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1. Introduction

In a preliminary report of this study of theoretical seismograms
for an earth model based on the velocities of Gutenberg and Bullen’s
A’ density distribution, results were presented for the fundamental radial
mode of spheroidal oscillations”. It was there noted that these new
results bear greater similarity to actual recordings of teleseisms than do
previous calculations for more simplified spherical models, such as the
homogeneous sphere® and the homogeneous mantle with liquid core®.

The present study, which is part of a continuing program of investiga-
tion of the generation, propagation, dispersion and attenuation of waves
in realistic spherical earth models, presents further results for the
Gutenberg-Bullen A’ model. Theoretical seismograms representing the
superposition of spheroidal oscillations were calculated, taking into account
the contributions from free vibrations through the tenth radial mode,
for all orders from the gravest with periods approaching one hour to
those with periods slightly larger than one minute. The Common
Spectrum used for these calculations is discussed, and comparison is

(Contribution No. 25 Geosciences Division, Southwest Center for Advanced Studies.)

(Contribution No. 869 Lamont Geological Observatory, Columbia University.)

1) T. Usami, Y. SATO and M. LANDISMAN, “Preliminary Study of the Propagation of
Spheroidal Disturbances on the Surface of a Heterogeneous Spherical Earth,” Geophys. J.,
(1965) (in press).

2) T. Usami and Y. SATO, “Propagation of Spheroidal Disturbances on 2 Homogeneous
Elastic Sphere, ”Bull. Earthq. Res. Inst., 42 (1964), 273-287.

3) Y. SATO and T. UsAMI, “Propagation of Spheroidal Disturbances on an Elastic
Sphere with a Homogeneous Mantle and a Core,” Bull. Earthq. Res. Inst., 42 (1964),
407-425.



642 T. Usami, Y. SATO and M. LANDISMAN

made with the body waves predicted by ray optics.
Notable results of the study of the propagation of spheroidal dis-
turbances in a Gutenberg-Bullen A’ earth model are:

1. Certain special segments of each of the series of free vibrations,
as a function of order or colatitudinal mode number 7, correspond to
transition regions from one radial mode to the next higher one. Free
vibrations associated with these segments have large displacements
near the mantle-core boundary and the associated propagating waves
resemble Stoneley waves along a plane fluid-solid boundary.

2. The group velocity curves for the lower radial modes exhibit
well defined maxima and minima which correspond, in the case of the
fundamental mode, to reported observations of surface waves. 1

3. Summation of the contributions of spheroidal oscillations for
radial modes one through ten of this model leads to theoretical
seismograms which exhibit waves reflected from and transmitted -
through the earth’s core. .

4. These seismograms also show the diffraction of seismic dis-
turbances into the shadow zone.

5. Higher mode surface waves have been found which are mainly
related to the second and third radial modes. These waves correspond
primarily to the group velocity minimum and adjacent maximum of
the third radial mode (7=3) for periods between 800 and 500 sec.

2. Glossary

Case I): The problem of a homogeneous sphere”
Case II): The problem of a homogeneous mantle and a homogeneous
liquid core®
a: radius of the earth
b: radius of the core
C, U:. phase and group velocities
Eg, E,: radial and colatitudinal stress on the earth’s surface
f(@): time function of the external force .
f*(p): Fourier transform of the funection f(?)
4: radial mode number
7: unit of the imaginary number “
E: (=p/Vso)
m: degree of an associated Legendre function (azimuthal mode
number)




t:

n:

zpn .

Py :

(r, 0, 9):
78 :

P (cos0):
iS:, She
S'mn! Tmn :
(u, v, w):
U.(r), V.(r):
Uly Vl .
iun ’ i’vn .
Ve, Vg
VS() :

(iun)v (ivn) :
L), [,
{su,}, {val
(¢4

Ap:

Theoretical Seismograms of Spheroidal Type on the Surface 643

order of an associated Legendre function (colatitudinal
mode number)

circular frequency of free oscillation

P wave diffracted into the shadow zone by the core
polar coordinates

colatitudinal stress

associated Legendre function by Ferrers’ definition
Common Spectrum of radial and colatitudinal components
of disturbance

coefficient of spherical surface harmonics in the expansion
of radial and colatitudinal components of external force
time

displacement in the 7-, - and ¢-directions

function giving the radial distribution of « and »
values of U,, V, at the depth where the integration is
terminated

contribution of a normal mode oscillation for the radial
mode number 4 and the order number n

P and S wave velocities

S wave velocity on the surface of the earth

Z n i n
oiu'n’ PIPIFCA

i=1 n=0

j iun ’ i ivn

n=0 n=0

(1%n) — (%), ()~ (10,)

ratio of the colatitudinal to the radial component of
displacement on the surface

non-dimensional frequency of free oscillation (=ka=pa/Vy,)
Lamé’s constants

density

i=1 n=

3. Earth Model

A discussion of the Gutenberg-Bullen A’ model used in this study
was presented in the preliminary report" as well as a graphical representa-
tion of the distributions of velocities and density as a function of radius

(Figure 1)".

For the sake of completeness, and to permit comparisons

in the future, the numerical values of compressional velocity, shear
velocity and density used in this study are presented in Table 1.
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Table 1. Radial distribution of P and S wave velocities after
Gutenberg and density for Bullen’s model A’ used for calcula-
tion of theoretical seismograms. In the core, slight modifica-
tions described in the preliminary report were made before
interpolation. Values of these quantities for every step of
iteration were obtained from this table using Runge’s inter-
polation method for unequal intervals.

Distribution of P and S Wave Velocities
and Density Within
the Gutenberg-Bullen A’ Earth Model
Adopted in the Present Study

Depth | Density Ve ‘ Vs Depth Density Ve ! Vs
0.0 2.84 6.30 3.55 2900.0 5.66 | 13.65 i 7.20
32.0 2.84 6.30 3.55 2900.0 9.70 | 8.00 0.00
32.0 | 3.32 8.16 4.65 3370.0 10.86 - 8.72 0.00
60.0 ! 3.34 8.15 4.60 3500.0 - 10.51 8.90 i 0.00
100.0 3.38 8.00 4.40 3870.0 10.94 9.35 | 0.00
150.0 ! 3.42 7.85 4.35 4000.0 11.09 | 9.50 ! 0.00
200.0 3.47 8.05 4.40 4400.0 11.48 9.90 0.00
300.0 3.55 8.50 4.60 4470.0 11.55 9.95 0.00
413.0 3.64 9.06 5.00 4580.0 11.65  10.00 0.00
413.0 3.64 9.06 5.00 4790.0 11.79 | 10.07 0.00
500.0 3.87 9.60 5.30 4890.0 11.85 | 10.09 0.00
600.0 4.10 10.08 5.60 5051.0 11.94 10.11 | 0.00
700.0 4.30 10.50 5.90 5072.0 . 11.94 | 10.11 . 0.00
800.0 4.46 10.90 6.15 5072.0 ©  11.94 ; 10.11 0.00
900.0 . 4.57 11.20 6.30 5086.0 = 11.95 | 10.20 i 0.00
1000.0 4.65 11.40 6.35 5111.0 © 11.965 : 10.48 0.00
1200.0 4.77 11.80 6.48 5135.0 11.975 ¢ 10.76 { 0.00
1400.0 4.89 12.05 6.62 5150.0 @ 11.99 | 11.15 0.00
1600.0 5.00 12.30 6.75 5170.0 © 11.99 : 11.20 0.00
1800.0 5.11 12.55 6.85 5370.0 12.07 ¢ 11.20 ; 0.00
2000.0 5.22 12.80 6.94 5570.0 - 12.14 : 11.20 | 0.00
2200.0 5.32 13.00 7.01 5770.0 - 12.20 - 11.20 | 0.00
2400.0 5.42 13.20 7.10 5970.0 12.24  ° 11.20 ! 0.00
2600.0 ! 5.52 13.45 7.20 6170.0 -+ 12.29 : 11.20 0.00
2800.0 5.61 13.70 7.23 6370.0 ~ 12.30 ! 11.20 ] 0.00

2880.0 | 5.65 13.70 7.205 ; H i

4, Fundamental Expressions

The spheroidal disturbances of an elastic sphere having radial hetero-
geneity can be expressed in terms of the polar coordinates (r, 8, ¢). When
the effect of gravity is neglected, these expressions become :

u’ l” W

e

Sl (u(p), v(p), w(p)) exp (jpt)dp

Up)= 3 Ary Ui(r)- P (c050) 20 mo-£*(),
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(D)= X Ay V(1) —P (cos 0) L D,

wp)= Y, mAm-V,,mﬂ—(f—l‘l;‘#‘—) %0 - (@) 4.1)

where U, and V, satisfy the simultaneous differential equations

—g;uXﬁ2er»+%[4rUn—4Un+n(n+1)(—Un—rVn+3Vn)]+pp2Un=o,

A7

|4 +%)]+%[5Un+3rvn—Vn—2n(%+1)Vn]
+%Xn+pp2Vn=0,
X.=U,+ % U,— —"(";“ Dy,. (4.2)

The dot (‘) means differentiation with regard to », namely d/dr. 1t is
possible to write the disturbances in the time domain which result from
Fourier transformation of the radial, colatitudinal and azimuthal com-
ponents of displacement as

u= L 5 Prieost): Pme|” (SertTe) U0 0)-exp (Gpt)p,

7T M. —e ES

1 d pn cos S Swn | T .
P 7} n L Zmn ), Y - F¥(p)-
v=g g Drleos ). o my ( i ET> W(r)- f*(p)-exp (jpi)dp,

w= L5 mPE0s 0), =sin 4y 7 (Buey Tas). v ). f2(n)-exp (ipt)dp,

2nmn  sind cos Es H,
(4.3)

In these expressions, S,, and 7,, are the coefficients of spherical surface
harmonies which are developed in the latitudinal and longitudinal ex-
pansion of the radial and tangential forces acting on the surface of the
elastic sphere. In the present case, a purely radial stress was applied
to a small circle around the pole. In this case, m=0, 7,,=0 and S,,.
was replaced by S,. Ejs and E,, the radial and tangential stresses at
the free surface r=a, are written

=t 240, U+ B2 U @) —n(n+ ) V(@)
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Br=(n.- (V@)= (V.@— V(@) (.4)

Es=E,=0 gives the condition of the free spheroidal oscillations. Equa-
tions (4.3) were evaluated by contour integration which showed that the
displacements can be represented by superposition of the contributions
from the poles corresponding to the free oscillations,

u:g— >, Pr(cos 0)- cos me
i,n,m n

X [( y ESS"}’;ZP'T 7 EI,; 7;@)- U, (r)- f*(p)-exp (J'pt)]p:m,

P (cos 0)- cos me

_J
2 imm sin

W

x [(om s T v o)y G| . @)
dEg/dp dE./dp ) P=ipn .

w has a similar form of expression. In this formula, the ;p, are the

frequencies of free spheroidal oscillation of the earth.

5. Method of Calculation of Non-dimensional Frequency

Numerical solution of the simultaneous equations (4.2), under the
conditions of zero stress on the surface, was used to find the non-
dimensional frequency of spheroidal oscillations of the earth. The equa-
tions were integrated from the surface towards the center, assuming
the radial displacement on the surface to be 1. The general procedure
used for numerical solution was previously developed for the problem
of a heterogeneous half space”; the method used for spheroidal oscilla-
tions is summarized below.

First, trial values of non-dimensional frequency 7(=ka= pa/ Vso) and
of a(=V,/U, at r=a) were chosen. The values of U, and V, at the
surface resulted from application of the boundary conditions of a stress-
free exterior surface, Es=FE.=0. Using these starting values of U,,
V., U, and V, at the surface, equations (4.2) were numerically integrated
down to the core boundary for the velocities and densities given in
Table 1. Since the rigidity of the core is assumed to be zero, the

4) Y. SATO, “Numerical Integration of the Equation of Motion for Surface Waves
in a Medium with Arbitrary Variation of Material Constants,” Bull. Seism. Soc. Amer.,
49 (1959), 57-11.
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tangential stress 70 should vanish at the bottom of the mantle, though
the caleulated value of 70 on this boundary is usually not zero. The
above condition at the core boundary, together with the condition that
the displacements must vanish at great depth, were used as test criteria
in a two-dimensional search for the unknown quantities, which are the
frequency 7 and the surface ratio of displacements «.

For this two-dimensional search, the trial value of 7 was at first
fixed and « was incremented repeatedly until the sign of 70 reversed.
Interpolation was used to find the value of a=a, which made 70,_,=0.
Adopting this value of a=a,, U, was calculated for the depth where
displacement was presumed to vanish. The trial displacement result, U,,
was then stored.

For the second direction of this search plan, the frequency 7 was
incremented and the value of @, that produced 70._,—0 and the corre-
sponding value of U, were calculated and stored. After the reversal of
sign of U,, a similar interpolation was applied to find the combination
of 7 and «, which permitted both 70,_, and U, to vanish.

As the order number » increased, the depth where the disturbance
actually vanished became shallower. Therefore, for large values of =,
it was not necessary to continue the process of iteration down to the
core. The calculation was stopped at an appropriate depth in the mantle.
In this case, the non-dimensional frequency was found by using the
requirement that both U, and V, vanish at the depth where the itera-
tion was terminated.

The values of dEg/dp are also necessary for evaluating the contribu-
tions of each mode (see equation (4.5)). These values were computed in
a manner similar to that used for the torsional problem?®.

6. Phase and Group Velocities

The results of the above calculations were presented in the preliminary
report” in the form of curves of frequency 7 versus order number » for
the various radial modes. These frequencies were also used to calculate
phase and group velocity curves, by employing the asymptotic formula

C=Vsop/(n+1/2), (6.1)

5) Y. SATO, T. Usami, M. LANDISMAN and M. EwING, “Basic Study on the Oscillation
of a Sphere V: Propagation of Torsional Disturbances on a Radially Heterogeneous

Sphere. Case of a Homogeneous Mantle with a Liquid Core,” Geophys. J., 8 (1963),
44-63.
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U=V, dy/dn . (6.2)

Numerical values of phase and group velocities thus obtained are given
in Table 2.

Table 2. Phase and group velocities of the Gutenberg-Bulien
A’ earth model.

™ 7 C (Phase velocity) km/sec. U (Group velocity) km/sec.
T& 12 3 4 5 . 1 | 2 3

§

100 413 © 594  7.20 © 8.10 - 9.07 3.8 | 4.6, 5.6
130 : : 8.87 8.9

200 . 462 7.22 838 876 11.04 = 3.6 5.7

30 | 5.3 ' 810 832 10.90 | 8.8 . 6.5 @ 8.2
340 | | § 6.6
360 | 3 8.6

400 | 6.00 © 8.06  8.92 4.4, © 8.6 = 6.7
500 | 6.45 : 8.03  9.61 505 . 7.3 7.0
600 | 6.70 = 8.42 10.45 © 6.20 . 5.65 6.5
650 . : © 5.3 .

700 | 6.68 | 9.27  12.00 . 1.3 5.8 5.4
800 . 6.55  9.83 8.0, 7.3

900 . 6.42  10.18 . 8.2

1000 | 6.26 | 10.42

It was noted in the cited report that certain portions of the frequ-
ency-order number curves form transition segments from one radial
mode to the next higher one. For free vibrations along these segments,
it was also shown that the particle motion at the core boundary is large
compared to that at the free surface, and the group velocity curves
exhibit well defined maximum values. These vibrations correspond to
Stoneley waves along the core-mantle boundary.

7. Common Spectrum

The Common Spectrum of the radial component of displacement is
defined by

u__ Smn Tmn . Y . %
Si=(g5 tamy) V) @) (7.1)
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Fig. 1. Common Spectrum of radial and colatitudinal components of displace-
ment. Values of radial component for n=0, ¢=1, 2, ----, 10 are indicated by
solid circles.
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The first expression of (4.5) is, therefore, reduced to

w=4_ Z St Pr(cos 0) mg:- exp (7pt) . (7.2)
This quantity ;S¥, is independent of quantities ¢, ¢ and ¢, therefore it
is common for the radial displacement expressions at all times and
locations. Using the similar quantity ;S:, the colatitudinal displacement
v is expressed as

21;"15 P,’:’(cos 0) cos = mg- exp (jpt) . (7.3)

Since axial symmetry was assumed in the actual computations, the
azimuthal displacement w is zero. The Common Spectrum curves for
the # and v components are shown in Figure 1. These curves become
negligibly small for modes along the transition segments discussed in
section 6. This result is consistent with the conclusion™® that the
transition segments exhibit behavior characteristic of boundary waves
along the core-mantle interface. The marked differences between the
results for this model and those for case II) (spheroidal disturbances on
a homogeneous mantle) are:

1) for both components, the Common Spectrum of the higher
modes does not decrease so rapidly with increasing 7 in the present
case as in case II). In fact, quite complicated features in the Common
Spectrum may be found, even for fairly large values of order number,
n (see Figure 1).

2) In the present case, for the fundamental mode of both com-
ponents the amplitude of the second peak is not much smaller than
the first peak. In case of the homogeneous mantle the second peak
is much smaller than the first.

8. Theoretical Seismograms
The source function was taken to be a purely radial stress applied

at the surface. Its geographical distribution is

@(0 _@0( 0 _{1 0<00
, ¢)=0"(cos 0)= 0 6,<0. (6,=0.04 radian) (8.1)

The time function was taken to be
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Fig. 2. Theoretical seismogram of spheroidal disturbances on the surface of a Gutenberg-Bullen A’ model of the earth due to a radial force
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—1 —t,<t<0
f=1 1 0<t<t, (t,=0.02) (8.2)
0 t<l|t].

and its Fourier transform is
S*(p)=—47 sin® (pt,/2)[p . (8.3)

The largest values of colatitudinal order number % employed in the
synthesis can be inferred from the curves in Figure 1. Beyond these
values the spectral amplitude is small and contributions from these modes
are negligible.

Theoretical seismograms were calculated at three points on the
surface, namely

0=30°, 90° and 150°

for the time interval ¢=0.005 (0.005) 2.00 and they are shown in Figure
2. The solid lines refer to (%) and (,v.,) and the broken lines (juy,)
and (V). 27a/Vse, the time required for a shear wave to cirele the
globe, is taken as the unit of time.

These seismograms are more complicated and dispersive than those
found for case II), and they realistically reproduce much of the character
found in actual seismograms. Direct P and S waves, phases reflected
from the core and the free surface, waves transmitted through the core
and diffracted waves may be found in Figure 2. These waves can be
more easily identified on the curves consisting of only higher modes
(Figure 3). Figure 2 indicates that, as in case II), the fundamental mode
is mainly related to the surface waves and the higher modes correspond
to the body waves. However, this relation is not so close as in case
II). In Figure 3, the summation of contributions from only the higher
modes of the present elastic model displays a remarkable wave that has
been named F,. It is a representative example of a whole class of high
velocity, dispersive, higher mode signals which arrive among and reveal
the normal mode character of the ordinary teleseismic body waves. The
amplitude of this wave is large near the poles and small near the equator,
which is a property of surface waves. In order to make clear the nature
of this wave, and to more clearly reveal the amount contributed by each
radial mode to the various waves, Figure 4 was prepared. In this figure,
the higher mode summations {,,5}, {130}, {¥%1se}s {10t150}, and corresponding
colatitudinal component {,v,} were plotted for epicentral distances §=15°,
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THEORETICAL SEISMOGRAM OF SPHEROIDAL DISTURBANCES
GUTENBERG - BULLEN A
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Fig 3. Radial and colatitudinal displacements computed for various epicentral
distances. The curves show contributions of only higher radial modes. Solid circles
are arrival times of body phases and broken lines indicate travel time curve of body
waves. Note the diffraction of the P wave into the shadow zone caused by the core.
Also note the predominant higher mode surface wave, which has large amplitudes
near the pole and small ones near the equator.
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45°, 90°, 135° and 165° where {;u,} stands for (;u,)—(»,). Figure 4 shows
that the colatitudinal component of R, wave is mainly related to the
radial mode 7=3, while the radial component is the effect of mixture of
contributions, primarily from radial modes ¢=2 and 3. The wave form
of the colatitudinal component exhibits more regularity than does the
radial component and the beginning of this wave can clearly be identified
on the curves showing {v}, especially for §=15° and 45°. The travel
time of the onset of this wave coincides well with that to be expected

SPHEROIDAL. DISTURBANCES
CONTRIBUTIONS FROM HIGHER MODES

(Uso) e [z\/m] .............

()= (Uo)  =-=--- (Mol (Vo) ====-~
(Uiso)-{Uze) ——- (Mso)-(Ngo) ——
4 (oUrso}-(Uyso! (10vha0)-(Miso) Rn

i
0.6 {2ma/Vso)

| I ! |
v 0 ZO‘OO l 40|OO | 6000 | o] 2000 4000 6000 (SEC)
TIME TIME
Tig. 4. Theoretical seismogram showing the contributions of higher modes.

The degree of contributions of each radial mode to various kinds of waves is seen
in this figure.
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for a wave having the maximum group velocity associated with the
radial mode 7=3 for periods near 500sec., which is approximately
7.0 km/sec. Judging from the characters of the R, wave described above,
it might be possible that this wave could be found on the horizontal
component of ordinary teleseismic recording.

As is in the cases I) and II), the S waves can be expressed by the
sum of contributions of comparatively low order radial modes, while
contributions of high order radial modes must be added to express the
P waves and core phases. These relations are well exhibited in Figure 4,
especially in the seismogram of radial component.

As noted in the preliminary report", the Rayleigh waves end abruptly
at the travel time corresponding to the minimum group velocity of the
fundamental mode, U,;,=38.57 km/sec.

The disturbances diffracted by the core into the shadow zone may
be identified on the theoretical seismograms (Figure 3). These waves
arrive before the core phase PKP. The body phases cannot be so clearly
identified on the seismograms as in case II), because the various body
wave arrivals follow successively and overlap each other. The amplitude
of the initial motion as a function of distance is shown in Figure 5.

AMPLITUDE OF INITIAL MOTION

------------ PP---comrreeeens cPKP------en
- JR T
° o PeP--peeer oo Pdife --------1
10— e
o oV
LY
© °
5— o
.
o o .
o) .
© ©c 0 Q8 e
5N I NN R RNTE DR R
[o] 30 60 90 120 150 180

EPICENTRAL DISTANCE (DEGREE)

Fig. 5. Amplitude of initial wave as a function of epicentral
distance. Open circle: radial displacement. Solid circle: colati-
tudinal displacement. Name of body phases mean the range in
which these waves appear as or immediately after the initial wave.

9. Travel Time Curves

The travel times of various phases for an impulsive source at the
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Fig. 6. Travel time curves of various body waves for an impulsive source
at the pole, using Gutenberg’s velocities. Cross on the lower left is the reference
point in the present case. Solid line: direct P and S, and waves reflected at the
surface only. Broken line: waves reflected at the core boundary. Chain line:
waves passed through the core. Open and solid circles show the starting and
end points of the various phases.
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pole were computed for the velocities adopted in the present study and
the results are given in Figure 6. The cross on the lower left is the
reference point for the present case of a circular radial stress near the
pole. Open and solid circles show, respectively, the starting and end
points of the various phases. Travel time curves for the direct P and
S waves and for waves reflected only at the surface have a shadow zone
corresponding to Gutenberg’s low-velocity layer in the mantle. Calculated
travel times are shown in Figures 2 and 4 by arrows. The agreement
between the expected arrivals and the actual appearance of the phases
is satisfactory.

Appendix

Figures 7, 8 and 9 were reproduced here from the preliminary report?
to make this study more understandable.
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