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Summary

The reflected wave is expressed by the sum of a wave according
to the geometrical ray theory and the residual from it which gives,
in the far regions, the refraction event (or head wave). The amplitude
of the geometrical reflected wave is evaluated from the effect of the
spherical spreading and the plane wave reflection coefficient for the
corresponding angle of incidence. However the amplitude of the
residual wave in the region nearer than the critical angle reflection
point is sufficiently small, from this point it starts to rise, and in the
far regions decays monotonically following the well-known decay
relation of the refraction wave, (rL:®*)~'/2, where r is the horizontal
separation and L is the distance travelled in the refractor. The
correction to this amplitude is of the order ~ kor/(keLiv/ 1—n?)
compared with unity, where k. is the wave number in the refractor
and n is the refractive index. The correction to the geometrical
reflected wave is of the order (ki7)~2 compared with unity, where
ki is the wave number in the other medium.

Since the frequency dependence of these waves is different from
each other, the pulse shape of each event is fairly different. From
the energy fraction across the interface the refraction wave is
associated with the inhomogeneous wave in the refractor.

1. Introduction

Since Mohorovi¢ié¢’s and Mintrop’s studies, refraction arrivals have
actively been employed in the field of seismology and seismic explora-
tion, and a great many investigations have been made (cf. Musgrave,
1967). Recently it was shown that the refraction arrival and its ampli-
tude versus distance were useful. The typical treatments in the theoreti-
cal investigation of harmonic solutions are as follows. Jeffreys (1926)
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determined the field in a layered liquid by means of the operational
method. Muskat (1933) obtained a relatively crude approximation for
his valid integral representation. Profs. Sezawa and Kanai (1939)
estimated that integral by using Sommerfeld’s contour of integration.
Profs. Honda and Nakamura (1953 ; 1954) estimated it by using Weyl’s
integral identity. Friedrichs and Keller (1955) evaluated it by means
of their geometrical theory of diffraction. In the result, the refraction
event is due to diffraction of waves reflected by the angle larger than the
critical, and at the far stations the amplitude decays as (rL?)~?, where
+ is the horizontal distance from the source to the station and L, is
the length of the ray in the refractor. The range of applicability of
this decay relation was empirically discussed by O’Brien (1967): it may
be applied with values of L, greater than about 5~6 times the predom-
inant wave length of the pulse. For points close to the critical angle
reflection, the above-mentioned decay relation does not hold.

To determine waves near the critical reflection point other methods
must be employed such as using a Fock integral relation by means of
which the integrals are approximately replaced by Weber-Hermite func-

tions (Brekhovskikh, 1948, or 1960, pp. 281-292; éerven;’f, 1961 ; Donato,
1963). By those methods it was derived that the refraction event had a
definite amplitude at the critical reflection point and decayed with the
horizontal distance. A similar result of the refraction event was also
found in a figure drafted by Berry and West (1961) who computed the
amplitude distribution for the subecrustal model of the eastern Colorado
Plateau.

In those derivations, it is doubtful whether the refraction wave
reaches a definite amplitude at the critical reflection point and its
amplitude decreases monotonically with increasing distance. If so, the
critical reflection point, which is ordinary geometrically, must act like
singular, and also we could catch the large amplitude refraction event
at the point close to the critical one in spite of the later phase. It
seems, however, that it is experimentally difficult. _

This problem is conventionally treated as follows. The reflected
wave is expressed in terms of a superposition of plane waves; the
integral of the real variable is changed into a contour integral of the
complex variable; the integral on the path of steepest descents gives
the reflected wave in the sense of the geometrical ray theory; and the
necessary branch line integrals amount the refraction events. - However,
when waves are observed near the critical reflection point, in other
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words, when the saddle point is close to the branch point, the branch
line integral is estimated by higher order terms in the phase of its
integrand. In the above cited investigations, the field near this point
has been evaluated without considering the same order terms in the
factor of its integrand as in the phase. Under this circumstance,
moreover, the interaction between them cannot be neglected, so that
the reflected wave cannot be accurately estimated by the method of
steepest descents. :

The theoretical investigation of the seismic waves should be done
for some complicated medium, e.g., a multilayered structure and any
shaped pulse. The simplest solution, however, is the most important,
because the more complicated solution can be suggested by any combi-
nation of the simplest ones.

In this paper, it is assumed that the two semi-infinite solid media
are in contact with one plane surface, and a harmonic torque type of the
source in the lower velocity medium is considered, thus the wave
treated is of the horizontally polarized shear wave. The solution in a
liquid-liquid system also is discussed in the same manner, except for
the physical interpretation of the constant contained in the mathema-
tics. The starting expressions of our calculation follow Gerjouy’s ones
(1953), who discussed the total reflection of waves from a point source
in a layered liquid or a layered conductor. In section 2, we derive the
formal solution of the reflected wave and the physical plane of Riemann
surface. The next section concerns the evaluation of the integral. The
branch cut to be considered is deformed into (vlervenjr’s contour (e. g.,
1965). For the saddle point very near the branch point, the integral
is evaluated along the line through these points. Section 4 deals with
reception and deformation of a pulse. In the next section the reflection
of a spherical wave is associated with the reflection of a plane wave.
Section 6 concerns the effect of the higher order terms involved. In
the last section we state concluding remarks. In addition, an asympto-
tic expansion containing the higher order terms of a Hankel function and
representation of a Weber-Hermite function with a negative half integral
order in terms of Bessel functions are given in the Appendices.

2. Formal solution

Let us take two perfectly elastic, homogeneous and isotropic semi-
infinite media which are in contact with a plane surface. The velocity,
rigidity and displacement potential in each medium are denoted by V,




1186 I. ONDA

z direct ray receiver

Ro (r,2)
source

(0.h geometrical
reflected ray
% refraction ray

Vi,#
A~ Vo, p2
4
“R
/ | =
image | - n=V/Vo<lI
source ¢” = pi/us<
(0-h) KT plk2sn

Fig. 1. Geometry of system and ray path.
n= V1/ V2 )

% thus being the refractive index.

Va; 2 and ¢, 6, respectively.
We introduce the cylindrical coor-
dinate system (7, &, z) putting the
source in a point (0, 0, 2) which is
of a harmonic torque type (see
Figure 1). The phenomena are
assumed as cylindrically symme-
trie, 1.e., independent of .

For the sake of brevity, we
introduce the following notations

t= i, (1)

The potential observed at a point (7, 2) in the upper medium is
written, neglecting the time factor exp (—iwt), as

_ _ 1
¢_¢0+¢7_ R

where

R=V7FEG—IF,

0

exp (ik,Ro) + 4, , (2)

ki=o/V,, (3)

R, thus the distance between the source and the receiver, and ¢, and ¢,
correspond to the direct wave and the wave reflected from the interface,

respectively.

According to Gerjouy (1953), ¢, is expressed as

¢r:¢s+¢t! (4)
where
Py = f:eXp (ikR)) , (5)
R =V v*+(z+h), (6)
_pV1—w—v'n*—u
5 pV 1—ui+v n*—u’ (7)

6, = 2ik, S:F(u)Jo(lcl ru) exp {iki(z+ RV 1— )

. udu

Vi-w’ (8)
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Flu) = Vnr—ud _ Vnz—ui o
pV1—-wd+vni—ui V' 1-w+ v n—u’
R, thus the distance between the image source and the receiver, and ¢,
and ¢, correspond to the reflected wave following the geometrical ray
theory and the correction term containing all the deviations from it
respectively. If u,=sinf, the factor f, is the reflection coefficient of
the plane wave with the angle of incidence 0. Accordingly, the ampli-
tude of the former |4, is evaluated from such a reflection coefficient
and the effect of the spherical spreading. Henceforth, the former is
called by the geometrical reflected wave and the latter by the residual
reflected wave.

The integral in ¢, is calculated as follows. The Bessel function J, is re-
placed by a Hankel function H{", and the real-valued integral is changed
into a suitable contour integration on the four sheets of Riemann surface.
The branch points lie at % and +1. In the part of the physical plane
which is above the real axis, we denote by I the region to the left of the
branch cut at n, by II the region between the cuts at » and 1, and by III
the region to the right of the cut at 1. Since the cuts may be drawn so
that they intersect the positive imaginary axis, we further distinguish
between region I,, containing those points in region I which lie in the
first quadrant of the complex plane, and I,, containing those points in
region I which lie in the second quadrant, and similarly for regions II
and III. The fourth quadrant is

(9)

. !
designated by IV. Some of these 1 " I @ I .
regions are shown in Figure 2. 2 o T A
The path in this figure denotes S i 7
the steepest descent contour. In \\\”g"\//{/ E

. -y -n afb~ | A —R
regions L., L, _III, III, and IV the 1 P TR reu
real and imaginary parts of (1— Lo un o "”'N
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regions: the physical plane of Riemann sheet.
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(10)
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In the other regions they are positive. The real and imaginary parts
of the radicals change signs discontinuously at the cut but become zero
on the real or on the imaginary axis if they change signs across it.

Replacing the Bessel function in Equation (8) by the Hankel fune-
tion and expanding it asymptotically (see Appendix A), we obtain

(B ) ool ot s
11)

where

Aw)=u++ 2120 (z-{—h) V' 1-u +0< T ) . (12)

In Equation (11), —n< arg u<z. To prevent circling the singularity
at the origin, the cut at —= is extended to the origin along the negative
real axis.

There are poles of F'(u) at =V (n*—8)/(1— ), which both lie on
the real axis in our situations. According to Gerjouy (1953), then, we
need not consider the pole contribution.

The leading contribution of the integral ¢, is evaluated by means of
the method of steepest descents. So, we consider two distinet cases:
u,<n and u,>n, where u, is the saddle point of the integral (11), thus

—u[1+0( o )] w=nR, (13)

In the far stations compared with the wave length, of course, the saddle
point u, is approximated by wu,.

3. Evaluation of integrals

3.1. Solution for u,<n.

In this case, if the contour C is the path of steepest descents, it
intersects no branch cuts as shown in Figure 2. The integrand on it is
single-valued. By means of the method of steepest descents, the phase
factor is exp(ik.R) and its amplitude may be of the order 1/(k,r)%
because F'(u,)=0 and the terms neglected in Equation (11) are of the
order of this magnitude:
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1
& —O< ki’ﬁ) ) (14)
The expression containing higher order terms will be determined in
section 6.
In the result the correction term to the geometrical reflected wave
is of the order 1/(k,r)* and can be neglected when the horizontal distance
is large compared with the wave length.

3.2. Solution for u,>n.

In this case, the branch cut at » is so deformed that the path of
steepest descents does not cross it, in order to obtain a convergent
contour integral through the saddle point. The total contribution con-
sists of one from the contour of steepest descents ¢,, and one from the
branch line integral ¢,,. It is easily found that the former is of the
order 1/(k,r)* in the same manner as the preceding paragraph:

6.=0(-1) . | (15)

kit

We proceed to evaluation of the branch line integral ¢,,. The first

term in F(u) is a constant, so that this term results in a vanishing

integral. The value of the remaining integral along the left side of the

cut equals this along the right of the cut. Accordingly, we calculate
the integral

_ 2V 2k, i Vuy wt—u

Pro= — [ o 2 2

Vimr a (g —1)ud — (¢ —

exp [tk - A(w)]du , (16)
n?)

where C, lies along the cut in the region II, and A(u) is given by
relation (12).

The best contour C, was determined by éerveny (1965). The path
of integration consists of a large semi-circle on the upper half plane
and one given by the parametric equation

V1I—w=1"1—ul+e", (17)

where € is real and — o <&<o. Along this path the phase of the
integrand is constant and it passes through the saddle point, so that
this path is regarded as the steepest descent contour. Accordingly the
integral along it is sufficiently small. The branch cut at » is taken as

V1—w=v1-nt+Ee i, (18)
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siderations lead to the result

where negative ¢ lies in region
I, and positive & lies in region
II, (see Figure 3).

The phase of the integrand
is constant along this cut, so
that the integral is evaluated
in the same way as the method
of steepest descents, that is, it
may be well approximated by
small ¢ in the exponent of the
integrand. The amplitude factor
and the phase of the integrand
are expanded into a power series
of £, and the higher order terms
in the phase is transferred into
the amplitude factor. These con-

_ __ 2nk,exp(ik,Ly) & I 1
o = L e 35T (19)
where
I, = ame-i“"“/2’"/“rv"“”/2 exp [ —(xe )y —v?/2]dwv , (20)
v=kLV'1—2Vkr,
. (21)
v=1—-nY)/n1V kprei*.£,
Ly=r+(h+2)V'1—n¥n,
=1+ b+ T } -
L=r—(h+2n/V1I—n%,
_ nm & . (=D @2m—25-3)!! .
T T B emagy Y
) (23)
o — [mf—l 2m—-2l(m_l)!(#—-2_1)m-—l m—-ll(i) (,n—z_l)g
R = 1(m—20)! =ogt\a/i\p2—1/ "’
(@)o=1, (a);=ala+1)---(a+j~1)=I(a+j)/I(a),
(=3lt=1, (=D!l=1, Cj+D!!=2j+1)2j—-1)---3.1, } (24)
=1, =2 for 7=1,2,8,..-.
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In Equation (19), k.L, is interpreted as the phase delay of the
refraction event from the source to the receiver. The integral (20) is
the integral representation of a Weber-Hermite function D,(§) which
appears in the parabolic cylindrical coordinates (Appendix (B-5)):

_ . | |
Im = —\/2” [0 2] (22"'7: ._:/r::') . e"‘1(m+ll2)7r/4+1,m2/4.D_(m+3l2) (weu:M) , (25)
Putting
! . . )
Tl = L2—2,'3’?-—-‘;;');E%(MJHIZ) x/sz“D_(m+3lz) (we' ') , T (26)

and substituting it into Equation (19), we get

nk, exp (tk.Lo) i W fn () (27)

Ppp = — #(kzr)m(l_nz)m =,

For large x, the function f,.(%) is approximated by using the asymp-
totic expansion of Weber-Hermite functions (Appendix (B-6))

o @mAD! & LB A=D1 s
@)= g e B et o ) )

The residual reflected wave for large x is expressed by only one term
m=0, and hence

_ i-2nexp (1k,Ly) [ 1 _. 1, p*-1\3 1 ]
Po p1 =)k rLi |_l %<4 + n‘z—l) x +O< ac2> ’ (29)

The leading part of this expression is in complete agreement with the
result of the past investigations.

Figure 4 shows the relations of the modulus and phase of the func-
tion fa.(x) to the variable z. In this figure, the Weber-Hermite functions
are computed by the Bessel functions of quarter-integral orders (see
Appendix B). It is found from this figure that magnitude of fn.(x) for
a large value of x is very small with increasing m.

On the other hand, for small # the terms of large m cannot be
neglected. Small & means that the distance L, is small or the refractive
index n is very near to unity. In the latter case, however, the
amplitude of the reflected wave should be small so that this case is
not discussed. In Brekhovskikh’s (1948) and the other investigations

(éerven;’r, 1961 Donato, 1963), the refraction wave close to the critical

point was discussed in detail by using only one function fi(x) in this’
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paper for small z. It follows,
however, from Figure 4 that the
number of necessary terms of
Equation (19) rapidly increases,
when L, approaches zero. Then,
we shall discuss this special case
in the next paragraph.

3.3. Solution for uy=mn+-e, e¢/n<l.

The saddle point lies very near
the branch point, the interaction
between them cannot be neglected,
and thus a contour integral is in-
accurately evaluated by means of
the method of steepest descents.
We, hence, deform the contour
into the following

n 0y (1D 0 (IT)
¢ [7%e8) ” €y (IT)

uy O (I11)
+ +
0y (D ug
Ob(II) %y ) n4e
A S A
n 03 (I1) n

(30)

Fig. 4. Modulus and phase of function f(z) .
which gives the amplitude characteristics where C,(I) and C,(II) are the in-

of the refraction wave. finity in the region I and II of
the cut at n respectively, and C,(II) and C,III) are the infinity in the
region IT and III of the steepest descent contour respectively.
Since ¢/n is small, we expand the integrand into a power series
and integrate it by terms. The resultingiform is

O 21/:1:115;?/631”—7@2 ' [1 e {3 - %S:—Q} +0( f; )]sés , (31)

where ¢, is the geometrical reflected wave. Substitution of L, for ¢

yields to
__VERnw(l-—n)(L, 3/2[ L1l wQ—)l | o Ld ]%,
) T g *;12(1_%2)}* (r)

o= 2V nr, < 7,

(32)

where
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R=V7r+(z+h), (33)
7, being the distance to the critical reflection point.

It is found from Equations (29) and (32) that with increasing dis-
tance » the residual reflected wave is sufficiently small up to the criti-
cal reflection point, it grows from this point, and decays according to
the relation (29) at the far points: the amplitude distribution is shown
in Figure 5, schematically. In the result there is no singularity around
the critical reflection point.

Since the phase delay of this sort of reflected wave equals that
of the geometrical one, it will be
impossible to distinguish between
them on the record. The reflected
wave to be observed is expressed,
beyond the critical reflection point,

N ] refraction )
¢, =, exp [_ VEchz(l—n2)<]i>3/2 ‘ (or;:\fg
r s 2-[/ T, r,

L2 N ¢
P {1-}‘0(—?1)} . (34)  Fig. 5. Schematic amplitude distribution
Te i of the residual reflected wave.

!

geometrical
reflected
wave

Amplitude

Cerveny (1961) showed that the amplitude of the resultant reflected
wave had a maximum beyond the critical point. Equation (34) should
hold only for the sufficiently small L,. Then, with increasing distance
from the critical point, the amplitude of the reflected wave may rapidly
decrease and again become large. This will be left for future study.

Now, it is found from equation (33), that the frequency dependence
of the residual reflected wave differs from that of the geometrical one.
This discrepancy may give rise to a different form of their observed
waves, as will be shown in the following section.

4. Reception of a pulse
Suppose that the wave radiated by the source is given by
(ﬁo(t) Zf(t“Ro/ Vl)/RO ’ (35)
where f(t) satisfies the condition that the integral from —o to <« of
|f(t)| is bounded. Then f(f) can be written in the form '

ft)=

1 r g@e—dw, ‘ (36)
27 J-o




1194 I. ONDA

where g(w) is a one-valued regular analytic function in the lower half
w-plane. As is well known the reflected wave is given by equation

—oco

@(t)=%r 9(@)6,(@)e " dw . )

The function ¢,(w) has been derived for all .Z,w<0 in the preceding
sections.

The function ¢,(w) has only one term exp (iwR,/V,) with respect to
® (cf. Equation (5)), so that the geometrical reflected wave is received
at a time (t—R,/V,) with the same form as the direct wave and with
its amplitude multiplied by the factor f,/R,:

o,(t) =%-f(t—Rl/Vo. (38)

The residual reflected wave is obtained separately in three cases,
w=Zn and u,=n. In the first case, u,<#, the term $.(w) is sufficiently
small (cf. Equation (14)):

?,(t)=0, for r/R,<n. (39)

In the next case, w,>% and far points, it has a term exp (twL,/V,)/w
(cf. Equation (29)), so that its result has a form integrated with respect
to time:

2n*V,
rl =20 rL;

0,(t) = [l—s,]-S:Df(z-)dr, for 7/R;>n, t>t,  (40)

where

b

€= <_1_ + pr— 1) 3V rV, gl S_w( —iw)g(w)e~ 10 da
4 n—1 Ll’l/l__n2 gt f(r)dr
to

and
to=Lo/V,={r+@+h)V'1-n}n}/V,,

e, being of small magnitude as will be seen later and t, the arrival
time of the refraction event. Equation (39) and the leading term of
(40) are well known results (e. g., Laster et al., 1967). In the last case,
u,Zn, it has a term @'exp (iwR,/V,) (cf. Equation (32)), so that we
have
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o0 BB 1 (L ]

c

% S‘” wig(@)e— - de . for r/R.>n. (41)

Integrals in these expressions can easily be evaluated by means of
the convolution: For Equation (40), since (Erdélyi et al., 1954, p. 118)

0 <0,

Sm (—iw)*e " dw = {
“WV're >0,

we get -
" i rg@endo /7] VI o
S:of(‘r)dz' - S:O f(o)dz

, for t>t, (42)

so that this ratio is of the order of unity at most.
For Equation (41), since

- e 0 <0,
S_J‘“") ‘ d’:{zﬁ“h/? >0,
we get
o,(t)= —0,,- S 1/1;(? de
- —2.0,[ViT0 - | Vi@ |, (43)
where
iR (Y [ 2 (Y

The first term of Equation (43) results in a shape similar to the pulse
of the geometrical reflected wave near the front. The first term is
corrected by a term with the same order of magnitude. Consequently,
near the critical reflection point, the pulse shape of the residual one is
fairly different from that of the geometrical one, although they arrive
simultaneously. It may cause unnecessary confusion to determine the
amplitude distribution of the reflected pulse by simply adding the ampli-
tude of the harmonic residual reflected wave to that of the harmonic
geometrical one obtained in the previous section.
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These results are consistent with Zvolinskii’s (1958) who used the
near-front approximation in terms of Smirnov and Sobolev’s functional
invariant solutions.

5. Geometrical interpretation of refraction events

In the preceding sections, the geometrical reflected wave is ex-
pressed by adding the effect of the spherical spreading to the reflection
coefficient of the plane wave with the same angle of incidence as that
of the geometrical ray. The residual reflected wave is negligibly small
in the region up to the critical reflection point, when the wave length
is smaller than the horizontal separation, and is interpreted as a refrac-
tion event beyond the critical point.

The reflection of plane waves incident with the angle larger than
the critical one was discussed in detail by Friedlander (1948), Williams
(1961), etc. The wave in the upper medium is reflected totally with
some phase shift, while in the lower medium it is of an inhomogeneous
plane wave, 7. e., the wave in the lower medium advances in the direction
of the propagation and its amplitude falls off in the perpendicular direction
(Brekhovskikh, 1960, p. 4). It has been known that the incident pulse
is distorted greatly on reflection and there appears a precursor before
the arrival time of the geometrical reflected ray due to the phase shift
of a harmonic reflected wave and a logarithmic singularity contained
in that integral (e.g., Arons and Yennie, 1950; Malinovskaya, 1957 ;
Savage, 1958). Examples of this precursor are shown in Figure 6.

Following Hudson (1962), the energy fraction of the reflected wave
which returns across the interface from the inhomogeneous plane wave
per unit area, F;, and the phase shift 2¢ are expressed in terms of
the angle of incidence #:

Fp= 2sin2e, (45)
and
tan 2¢ = ywﬁ y 0>0.=sin"'n, (46)

cosd

where 0, being the critical angle of reflection.
Let us assume that this energy fraction is associated with the
refraction event and compute the decay relation of the amplitude. If
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the observation is carried out at the constant level, it follows from simple
geometry that the horizontal distance is proportional to tan @ [=r/(z+ k).
Hudson (1962) gave the figure of the energy fraction F and phase

2¢

s
»
T
?

t

8

8 N

o
8

ttas

%@z
S

58 » 2

— \ "17‘ *C/\“
m\\'v m\{/\‘ - %.

mﬁﬁ.k,ﬂ\:/./[\\,
aﬁ: E,\/s,,, NG
(N 2e-150 w#/&,,,,ﬁ/\/‘
S
® 2¢-130° ’/” i«‘/M — \f

e

e

;

e

Fig. 6. Examples of precursors of pulses, due to a phase shift of harmonic reflection
coefficient (after Arons and Yennie, and Malinovskaya).

shift 2¢ with respect to the
angle of incidence ¢ for the
rigidity ratio 9/20 and the ve-
locity ratio 3/4. In Figure 7,
these values are replotted by
taking the value tan instead
of the angle & of that abscissa.
The maximum of the energy
fraction F'; occurs at 2¢ = 7/4.
Under the assumption mentioned
above, this energy fraction
should be proportional to R}/(rL3)
where R; is the correction to
the effect of the spherical spread-
ing in the energy and (rL3)™ is
the square of the theoretical

tan 6
n=3/4, pu=9/20

Fig. 7. Phase shift of the reflection coefficient,
2¢, and energy fraction of inhomogeneous
plane wave across the interface, F'g, versus
tan @, where 6 is the angle of incidence. F'g
is the energy decay corresponding to the re-
fraction wave.

amplitude decay of the refraction wave, and to the time difference
between the refraction arrival and the geometrical reflected arrival,
R,/V,—LV,: Normalizing distances by (z+h), we compute the energy
corresponding to the refraction wave, F/, as follows
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' R/z+h) T
Py =4 |:1/7'Li’7(z+h)‘:l l:z-}—h B z+h) _I (47

where A is a constant. The dotted line in Figure 7 shows the F’ for
A=0.3, thus the corresponding energy fraction F7; is in agreement with
the energy fraction F'; for large tand or far stations.

It is sufficiently concluded in the geometrical interpretation that
the refraction event is associated with the inhomogeneous wave pro-
pagated in the lower medium. Due to the complex reflection coefficient,
the reflected wave is accompanied by a precursor, whose front arrives
at the time of commencement of the refraction event.

6. Effect of higher order terms

In the preceding sections, we considered the solution within the order
1/(k,r). This section deals with the influence of the higher order terms.
The asymptotic expansion of the Hankel function with these orders of
magnitude (Appendix A) is considered and then the saddle point is given

by equation ~
uI:THH 81;2 (Zth)@o(mlwﬂ. (48)

If we use this expression, the factor F(u) does not vanish at the saddle
point w=wu,, and the integral along the steepest descent contour, ., is
evaluated as

P = v nz}»ﬁ/Ri ( 425‘_2};&’1 )

[HO(m )LJ; eXp{iklRl(l—STéF)} , (49)

where we assume, except for the points very near the critical reflection.
It is ascertained that the correction to the geometrical reflected wave is of
the order (k,7)~* in comparison with unity, as mentioned in section 3.1.
And this higher order term is delayed from the arrival of the geo-
metrical reflected wave.

For the branch line integral ¢;,, the expressions obtained in the
section 3.2 hold good, except for the following interpretations
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o Lio=lyr(1 —1/8K27%) + ku(z+ h)V 1—n¥n ,
koL, =Eyr(14+1/8kr®) —ku(z -+ h)n/V/1—n*,

_ kLVI—m(, 3-2n’ | 50
v Vr ( 16k§7'2>’ (50)

In = <1 + 31&?? >m (1 - 16}5;‘7«2) On s

and b,, is equal to a, of Equation (23).

In practical observations, however, the ks, even in the critical
reflection point, may be more than about five. Thus the higher order
terms of the refraction wave may be less important, and only in the
range nearer than the critical reflection point are these terms of the
residual reflected wave significant. As the main point of this paper
lies in the refraction wave, we will not carry out further discussions.

7. Concluding remarks

The refraction wave is not directly calculated by integrating the
integral representation of the reflected wave, but by adding that of a
residual reflected wave to that of the geometrical one. The latter is
the wave which follows the geometrical ray theory, and the former
consists of all the deviations from the geometrical ray propagation.
The geometrical reflected wave is evaluated from the sum of the spherical
spreading and the plane wave reflection coefficient for the corresponding
angle of incidence. The residual wave is evaluated by integrating it
along the steepest descent contour and along the requisite branch cuts.
This branch line integral gives the refraction event in far stations.
This integral does not converge well, if the saddle point is close to the
branch point. To avoid its divergency we deform the contour of inte-
gration into the line connecting these points. Consequently its amplitude,
with increasing of the horizontal distance, is very small up to the
critical angle reflection point, grows abruptly from this point, and
decreases again following the well-known decay relation (»L{)™* in the
far region, where r the horizontal distance from source to the receiver
and L, the distance the ray has travelled in the refractor. It is shown
schematiecally in Figure 5.

The correction terms to each kind of the reflected waves are deter-
mined. The contribution of the residual reflected wave from the steepest
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descent contour has the same phase delay as that of the geometrical
one, and thus it is interpreted as the correction to the geometrical one.
This correction is of the order (k,7)~2 compared with unity, where k, is
the wave number in the upper medium. The correction to the leading
part of the refraction wave is of the order V' k/(k.L,v/1—n% compared
with unity, where %, is the wave number in the refractor and # is the
velocity ratio or the refractive index.

If we consider the more practical contribution, we must discuss the
reception of a pulse. The geometrical reflected event has the same
pulse shape as the direct event, while the refraction event has such a
form that the direct wave is integrated with respect to time in the far

t
points, S Sf(@)dz, or that the direct wave, divided by the square root
to
of time difference, is integrated at the point close to the ecritical,
2 ——
S f@)/V t—t,dz, where f(t) is the pulse shape of the direct event, ¢,
to

is the arrival time of the refraction event. Thus, it is concluded that
the residual one fairly differs from the geometrical one in its shape,
although they arrive almost simultaneously.

- The geometrical reflected wave, except for the effect of the spherical
spreading, follows the reflection law of plane waves for the corresponding
angle of incidence. However, the refraction wave, except for this effect,
is associated with the inhomogeneous plane wave travelled in the
refractor, from the evaluation of the energy fraction across the interface.
Consequently, it seems from the geometrical interpretation that the
refraction event is a portion of the wave energy, which returns into
the low velocity medium, and due to the complex reflection coefficient
the reflected wave is accompanied by a precursor whose front arrives
at the time of commencement of the refraction event.
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Appendix A. Asymptotic expressions of the Hankel

function for large argument

1201

The Hankel functions of the zero-th order for large argument are

expressed by the form (Erdélyi et al., 1953, p. 85)

Ho(l) (z) :< 2 >1lzei (z—-.'./4)Gél) (z) ,

Vit

HP () = (_2—>1/26_¢(z—-:/4)Gé2)(z) ,

2
where
G =" CEOM oe-),
n=0 (2i2)™
apE) =5 LM o),
n=0 (242)™
and
(0,my= (Z1L8- @M1
4™-m!
Taking five for p, we have
GO (2) =1+ 1 4 9 . 9.25 | 9.25.49

iz | 2(8iz)  6(8iz)°  24(8iz)’

and

. 1 9 9.25 | 9-25-49
GP()=1— -+ —
@ 8iz  2(8i2)° 6(8i2) T 24(8iz)*

These can easily be deformed into

6@ = {1zt o 0 e {=i(g — ges

)

zﬁ

 162* | 5122

and

G ={1- L+ 58 po( L)lexpfi( ]l -

1622 5122 2 82

of
o

1

zﬁ

1
2

),
)

25

25

3852°

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A7)

(A-8)

(A-9)

Accordingly, substitution of Equations (A-8) and (A-9) into (A-1) and

(A-2) enables us to write the forms
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(2" - o[

-exp{iz(l—é%—%)—i%}, (A-10)

Hp@ = (2 )" -+ B oo( )]

. 1 25 ) LT
cexpd —iz(1— L, A1
exp{ “( 82 384z "4 } (A-11)

and

These expressions are regarded as the power series of 2% in the apparent
moduli and phases.

In addition, representation of G{?(z) by the exponential function
yields to the following

L { . ( 1 25 1 2495 >
W) () — R - -
H (z)‘<7r7> expyte(l-gyt 384z*> 162° (1 15362°

+ 0@ —in/4} , (A-13)

and

9 \i2 : 1. 95 1 2495
0= (2" onf- (- e 50 - 252
(@) <77:z> exp B\ o T 34 ) T 162 \1 T 15367

+0(z—5)+m/4} : (A-14)

Appendix B. Representation of Weber-Hermite functions
in terms of Hankel functions

A Weber-Hermite function of a negative half-integral order
D_ (115 () is evaluated from the modified Bessel or Hankel functions of
a quarter-integral order. We have a formula (Erdélyi et al., 1953, p.
119, §8.2 (20))

Do) = (£)" K (%) B-1)

whence

. Lz /o 2 2
D_yfae) = =% ()" (L), (B-2)
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Its derivative (B-7) and the recurrence formula (B-8) produce the higher
order functions

3/2 o
Doty = () oo () —ermn () |, ®9)

and

2

p— [D_ sy (e¥I*y =2 D_ ),y oy (w69 ]. (B-4)

D (m+1/2) (xeiﬂ“) = 2

If x real, these functions are easily computed in terms of the Bessel
functions of the first and second kinds. Figure 4 in the text was
computed by using these representations.

For reference, the formulae on the Weber-Hermite functions used
in the text are listed:
Integral representation (Erdélyi et al., p. 119 §8.3 (38))

D) = e—"—‘jl(({%z;/i) S:e“”“z'zt‘”“ldt <. (B-5)

Asymptotic expansion (loc. cit., p. 122, §8.4 (1))

D,(z) = zve"zzﬂ[ éo (—”/i)!n( : ilz/sg)nv/Z)n 4 O‘zzl_N_l] ,

—3r/A<argz<3xw/4. (B-6)

Differentiation (loc. cit., p. 119, §8.2 (15))
71%[622’*Dy(Z)]=vezz"‘D»_1(Z) . (B-7)

Recurrence formula (loc. cit., p. 119, §8.2 (14))
D, (z)—zD,(z)+vD,_,(z)=0. (B-8)
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