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The second derivative d/dx? of the time-distance curve of a surface
origin is considered to tend to zero with the distance 2, when the
velocity of propagation is ‘ ordinary ’’.? A theoretical conclusion of this
kind may naturally give some restriction to the mathematical procedure
of the curve fitting in the studies of a time-distance curve.

It is clear that the second derivative is closely related to the gradient
of the velocity of propagation,? and what is meant by ‘‘ordinary’’ is
changed according to our knowledge. As far as the theory of a time-
distance curve is concerned, a minus gradient of ‘the velocity to the
depth is excluded from what is meant by the ordinary structure.
However, a conclusion based on an assumption that the gradient is finite
or moderate is not satisfactory from, at least, the stand point of applied
mathematics in seismology, because even the effect of a discontinuity of
the velocity on the Wiechert-Herglotz formula has already been studied,
and effects of the discontinuity on the seismic waves have also been
thoroughly studied; the velocity gradient of infinite magnitude would
not necessarily yield an unnatural behavior of the wave. In this paper,
d’t/da® at x=0 is studied in relation to the various surface conditions
of the medium.

2. For the sake of an easy understanding of the fundamentals,
we may start with an assumption of velocity model simple and familiar
to seismologists.

Suppose a surface layered model of the medium : V. the velocity in
the surface layer and V, in the top face of the basic structure, the
velocity of the interior parts having nothing to do with the following
procedure. Then, distance x, where the velocity V, comes out in the
time-distance curve is given by the following well known formula,

1) BULLEN, An Introduction to the Theory of Seismology, §7.3.
2) R. YosHIvaMmA, Zisin, [i], 8 (1936) 325-330, (in Japanese).
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x0:2'\/V2+V1j\/—Z_V_y (1)

where 6V=V,— Vi, and 6V 0.

When the velocity of propagation is a gradually inereasing funetion
of the depth z, the formula that corresponds to (1) is derived from the
Wiechert-Herglotz formula, being, however, transformed for a plane
structure,

TE= gamcosh'1 di/dz

o N T d)..., (2)

As we are now concerned with a problem near the origin, o =dx, z=dz
and, instead of (2), the following formula is applicable.

zdz—=cosh=* V- dz , (3)
a

where a is the velocity of propagation at z=0, and, at the same time,
the apparent velocity at =0 in the time-distance curve; V is that at
z=dz, being apparent at x=dx in- the time-distance curve. When
V—a=0V is small, we obtain from (3),

7 dz

Comparing (1) and (4) with each other, V, corresponds to a and V, to
V. The only difference between (1) and (4) is that between 2 and =/2,
so that, in the following solution, there may be an error of factor =/4
or 4/z, but none other. Using the formula (1), mean value of the second
derivative of the time-distance curve near the origin, x=0~x,, is ealcu-
lated according to its definition:

R CNR

_ 161 1
——xo t‘V'z V1}
8V 1 VoV (5)

TV, 2/ V+ V., h

If x,—0 as h—0, then (5) gives the second derivative at 2=0. The
“ ordinary ’’ chart of the velocity would mean that 6 V—0 as h—0, but
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not necessarily any more : necessarily neither 6V/h= finite nor —>O.
So that the second derivative at z=0 is given by the following formula,
being deduced from (5),

S W g

where V, is the velocity at the surface. If we put 6V=C-h" as h—0,
where n>0 and C is a certain constant, there are three cases according
to the m-value left for studies in this baper.

L 2>n>2/3 2. n=23 8. 0<n<2/3

The condition n<2 is set from 2,—0 as h—0, but it has but a little
significance in our studies.

When
9>n>2]3, %ﬂ;:o;
d* 1
=203, Tl=— = (o,
B R A
0<n<2/3, g;i"_oo (7)
at x=0.

Theoretically speaking, the solution of the problem is completely
described by (7), and our interest at present is in the case n<2/3.
However, formulas when the velocity of propagation is a continuous
function of the depth z are also necessary for convenience of mathe-
matical application: those formulas are also derived from (6) or (7) as
follows. \

Since 6 V=C-h", mean gradient of the velocity 6 V/h=C"/(o V)™, where
C'=C"and m=1/n—1; n>2/3, =2/3 and <2/3 corresponds to m<1/2,
=1/2 and >1/2 respectively. So that, if we put, taking a term of the
lowest power, near the surface,

v _ K

e 0, 8
. (v-vgr 7 e
and V=1V, at 2=0, it is deduced from (6) or (7) that

o) 1 xS "
de z=0 2/\/—2~ V05/2 (V__ Vo)m—llz V-, ’
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or
wetn, (£ 0
m=1/2, <§;—Z>z=0=—ﬁ? %m ; (10)
m>1/2, < :li:ctz >E=0—>—oo .

As already pointed out, the solution (10) may have an error of the factor
4)z. Therefore, if we deduce by the formula (10) the surface condition
(8) and calculate m of the structure from the second derivative of a
time-distance curve at x=0, there may be an error of the factor =/4
in ﬂ

dz :

Three examples are studied in the following for the sake of under-
standing the significance of these formulas.

3. When the time-distance curve is given by

t=ax—ba?, (11)

d*t _ :
V0=1/a' ’ dxz —_2b .
Making reference to (10), we obtain K=44/2 -bja*® and m=1/2.
So that, putting K into (8), the surface condition of the structure fit
for the time-distance curve (11) is from the result in the preceding
section,

av . 4«/~2_ba'5’2 12
( dz /=0 \ v V—1ja )V-»ll‘w. 12)

On the other hand, for the time-distance curve (11), we have an exact
solution of the structure from the formula (2),

Irbr=— 1/_“2_1‘;2___1 4+acosh™aV, (13)
V=1/a at 2=0.
Therefore,
( av > _ szba““) (14)
dz /z=0 v V—1la /v-ua
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and we can see that (12) differs from the exact solution (14) by the

factor =/4.
4. When the velocity is given by
av _ B
e G =
m=1/2 and K=8/42a at z—0 from (15) and (8). And by (10)
i __1 8 :
(dxz = 4 o’ 1

while an exact formula of the time-distance curve in the structure
expressed by (15) is

:c=at+—2‘%tz , 17)
or
T 2
=T zfoﬁ “F 2f2a5x3_ R 18

So that the exact formula of the second derivative at x=0 is

( - >x=o:— IB“" 19)

du? o

and (16) differs from (19) by the factor 4/ as might have been expected.
The velocity-depth relation given by (15) is

=-2—1E< VA Vi—a?—a® cosh™ l;—) .

5. When the velocity, instead of (15), is given by

av _ B
dz  V—a ' (20)
Vo:a s
m=1, K=8 and V=a++/28z. Therefore, from (9) |
d
=— ) 21
< 2 2«/2 a5/2 VV—a oz)V—»a (21)

While the time-distance curve for the structure (20) is given by the
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following equations :

x:l{sin“«/l-—azx? _aV'1i—a’’ }
B K* K '

o B (22
tzz{sgl—___1V1—a2x2 —a sinh™ “«/1_“2&2 } ’ )
8 K ak
_dt _ 1
de V
So that,
dt __ pr
dx? 2cosak
= B =1
Tavicaw T

and, since 1/k=V and V—a as z—0,

<_§%>M: —2'\}7 Z‘gﬁ('\/ T}_a)v—»a ) (23)

(21) is exactly equal to the rigorous formula (23), and the compensating
factor 4/ is unnecessary. Since the order of divergency of dV/dz at
2=0 becomes high with increasing m in (8), it seems natural that the
behavior of the solution' for large m approaches to that in the case of
the surface layered model of discontinuous variation of the velocity.

6. A dv . .y dt
. nyway, W-»oo at 2=0 is a necessary condition for da oo

+#0, and that may appear unnatural to some seismologists. It seems to
the present writer that —C;V —oo in effect at 2=0 is one of the possible
z
cases, when, for example, the surface is affected by rapid erosion.
Moreover, the space gradient of the velocity has nothing to do with the
stress-strain relation in the theory of elastic waves: velocity of pro-
pagation may come into our observations directly, but, certainly, its
space gradient does not. Therefore, there is no theoretical reason at
present to stick to that %K:ﬁnite, neither at the surface nor at the
2
inner part of the medium. Study in the following of the behavior of
a wave may clarify those circumstances more or less concretely.
Suppose a wave of a sufficiently short wave length incident normally
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to a surface with a structure given by (8). The behavior of the wave
is obtained by solving the following equation,

o' _ 0 Vzﬂ)

gw _ 9 T: time coordinate,
oT* 0z 0z

with a requisite boundary condition. Changing the space coordinate
from z to ¢ by t:Szdz/ V, and putting
0

V"‘%‘:«/Vé(t) exp (ipT), (24)
2
the problem is to solve
2,
L0+ —r010=0, (25)
t
./ where ‘
ANV
t = — 3/2 .
() Vv 17
From (8),

. 57
. Va/zd '\/ZV =z~ @+l m+1) +CZZ—2ml(m+l) ,
z

CI zﬂm(m +1) —(2m+1)/(’m+1)K1/ (m41)
2 ’
022%(27%-!-1) (M 1)=2m/ om0 ol oty

When m =0, C,=0 and f(t)=K?/4; the behavior of a wave ruled by the
equation simplified in that way was already studied®. In the problem
concerned at present co>m>1/2. Since, at z—oo, f(t)—0, the solution
of (25) is sin pt or cos pt at z—oo ; any particular remarks to the solution
at z—co will not be necessary. The debatable point is in the behavior
of the solution at z—0. Of the two terms in f(t), C,’s term predominates
at 2—0, and then z=Vt: the equation (25) is written in the form of

a9
di?

ac(t)
tZ

+{p?— }@:0 , (26)

3) R. Yosuryama, Bull. Earthq. Res. Inst., 18 (1940), 41.
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where &(t) =0 ™+V),

When ¢ is small, but p is large and pt is not small, comparing (26)
with the well-known Bessel’s equation, the solution of (26) is approxi-
mately, or, say symbolically, expressed by,

where n=1/2+ac(t), and, at {—0, n—1/2.
When ¢t is small, p finite and, therefore, pt is also small, the solution
of (26) is approximately

O=AT [n(BT ™) s A7 Knp(fa2m+),  0<2<1,

where I and K are Bessel’s functions of purely imaginary argument,
c=pt and f=2(m-+1)a'p~ 2"+ As x—0, the one, v/ & I,.,, tends to
zero, and the other, v/ 2 K,.;, to a certain finite value.

After all, it is deduced that (26) has two solutions such that either
of which are linearly independent of each other, convergent at {=0 and
tend to sin pt or cos pt at t—oo as far as oo >m >0, and, therefore, that
(25) has at t=0 an appropriate solution for a requisite boundary condition.
Such a result above stated leads us to a conclusion that the surface
condition (8), though it may appear unnatural, cannot be rejected by
mere theory of elastic waves.
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