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1. Introduction

When studying generation of seismic waves in a spherical earth, it
is usually assumed that source function or the displacement potential is
only a function of radial distance from a focus. Recent development
of the dislocation theory, however, has shown that waves are radiated
from the focus not uniformly but with some azimuthal and colatitudinal
distribution. It is required to investigate behaviour of seismic waves
radiated from a more realistic source model. '

Let us assume that the displacement generated from the source can
be expressed by

U=grad ¢-+rot (r+, 0, 0)+rot rot (r, 0, 0) , (1)

where ¢ and + are generally given, in the polar coordinates (», 4, )
with the origin at the focus, by

¢=h2(hr)- P (cos 0)-exp (Ximo) ,

Ar=hP(kr)- P"(cos 0)-exp (Fime) , (2)

in which 22 and P are a spherical Hankel function of the second kind
and a Legendre function respectively, and &,k are wave numbers of
the longitudinal and transverse waves respectively. To obtain seismic
disturbances due to this generalized source model, we have to express
the displacement in the other polar coordinates with the origin at the
centre of the earth and to express these potentials by using variables
in this new coordinates.

When m=n=0,1.e., the potentials emitted from the focus are
independent of the azimuth and colatitude, the complete transformation
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has been given in many textbooks of mathematical physies. The trans-
formation is differently expressed according as distance of a referring
point from the centre, R, is larger or smaller than that of the source
from the centre, a. Sat6 (1950) gave the transformation for any m and
n values without considering this restriction. That transformation should
be valid for the case R>a, if referred to the solution m=n=0, so
that the transformation is not complete. Jones (1964, p.492) showed
that a generalized solution multiplied by j,(ka) is expressible in terms
of an integral representation involving the new coordinates, where 7,
is a spherical Bessel function. Since the transformation becomes infinite
for j.(ka)=0, that integral is not always employed.

The transformation for m =%=0 can be obtained from the effect of the
small variation of @ on the solution, fixing the centre and the referring
point (Jeffreys and Jeffreys, 1956, p. 659). By a similar treatment Edelstein
(1963) gave the transformation of the solution j,(kr)- P;"(cos 0)-exp (imep).
To discuss a progressive wave, however, it is necessary to use the
solution expressed by spherical Hankel functions but not by spherical
Bessel ones. In this paper, we derive the complete transformation, of
the type (2), following those treatments. In terms of this transformation,
each term of the displacement component (1) is expressed by the variables
in the other coordinate system.

2. Mathematical preparations

For simplicity, the wave number is taken as unity, unless it is
confused.

The solution which presents a diverging wave is expressed by (2).
If we use a Gegenbauer function C»*'*(cos @) for a Legendre function
Py .(cos 0), the potential (2) can be written by an alternative form

SIN™ 0« Ry (1) - CretM%(c0s 6) - €Xp (F1imo), (3)
where %, is a spherical Hankel function of order » and

Py, .(cos )

Cr+i(cos ) = _
( ) @m—-1)!.sin™ ¢

(4)

We shall start with the solution (8).

Let us consider two coordinate systems where the origins are at points
A and B, respectively, separated by distance a, as to say (r,, 6,, »,) and
(73, 05, @) as illustrated in Figure 1. Between these coordinates, the
following relations hold, from the geometry ABP,

Pr=P4 (5)
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rysinf,=r,sind, , (6)
)
r,c080,=r,cosb,—a,

ri=94+a*—2ar, cosld, . (7)

From Equation (5), a factor exp (Xime), thus
m, is not associated with the translation of
the origin, so that we may neglect the factor
exp (+imgp) from our considerations.

We introduce the notation

{n, m}P =Cr+'*(cos ;) hi(rs) , (8)
where

R (1) =R n(TB)[7E - (9)

Fig. 1. Geometry of the
coordinate origins. A is the
centre of the earth, B is the
focus, and P is a referring
point.

Applying them to Gegenbauer’s addition theorem for Bessel functions

(Watson 1922, p. 363), we can write as

(0, my = @m—1)11- 3 @1 +2m+1) -k (@)- {1, m}
=0

=(2m—1)!! g @l+2m+1)-57(a)-{I; m}y

for a>r,, (10)

~ for alr,, (11)

where j™(r,) and {I, m}}’ are given by taking 7,(r,) in place of hi(r,) in
Equations (9) and (8) respectively. The left hand side of Equation (10)
or (11) is no other than the expression of n=0 in Equation (8). Thus
for any m, let us assume, corresponding to these equations, that

(n, my =S (@), m, a>r, (12)
=S gma)-{l, m}P,  a<r,. (13)
1=0

Before rigorous determination of the factors e;™(a) and {i™(a), we
must know some characteristics of {n, m}?’. From (6), we have

ory cos 0y, ,
oa
and .
o(cosbz) sin® 4,
oa ry

(14)

Differentiating Equation (8) with respect to @ and using these relations,

we obtain
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j—{n, m}y=—Cr+(cos §,)-cos O, d hr(ry)
oq B
. dCu+(cos 0) (15)
_ 20 Jhmtifg ),
sin® 05« h2+(ry) d(cos 0,)

Then application of the differential and recurrence relations of the
spherical Hankel and Gegenbauer functions to Equation (15) yields the
three-term recurrence relation

(2m+2n—l—1)%{n, mly=Mm+1){n+1, m},
—@Cm+n){n—1, m}, . (16)

3. Case a>7r,

First we consider the case a>#,. The transformation is written
by the equation

{n, m}ip = ep™(a)- {1, m)" . @
=0
Since the transformation in the case n=0 is given by Equation

(0, mpP =3, (@m—1)!1-@L+2m+1)- ki (a) -, m)? (10)
we assume that
e;""(a):(2m—1)!!-(2l—{—2m+1)-F$<%>h{"(a) , a7
where F" is a functional operator to be determined. From Equations
(10) and (12), denoting d/da by x, we have
Fr(x)=0 and Fr@)=1. (18)

After differentiation of Equation (12) with respect to @, application of
Equations (16) and (17) yields

Fr(x)=@2m+1)z ,
Fz'"(rc):%[(zmw)mm] ,

Fy@=-Cm+ 1;‘,2*“ 3 [@m+5)+3]

D R R L I I R SR R R PR

................................

(n+1)F2(0) = @m+ 20+ D)o Fr(x) + (2m +0) Fr, (v) . (19)
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This recurrence relation of F*(x) can be compared with that of Gegen-
bauer function, and we obtain

Frx)=1"-Crt(—in) . (20)
Therefore, we reach the crucial result, using Equation (6),
@m—1)-(rpsin 0,)" - {n, m}3' =h, i (1) Py u(cos 05)

35 6™(@) Guam(r) - Pita(cos 0, (21)

where symbolically,
g™a)=2m—-1)11.2l+2m+1)-i"-Cr P (—id{da)h,, (a)/a™ .  (22)

As to the factor ¢™(a), we shall be discussed later.

4. Case a<r,

In the case a<r, also, we can determine the transformation by
analysis similar to that of the preceding section. Thus we write the
equation

fn, P =3, G(@) {1, m)P (13)
=0
and for the factor {/"(a), let us assume that

G™(a@)=@2m—-D!-2l+2m+1)-Gr(d/da)h} (a) . (23)

Functional operator G7(z) is determined similarly in the preceding section,
and finally it is shown that

Gr(x)=Fr(x)=1i"-Cr+(—iw) . (24)
Accordingly, we reach the result for this case
i (75)+ P (€08 0) = 33 57(@) P (1) - Pin(c0s 0,) , (25)
where symbolically
(@)= @m—1)11- (2l +2m+1)-i*- Cot ¥ —id/da)j, n(@)fa™ . (26)

5. Factors &!™(a) and {"(a)

The factor ¢;™(a) for the case a>, is given by taking %,.,(a) for
Jizm(@) in the factor {7"(a) for the other case. If we denote by E;™(a)
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Table 1. Choice of Epr™(ka) and z,.,(kr,)

Case EM™(ka) 2i+m(kra)
a>ra eg™ka): Eq. (22) Jrtm(kra)
a<ry {r™ka): Eq. (26) hi+m(lera)

the factor &'™(a) or {y"(a) and by z,(®) a spherical wave function of
order n, 7,(x) or h,(x), the transformation is written as

hm—&-n(rB) °P7:L+,,L(COS 05’) :2 Elnm(a) 'zl+m(/rA) 'P;im(COS 0.4) ’ (27)

and Ep"(a) and z,..(r,) are chosen as in Table 1. In seismological
applications, the cases n=0, 1, 2, 8 are important. The exact forms of the
factors Er™ for these cases are easily obtained, by means of Equations
(19), as follows:

n=0 [related to h,.(r;) - Pr(cos 05)]

(@) = (2m—1)!- 2L+ 2m + 1)z (@) /s, .
1 [related to h,.,(75)* Pmii(cos 0,)]
l 21m(Q) _ Riem+(@) } .

q™tt a™ ’

n

Ei™(a)=(2m+1)!! -(2z+2m+1){

n=2 [related to h,..(75) - Prs(cos 65)]
E"(a) :szm“'3)£.(2l+2m+1)[l(l—1)-*z’+’"(a)
2 a™+*
2 1 Zimi(@) _ 2i1n(@) . (28)
2m ){ a @m+3)ar }] ’ |
n=3 [related to A, a(75) Pois(cos 05)]

()= 2O + M. @r+2m+1)| 10-10 _g)fn(®)

am+3

— (U m) U+ me1) +3(m o+ 1) (m+ ) Fmn(@)

M _ Zem(@) | Rima(@)
H g tram s ) 2 O ]

In general, the factor E/"(a) can be expressed by the sum of a
finite number of spherical wave functions, and it is proved as follows.

For m=0, we can write symbolically a spherical wave function as
(Rayleigh, 1945, § 329)

z(@)=(—19)"+ P.(—id/da)z(a)
=(—1)"-C"(—id/da)z(a) . (29)

-
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Then, let us assume that
2(a) =zpen(@) /e = £ (= )" Crt i (—id/da)zy (a) (30)
whence because of Cr+*(x)=1 and Equation (29), we get
| fr=fi=1.
Putting n+1 for n in Equation (30), we have
| 2ro(@) =F (=) - O (—id/da)z(a) , (1)

application of the recurrence formula of Gegenbauer function and Equation
(30) yields

ap (@) =EmI W agn gy (Bmt 20t Df, iz;"(cc) )

(n+1)fr, (n+1)fr da

and by using the recurrence formula and the derivative of the spherical
wave funection, we get

( S v—f;n— zm+n_1(a)+( fm . )zm+ﬂ+1(a)—0 .

This equation holds good identically, if

m_ n n _ (2m)!-n! 39
£ (2m+n) I @m+n) (32)
Therefore, the following relation is obtained
(@) = (i) O~ i)z (@) (33)
Moreover, if we assume
i O (i) da)ai (@) = 3, (— 1) ey 2na0) | (34)
p=0

substitution of Equation (33) into z™(a) results symbolically in

mtizf oy . (metizp oy — o0 (2 —=2D) . A
Cn (x) Cl (x) pg:) l!-(l+2m—|—n—2p)! Cuip I+n—2p(m) ’ (35)

which is the equation determining the coefficients ¢m,; or application of
the orthogonality of the associated Legendre function to Equation (35)

and an integral formula involving three Gegenbauer functions (Hst,
1938) yields
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e =0, for p>N;

_(2l+2m+2n—4p+1)-U-{(2m—1)II}?
2.(14+2m)!

8 S ©Cp(w)- Co i (w) - i, (@) - (L—at)md

_@l+2m+2n—4p+1)-Ul-(I+2m+n—p)!-A_,-A,_,-A,
@l+2m+2n—2p+1)-(I+2m)!-(I+n—p)- Ay,
for p<N; (36)

?

where
_ (@p+2m-—1)!
To2repl.@m -1’
and N=min(, n) .

Therefore, the factor E™(a) is expressed by the sum of (N+1) spherical
wave functions.

Sato (1950) obtained {’™(a) in a power series of a without the
restriction of a<7,. In our calculation on the seismic wave the value a
may be rather large, so that the solution may not be well convergent.
It has been shown by Edelstein (1963) that Satdé’s solution is identical
to £y™(a) which involves the spherical Bessel functions.

6. Transformation of solutions of the elastic wave equation

In Figure 1, let the point B be the focus and A the centre of the
earth. The seismic wave radiated from the focus B has the displacement
U; in the coordinates with the origin B

U,=grad, ¢,+rot, F +%ro’c rot, F? , 37)

where suffix B signifies the differential operator and the potentials with
respect to the coordinates B, and the vector potential ¥, has the only
radial component in the coordinates B

Fl(;j)=(7'3'1r'/'g)y 07 0) ’ ]:1’ 2. (38)

This displacement must be transformed into that in the coordinates with
the origin A. The solution U, would be written by a form

U,=grad, ¢,+rot, F{V +%rot rot, F{¥ . (39)
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6.1. Transformation of the longitudinal part.
For the scalar potential ¢, its transformation is obtained by that
in the preceding sections, that is, if

G5="Tonsn(h7s) - P, (COS O1)-exXp (£1mpy) , (40)

the transformed potential ¢, is expressed by
¢A=§‘6 Erm(ha) 24 m(hr,) - Plip(cos 0,) -exp (£ ime,) , (41)

where E!™(ha) and z,.,(hr) are chosen as in Table 1.

6.2. Transformation of the solenoitdal parts.

On the other hand, the vector potential F, has not only the radial
component but the colatitudinal component in the coordinates A. Putting
¢ for the angle / APB,

d=0,—0,, (42)

and F, and F, for the radial and colatitudinal components of Fj in the
coordinates A respectively, we have

FTZ”I'BW//‘B'COS l? y
Fy=rg-irp-sind . (43)

From Equations (42) and (6), we obtain

F,=(r,—acos0,) s,
Fy=a-sin 0,95 . (44)

This vector can also be divided into two parts
Fy=@ Y35 0,0)+(—a-yz-cosb,, ayy-sinb,, 0), (45)

the second of which is a vector directed to the negative z-axis in the
Cartesian coordinates.

If the fundamental solution is constructed from the radially directed
vector, the solutions deduced from a vector in some other direction can
be expressed by a superposition of the fundamental solutions of different
order (Usami, Kano and Sato, 1962). When a vector F, in the Cartesian
coordinates has the components

(Fz)x:(Fz)y:() y

(F.):= == —hy,(kr) - Py..(cos 0) -exp (£ 1mp) , o
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the rotation of this vector is expressed by the following

(n+1)k
@Cm+2n+1)(m+n+1)
2m-+n)k
@m+2n+ 1) m+n)
1 0

— —rot rot F”,
(mtnt L) (m+n) op ’ (47)

rot F,= — rot F, .,

rot F",

and

(n+1)k
@Cm+2n+1)(m+n+1)
. Em+n)k

@2m+2n+1)(m+mn)
I 0
- . t Ff;mn y
(m+n+1)(m+n) ép ro ’ (48)

rot rot F,= — rot rot F*, .,

rot rot F*,_,

where, in the polar coordinates,
Fr=(r7,0,0) . (49)
6.2.1. Transformation of rot F,.
Since from Equation (45)
Fo=F,+a-F,,

if we take

V5= Rin(kry) - Ppis (€08 0,) - €Xp (imey) , (50)
the transformed solution is written, by using Equation (47),

(n+1)ka
@2m+2n+1)(m+n+1)
_ C2m+n)ka

2m+-2n+1)(m+n)

rot F{’=rot F",— rot F,.,

rot F»,_,

a 0 '
— - —rot rot F*, ,
(m+n+1)m+n) op : (51)

where
F;r,tn:('r/i"‘}/ﬁm Oy 0) ’

«wﬁg Erm(la) 2, n(kr,) - Plia(cos 0,) -exp (imo,) . (52)

6.2.2. Transformation of rotrot Fi?.
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If we take

"t"fB = hm+n(k7~B) 'PJL”M(COS 03) * eXp (iim¢l}) ’
the transformed solution is written, by means of Equation (49),
rot rot F{¥ =rot rot F,",— (nt1)ka rot rot F", .,
@em+2n+1)(m+n+1)
. @2m+n)ka
@2m+2n+1)(m+n)

ka 0
- —rot F, ,
(m+n+l)mtn) op ' (53)

rot rot F*,_,

where F, is formally given by Equation (52).
In Equation (52), Ef™(ka) and #z,.,(kr) are chosen as in Table 1.

7. Some numerical test of series

Convergence of the series (21) and (25) is examined in this section.
Let us assume

L
Hy(kag, 05 L)zgg E;m(ka) -z n(kry) - Pl (cos 0,)

which approaches to %,,..(k7r,) - Pr.(cos 0;), as L goes to infinity. Figure
2 shows an example of this, when

LOx1073}

0.0 |

-1.0 r

(case a)
20 | 300

N 180
L.oOx|073

(case b)

: ! ! ]
50 100 150 200

- L

Fig. 2. Convergence of the series H/(krs, 05, L). The solid and dotted lines
denote the real and imaginary parts, respectively.
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ka =300, kr,=180, krp=420 ,

0,=120.0° , 0,=158.2132° (casea) ;
ka=180 , kr, =300, kry=420 ,

0,=120.0° , 0,=141.7868° (caseb) ;

and m=1,n=1. It follows from this figure that the series apparently
converge beyond a finite number L,; the value L, is related with the
smaller one of a and r,; the series for L< L, change with oscillation and
for L>L, its variation becomes small; and both the real and imaginary
parts behave similarly unless 7, is near a.
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ERRBETH BN, FREME & ORIFEIC 3% 2 OMOZEHEANME S T e 0k dTH
5.

AT, WD EEIES B(re, 08, ¢8) 128\ T halkrs)- Py (cos 05)-exp (+imep) THi>
ENB—/DETFT Vv Ah, BISRAT4, 04, 04) TR LTHROBCEEIN S 2 L 2R L

hm+n(krs)- Py . (cos 0p)-exp (+imep)
=EOE,“"(ka)-zz+m(lcm)~P{’Zm(cos 04)-exp (imey) , 7

72IiEL, 2Ztim(kra) 3 a>ra DEE Jlamkre), a<ra D& E hitulkry) #E5L0E 1,
Ef™ka) 1T a>ra DL E hirnlka) 52, a<rs O XL hiinlka) ORDIT jiemlka) &
BWCEAERTH S,

T, BT Vv AP ERTEZ DhIcEEOLERIN B OER L RDd Iz,
i) PP BMAT v M@ TERIRS,
i) Sy Yve=hntalkrs) Py ,(cos0p)-exp(timep) DL %,

rot (r¥5,0,0)=rot Fy—Anrirot F',\—Bn_irot F

1 0
s> F™
A Cn 30 rot rot F (51)
rot rot (r¥s, 0, 0)=rot rot Fy — Ay+,rot rot F7,
—Bp—rotrot F;’L_l—kCné%rot Fy (53)

ookl DS
Fi=(r4%4,0,0),

Jp

mzlé.o E7"(ka)-zi-m(kr 4) - P ,,(c0S 0.4)-exXp (£imea) ,

A (m+Dka i
" om 420+ 1) (m+n+1)
B = @m~+n)ka
" emt2nt+)(mtn)
Com K@
"7 (m+n+l)(m+n)

TEbIh?,




