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Abstract

The models investigated here consist of a superficial or a sandwiched
high-velocity layer and a lower-velocity half space medium. The idea
of the so-called leaking mode plays an important role in understanding
the dispersive character of these models.

Approximate dispersion curves of leaking modes have been calcu-
lated for various high-velocity layer models by the present author. The
results are somewhat unusual; for example, a part of the phase ve-
locity curves for these models often shows an inverse dispersion. This
feature suggests a strong resemblance to the M, wave in a simple

“‘plate”” model. ,

Model experiments were done to examine the reliability of the
approximate dispersion curves. The agreement of the observed data
with those curves is satisfactory.

Complex roots of the period equations are also calculated for the
same models. Phase velocity curves derived from real parts of them
agree well with the approximate ones. Imaginary parts of the com-
plex roots give the attenuation of the leaking modes. Attenuation
coefficients observed in a model experlment were well explained by

“the imaginary part. :

The idea of the leaking mode seems to be the most easy and
beautiful approach to understanding the dispersive feature of the high-
velocity layer models.

1. Introduction

-1t is a very interesting problem to study the dispersion of surface
waves propagating in a model with a superficial or a sandwiched high-
velocity layer and a low-velocity half space. Such a model is ecalled simiply
a ‘“‘high-velocity layer model”’ in the present study. In understanding
the dispersive feature of the models studied, the so-called leaking mode
plays an important role because the phase velocity of the surface wave
is.often greater than the shear wave velocity in the half space.

The concept of the leaking mode arises from the residues of the
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complex poles in the integral of the wave form [Rosenbaum (1960)].
Phinney (1961) and Gilbert (1964) calculated the complex roots of the
period equations and discussed the dispersion of leaking modes. Phase
velocity and attenuation of the leaking mode can be derived from the
real and the imaginary parts of the complex root, respectively.

In contrast to this complex root method, Oliver and Major (1960)
and Su and Dorman (1964) proposed simple approximate methods. Though
they arrived at those methods rather intuitively, Tazime and Yoshii
(1969) theoretically confirmed their validity. Approximate dispersion
curves of the leaking modes for several high-velocity layer models have
been investigated by the present author [Yoshii (1969), Yoshii and Suzuki
(1969)]. « y
The present study mainly consists of the following three parts:

1) Summary of the approximate dispersion curves.

2) Discussions on the resemblance between dispersive features of the
high-velocity layer models and of the so-called plate models.

3) Comparison between dispersion curves derived from complex roots
and from the approximate solutions.

These discussions will clarify the characteristics of the leaking modes

in the high-velocity layer models.

2. Approximate dispersion curves of leaking modes

in high-velocity layer models

Some of the approximate dispersion curves for various high-velocity
layer models are summarized in this section. The leaking modes analyzed
are those of Rayleigh type. » ‘

Five high-velocity layer models of the sandwiched type are schema-
tically illustrated in Fig.
1. They are simply called
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Table 1. Elastic constants of the constituent media.

Medium ¢ : « B ‘ ‘o
Aluminum 5.3 3.06 ‘ 2.70
Lamiverre 3.45 1.55 1.75
Plastics 1.89 1.07 1.40

a=compressional wave velocity (km/s)
B=shear wave velocity (km/s)
o=density (gm/cm3)

pectively.

H, indicates the thickness of the ith layer.

The limits of

H,/H; — 0 and H,/H, — oo correspond to Plastics-Lamiverre (PL-LAM) and

Plastics-Aluminum (PL-AL) models respectively.

It is noticeable that

they both are usual models of a low-velocity layer overlying a half space

type. ‘

It is easily expected that the dis-
persive character of a PAL-model
with a large H,/H, value should be
very similar to that of the PL-AL
model especially in the higher-fre-
quency range. This suggests that a
part of surface waves in the PAL-
models may be the leaking modes be-
cause normal modes for the PL-AL
model have phase velocities higher than
the shear wave velocity £; in the half
space of the PAL-models.

An example of the calculation by
the approximate methods [Oliver and
Major (1960), Su and Dorman (1964)] is
shown in Fig. 2. The model is PAL-2
and the phase velocity is 1.60km/s.
The uppermost figure shows the abso-
lute value of 4 and the lower two
figures show the spectra of the surface
motion due to an incident S wave from
the half space [Haskell {1962)]. The
minima of |4| and the maxima of the
spectra agree with each other very
well. Approximate dispersion curves

PAL-2
C =1.60 km/s
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Fig. 2. Examples of calculations by

two approximate methods for PAL-2.

Upper: Oliver and Major’s method.
Middle and Lower: Su and Dorman’s
method.

of the leaking modes were obtained by tracing these extremes.
The dispersion curves thus obtained are given in Fig. 3. Solid and
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dashed lines indicate the normal and leaking modes, respectively. In
this figure, dispersion curves of normal modes for the PL-LAM and PL-
AL models are shown by chain lines for reference.

The behaviour of the

30 ;’:t'gz*‘ Vo b A ““fundamental modes”’ for
By, P \\\‘2, \\‘E ?’j-" -: '\'-31’; 4“44\,’%;);>\\\ jche PA'L-models are very
L, VWVE S l\‘."g interesting. That is, as the

S NG e H,/H, value increases, the

25k AN “\\:\\SEAL*5 N phase velocity curve of this
_ AR PaL-2 ‘1“\\ mode swells upward with
@ SN \“\\‘\‘ e its maximum inereasing, and
§ Y \\\\\ \\“\‘\\\ approaches that of the M,
=0l PAL-S N \“\:\ .| wave for the PL-AL model
S o \\\\\“\‘;2\:5 " which has no.maxima. The
E FR \\\\ \\\:\PAL_1~ --. PAL-mode.l with a large .H:,/
- i ) %(\\\\\\\F’AL_OS H, value is almost equiva-
@ ;L _oEe @ lent to the PL-AL model in
a ML =7 p;m the higher frequency range
N PL-LAM (M) as far as the dispersive

feature is concerned. The

second layer in such a model

1.0L 7 leaking mode 7 TV EITm== may behave like a half space
/7" normal mode for the wave whose wave

R S FEY E B length is approximately

0 01 02 03 04 05 06 07 08 :
f(cps) X H,(cm) x105  shorter than (H,+H,). Very

Fig. 8. Phase velocity curves for PAL-models, complicated curves 1n t}}e
the PL-LAM model and the PL-AL model. Dashed lower frequency range will
lines indicate the approximate dispersion curves of be clearly shown in the
leaking modes. The abscissa is the frequency multi- [ axt ﬁgure ‘ -
plied by Hi. ‘ Although Fig. 3 glves
only an example for models with a special velomty contrast, the d1s-
persive features of any other sandwiched high-velocity layer model may
be similar to those presented here. ,

In Fig. 4, the dispersion curves of the ‘‘fundamental mode’ for the
same models as in Fig. 8 are shown with 'the frequency multiplied by
H, as the abscissa. In this case, the limit of IL/H1 tending to infinity
corresponds to that of H, approaching zero, because H, is now assumed
to be a finite value. It is soon realized that a model without the first
layer is the AL-LAM model. This simple model consists of a superficial
high-velocity layer and a low-velocity half space. As shown in Fig. 4,
the dispersion curve for the AL-LAM model is characterlzed by the
leaking mode shown with a dashed line. The existance of an ‘“‘inverse
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dispersion’’

wave in the so-called plate model.

semblance will be given in
the section 3.

Two-dimensional model
experiments were done to
examine the reliability of
this approximate dispersion
curve for the AL-LAM
model [Yoshii and Suzuki
(1969)]. Three models with
layer thicknesses of 0.4, 1.0
and 2.0cm were prepared
for the purpose of broad-
ening the relative frequency
range of the observation.
Some of the records ob-
tained from a model with
the layer thickness of 1.0em
are given in Fig. 5. The
source signal applied to the
free surface was a pulse of
about 7 ps duration.
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DISTANCE (cm)
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T
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Fig. 5. Records obtained from

model experiments for the AL-LAM
model. The layer thickness is 1cm.
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suggests the resemblance between this wave and the M,
The detailed discussion on this re-
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Fig. 4. Phase velocity curves for PAL-models
and the AL-LAM model.
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Fig. 6. Observed dispersion data and ap-

proximate dispersion curves for the AL-LAM

model.

The observed data were obtained by

the usual peak and trough analysis.
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, These records are characterized by the inverse dispersion. It is also
remarkable that the short period portion of the wave trains decays very
rapidly. Observed phase and group velocity data from the peak and through

analyses are given in Fig. 6.

They agree well with the approximate

dispersion curves except for small discrepancies in the lower frequency

AL-PL model Hy=1lcm )

10 -v-«‘\/—v-«s '

DISTANCE - (cm)

i

"—‘130/‘5;
Fig. 7." Records obtained from
model experiments for the AL-PL
model. The layer thickness is 1em.

%

range. The discrepancies may arise from
the observation error of the elastic con-
stants, especially 8,, which were used in
the theoretical calculations. A Lamiverre
plate is not so good as the econstituent
medium because it is anisotropic.

The AL-PL model is also a high-

“velocity \,'layer model with the larger

velocity contrast. Some of the records
obtained with this model during the ex-

© periment are given in Fig. 7. The wave

trains terminate their oscillatory move-
ment suddenly like the Airy phase, while
the M, wave in the simple plate model
continues infinitely due to zero group
velocity. The agreement of the observ-
ed dispersion data with the approximate
dispersion curves is satisfactory, as given
in Fig. 8. The observed phase velocity

data in this figure were derived by means of the Fourier analysis.
A similar model experiment has been done by Oliver, Press and

Ewing (1954), but only
the observed data were  2sf
given by them because
the idea of the leaking
mode was not well
known at that time.
Although the ap-
proximate dispersion
curves for the high-
velocity layer models
have very peculiar
forms, their reliability

~
?

VELOCITY (km/s)

=
(3]
T

AL-PL model

o model experiment , Hy=1cm

s < =8,

™

1

was, at least for the 108
AL-LAM and AL-PL
models, confirmed by
the model experiments.

0.2

0.4
f(cps) xH,(cm)

08 x10°

Fig. 8. Observed dispersion data and approximate dis-
persion curves for AL-PL model.
data (open circles) were obtained by the Fourier analysis.

Observed phase velocity
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In general, a model experiment is a very useful tool to confirm especially
an incomplete theory, because it may. provide ideal observation data. .

3. Resemblance of dispersive features between high-velocity

layer models and simple plate models

It is ‘obvious‘. 'from Figs. 5 and 7 that these wave trains are very
similar to the M, Waﬁe, or the antisymmetrie vibration, propagating in
the “‘plate” model [e.g. Press and Oliver (1955)]. This resemblance is.
also indicated by an ‘‘inverse dispersion’’ in the phase veélocity curves.-

AL-PL model - Hy=2cm

AL-PL model
AL plate

~

o

T
x \ o

model experiment data

DISTANCE (cm)

o A °

shot ‘mark

PHASE VELOCITY (km/s)
w
=)

10045 )
Fig. 9.: High gain records. for 2.0—_0( _ 7
the AL-PL model (Hi=1cm). |, :

One . interesting = question o AL-PL model -

is whether the wave trains .

similar to the M,; wave in the - ) o I I
c . 0 1.0 2.0 3.0 x10°

plate model do exist in the © 7 f(cps) x H, (cm) o

present models. Some of the Fig. 10. Dispersion curves for the AL-PL.

records obtained at a very high model and for the AL-plate model. Phase ve-

gain from a model experiment locities for the AL-PL model (open circles) were
lculated by the aprroximate methods. Observed
for the AL-PL model are

it N dispersion data from fivave trains in Fxg 9 are-
shown in Fig. 9. The wave i shown by cross marks.

trains presented here precede : .
the waves with large amplitude (Fig. 7) and are considered as those
similar to the M,, wave in the plate model.

Approximate dispersion curves for the AL-PL model were obtained
in the region of g,<c<a;. The results are presented by open circles.
in Fig. 10. The dispersion curves of the M,, and M,, waves for the AL-
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plate model are also given by solid lines. The resemblance between the
two models ecan be immediately noticed from this figure. Crossmarks
in this figure denote the observed phase velocity data from Fig. 9.

5.0

AL-LAM modet
AL plate

P
o
T
N\

= A

PHASE VELOCITY (km/s)
w
o

[
o
T
o

AL-LAM model
1.0+

f(cps) xH,(cm)

Fig. 11. Dispersion curves for the AL-LAM

model and for the AL-plate model.

! I
0 1.0 20 30 x10°

It was thus ascertained that the
wave trains in Fig. 9 were
similar to the M, wave in the
AL-plate model.

As shown in Fig. 7, the
most predominant wave trains
in the AL-PL model are those
with 8,<c¢<a, In this region,
the group velocity curves for
the AL-PL model and the AL-
plate model should be clearly
different from each other be-
cause of different gradients of
the phase velocity curves.

The leaking mode radiates

. P wave energy as well as S

wave energy into the half space
when its phase velocity is

- greater than a,. In the vicinity

of ¢ equal to @, the behaviour
of the phase velocity curve is
somewhat complicated as shown
in Figs. 8 and 10.

The comparison between the dispersion curves for the AL-LAM
model and for the AL-plate model is given in Fig. 11. Although the
velocity contrast of the AL-LAM model is not so large as that of the
AL-PL model, the relation between the dispersive features of this model
and of the AL-plate model is still clear.

This resemblance, of course, is expected to be stronger, as the velocity
contrast of the model becomes greater. The results in this section do
not mean that wave trains in the high-velocity layer model can be analyzed
approximately as if they were in the simple plate model. Such an ap-
proximation may only be applicable for a model with a very large

velocity contrast.

4. Complex root for PAL-models

The elastic wave propagating in a layered half-space is given by
the following double integral;
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u@,r,@<n==jw dk-k~Jukr)jw dw.expp—iwa.[lﬂﬂL@:ﬁiﬁj,
= = « 4(w, k)
(1)

where t, 7, 2z, d denote time, horizontal distance, depth of the receiver
and depth of the source, respectively. In the present paper, the contour
integral with respect to a complex variable o is discussed as in Gilbert’s
(1964) paper. Two sets of branch points, w=+a,k and w==+pB,k, are
located in the complex w-plane due to two radicals,

y= (k2_w2/a”2)1/2 ! —

and v =(k*—?BD)"?, (2)

which are involved in the integral (1). The suffix n is attached to the
quantities in the half-space. The resultant four Riemann sheets are
labeled as (+, +), (+, =), (—, +) and (—, —) according to the signs
of Re(v) and Re(y’) [Gilbert (1964)]. Familiar normal mode poles are
on the real axis in the (4, +) sheet. When branch lines are fixed
along Re(v)=0 and Re(»’)=0, and the (4, +) sheet is chosen as the
uppermost one, the integral is evaluated by the sum of branch line
contributions and residues of the normal mode poles. If these branch
lines are suitably deformed, residues of the complex poles in the un-
covered (+, —) and (—,
—) sheets are added as
a part of the integral
[Rosenbaum (1960)].
These new residues
yield the concept of the A
leaking mode. Disper- S Sy
sion curves of the leak- oo

ing mode can be ob-
tained by tracing the
complex roots of the
period equation 4(w, k)
=0.
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o
W
T
~,

o
N
T

The complex roots
of the ‘‘fundamental s
mode’’ for the PAL- s

- /
models are shown in Fig. o /
12. In this figure, the
abscissa denotes the an-
gular wave number £k
and the ordinate- the
complex

frequency .
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Fig. 12, Complex roots for PAL-models.
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Fig. 13. Comparison of phase velocity curves
obtained from complex roots and from approximate

ons for PAL-2 and PAL-5.

(f+if) respeetively; The scale for f is largely magnified because it is
much smaller than f. The dispersion curve of the M,, wave for the PL-
AL model is also presented by a chain line.

In the higher frequency
range, real parts for PAL-5

~and PAL-2 are very close to
~ this eurve and imaginary parts

are very small. Since the ex-
pression of the wave form (1)
involves a stationary vibra-
tion term, exp(—iwt), the im-
aginary part of the complex
frequency yields the attenu-
ation of the wave traln with
time. Small imaginary parts
correspond to a small attenu-
ation of the wave trains. _

The phase veloc1ty curves
derlved from the real part in
Fig. 12 are shovvn by dashed
lines in Flg 18. Approxnnate
phase velocltles for PAL-2 ‘and
PAL-5 are glven by open cir-
cles (See Flg 2). They agree
with the dashed lines very
well.

The comparlson of the ap-
proximate phasé velocity with
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Fig. 14. Comparison of phase velocity curves obtained from

complex roots and from approximate solutions for PAL-1.
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the complex root for PAL-1 is given in Fig. 14. The absolute value of
the period function 4 is drawn by contour lines in ¢>g; [Yoshii (1969)].
A pronounced ‘“trough’ of the contour lines corresponds to the approxi-
mate dispersion curve. The phase velocity curve derived from the real
part of the complex root (dashed line) is situated just at the centre of
this ‘“trough’’.

5. Complex roots for AL-PL and AL-LAM models

Complex roots for the AL-PL model are given in Figs. 15(a) and
(b). The phase velocity curves from the approximate solutions and from
the real parts of the complex roots are given in Figs. 16(a) and (b).

i
AL-PL model
5 4.0r x10°
0.8 -x10 F
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A=) sheet. AL-PL model
° approx, solution (-,-) sheet
) 3.0}
06}
7
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k& s z
- AL 3
< BOEAd
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0 Y !
a //é. k) §
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o (3 i
’ ('/ E
OI 3
, ~
, 1.0 x
02k /o x10%40.05 ~ T
o doo3 = ~
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T 002 E
et P ' OOI(E 00 1 | 1 1 1 1 1 0
ol ; . 0 1 2 3 4 5 6 7 8
k X H,

k% Hy
{(a) Lower-velocity mode which is simlar (b) Higher-velocity mode which is similar to
to the My wave in the plate model. the My wave in the plate model.

Fig. 15. Complex roots for the AL-PL model.

The phase velocity curves obtained in those two ways agree well with
each other. The dotted line in Fig. 15(a) shows the complex root in
the (—, —) sheet. This root mainly corresponds to the leaking mode
whose phase velocity is larger than «,. The leaking mode of this type
may radiate P wave energy as well as S wave energy into the half-space.
As shown in Fig. 15(a), this situation is also understood by the larger
imaginary part.

As mentioned before, the imaginary part of the complex root yields
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(b) Higher-velocity mode.

Fig. 16. Comparison of dispersion curves obtained from com-
plexiroots and from approximate solutions for the AL-PL model.

attenuation of the leaking mode. The relation between the attenuation
coefficient « with respect to distance and the imaginary part f is

f=alp2z, (3)

where U denotes the group velocity. Observed attenuation data from
the records in Fig. 7 are given in Fig. 17 [Yoshii and Suzuki (1969)].
Observed data for a model with a layer thickness of 2.0cm are also
given. Since the attenuation discussed here should be zero in the normal
mode region, attenuation coefficients were determined from the amplitude
spectra all of which were normalized at a point of the normal mode-
leaking mode boundary. The results are shown by open circles.
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It is noticeable that the obtained attenuation data involve the effect
of absorption in the media, but the analytical estimate of the absorption

for the leaking mode is now impossible.

plate is rather large and is close
to @=28. Since this value should
correspond to the maximum ab-
sorption in the AL-PL model, this
effect was subtracted from the
observed attenuation data. The
results are shown by closed circles
in the same figure. Attenuation
coefficients due to the energy
leakage must exist somewhere be-
tween these open and closed cir-
cles. The imaginary parts, which
have already been represented in
Fig. 15(a) are reproduced in Fig.
17. These curves explain the ob-
served attenuation data very well.

As shown in Fig. 15(b), the
imaginary part of this mode is
rather large except for a range
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of kH,<2.5. It is interesting that actually observed wave trains are,,re-
stricted in this range (Fig. 10).

Complex roots for the AL-LAM model are shown in Figs. 18(a) and
(b). Phase velocity curves derived from the approximate methods and
from the complex roots are given in Figs. 19(a) and- (b). These figures
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o o
o e
Z20- :
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o o
1.5‘7-—7_ C=f
l 1 L 1 i 1
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(a) Lower-velocity mode.
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(b) Higher velocity mode.

Fig. 19. Comparison of dispersion curves obtained from
complex roots and from approximate solutions for the AL-LAM
model.

are essentially similar to those for the AL-PL model, but the complexity
due to the position of ¢c=a, is found in a mode corresponding to the
M, wave. Except for a region near c=a,, the agreement between the
approximate dispersion curves and dispersion curves from the complex
roots is good.
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6. Conclusions

The conclusions obtained from the present study are as follows:

1) It is possible to regard a part of, or sometimes the greater part of,
the surface wave propagating in the high-velocity layer model, as a
kind of leaking mode. ’

2) Two approximate methods are very effective to obtain dispersion
curves of the leaking mode.

3) Dispersion curves for the high-velocity layer models are very unusual;
for example, sometimes phase velocity curves show an ‘““inverse dis-
persion’’.

4) Observed dispersion data from actual model experiments were well
explained by the approximate dispersion curves.

5) The resemblance between dispersive features of the high-velocity
layer model and of the so-called plate model is remarkable. The
most pronounced wave train in the high-velocity layer model is
similar to the M,, wave in the plate model.

6) Dispersion curves derived from the real parts of the complex roots
agree well with the approximate dispersion curves.

T} Observed attenuation coefficients from an actual model experiment
were well explained by the imaginary part of the complex root.
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37. EEERETNVERED S EEMEOSHE

wEmem F O OH oW

TR E & D PR, SEEERETL LS heFr (UTEEER T
LEEHT B.) R{Eh B EMBEOWHEIL, KBRS WHIETH S, KRR T DIEOREIE D
HHED B, &L THEIZOWTHERS.

= = THhohbhs e AL, Table 1 iwind X 57 8 DOH (plasties, aluminum, Lami-
verre) DL ENLIRLL DR BN TWBH, —ROEEEN € F A OWEICOWTEH, 4
EOERH SESCHZETE S Z & LB S, hREMMTEETHSHL LT, Fig. 1 ©RTLo7k
5 oDEFA (3 DDOREOHL TR & > T PAL-£F A LIRS, BXUOKEBIREETH LML
LT AL-LAM % X 0% AL-PL =5 A% 8 N7z, APGEOXETEiIERIIK DL S D TH 5.

1) PTG e S Ak Eb 2RHIEO— FEHTiIANS) H—MoY)—Fv 72— FéHzbh

D

2) DY —F v E~ FOSKMFOFFIZE, Oliver and Major (1960) & X7¥ Su and
Dorman (1964) & & 2 TGN KEGRTH 5.

8) FHliEE T A OGRS THERIEER L Tw 5. flxid, AL-PL %X 0° AL-
LAM =5 A% {5 5 EMEOTERS OMAME, "S5k TR ohs. PAL-
EFADOEEY, B SESTR” &S S LHEEOPE L T 5.

4) E®5Fr9c, AL-LAM :LU8 AL-PL = fzv&{xbéiﬁﬁ&&mtﬂflbt& s F D5
HOTE LRI X bR bRk o ThER & B —EL TS,

5) ACAEEESY SHS RATC LB LHERIERD X5, MM A FRCRIEARE
DEE) 12, D T =7 LANOEITRES. S0 AT 1, HiE T AR ED
% My 3 GEAFRIED) CHIET2 2 EiXE D EThRW.

6) FEMlEEIZIND, dHEER o, k=0 ONZHR (o2 SR, b SRED) &AL, L0
PR B (AT E A RDTHD &, HUBZL D3 DL —HoE 0L TRD TR —&T
%, COR—FKL, AR RO PUEHEGE WS IC RO T 5.

7) AL-PL =Fr%{5h5d Yy —FvSE— FONITRIED T ATERBLRDTHD &, #
FHOELFT T TLHYTE 5.

AED PR LU B L 512, EEEEEE 7k (R % RMP O A, Y-+ v 72— F

DF L AT S OTD BRI L b D,




