestrial heat flow.

Our special interest is in the analytical method which describes the
possible linear transformation of gravity field and terrestrial heat flow
in the two-dimensional Cartesian coordinates, assuming the steady-state
thermal convection of an incompressible Newtonian fluid of very high
viscosity. The transformation formula can be obtained in the form of a
convolution by taking the Fourier transforms of fluid velocity, gravity
anomaly and terrestrial heat flow. The frequency domain representations
enable us to solve the fluid dynamic equations in a much simpler expres-
sion which may allow immediate recognition of the relationship between
convection currents and the relevant measurable quantities.

2. TFormulation of Convection

The thermal convection of incompressible viscous fluid is governed
by equations of fluid motion, continuity, thermal conduction and state.
These equations can be expressed respectively as

Dv

ppg = —eradptprivteg, 1)
dive=0, (2)
DT
DT _pprr+a,

Dt e T+ (3)
p=pfl—aT), (4)

where p is the density, v the velocity vector, ¢ the time, p the pressure,
¢ the coefficient of viscosity, g the gravity vector taken positive down-
ward, T the temperature, I the thermal diffusivity, A the rate of inter-
nal heat generation, a the cocfficient of thermal expansion, and D/D¢ the
Fulerian differential operator given by

D _ 9
o = 8 +(v grad) .

To eliminate the non-linear terms snch as (v grad)v, we adopt here
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the perturbation method in the slow motion approximation. p, p and T
arce divided into terms of basic state (denoted here by a bar) and of per-
turbation (denoted here by a prime) respectively, 1. e.

p=p+p

p=p+p'

T=T+T.
It is assumed that terms of the second and the higher power of v, o
and p’ are negligibly small as compared with the terms of basic state.
Moreover, we assume the steady state of fluid motion and the rate of
 heat gencration to be constant in the fluid. Then, (1), (3) and (4) can be
rewritten in the forms of perturbation equations as followe:

grad p'=ul*v+pg, (5)
v grad T=kp*T", (6)
o=—apT". (7

In the two-dimensional Cartesian coordinates (x,z), in which 2z is
taken downward, the above equations and (2) are expressed as

%g‘:#l’fu, (8)
/
Doy, ©
ou ow
2= 4 2= =0, 10
ox + 0z (10)
ua—T+1¢; or =kpT’, (11)
ox 0z
o'=—apT’, (12)

where v and w are the velocity vector components in the 2 and y direc-
tions, respectively.

First of all, the fluid motion is described with a scalar function ¢
called the stream function as

— (gz) , w:—agi . (13)
We see that (13) satisfies the equation (10) of continuity. Morcover, we
assume that T varies linearly at a constant rate with the depth, 7. e.
oT oT
e " 2L 5.
ox ’ 0z B

(14)
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Substituting (13) and (14) into (8), (9), (11) and (12), we obtain

Ay
uigp= —938'0; (15)

and
V6¢:—“§%2% (16)

In order to solve (16), the Fourier transform of ¢ with respect to x
is taken as

P*(&, Z)=ST Oz, 2)e”“*dx . 1
Hereafter in this paper, the asterisk denotes a transformed function of

&, the angular frequency having the dimension of a reciprocal length.
The derivatives of ¢ are transformed as

R

- g’

0 4 .
I

SD_O —~2£ et =—£'9*,

so that the Fourier transform of (16) becomes

d6 * ,,d4 * dﬂ *
dfs —3¢&° a2t +3& dfz +E(P—-1)¢*=0, (18)
where
aBoog R
2= k‘fg; = D! (19)

with the Rayleigh number R, which is dimensionless. The convective
motion appears when R takes an cigenvalue larger than the critical
Rayleigh number.

The solution of (18) can easily be obtained in the form:

¢*=C, cos (ézv2—1)+C.sin (£2v/2—1)
+C,cos (£2vVw2—1)+C;sin (EzvVwi—1)
+C;cos (£2vVw*2A—1)+Cssin (E2V e A—1) (20)

with six coefficients to be determined by boundary conditions.  and &
are solutions of a cubic equation 2*—1=0, which are
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-1+ , —1—+3i
=TT, =T (21)
The Fourier transform of the velocity field is described by using ¢*
in the form:

do*

wh=— az w*=1§¢*, (22)
so that substitution of (20) into (22) gives us the solution of the velocity
components.

Meanwhile, the Fourier-transformed expression of o’ becomes

. &2t

{Cl cos (£2v/A—1 )-+C, sin (Ezv1—1)

+w'C; cos (E2vVwi—1)+w’Cysin (E2vVwi—1)
+wC, cos (E2vV @ —1 )+ wCs sin (£2vV@A—1 )} . (23)

From (12), the temperature change is given in the Fourier transform as

*

T*=—F

" ape (24)

3. Boundary Conditions

The convecting fluid is restricted to an infinite slab with a thickness
of D, which is overlaid by a conducting layer with a thickness of H.
The boundary conditions are given as follows: the temperature change
is zero and the heat flow is given on the surface z=—H, the tempera-
ture change and the heat flow are continuous on the interface z=0, and
the vertical fluid velocity and deviatoric shear stress are zero on both
the surfaces z=0 and D. These are described in the forms:

TH(E, — H) =0
. aT*
Qe —m=K5—| _,

T*(& —0)=T*, +0),

ar* 7 rdre (25)
Kl[ dz ]z:—O_I('l: dz :]z=+0,

¢*(€,0)=¢*(&, D)=0,

d2¢* _ dﬂg./)* _
[ dz* ]z:o_._ dz® l:p =0,
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where Q*(§, —H) is the Fourier transform of the heat flow given at z=
—H, and K, and K are the thermal conductivities of the conducting layer
and convecting one, respectively.

In the above, the shear stress condition is derived as follows: The

shear stress
_ < ou ow )
T o2 T ox

vy _ 79

:‘u< 02 8002)

ASTHENOSPHERE

D

zZv

Fig. 1. Model structure used in this paper.

is transformed as

= —ﬂ(*ég;* +§2¢*> )

so that the condition =0 is equal to the last equation in (25) because of

¢*=0.
In the superficial layer, only the equation of heat conduction is
satisfied as

VZT, =0 ) (26)
the Fourier transform of which becomes
axr* e
W—E'I*:O. (27

The solution of (27) satisfying the first and second conditions of (25) is
then
Q*(§, —H)

T* =
K&

sinh {£(z+ H)} . (28)

The six coefficients can be determined by using the last four con-
ditions of (25) after a somewhat laborious algebra, <. e.
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Ci= — %ﬁ{‘;@*(g,—ﬂ)sinh He ‘l
Cy=wC, J (29)
C5:CU2C1
 apy QUE—H) (1 K )
Co= = Ke T smEDVi-1) [W(" shHE+ o

I{ sinh HE cos (EDVI—1 )}

—=
_apg Q& —H) (1 KN
o= = uKe? Sin (EDVari—1) [M<°°Sh He+ 5y sinh HE) ooy
— 3;'{ sinh HE cos (EDx/Zfrf)}
_ apy 0Q*¢& —H) (1 KN
Cs= =5 KET sin (EDVali— 1){ (C sh HE+ g7 sinh HE)
' S
—ﬁsmh HE cos (6DVw'a—1 )}
where
. \/2_—1 4 Vol—1 T \/a)gi-—l
"~ sin(6DV2—1) ' sin(DVwi—1) ' sin(EDVeo'i—1) .
o o - 3
vVi—1 vVwi—1 vVaoli—1 (80)

“tan(EDVA-1) | tan(EDVai—1) T tan@EDVa'i 1)

Substitutions of the above-determined six coefficients into (20) and
(23) give us the velocity field and the density disturbance, s.e. the tem-
perature disturbance by (24), in the frequency domain expressions.

4. Velocity Field and Temperature Disturbance

The subject of this section is first to derive such transformation
formulas as to connect the velocity field and the temperature disturbance
with the terrestrial heat flow profile. Secondly, for actual calculations
of the velocity field, the space domain formulas are derived by taking
the inverse Fourier transforms of the relevant quantities.

The stream function and the temperature disturbance are expressed
in the frequency domain as follows:

gD’
P& =" B, AQ*(E, —H), (31)
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T48, &)= —m), (32)
where
1 N ’
E*(&, 2)=— {-“‘D"[ (co h HE—!— 3Kl sinh HE)
{ sin (§2v/2—1) sin (ézvVwi—1) R sin(Ez\/wZZ—l)}
sin (6DV2—1) " “sin(eDVai—1) "¢ sin(EDVa'i—1)
K [ sin ((z—D)vV21—1)
ok, SR T G e Va=T)
sin (§z—D)Vwi—1) . ,sin(éz—D)vw'i—1)
T n@EDVaei—1) ¢ sm(eDvoi—1) H (33)
and
F*(g, 2)—5[ L <cosh He+ Iy sinh HE)

{sin(Sz«/l—l) sin (éz2vwi—1) sin(sz/w‘“'2~1)}
sin (6DV2—1) ' sin(EDvwi—1) ' sin(éDVe'2—1)

sin (§(z—D)v2—1)
sin (EDV2—1)

K

sin (E(z— DYV wl—1) sin(E(z—D)«/wzl—l)}
sin (EDVwi—1) sin (EDVw*A—1) :l

In the special case of £€=0, these two functions become
E*(0,2)=0

KH (35)
F#(0, z): 2 __](:"D D)

By taking the inverse Fourier transforms of (31) and (32), the space
domain representations of them can be written in the convolution-type
integrals:

' 0y D1 Bad
Oz, 2)= ﬁ?f]x’ S mE(fL‘—IU', 2)Q(, — H)da', (36)
D | ! ’ '
T(z, z)=-1;:5_wF(x—x ,2)Q’, —H)da!, (37)

where E(z,2z) and F(x,z), the inverse Fourier transforms of E*(&,z) and
I'*(¢, z), are respectively
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E(x, z)-%g (&, z)e* *de

w

=%S E* (E, )sinEm dé,

F(wx, z)— g F*(& z)e* *d¢

o

:%Q F*(E, 2) cos £x A€ (39)

For numerical calculations, by putting z=mns in (n is the integer
number, and s the spacing of digital data grid), (36) and (37) are rewrit-
ten in the digital forms:

ap,gD!

gln, =0 B pla—r,2)Q', —H), (40)

f=—oco

I(n, =2 3 pln—n', 2000, —H), (41)

together with
é(n, z)——E(n z)= S E*(§, z) sin nésdé, (42)

o(n, 2)=sF(n, z)——g F*(&, z) cos n&sd§ . (43)

As the integrands of (42) and (43) diverge to infinity for high angular
frequencies, we take a finite integral range within £=x/s. Such a trun-
cation procedure is based on the premise that the digital sampling process
with a spacing of s implies neglect of the frequency domain higher than
r/s. In other words, the spatial distribution of angular frequencies higher
than /s is not dealt with in the digital process. Therefore, (42) and (43)
can be respectively replaced by

o(n, 2)= K E*(&,2)sinnés d&

= \’E(lsi z) sin nzé’ d¢’, (44)

0
! */755, £ !
o(n, z)=SoF'\—S—, z) cos nré& d&'. (45)

These two functions are numerically evaluated by taking the special
cases of (35) into consideration.
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5. Horizontal Fluid Velocity in the Upper Mantle

If the hypothesis that the convection drives the lithospheric plate
motion is recognized, the laterally sprcading speed of the plate must be
closely related to the horizontal fluid velocity in the upper mantle layer.
The stream function is fully determined on the basis of the preceding
mathematical descriptions, so that the horizontal velocity on the boundary
surface can be described in a linear transformation formula of the ter-
restrial heat flow on the outer surface.

The Fourier transform of the horizontal fluid wvelocity at z2=0 is

defined as
d %
u*(§, 0):—[ dgbz l=e
_ apyD’ _
where
dE*
U*(f):D[ dz JZ:O
M KN ’
- —7‘_,7;})7{—”—4—<cosh He+'g7sinh Hg)——lg‘fg sinh Hg} (47)
A 1 1
tozether with
ﬂf’—*ﬂ“ S v wl—1 4+ - ‘”2‘/522;____
~ sin(EDV2i—1) ' sin(éDVwi—1) sin(ED\/&?;in)’l (
. - o 48
N Vai—1 n ovVwl—1 L o’V o'i—1 J :
T tan(EDV21—1) ' tan{(éDvwi—1) ' tan(éDVe'2—1)"

It can casily be proved that U*(¢) is .an odd function of & and U*(0)=0.
Similarly to the treatments in the previous section, the space domain
representation is given in the digital form:

3 oo
apgD N

w(n, 0)= CiE wZ a(n—n")Qn', —H) (49)

where
a(n)=sU(n)

. U
:i’\iU*<£§~> sin n=g' d¢’ . (50)

If the numerical values of the above integral are obtained, wu(x,0) is
obtained from a given profile of Q(n, —H) using the relation (49). o(n)
converges oscillatorily to zero with an increasing n.
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6. Convection-Related Gravity Anomaly

The convection currents generate the density disturbance, which can
be reflected on the gravity field. A negative gravity anomaly is expected
in high heat-flow areas because of low density due to the thermal expan-
sion of the mantle material, while a positive gravity anomaly is expected
in high density but low heat-flow areas.

The gravity anomaly induced by the density change p’ is expressed
as

_ _ ?+H 1ol WINA ST
dg(z, —H) ZGS x|’ e P 02 (51)

where G is Newton’s gravitational constant. The Fourier transform of
(51) becomes
D
dgH(&, —H)=25G o4\ o778, 2)a2'

A somewhat complicated performance of the above integration results
in

dg*(&, — H)= 272D r+()07(¢, — H) (52)
where
[“*({:):_--1 -HI1§ Ir(:OSh H§ (M” N”e —luex)
D% M L
Ig‘smh HE{MN"—NM" —e P¥(MM” —N. ”)}} (53)
3K,
together with
M= Va-1 @’Vol—1 L oVl —1
sin (6DvVi—1) ' sin(éDVwi—1) ' sin (50%5?1—1)1 54
2 o W7 7 s Sy 1¥J
tan (EDV2A—1) ' tan(EDvVwi—1) ' tan(éDVe'aA—1)
In the special case of £=0, we can easily prove
_1 21@)
r(0)= (1+ o (55)

Similarly to the mathematical procedures in the previous sections, the
digital form of the inverse transform of (52) can be described as

dg(n, —H)= 2700 5 (- u)Qu, — H) (56)

where
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7(n)=sI"(n)
=S;F*<”TE’> cos n=& d¢'. ‘(57)

y(n) converges oscillatorily to zero with an increasing =n. If y(n) is
numerically evaluated, 49 can be obtained from given data of @ by sum-

ming up the terms of (56).

7. Model Calculations

The upper-mantle structure is known to some extent on the basis of
the observations of seismic wave propagation and attenuation and high-
pressure experiments of mantle-forming ultrabasic materials. Although
our present knowledge is restricted, the asthenosphere is presumed to
be a layer of about 200 km thick below a 100 km thick lithospheric plate.
The existence of a low-velocity layer and the S-wave attenuation may
possibly indicate that the asthenosphere is partially melted, in other
words, a fluid in a general sense. The vertical motion due to the isostatic
recovery of an asthenosphere below a lithospheric plate loaded by ice
cstimates the coefficient of viscosity to be 10° N sec/m®

The laterally spreading speed of the ocean floor is thought to be 3
to 10 cm/year by the Vine and Matthews hypothesis (VINE and MAT-
THEWS, 1963) of gecomagnetic lineations parallel to ocean ridges. The
horizontal fluid velocity in the upper asthcnosphere may be of the same
order as that of the ocean-floor spreading motion. On the other hand,
the horizontal motion of the plate compresses the island-arc crust at a
rate of a few cm/year, which is actually observed by repeated trilatera-
tion surveys. The down-going plate-driving convection speed under an
ocecan trench may be closely related to the crustal compression rate.

Based on the above geophysical grounds, the model structure used
in this paper consists of two layers as shown in Fig. 1. The upper layer
is a thermally conductive infinite slab which has a thickness of 100 km.
The thickness of the convective underlayer is a variable less than several
hundred kilometers. The other parameters are chosen as a=3X10"°deg™’,
B=2%x10"°deg/km, p,=3.5 glem®, k=4x10""cm*/sec and K;=K=4X10"" cal
em'sec'deg™!. The cocfficient of viscosity is determined by (19)

afo.gD!
e 2
from the Rayleigh number assumed to be 10°, 10' and 10°
In the present calculation method, an arbitrary profile of terrestrial
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heat flow can be applied as an input to (49) and (56) for respectively
obtaining the horizontal fluid velocity at the plate-fluid boundary and
the gravity anomaly distribution over the surface. For simplicity, the
first model has a symmetric profile of heat-flow anomaly as indicated at
the top of Fig. 2. The maximum heat flow anomaly amounts to 1 HFU
(heat flow unit=10"%cal cmsec”!). The corresponding convection flow
and temperature distribution of a fluid with the Rayleigh number R=
10* in a 200 km thick underlayer results in a horizontal fluid velocity
amounting to a few cm/year and about an —80 mgal gravity low. The
obtained velocity range agrees well with both the geophysically estimated
ocean-floor spreading motion and the crustal strain accumulation rate.
The amount of gravity low is also comparable with the values observed
over the Mid-Atlantic Ridge (TALWANI and LEPICHON, 1969).

When a heat-flow input similar to Fig. 2 is applied to the R=10°
fluid under the same conditions as above, the output velocity becomes
much larger (see Fig. 3). The minimum value of gravity anomaly in-
creases slightly to —60mgal. The upper convection cell is somewhat
prolonged in shape. In addition, an inversely rolling cell appears newly
in the bottom of the layer. The associated isothermal flux forms a hot
spot in the upper part of the convection layer and a low temperature
zone below the hot spot. The location of the hot spot rises up as com-
pared with that in Fig. 2a.

The numerical calculation of the horizontal fluid velocity at x=200 km
on the plate-fluid boundary results in the relationship against the thick-
ness of an underlayer as shown in Fig. 4a. Despite of changes in the
Rayleigh number, the velocity range seems to be consistent with the
actual plate motion. Fig. 4b shows the gravity anomaly versus the
thickness of a convection layer. The long-wavelength topography of an

ocean ridge can be isostatically maintained by the mass deficiency due

to the thermal expansion. The convection-related negative gravity
anomalies exceeding —100 mgal or so can be partially compensated for
by the topographic effects, so that the free-air anomaly expected over
ocean ridges may be as large as several —10 mgal. Fig. 4c shows the
relation between the coefficient of viscosity, calculated from (58), and the
thickness of a convection layer together with parameters of the Rayleigh
number. The order of the obtained coefficient seems to be plausible.
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Fig. 2. Convection model (H=100km, D=200km, E=10%).
a) Given heat fiow proflle.
b) Horizontal fiuid velocity at the plate-fiuid boundary.
¢) Convection-related gravity anomaly.
d) Stream function. Contour interval is 0.1cm?/sec.
e) Isothermal flux in °C.
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Fig. 3. Convection model (H=100km, D=200km, R=10%).
a) Given heat fiow profile.
b) Horizontal fiuid velocity at the plate-fiuid boundary.
¢) Convection-related gravity anomaly.
d) Stream function. Contour interval is 0.2cm?/sec.
e) Isothermal flux in °C.
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Fig. 4. a) Horizontal fiuid velocity at £=200km on the plate-fiuid
boundary versus the thickness of a convection layer.
b) Convection-related gravity anomaly versus the thickness
of a convection layer.
¢) Coefficient of viscosity versus the thickness of a con-

vection layer.

8. Conclusion

The numerical experiments of a convection show that the convection

pattern sometimes becomes unstable in a large Rayleigh number.

In

some cases, the instability is caused by errors due to numerical treat-
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ments using finite-difference techniques. For the purpose of overcoming
such an instability, we should use simple mathematical expressions con-
necting convection flows with measurable quantities such as heat flow,
gravity anomaly and horizontal fluid velocity at the plate-fluid boundary.

This paper describes the linear transformation formulas convenient
for actual computations in which the gravity anomaly and the horizontal
fluid velocity at the plate-fluid boundary can be estmated from a given
profile of heat flow. The associated convection flow and isothermal flux
can also be obtained by using similar transformation formulas.

The model structure consists of a convecting layer between the shear
stress-free boundaries overlaid by a 100 km thick lithospheric plate. The
results of model calculations of high heat-flow over an ocean ridge agree
well with geophysical observations. The present method, however, fails
in obtaining a plausible streamline pattern which corresponds to the
subduction zone obliquely thrusting down to the bottom of an island-arc
structure. The assumption of uniform physical parameters throughout
the convection layer may not be appropriate for realizing a subduction
system.
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