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Abstract

In order to examine the behavior of trapping waves in a rectangular
bay, the long wave around the estuary for the outfAowing wave is
discussed focussing our attention upon the reflexion coefficient. The
theory developed is a rigorous one based on the buffer domain method.

1. Introduction

Succeeding the previous works (Momoti, 1965a—1969), the long wave
around the estuary is discussed for the case of periodic waves incident
upon the estuary from the inside of the canal. The primary purpose of
this paper is to examine the reflection coefficient of the reflected wave
to the outflowing (incident) wave. The reflection rate is of much benefit
to the study of the trapping wave in a rectangular bay which will be
made in the future.

2. Rigorous Theory

In this section rigorous solution is presented on the basis of the
buffer domain method.

2,1. Model used.

An entire portion of waters is assumed Iy
to have a uniform depth. Referring to Fig. Bdgf:lglf D3 (r,0)
1, the origin of the coordinate is located at SAD 9
the midpoint of the estuary, the x- and y- &=w  / *i/ i ° 9:0 x
axes being taken along the coastline facing o, 0
the open sea and along the axis of the canal 24
with breadth 2d. A train of periodic waves %s:‘:
—~a 0
Lozt (1) L‘J

is then propagated from the inside of the Fig. 1. Model used.
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canal toward the open sea, where » and ¢ are the angular frequency
and time variable.

2,2. Equation and Conditions.
Basic equation for periodic waves is given by

( Ay +k2)c=0, (2)

ox* 0y’
where

{: the wave height,
k: the wave number.

Conditions at the rigid boundary are

%: at (jz]=d, y<0),

ac (3)
o _ at (lz|>d, y=0).

oy

2,3. Formal Expressions.
Let the domain separate into three parts as shown in Fig. 1, i e,

D,: the domain in the range (lz|<d, y<0),
D,: the domain in the range (r<d, 0<0<=7),
D;: the domain in the range (r>d, 0<0<n),

where (r, 6) are the polar coordinate.
Allowing for boundary condition (8), the formal solutions are ex-
pressed as follows.

Li=ev 4 20 {memitmv cos 7? x (4)
"

in domain D,

Ms

L= 2 {{ s (kr) cos 200+ L8 4,14 (kr) sin (2n4-1)6} (5)

n=0

in domain D,,
and

G= é £em H (kr) cos 2n8 (6)
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in domain D,,
where

(km:kn:\/m_( L Y

and ™, ¢@&m, (em0 (¢ are the unknown factors to be determined by
the conditions between the adjacent domains.

2,4. Infinite Simultaneous Equations.
In order to determine the unkown factors in expressions (4) to (6),
the boundary conditions

C2=C1
acz_ﬁ} at y=0 (7)
oy - oy
and ;
C2=C3
&_ﬁi} at r=d (8)
or  or

are available.
Applying operator

d
g cos ™ pdy  (m=0, 1, 2, ---)
0 d .

to (7) after substitution of (4) and (5), we have

S {c;zn>1<,;,m } - {kd } kd} 0. 1 2, -, (9)
—Cm =0ng . m= , , y ),
Sleeor, T V—ikad) 7 {md .

where

and
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Likewise, applying operator
5:c052m0d6 (m=0, 1, 2, --)
to (8) after substitution of (5) and (6), we have

Jom Jont1 m®
(2m) @2n+1) __ #(2m) . .
: {J} 2 A8 ”{ng}cz = {H,;} m=0, 1, 2, -,
(10)

where
J,=dJ,kd), J,=J,kd), H>=HP (kd),
HY=HY (kd) (v: order of Bessel function)

and

I = 2n+1
" (2n+1)— (2m)? -

Eliminations of ¢™ and & from (9) and (10) yield

 knd 2
kd #2"

o m =0 2tkd (m=0,1, 2, ---) (11)

and
el —ikd 3 I o(JannHEY — Tinn HR) G =0 (m=0, 1, 2, +--).
n=0
(12)
Equations (11) and (12) are final forms to be obtained in this section.
2,5. Reduction to Finite Simultaneous Equations.
Setting down

Julkr) =0 (mZL204+1)
Julkr)=0 (m>2041)

equations (11) and (12) are reduced to the following.

} for r<d, (13)

kd n=0 71+1Kn 7n+ E Xl+2+n n, m=Pm* Z%kd (sz? 1’ 2’ Tty l)
(14).
and
—Jﬂ(;—XmH tkd Z I, "<1 jz"ﬁ[{(z;)n >Xl+2+n:0 (m=0,1, 2, ---, 1),
2m 2ui1
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where

Xn+1=C2(2")J2m }

— 2
Xl+2+n_‘ CZ( n+~l)J2n+1

(16)

and

» kd ’
K, ’”2712750 Jule) cos M2 zdz,

L, .= (2n+1) jkd Sonsa (2) cos M7 2dz.
' b P 0 z kd

(17)

With a view to avoiding the accumulation of trunetion error on the

electronic computer, coefficients of equation (14) are normalized by fac-

tors Jy, and J...., those of equation (15) by J:Hin and J,,.Hn .
Solving equations (14) and (15), unknown factors

g (=0, 1, 2, -, 2U+1) | (18)

in domain D, begin to be known through expression (16). In calculation
of integral (17) Filon's method is emplyed, of which the procedure is
detailed in Section 2 of the fifth work (Momoi, 1968b).

Substitutien of (18) into the first expressions of (9) and (10) gives
the values of

¢™ and & (m=0, 1, 2, ---). (19)

Behaviors of the wave around the estuary can now be elucidated
through use of formal expressions (4) to (6) with substitution of (18)
and (19).

3. Approximated Theory

In this section, development of the approximated theory is done for
2d< L (2d: width of the canal, L: wave-length). The model used is
completely the same as that in Section 2. In the analysis of this section
the incident wave is expressed by '

Fi;=e+im—iky . (20)

instead of é*""””’f” in the previous section. Under the approximation
2d < L, higher modes of the wave in the canal are neglected. Following
the same procedure as those developed by Ippen-Goda (Ippen-Goda, 1963),
Mitsui (Mitsui, 1966) and Momoi (Momoi, 1970), the analysis is earried
out. g ; :

Basic equation and boundary conditions are given by (2) and (3).
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The entire domain is separated into two parts, i. e.,

D.: the domain in the range (|z|<d, y<0),
D,: the domain in the range (—oco<z<oo, y>0),

in place of three domains in Section 2. For the geometry of the domains
and nomenclature, Fig. 2 should be referred to.

Using expression (20), wave heights F;
in domains D; (j=1,3) are expressed as

y
: T D3 : Flze—iky+Re+iky (21)
A X and
0 7/
7 F=1(, 7). 22)
?_5; /4 In the above, R is the complex reflexion co-
;. efficient. After the procedure by Ippen-
= Goda, Mitsui or Momoi, we have

Fig. 2. Nomenclature of 2%l —x

= 23
the model used for 2d< L. %iltr ( )
and
1w, 1) =Q- r&fe—md cos (ex/d)de, (24)
o &r

where

T=rka| 5% g, 25)
o &
— 4ikd
— 7 2 e

4. Numerical Calculation
Computational aspects are given in this section.

4,1.  Validity of Our Theory.

Validity of the rigorous theory developed in Section 2 is ascertained
through the calculation of the reflexion coefficient of the approximated
theory in Section 3. The reflexion coefficient of the rigorous theory
is given by ({” in expression (4) and that of the approximated theory
by (23). The calculated results are presented in Fig. 3. According to
the figure, the absolute value of the reflexion cofficients of two theories
is in very good agreement up to kd=2.0. In calculation of integral (25),
Simpson’s formula is employed.
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4,2. Reflexion Coefficient and the
First Mode.

The calculated value of re-
flexion coefficient ¢ is arranged
in Table 1 for kd in the range 0 to
3.14 (=n), of which the variation
is shown in Fig. 8 with the curve
of the first mode |[{{"|. According
to Table 1, || decreases monoto-
nically from 1.0 with increase of
kd to lessen down to the wvalue
below 0.1 in the range kd>2.0,
while arg {® has—= for kd=0 to
decrease in absolute value with
increase of kd.

12O 1z or IR
10

IRI 3
Approximated(d«L)

Fig. 3. Amplitude variation of each
mode of the reflected wave in the canal. The
solid lines denote |Z{”| and || of the rigor-
ous theory, the broken line the reflexion
coefficient |R| of the approximated theory
(d<L).

Table 1. Reflexion coefficient {{® at the estuary
(KD, AB and PH denote, respectively
kd, 14| and arg (")

KD= 0.050 AR=
Kb= 0,060 AB=
KD= 0,080 AB=
KD= 0,100. AB=
KD= 0.200 AB=
KD= 0,300 AB=
KD= 04400 AB=
KD= 0,500 AB=
KD= 04600 AR=
XD= 0,800 ABR=
KD= 1.000 AR=
KD= 1,200 AB=
KD= 1.400 AR=
KD= 1,600 AB=
KD= 1.800 AB=
KD= 2,000 AB=
KD= 2,200 AR=
KD= 2,400 AR=
KD= 2.600 ABR=
KD= 2,800 ABR=
KD= 3.000 AB=
KD= 3,140 AB=

0.90618 PH==2,89447
0.88898 pPH==2.85913
0.85609 PH==2.79462
0.82514 PH=-2,73655
0.69520 PH==2,50780
0.59673 PH==2,33842
0.51983 PH=-2,20135
0.45762 PH=-2.08721
0.40689 PH=-1,98623
032757 PH=-1.81670
0.26802 PH==1,67785
G.22162 PH=~1.56070
0.18445 PH==1,46136
0415401 PH=-1.37925
0.12878 PH==1,31437
0.10770 PH=-1.26779
0.08790 PH=-1,27474
0.G7317 PH=-1.31877
0.06118 PH=-1.29857
0.0¢5054 PH=-1.39363
0.04261 PH=-1,53272
0.03697 PH==1.94934

This table is the result of the computer output.

As for the first mode of the reflected wave, the amplitude [{{]

takes a maximum value at kd=r,

which amounts to 0.5. kd=r refers

10 the resonance of the first mode of waves in the canal.
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4,8. RST Wave.

RST wave is the abbreviation of resultant wave. RST wave is
calculated by. the procedure described in Section 2. In the caleulation,
the degree of the approximation (20+1) is taken large enough to keep

S.A.
0.7
.5
03

' 0.

.o
1.22
10— Fig.4-4,

kd=2,0

-

’ Fig.4-5.
0.5 142 Kkd=3.14

kd=1.0

Figs. 4-1 to 4-6. Amplitude variations of RST wave*.
Figs. 5-1 to 5-6. Phase variations of RST wave*. .

* LW. and S.A. are the abbreviations of “incident wave” and “symmetric axis”.
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~ good convergence. The calculated results are presented in Figs. 4-1 to
4-6 for the amplitude and in Figs. 5-1 to 5-6 for the phase. The com-
puted range of kd is 0.1 to 4.0. According to these figures, the
following facts are exposed. The outflowing wave in the open sea is
small in amplitude for small kd (see Figs. 4-1 to 4-3) as a result of the
strong reflection toward the inside of the canal, while, as kd increases,
the above amplitude begins to be large, of which the value approaches
a unit showing the aspect of elongation toward the open sea due to the
strong directivity of the wave. The lastly stated behavior of the direc-
tivity of the wave is also perceived in Figs. 5-1 to 5-6.

Fig6-l.
kd=0.1

Fig6-2.
kd=05

Fig.6-3.
kd=10

F T
IS
L

Figs. 6-1 to 6-6. Phase variation of the reflected wave*.

4,1;.‘ Reflected Wave.
The wave reflected at the estuary ({.,) can be discussed by the
procedure

Cref = Crst - e+iky’

where ¢,,, is the wave height of RST wave ob-
tained in Section 2 and e the incident wave.
The ecomputation is carried out for the phase of the
value kd=0.1 to 4.0 and for the amplitude of kd=
3.14. The results are presented in Figs. 6-1 to
6-6 for the phase and in Fig. 7 for the amplitude.
In Figs. 6-1 to 6-6, the wave is reflected definitely
from the corner of the estuary. In order to ex-
amine the amplitude of the resonating wave, the
amplitude variation of the reflected wave is depicted o

N variation of the reflect-
only for the value of kd=3.14 (==). According to .4 wave fora specified
Fig. 7, the loop and node run along the axis of value of kd=z*,

Fig. 7. Amplitude

* See the footnote of Figs. 4-1 to 4-6.
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the canal suggesting the excitation of the resonating lateral wave.
The excitation amounts to 0.5 in amplitude (see the value with double
underlines in Fig. 7), of which the value is the same as that found
for the case of normal invasion of the incident wave from the open sea
(see Section 4 of the sixth paper (Momoi, 1969)). ‘
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