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1. Introduction

In early investigations (Onda, 1964, 1965, 1966 a, b, 1967), several
characteristics of an elastic wave propagated through a heterogeneous
medium with certain periodic structures are deduced by means of Hill’s
equation. An independent spatial variable is first transformed into a
corresponding travel time and a term involving frequency is separated
from the variable in the wave equation. The cases with periodic variation
in velocity and in elasticity for which the variable is expressed in terms
of an explicit analytic function are calculated, and we find that the
characteristics of these solutions are similar to each other. An approxi-
mate solution for the more general heterogeneity of structures is also
obtained.

The solution of the wave equation is associated with either an un-
stable or stable region, following Floquet’s theorem. The wave in a
periodic structure cannot be separated into a progressive and a retro-
gressive wave. The solution is not an explicit form of a progressive

* This paper is based on part of a thesis, submitted in partial fulfillment of D.Sc.
requirements at the University of Tokyo, 1966.
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wave, but an expression of superposition of higher modes corresponding
to scattered waves as suggested by Floquet’s theorem. The stable and
unstable regions exist alternately on the frequency axis. The region
which plays the most important role is the first unstable region, that
is, the lowest frequency domain among the unstable regions. Other
frequency domains can be regarded as appearing in stable regions un-
der the numerical accuracy treated in geophysical problems, even if
they belong to one of the unstable regions defined by Floquet’s theorem.
If the undulatory structure covers a wide area, therefore, wave mo-
tions expressed by the first unstable solution probably predominate and
may be interpreted as a type of standing wave with scattered waves
of higher modes resonating in the periodic structure.

The stability of progressive waves is studied by inserting a hetero-
geneous medium with a certain periodic structure between two homo-
geneous media, in one of which an original wave is incident. In the
result, we can see that the wave belonging to the first unstable region
on the spectrum of a transmitted wave is attenuated. Moreover, from
a study of the transmission of certain pulses, this apparent attenuation
turns out to be caused by multiple reflections in this medium: a por-
tion of the energy of the incident wave is stored in this medium, and
is spread out after the transmission of the main part of the wave. If
we consider multiple reflections of a wave passing through a periodic
structure, an interpretation that a resonance develops in this medium is
possible. There are many phenomena in which an apparently sinusoidal
oscillation is observed for rather long duration in seismology: oscillatory
seismograms of near earthquakes, microseisms, wave guide phenomena
in seismic exploration and so on. These phenomena will be attributed to
the nature of the above-mentioned resonance.

The flow of seismic energy from an earthquake in the near range
was estimated by using the diffusion equation with a diffusivity varying
directly as frequency by Wesley (1965). In that paper, the effect of
dispersion of surface waves, the study of which has already been per-
formed fairly well, had not been taken into consideration, and the
physical meaning of each term of the equation had not been stated
clearly. Accordingly, the quantitative argument seems to be indefinite.
A similar equation had keen derived by Dr. Takahasi (1937). In that
study, the crust is assumed to consist of block structures, and conser-
vation of wave energy coming into and out of a block yields a diffusion
equation of the wave energy. Many phenomena, such as a proper
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oscillation of the ground, a decay of the maximum amplitudes and total
duration of seismic waves he attempted to explain by means of multiple
reflections of waves in the block structure. As for the block structure,
a treatment by Hill’s equation was tried by Prof. Yoshiyama (1941).

2. Wave passing along an uneven surface

Many investigations have been published on the elastic wave prop-
agation along an uneven surface, but the problem has not been suc-
cessfully solved because of mathematical difficulties. These can be clas-
sified by mathematical and physical treatments as follows:

1) Perturbation method. Stress on an uneven surface, the mean
level of which is 2=0, is approximately calculated in terms of the value
of stress on z=0 by means of the first two terms of a Taylor series.
It is well-known that the equation of motion with a periodically res-
titutive force is a type of Hill’s equation. If the boundary surface is
undulatory, the additional stress on the mean level is distributed re-
gularly, and then it is suggested that the equation of motion concerned
may be a Hill’s equation. But if Mathieu’s equation is solved by means
of a general perturbation method, Floquet’s theorem cannot be in-
troduced ; the solution in any unstable region is not defined. From this
fact, it is doubtful whether the solution derived from the perturbation
method is reasonable or not (Homma, 1941, 1942a, b; Sato, 1955a:
Brekhovskikh, 1959; Gilbert and Knopoff, 1960; Kuo and Nafe, 1962 ;
etc.).

2) Rayleigh’s method. This is the procedure that was first ap-
plied to the theory of diffraction grating by Lord Rayleigh (1907). As
Floguet’s theorem is expressed by means of a superposition of higher
mode scattered waves, the calculation is very laborious to establish re-
sults. From a view-point of numerical analysis, this procedure will be
of interest (Sato, 1955b; Asano, 1960, 1961, Abubakar, 1962; Miller, 1964;
Bose, 1966; etc.).

3) Conformal mapping. An orthogonal curvilinear coordinate
system, in which a boundary condition is satisfied on one or two coor-
dinates, is selected and the wave equation is transformed from Cartesian
coordinates into these coordinates. It is, in general, unavoidable that
the equation in this coordinate system is fairly complicated. However,
if the type of solution can be deduced by means of some treatment, the
nature of the wave propagation can be estimated accurately. From a
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view-point of mathematical analysis, this method is of interest (Obukhov,
1963; etc.).

4) Others. Statistics in which physical quantities were averaged
over one cycle of an undulatory surface have been studied (de Noyer,
1961), but we can never estimate the accuracy of results by that
method.

In this section, we study SH wave propagation along an uneven
surface with the same characteristics as an SH wave passing along a
plane surface possesses by the methods of the conformal mapping
technique.

The wave equation of SH motion is expressed as

U, o

2 —]— 2
ox 02

LIRU=0, 2.1)

where
Z‘;o: (()/Co y

U is the y-component of displacement, and ¢, is the shear wave veloci-
ty. The solution for which a surface specified by 2=0 is a free surface
is well-known:

U="U, exp (twt +1kx cos 0) cos (kz sin0) , (2.2)

where 8 is the angle of propagation direction measured from the x-axis
and U, is the amplitude of the incident wave. If a wave is propagated
along the x-axis, 0 goes to zero and the wave is expressed by the form

U=U, exp (twt +1ikw) , (2.3)

which, of course, fulfills the boundary condition at a free surface. The
stress ¥z introduced by the wave vanishes at all points in the medium.
Now, let us take a complex variable

C=—rz+ires, (2.4)
and introduce a conformal mapping function
w@)=u+1w, (2.5)

where 7' is a constant with the dimension of inverse length. If the
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(2, x) plane is transformed into the (u, v) plane, equation (2.1) becomes

U , U |, ki U=0 2.6
ou’ + ov° + 7*h? ' @.6)

where

_ 9 ..\ 8 ;.\ 0 a1t o .\’
hz:{_ } {; }:{“ 2 {__ z} 2.7
o0 7O 150 T =15, 791 T, (r'z) (2.7)
If a free surface which is slightly uneven is specified by u=1u, the
above-mentioned condition may be equivalent to one in which the stress
Ju and its gradient vanish. Therefore, the conditions are given, re-
spectively, as

qu_oU_y  oU
p ou ’ ow?

=0. (2.8)

If ¢ is taken as U/h, substitution of the conditions (2.8) into equation
(2.6) yields

d*¢ ( 2 6'h> de i} 1
& ony oY +G(uy, v)}=0, 2.9
L i M +T,2h2(u0) o{ (o, V)} (2.9)
where
*h 0°h
G(u, v)= 7 .
(@, 7) kX o
For u, such that Table 1. Correspondence of ele-
135Gty v) (2.10) ments in the problems of uneven
surface and of a hetero-
equation (2.9) is formally equi- geneous medium.
valent to a wave equation in a = oo
heterogeneous medium of one di- ;’e}‘{ﬁ,‘;:;:ni‘gﬁs‘“ A he,,fiﬁ?ﬁ;,“““
mension: medium
. . coh c(x)
%+££‘L@+%U:c. o=Ulh U
2t ¢ de dx ¢ v rom
(2.11) Cok‘o:a) @

The analogy is described in Table 1.
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Now, let us consider the following mapping function:
{=w—e™, =7, (2.12)
or
re=v+e“sginv,
TR=—uU-+e7" cosv .

The mapping represents an epi-trochoid for u<0, a cycloid for u="0
and a hypo-trochoid for >0, as shown in Fig. 1.
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Fig. 1. Conformal mapping of the (u,v) plane on the (z, z) plane:

{=w—e~%, where w=u+1v and {=—7"z+1irz.

If u, is positive and large, a plane u=u, is regarded as a sinusoidal
plane in the (z,«) plane with a wave length of undulation, 2z/r, and
an undulation amplitude, exp (—u,)/r. Under this consideration, calecu-
lation is carried out. The scale factor of mapping is

h=1+2¢* cos v-+e~ 2, (2.13)

and a measure of approximation (2.10) is

e U 2 —2u0
Gy, 1) =12 *{cos v+e~*(3 —cos® v) +¢~** cos v} G(uy 0) . (2.14
(o) 2(1+4-2¢"0 cos v+ e ) <G(uy, 0) . (2.14)

These expressions are written by means of the wave length of the
wave and the undulation, 4 and L, respectively, and an undulation

amplitude I as
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7/ke=A/L , } (2.15)
exp(—u)=1"r=2z|L .

Then

AN? e~
Gy, 0):(I) ey (2.16)

According to the results of the previous study (Onda, 1966a), waves most
affected by a periodic structure have a wave length nearly equal to
twice that of the structural wave length, so that, if an approximation

exp (—u) K1 (2.17)

is permitted, the wave behaviour along an undulatory surface may be
described by means of a wave equation in the heterogeneous medium
with a periodic structure.”

Since waves of maximum amplitudes observed in near earthquakes
are surface waves with a wave length of 10 to 20km, the structural
wave length that has the greatest effect on the wave propagation is
5 to 10km. On the other hand, since an elevation from trough to
peak in a mountain range where adjacent peaks are distant by 10km
will be less than a few hundred meters, /"/L is of the order 10~%.
Accordingly, the approximate calculation treated in this section will be
applicable to the waves concerned.

From Table 1, the scale factor of mapping, &, corresponds to the
velocity variation in a heterogeneous medium:

= = fl—eheos v+ O} . (2.18)

Therefore, this problem is equivalent to that in which velocity fluctua-
tion is exp (—u,)=2z/"/L. Referring to the results in the previous study

(Onda, 1966a), we see that an apparent attenuation in the spectrum
of a progressive wave appears near the specified wave length 4 which

1) Notes added in Proof: A term in Eq. (2.6), 62U/du?, is proportional to the undulation,
whereas 62U/dv? is proportional to the square of the wave number, so that for waves with
short wave length 92U/du® can be neglected in comparison with 92U/3v2. For waves with
a long wave length the effect of the undulation is very little, so that it is reasonable
that 92U/ou? is neglected in comparison with 82U/av2, likely in the case of short waves. Al-
though further discussions have not been made, this solution will certainly give the most
important characteristics of the wave. (Also see the succeeding one of this paper).
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is twice the wave length L of a structural heterogeneity, 4=2-L, and
that waves with this wave length follow as a tail of the principal wave.

The solution is written as follows, with reference to the results
obtained in the previous study (Onda, 1964):

U=U/n"*, (2.19)
where, from relations (2.12) and (2.13),

1

hr=1+ %e‘“ﬂ cosv+0(e)=1+ Ee‘"o cos re -+ O(e™™) , (2.20)

and U, is expressed by two forms, one in an unstable region and one
in a stable region. The final form of U, in an unstable region is

U=Ae"Y( o)+ Be ™Y (¢ —o) , (2.21)

where
Y€, +o)=sin (Fo)+ —eféi sin (32F o) +O(e=) ,
p= —e;—uo sin 20+ O(e™™) ,

20 _q + 0 cos 20+ O(e~)
7Co 2

The form for the stable region is
U=A'¢(& v)+B o), (2.22)

where

_sin e[ 1 sin
502(5’ M= os KT 8 {V—_{_T cos
1

e 6RO,

(v+2)¢

=20 (1 1 O(e—m)}
7Co

A common variable in both solutions is

= 1;52 Si’lhlz —;—{ere“”O sin v+ O(e—w)} -——sz{1+ O(ec)} . (2.23)
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It is interesting that the independent variable of solution, &, is linearly
associated with 2.

The wave treated here is similar to a surface wave, e.g., prop-
agated along the surface, but it has not the typical character of con-
centration of wave energy near the surface. Therefore, notwithstand-
ing that this wave is a particular kind of waves, the main feature of
surface wave propagation along an uneven surface must be constituted
by the characteristics obtained from this section as the first approxi-
mation.

3. A consideration on growth of microseisms
and wave guide phenomena

Microseisms are apparently random oscillations of the ground. Most
of the investigations in the subject have been directed toward the
clarification of the following points: origin of microseisms, nature of
microseismic waves, mode of propagation and direction of approach,
and statistical properties of microseisms. This section deals with the
nature of microseismic wave propagation. Microseisms with periods of
several seconds were interpreted as channel waves, such as Lg or Rg
waves, or as higher mode surface waves (Gutenberg, 1958). From
many observations, however, the direction of approach is hardly uni-
directional, so that the validity of such an interpretation is doubtful.
Microseisms with periods less than about one second are interpreted as
multiple reflections in superficial layered structures (Shima, 1962).

Another phenomenon similar to microseisms is known as a seismic wave
guide phenomenon or offshore singing in seismic exploration in shal-
low-water sea, which has the following characteristics (Bwing, Jardetzky
and Press, 1957, p. 184):

a) Large amplitude and long duration;

b) Almost constant frequency train of waves in some cases, fairly
simple pattern of beats in others, apparent mixture of several discrete
frequencies in others, characterized in all cases by numerous repetitions
of a pattern of waves;

¢) Occurrence usually when a hard stratum is found at or near
the sea floor.

Burg, Ewing, Press and Stulken (1951) stated that waves are propa-
gated by multiple reflections at angles of incidence between the normal
and the critical angle for total reflection, under the condition of con-
structive interference. Therefore, the predominant frequency f, is
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expressed by the value
f.=@n—1)c,/4H , (3.1)

where ¢, is the sound velocity in water, H is the depth of water, and
n is an integer. Although tide causes a depth of water change by
about two meters, the predominant frequency in the field experiments at
Ariake Sea remained unchanged, after Messrs. Kuroda and Kimura (1962).
It is doubtful, therefore, if the predominant frequency is related only
with depth of water by means of (3.1). From another experiment at
Ariake Sea by Dr. Chujo and Mr. Kimura (1959), such a phenomenon was
developed within a certain limited area, and these results also were in
agreement with the area generated by the strongly scattered waves in the
records of SPARKER. The sea bottom in that area was estimated as
a gravel or fine sand layer.

Recently, Bose (1966) calculated the effect of an undulatory sea
bottom for very long and short waves by means of Rayleigh’s method
cited in section 2, and pointed out that this effect cannot be negligible
for very short waves and large undulations. It seems to be an un-
satisfactory interpretation, for a small undulation was assumed in that
calculation, and the wave most affected will be one with twice the
wave length of undulation, as discussed in the previous study (Onda, 1964).

A reason why such experiments have not been carried out on
microseisms may be that to change a condition from one to another at
one place is very difficult.

Now, waves propagated along a homogeneous medium with an un-
dulatory surface are equivalent to ones passing through the hetero-
geneous medium with a periodic structure, in which the characteristic
wave can resonate. It is expected, therefore, that some mode of waves
exists in the medium bounded by an undulatory surface, and that this
mode is that in a horizontal heterogeneity of the medium. On the
other hand, a surface wave in a layered medium has an amplitude
characteristic (Sato, 1952; Tazime, 1957; etc.). This mode is that in a
vertical heterogeneity of the medium.

If the interference between horizontal and vertical resonance can
be neglected, the following consideration will be reasonable. The am-
plitude of surface waves in a two-layered medium depends on the thick-
ness of the superficial layer, H, the wave length of the wave, 4, the
elasticity in the superficial layer and substratum, E, and E, and the
densities, p;, and p,. If a surface or interface is undulatory, the amplitude
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also depends on the wave length of undulation, L, and its amplitude 7.
From the aspect of dimension analysis, the resulting amplitude can be
writen as

U(H/4, E\|E,, p,/ps, A]L, I'|L) . : (3.2)

Here, the first three terms involve no factors originating from the un-
dulatory boundary, and the last two terms contain no functions of
thickness.

On the assumption that the mode in a vertical heterogeneity does
not interfere with that in a horizontal one, it is suggested from the
vibration of a rectangular membrane that the resultant wave form is
expressed by means of the superposition of those modes:

UX,, X,)=U(X)) - Uy(X,) , (3.3)
where
Xy=X\(H| 4, E\[Eyy pr]p2)
and
X,=X,(4/L, I'|L) .

Here, U, is the amplitude characteristic of a mode in a vertical het-
erogeneity. In a structure where the velocity difference between two
media is large, the wave length of the predominant wave is approx-
imately equal to four times the thickness of the layer. On the other
hand, U, is the amplitude of a mode in a horizontal heterogeneity, and
predominates at a wave length nearly equal to twice the wave length
of the surface undulation. Strictly speaking, the behaviour of the
wave cannot be elucidated without the study of the interference be-
tween the two effects, one from the undulatory surface and the other
from the vertical heterogeneity of the medium. However, if the sur-
face undulation is small, its effect is small, so that the total effect will
be expressed by the sum of each effect. As a cause of generation of
a wave with the particular frequency, two effects of an undulatory
surface and a vertical heterogeneity are taken into consideration, but
the same result as obtained above can be expected under the assump-
tion that an undulatory surface or block structure of the crust is dis-
tributed regularly from the neighbourhood of sources to the observatory.
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4. Apparent attenuation of elastic waves

There are many investigations on attenuation of elastic wave prop-
agation, and these have been reviewed by Knopoff (1964) and others.
The attenuation is measured through @ or @', and the problem con-
cerned is to study the behaviour of @ associated with frequency. Waves
measured by many investigators are free oscillations of the earth, body
and surface waves from earthquakes, body waves from artificial explo-
sions, or free oscillations and wave propagations excited by ultrasonies.
The net result is that the observed @ seems to vary from 100 to 1000
over a frequency range between 10~ and 10° cycles per second as shown
in Fig. 2.

" P
1500 |- TS
o * Spheroidal oscillation,
_E Rayleigh wave
\ o N . .
o loooL_ Torsional oscillation,
G wave
° =]
500 - a
= ° I] fe]e]
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— - =N
a Omo Q;'. o
N ® o
L L L L g;' L | [ L ° 1 s
-6 -5 -4 -3 -2 o1 0 1 2 3 2

log (period in second)

Fig. 2. Q-values taken from various observations.

The elastic wave propagation and attenuation through a wvisco-
elastic medium has been calculated by Prof. Nagaoka, Hosali, Prof.
Sezawa, etc. Prof. Nagaoka (1906) treated a model taking a resistance
proportional to the particle velocity and to the displacement in the
wave equation, which seems unacceptable from the rheological view-
point, and solved it in correspondence to the equation of telegraphy.
Hosali (1923) calculated the attenuation, by means of a Voigt model,
taking the time derivative of the strain in the wave equation, and
Prof. Sezawa (1927) discussed it in further detail. In the Voigt model
of a viscoelastic medium, the factor @ is inversely proportional to fre-
quency, and solid viscosity or retardation time is not dependent on fre-
quency. On the other hand, in the Maxwell model of a viscoelastic
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medium, taking the time derivative of stress, the factor @ is propor-
tional to frequency, and viscosity or relaxation time is not dependent
on it.

In theoretical investigations, the attenuation mechanisms which have
been proposed can be classified by the following limited list of references:

1) Complex elasticity, Yamakawa and Satd 1964; Anderson and
Archambeau, 1964;

2) Creep functions, Lomnitz, 1957; MacDonald, 1961;

3) Non-linear friction, Fortsch, 1956; Knopoff and MacDonald,
1958;

4) Effect of scattering, Yamakawa, 1962; Knopoff and Hudson,
1964;

5) Thermal relaxation, Savage, 1965.

If the complex elasticity is considered fixed, viscosity must be in-
versely proportional to frequency. It is doubtful whether this depend-
ence is valid, for it is presumed that the attenuation of waves ean be
expressed by using the invariable complex elasticity, and the attenuated
waves have not been analyzed experimentally from any other stand
points. Dr. Yamakawa and Prof. Satd (1964) pointed out that the com-
plex elasticity, which depends on frequency, is connected with the creep
function. However, the creep functions have generally been determin-
ed experimentally under the large strain of the order of 10~* or more.
Messrs. Kataoka and Oguri (1959) stated from their experiments that the
linear strain theory should be applied for strain as low as the order
1077, and Peselnick and Outerbridge (1961) found that the critical strain
is of the order 10-°. From these experimental facts, the attenuation
should be interpreted by means of other mechanisms than creep functions
and non-linear friction, since the fundamental equation of motion is
based on the linear strain theory, and the strain induced from seismic
waves is of the order smaller than 10-°.

Rayleigh pulses on fine grain granite are attenuated similarly to
Rayleigh scattering in optics for frequencies as high as 400 ke/sec
(Knopoft and Porter, 1963). In the high frequency range, the effect of
scattering certainly predominates.

A thermoelastic internal friction between two grains, such as the
Zener effect in polycrystalline metals, was considered by Savage (1965),
and a relation in which the factor Q' is constant over a frequency
range of 10 cycles to several mega-cycles per second was derived. If
ordinary values for physical constants in that relation are taken, the
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factor @ is of the order 10~%, and this order of @' seems to be too
large compared with the experime_ntal evidence.

Now, the observed spectrum U can be represented in the following
terms:

U=U0,-U, U, U, U,.-Uy Uy, (4.1)
where

U,=spectrum at the hypocentre, involving a focal mechanism,
U,=frequency response of the recorder,
U,=divergence factor of waves,

U, =layering effect of the crust, mantle, core, ete.
(large scale heterogeneity),
U, =effect of viscous behaviour,

U,=effect of small scale heterogeneity,
U, =effect of Rayleigh scatterings.

Here, large scale heterogeneity corresponds to the earth model proposed
by Jeffreys and Bullen, Gutenberg and others, while small scale het-
erogeneity is one corresponding to a fluctuation superposed on the large
scale one. An influence of thermal losses may be involved in the U,
factor.

A paper concerning an influence of large and small scale hetero-
geneities was recently reported by Dr. Emura (1965). In that paper,
it was assumed that the velocity gradient in a medium is sufficiently
smaller than the frequency. However, a calculation was made for a
medium with a transition zone of gradually increasing velocity, with
an extreme velocity difference of 0.8 km/sec and a thickness of 1km,
so that waves with frequencies of several tens of cycles per second
should be taken into acecount; however, those waves are of less interest
in seismology. In the other calculation, for a structure with a transi-
tion zone including a low velocity layer, the velocity gradient is esti-
mated to be of the order 10~ (per second) so that the calculation can
be applied to the analysis of seismometrical observations. It was shown
that the effect of a low velocity layer on the transmitted and the re-
flected waves should not be neglected.

The influence of small scale fluctuating heterogeneity was not cal-
culated because of mathematical complexity until Prof. Yoshiyama (1960)
treated it. From the result in the previous studies (Onda, 1964, 1967) waves
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propagated through the small scale heterogeneity give rise to attenuation.
Special interest in the problem of wave propagation through the
heterogeneous medium with velocity distribution

c(x)=cy\(1-+e cosyx) (4.2)
is shown for the unstable region, from the result obtained in the previous
studies (Onda, 1964, 1967). The transmission coefficient in the unstable
region is

|T|=|cos ¢|/cosh (7'&, sin 2¢) , (4.3)
where
% —
& D) y 7 2 ’
tan ¢ = tanh (7'§, sin 25)(cos 20— 28 —26° cos 20)
sin 2o ’
1 cos2s
5=i+ 2 _-—‘_.___> y
g - (6 32
20w e 7
=14+ — c0os 20———=¢" .
e, 2 T

From (4.3), an apparent attenuation occurs near the frequency w=cux/L,
where L is the structural wave length of heterogeneity, and the nature
of the attenuation is determined by

sech (7'¢ ~——sech< Lot __a)xo) ,

(7'%0) € oL 2,
(4.4)

=sech (e %> .

Co
Although the behaviour of the attenuation is rigorously represented
by a secant hyperbolic function, the secant hyperbolic function can be
expanded as

sech &§=2¢~*{14+0(e~*)} for large ¢,
=e¢ {1+ O(e~* sinh £)} for small ¢.
The term of the wave attenuation can be written as

U, exp (—% %) ,
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where U, is the amplitude at x=0. Consequently, the factor Q' is
derived as

Q@ '=e¢ near the frequency w=7yc,/2 , } (4.5)
=0 for other fregquencies.

If a velocity distribution is given by

c(x):co(1+20, €, COS 17%) ,

r=1

then from the previous study (Onda 1964) the factor @ is

QRQ'=¢, near w=mn-y¢/2, 7 being an integer, } (4.6)
=0 for other frequencies.

As an example, let us assume that the crust consists of an alter-
nation of two layers with velocities 3.40 and 3.32 km/sec and thick-
nesses d, and d., respectively, whereas the density is uniform through-
out the whole medium. The structural wave length is assumed to be
12km; 1.e., d,-+d,=12km. These velocities were found in the explo-
sion seismic observations near Kamaisi Mine (Asano, Den, Mikumo,
Shima and Usami, 1959). The velocity of S waves derived from 16
data points situated 10 to 25km from the shot epicentre was 3.36+
0.04 km/sec. It is assumed that the origin of the =+0.04 km/sec arises
from a horizontally heterogeneous medium. In this medium, the velocity
distribution is expressed by means of a Fourier series as

¢=38.321+0.087 3, sin (nxZ) cos (nye)/(nzZ)
n=0

' 1 sin (nxZ) cos (nyrx)
= (3.32--0.082)| " o
B30I G spr0087) & oy ] (km/sec)

where

r=22/12=0.524 (1/km) ,  Z=di/(ds+d;) .

The summation is carried out by using all terms with values greater than
about 0.007 km/sec. Each coefficient for any Z is shown in Table 2.
From (4.5), progressive waves in this medium are attenuated near the
periods 7.1, 8.6, 2.4, --- seconds and corresponding factors of attenua-
tion, @, are between 100 and 400.

The uncertainty of velocity determination in explosion seismology
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Table 2. Fourier coefficients of each term of the velocity
distribution for some Z; upper and lower values
are ¢, and e, respectively:

c@)= >\ ¢, cosnyr=cyl+ > ¢, OS NYT) .
n=1

=0

} .
0.1 3.328 0:003 0005 0.005 0.005
0.2 3.336 8:8(% 8:85 8:88:%

0.3 3.344 8:833 8:8(1)2

0.4 3.352 8:8%% 8:888

0.5 3.360 0 oo 0-000 —9-008

0.6 3.368 0-024 ~0:003

0.7 3.376 9-089 0.0

0.8 3.384 0 008 0.008 0:005

0.9 3.392 0:008 | Z0:008 0:005 ~0:005

may result from block structures of the crust (e.g., Tatel, Adams and
Tuve, 1953). As shown in this example, the apparent attenuation re-
sulting from a periodic structure will not be negligible.

Summary and Conclusions

In most of the current investigations, wave propagation has been
discussed for a structure with large scale heterogeneity. There are a
few observations in which small scale heterogeneity is verified, and
theoretical investigations of the latter subject have seldom been per-
formed. This paper analyzes theoretically elastic waves propagated
through small scale heterogeneity. The results are as follows:

(1) Substitution of an independent variable into the corresponding
travel time for the spatial coordinate leads to the separation of the
frequency from the other variables in the wave equation. It is possible
to discuss directly the frequency characteristics of solutions of the
equation. As the nature of the medium varies periodically, the wave
equation treated is Hill’s equation. The solution is given by means of
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the modified Whittaker’s sigma method. Heterogeneity is considered in
two cases; in one case, the velocity varies periodically, and in the other,
elasticity varies similarly. The independent variable is expressed in
terms of a trigonometric function for the velocity variation, while a
Jacobi’s elliptic function is used for the elasticity variation. Both solu-
tions have strong similarity to each other; the most important solution
in wave propagation is associated with the lowest, or first, unstable
region. These results hold for rather complicated variations in velocity,
too, if the degree of approximation is properly considered. This un-
stable region occurs when the wave length 4 of waves propagated is
nearly equal to twice the wave length L of the structure, that is,
A=2L. The solution is given by means of the superposition of higher
mode scattered waves and can be regarded as a standing wave. Ac-
cording to Floquet’s theorem, if a force or stress is applied at some
location in an area widely covered by a periodic structure, a regular
oscillation lasting for a relatively long duration will develop into micro-
seisms, so-called wave guide phenomena, and so on.

(2) Stability of a progressive wave is discussed by calculating the
transmission coefficient of a wave through this medium. From the re-
sult calculated over the whole frequency range, it follows that the first
unstable region plays an important role; the larger the structural un-
dulation, the greater becomes the apparent attenuation and the wider
is the associated frequency band; and the thicker the heterogeneous
medium, the greater becomes the attenuation and the narrower is the
frequency band. The attenuation factor @, obtained from this hypo-
thesis, may be as large as 10* to 10°, provided that the scattering of
travel times observed in explosion seismology originates in a certain
layering of media with different velocities.

(8) From the integration of the transmission coefficient, the ap-
parent above-mentioned attenuation is interpreted as a portion of wave
energy with that frequency component reflected a number of times in
the periodic structure, i.e., the unstable solution is regarded as result-
ing from a resonance in the periodic structure.

(4) Wave propagation along the surface of a homogeneous medium
bounded by a sinusoidal surface is solved, assuming that the ratio of
elevation to wave length of the undulation is of the order of 10~ or
less. The stress induced from SH wave propagation along a flat sur-
face vanishes throughout the whole medium. A suitable conformal
mapping is carried out, and an equation of wave motion with a sinu-
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soidal character is introduced. The resulting wave equation is in formal
agreement with that in a periodic structure. This procedure may not
be rigorous, but it seems that the main feature of wave propagation is
expressed sufficiently by the solution obtained.

It becomes evident that the effect of small scale heterogeneity on
wave propagation is not negligible. It is hoped that the degree of
small scale heterogeneity is confirmed from the observational point of

view.

In the future, further investigations of problems of a periodic
structure with a more complicated variation and of surface waves pas-
sing along an uneven surface will be quantitatively performed.
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