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1. Introduction

Generally speaking, the restoring force provided in a seismic system
of longer period is rather weak in comparison with its greater mass, and
therefore any trial such as to support its greater mass by a member of
producing restoring force (for instance, by a spring) would lead to an
existence of appreciable amount of initial displacement, and also a trial
to support the mass by a separate supporting device or by a bearing
would produce a greater magnitude of solid friction at that place compared
with its restoring force, which in turn would interfere with the smooth
motion of seismic system. Thus, all these factors are making it very diffi-
cult to obtain any ideal seismic system of small size and of longer period.

If, however, such solid friction at supporting or bearing parts of a
seismic system could be eliminated or at least reduced to a negligible
amount, the production of a small size seismic system of longer period
would be made possible.

In this regard, one alternative could be thought of in order to reduce
such solid friction to a practically negligible amount, that is, the frictional
parts are subjected to a vibration of higher frequency, by means of which
the direction of frictional force changes its sign alternately. With such
prediction, when it is put in practice, the mass concerned would of course
be subjected to the fine vibration of high frequency, but up to this date
no literature has yet been made available to clarify, on an average basis,
the expected motion of mass under the condition mentioned qualitatively
as well as quantitatively. Of course, a dither device is well adopted in
the field of practice of automatic control, but the analytical study of its
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behavior has never been publicized by anyone up to date.

Thereupon, this paper (Report No. 1) covers the theoretical analysis

of the proposed prediction and the experiment on the motion of mass
pendulum under an existence of vibrating solid friction of high frequency,
assuming that no external force other than the solid friction is acting
upon the mass. And, succeeding to the current paper, in Report No. 2,
the motion of pendulum mass under an existence of fluid frietion in
addition to those of vibrating solid friction of high frequency and
then the motion of pendulum mass under an existence of any other
external forces in addition to those of fluid friction and vibrating solid
friction of high frequency will be taken up, discussed and analysed and
the results obtained therefrom will be successively reported.

2. Theory

Let us consider a model vibration system as shown in Fig. 1, in
which M is the mass, & the spring
constant and F' the solid friction
between the mass and its supporting
stand. The frictional force F, how-
ever, should be of a function of relative
velocity of mass and stand when it is
considered strictly, but for simplicity’s
sake, here we will assume it constant
on an average basis and consideration. Further, the stand is subjected
to the simple harmonic motion of A sin wt.

Then, the equation of motion of the mass under reference will be
as follows:

Fig. 1. Model of vibration system.

Mt kx+F=0. (1)

The positive or negative sign of F'is dependent upon the relative velocity
and thus,

when t—(Asinwt) >0, +, f
and when t—(Asinwt)’ <0, —. (2)
Namely, if the change-over times at which the sign of F changes by
turns are denoted by ¢,, ¢, ¢, <<+, t,, -+, then,
ton<t<tss1; Mi+ke—F=0, f ,
b <t<ty,; Mat+ke+F=0. (1)
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These equations can be solved successively assuming that ¢, ¢, ---,
t,, --- are known and under the initial condition that x=x,, ©=0, when
t=0. Rewriting (1), we have

il (FT,) =0, (1)
where w=VEM, z,=F/k.

For the interval 0<t<t,:
Using the initial condition that x==2,, £=0 when ¢{=0, we have

X=2,— (X ;—T,) COS wel . (3)

For the interval ¢,<t<t,:
Using the condition that the displacement and velocity at t=t¢, should
be continuous with those indicated by (3), we have

By, =0, — (T — @) COS 0ty
oy, = wo(T, —Ty) SIN 4t
And when we solve equation (1)” for +2,, we have
L= —x,— (L, —,) COS wot+ 2%, cos wy(t—1,) . (4)

For the interval t,<t<t,:
Using the condition, in the same way, that the displacement and velocity
at t=t, should be continuous with those for (4), solving equation (1)”
for —x,, we have

T=2,— (T, —,) cos wit+ 22, {cos w(t—t;) —cos wy(t—t)} . (5)

For the interval ¢,<t<t,:
We have in the same way,

B=— %, — (T, — %) COS Wyt + 2, {cos wy(t —1t,) — o8 wy(t — ;) +cos wy(t—1t:)} . (6)
Thus, we can obtain the solution in a general form as under:
n—1
b <t<l, i @=(—)"""w,— (¥, — &) €0S o +23, 3 (=) cos wyt—1;) . (T)
=1

Thereby, the motion of mass can be solved, the time ¢;, however, is an

‘unknown quantity, thus it must be obtained first of all. The change-

over time of sign of relative velocity is the time at which & becomes
equal to (Asinwt)’'. That is,
n-—1
&= awy(; — ;) SIn wt,+ 2w, >, (—) sin oy (t,—t;)=Aw cos wt,. (8)
i=1

Since the accurate and strict solution of ¢, is not obtainable, an
approximate solution will hereby be sought for through the analytical
method and also through the calculation by a digital computer.
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3. Analysis of Approximate Solution

As mentioned in the aforesaid paragraph, although the exact value
of t; cannot be calculated from equation (8), an approximate calculation
can be made possible when o>w,, Ao>2,0, and Ao>2w, are in effect.
Under such condition, since Ao > 0, and Aw>2w,, t, can be considered
2n—1

w

very close to

7, thus putting

2n—1

@

t,= | (9)

and 4t, is to be obtained instead, hereby 4t, is Atn<2i ,
w

the right hand side of equation (8) becomes

Aw cos ot,=Aw sin <%— 2n2— 1 — wdtn) =Aw(—)'wdt,, (10)

in whieh, however, the third order and higher terms of wdt, were
neglected. The same will be applied in the calculation to be made here-
after on the third order and higher terms of wdt, or w/w. In the left
hand side of equation (8), since,

sin w,t,=sin ( Do >(n—~l>n—|—cos < )(n——l>nx< ) wdt,,
w 2 w 2 w

sin ay(t,—t,)=sin ( : )(n—z)zr—l—cos( ) )(n—z)rrx(w">(wdt —wdt), B
equation (8) can be converted into the following form :
Ao o dt,= (e, —a){sin (2 % )(n—— -+ cos (-2 ><n—%>r:
><<w > cwdt, +2a)o'v,2( ){sm< >(n i
+cos< ” )(n—z)n-x( >(wdt wdti)}, (11)

or this can be rewritten into:

(—)wdt,= %’( ” ){sm < ::° )(n ——;—)rr—l- cos (%)(n —%>7r X (%)wdt”

() i oo (22 -]
11y
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As can be easily seen from this equation, wdt, is of the first order with
regard to w,/w, thus, since those terms on the right hand side which
include w4t, and w4t,, become of the third order with regard to w,/w,
they can be well neglected and it becomes

st (2o
+ 2&(&) g (=) sin<%>(n— V7. (11)”

The second term of this right side can be converted into the following
form for actual caleulation:

eJ(mo/m) (n—t)x __ e—] (wg/w) (n—t)x

27

EM i

(=)' sin (2 Jn—i)e= 5 (-)"
{ Z ( )iej(wc,/‘o)(n—-l)n 21‘ (_)teﬂwolmm—n)z}

=1

_ 1 eJ(wo/w (n—1)z {1 _ ( — )n—-l —J(wg/w) (n—l):r} . e—j (wg/w) (n—1)x {1 _ (___ )n—-lej(wolw) (n—l)z'}
= 2.7_ 1+e-—j(m0/w)7z 1+ej(m0/m)7r

b ()3
2

2 cos <~—
w

Thus, equation (11)" becomes

—%%m%&
o (=) D 5(=) 5 an

This equation indicates the value of w4t, as an approximation.
With the approximate value of w4t, thus obtained, equation (7) can be
analytically solved. However, let us convert equation (7) into a different
form of direct and easier understanding through further approximation
as below:

In equation (7), i.e.,
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n—1
r=(—)"""m,— (¥, —x,) cos ot +2x, >, (—)"" cos w, t—1,),
i=1
the portion of summation in the third term is firstly rewritten, that is,

n—1 n—1
23, (=) cos ap(t—t)= 33 (=) ek gttt}
=1 =1

— E (_)i—l[ejwo(t—(i—lﬂ)n/w—dti)_I_e—jwolt—(i—llz)n/w—dti)]

i=1

n

# (_ )i—l[e]mo(t—(i——-lﬂ)r/a)) + e—JwO(C—(i—llz)r:/w}
T

|
-

1l
-

+ {e—on(t—(i——lﬂ)L'/w) _ erolt—-(i-—llﬁ)rrlwl}(j w°>wdti]
w
71'—1 . . .
— Z (__)1—1[ejw0{t—(1—1/2)x/w) +e—Jw0(t—(1—1/2)zlm)]
=1

2 [ w. \2r=l . .
+ 0 ( 0 ) Z [e—jwo(t—(m—l)zlm}+ejmo[t—(m—l);r/a)}_ejwot_e—-jwot]

24\ w / i=
_&<&>2<&>£1§(_)i—l[e—]wo(t—(i—l/Z)z/w__erg(t'—(i—lﬂ)ﬂ'/w)] . (]_3)
A\ow w /2 i=

Each portion of summation, however, can be indicated by the following
equations:

"Z—Il (___)i—l[ejmo{t—(i—-llz)irlw) + e-—-jwo(t—(i——lli.’)n'/w)]
i=1

_ €08 ot —(—)"" cos w{t —(n—1)z/w}

’ 14
208 (w/ ) /2) a9
&y [(wy BT aglte @imyzfo} 1 o egli— GimD)mfw) gt p—dergt
2A<w>i=zl[eo 4-e~7*0 e’wo e 0]
:ﬂ<&>2. sin wyt —sin wy{t—2(n—1)z/w} __x_o(&)z 1n—1) cos w.
2A\ w sin (wy/w)= Alow ( ) @t
(15)
%y ( @y >2<.7_w_o> 7S i o= Jwolt—i—1D)xl0} _ gluglt—~ti—1/2xlw
A\ow w /2 z=21 (=) ]
_ %y (&)32_ sin wot — (—)" 7! sin w,{t — (n—1)z/w} (16)
A\ow / 2 cos (w,/w)z/2

Next, substituting these expressions (14), (15) and (16) into (13) and again
putting (13) in equation (7), we finally have after considering the order
as far as (w,/o)?,
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cos wt —(— )" €08 w{t —(n—1)r/w}
cos (w,/w)(r/2)

+ @, [271-A< \){smwot sinwy{t —2(n— )rc/w}} Ly (Z“)(%)(n—l)cos%t].

Or re-writing, we have,

= [{1—— zf ( - > (n— 1)} cos w,t
+:—;1< > cos {( = )(wt — (n—l)n>} . sin ( ‘;’)" >(n—1) z] |
4 fcf[ 3 (-‘i"-) cos w,t-+ (—)”‘l{l—cos {(%)(a)t-— (n— 1)71')}}] .1

The term (r—1) in the above equation produces an unrealistic result
when 7 is made n—oo, and this means that an effective domain of
equation (17) is corresponding to the approximation degree of (wy/w)*-
order, or in other words, equation (17) is an approximate relationship
which can be made in effect for those values of » which are not too
great. & can be obtained through a similar process of calculation by
differentiating equation (7) or by direct differentiation of equation (17).
Neglecting all intervening procedures, we write below the result of
calculation : '

b — woxo[{l—%f(%> n —-1)} sin wqt
—%(%) sin {(%)(wt—(n—l)r:)} - sin < ‘:’0 >(n—1)7z]

+woxf[ T (‘"0 ) sin wgt -+ (— )" sin {(—"’L)(wt—(’n—l)n)}] . (18)
8\ w w

For both equations (17) and (18), the first term represents the average

value of # and a very fine vibration depending on the initial condition.

Let us now consider the magnitude of displacement and velocity after

the duration of one period 2z/w,. For simplicity’s sake, let us put

|
\
|
|
e=(—)"w,— (v, —,) cos wt+x,
|

1
e -9

and ¢t and t, are indicated by the following equations:
t: 27: :2N7? , (20)

W, w
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4N+1 ok A, = 2n—1

w w

ta=t+-" +4t, = -+ dt,,
2w
n=2N+1. (21)

And substituting these into (17) and (18), we have,

p=a,{1- 2 (@), (22)

which means that the motion brought about under the initial condition

t=0: x=x, and #=0, reduces its amplitude to xo(l—%) after the
@

duration of one period of time.
When (2x,/A)(w,/0)<L1, we can write

2C.0, . 9%
Iy T e (23)
w
Trw
where h=2170
mAw

The average displacement and velocity in (17) and (18) can be re-written
with an introduction of %2 as below:

T =1,(cos @tk sin wt)e™"" + 4x(wt) , amy
¥ = w(L—h?)w, sin wte "+ Ax(wt) , (18)

and the vibration under reference becomes equivalent to the free vibra-
tion with the damping decrement ¢ which is expressed by

v,w
e="L20

~Aw

The frequency of such free vibration should deviate from the value
of w,. Such deviation, however, is of a higher order than (w,/w), and
thus it does not make its appearance in the current approximate
calculation.

The above calculation relates to the case where the motion starts
under the initial condition t=0; w=2x, and £=0, but there does not exist
any restriction as to the initial condition itself, since the result would
turn out the same if the origin of time {=0 should be taken at such
time when & becomes £=0. Further, the vibrating motion given to the




Behavior of « Seismic System under Vibrating Solid Friction 727

supporting stand was assumed as Asin ot in the current analysis, but
such motion as indicated by A sin (wt—¢) in general would still lead to
the same result, if the change-over time of relative velocity is shifted
201 gty to t,=2"Tl o
w w w

Summarizing the above, we obtained the following analytical results:
Under the conditions that when ¢ is ¢=0; x=x, and #=0; and that
(w,/w)< 1, the equation of motion

from t,=

i+ oo Fe,) =0 )"
can be solved as below:

zn—3z+_4tn_1£t§ 2n—1

w w

m:xo[{l i";{ ( ” )(fn 1)}cos Wt
+ %"j cos {(—‘f—)(wt —(n— l)n)} sin (%)(n — 1)::]
+x,[ 3 (%) cos w,t+ (—)? {l—cos {(—Zi)(wt—(n—l)n)}}] , (A7)

h At = (—yrEos (‘“o )(n_i) _x_f(w_)'f 12
where 1) ()me s A\ ) s (12)

a+ 4t ,

For any interval of ¢ such as

And the first term is composed of a damped oscillation and very fine
vibration of frequency o depending upon the initial condition When we

3
consider the term wd4t, to its third order, the term (— )n A . 92' (wo) X

(n—1) sm(“’0 >(’n*%)~z appears, with a result that the absolute value
w

of wdt, reveals itself to be on a gradual decrease. The calculation
containing the third order term of w4t,, however, will be currently
suspended herewith.

4. Comparison of the Result of Exact Calculation by Computer
and that of Approximate Calculation

An exact calculation by using digital computer was made on equation
(7) with degree of accuracy of the order of 10=° and its result will
be compared with those of approximate calculation expressed by (17).
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(i) =y=1, x,=0.5, A=0.5, w,=1, 0=10, (h=0.1/7):

Fig. 2 shows the calculated result by computer and the left hand
side of Table 1 shows the values of maximum and minimum of the
curve in Fig. 2 and the right hand side shows those for z=2x,-(cos w.t
+h sin wgt)-e7"*e' which becomes the average values of approximate solu-
tion of =.

x
10

5 /1N

N VAR VAR
IR AN
\/ N ]

Fig. 2. Variation of 2 when x,=1, 27=0.5, A=0.5, wy=1,
w=10, h=‘0.—1‘.
T
Table 1.
Exact Solution r Approximate Solution
Maximum Value Minimum Value = Maximum Value [ Minimum Value
1.0000 : —0.9162 : 1.0000 | —0.9048
0.8168 . —0.7506 “ 0.8189 | —0.7408
0.6671 —0.6153 { 0.6704 | —0.6068

The difference observed between these two results is considered to
be due to an existence of very fine vibration and any possible errors
that were introduced in the process of approximate calculation.

Fig. 3 shows the values of exact solution subtracted by
x,cos wte "', that is, sum of the very fine vibration and the value of
h sin wite™" corresponding to the shift of phase which is in fair
coincidence with the approximate solution.

Fig. 4 shows the exact value of w4t, which, although the value of
wdt, is discontinuous, is represented by a smooth and continuous curve
for easiness of understanding, and it is also in fair coincidence with
the approximate solution calculated to the order of (w,/w)’.
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Fig. 8. dx=x—2xocos wote~hwat when zo=1, 2r=0.5, A=0.5, w=1,
. =10, h=—0;ri.
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Fig. 4. Variation of odé, when zo=1, x5=0.5, A=0.5, wo=1,

(1)210, h =i1_'.
T

(i) x,=1, 2,=0.5, A=1, w,=1, 0=3, h=1/6z:
Fig. 5 shows the result of exact calculation. The values of maximum

and minimum for the exact solution and those for the approximate
solution x=,(cos w,t-+hsin wt)e™¢ are shown in Table 2.

. Table 2.
Exact Solution Approximate Solution
. Maximum Value i Minimum Value Maximum Value Minimum Value
1.0000 } —0.8315 1.0000 1 —0.8464
0.6900 : —0.5709 0.7164 ; —0.6064
| 0.5136 |

0.4703
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1.0
X
5 i

o\

\ | /]
L

“.5 \-/ e
-10
Fig. 5. Variation of 2 when 2y=1, 2;=0.5, A=1, w,=1,
w=3, I -1
e L_Gn"

The difference between the two results, although it could be referred
to the same causes mentioned in (i), is greater than those for (i). Since
(wo/w) is w/w=1/3, which cannot be said to be sufficiently small enough '
compared with 1, thus it is considered that the approximate equation
thus derived may need further correction of a greater extent.
Fig. 6 shows the wvalue of exact solution subtracted by
%, cos ote™* ,that is, a curve indicating the sum of & sin w,te~"** and the
very fine vibration. It cannot be said that the approximate solution is
quantitatively in coincidence with this curve.

B .
[
/\\2:/;/ \ ‘

[
/\4#/

A O Y
B L N . VA
s i |

Fig. 6. dr=x—xcoseote m! when m=1, 2,=0.5, 4==1,

1
wo=1, »=3, h=g;:‘.

Fig. 7 shows the value of w4t,, which is also in fair coincidence
with the result of approximate calculation considered to the order of

(/@) .
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walp
T

0.1

” \" / \217/\3" /N

/ _ /—=wt N/
Fig. 7. Variation of wdt, when x,=1, 2,=0.5, A=1, w,=1,
1
w=3, h=—-—.
6z

5. Experiment

We have found in the aforesaid paragraph that, when the vibration
of high frequency is given between supporting stand and vibrating body
under the condition (w/w)<1 and (z.w,)/(Aw) or (x,w,)/(Aw)<L1, the
vibration becomes a damped vibration and it is eguivalent to the free
vibration having a damping constant h which is expressed by &= (x;w,)/
(rAw). In this regard, the experiment was conducted under a few
conditions to ascertain and endorse the facts derived analytically.

5.1. Apparatus of Experiment.

The apparatus for the current experiment is shown in Fig. 8
schematically and the actual illustration of it in Fig. 9. In Figs. 8 and
9, @® is a gravity pendulum which is able to rotate around an axle ®
through a plain bearing which is fixed to the pendulum. Therefore, the
solid frictional force may act on the pendulum through the relative
motions between pendulum @ and axle 3). A weight @ can be moved
up and down so as to adjust or vary the period of the gravity pendulum
and the value of z; which was shown in the aforementioned eguations.
For obtaining the vibrating solid friction of high frequency, the rotational
vibrations of axle (3 are excited by the action of electromagnet ):
The frequency of these vibrations is made equal to the natural frequency
of the mechanical vibration system composed of plate spring (@), levers
®, ®, axle ® and pick-up for exciting the rotational vibrations of
greater resonance amplitude of axle ®. Of course, the frejuency of
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Fig. 9. Apparatus of Experiment.

electriec current in the coil of magnet (6) is adjusted to become equal
to the natural one of the mechanical vibration system by controlling the
electric oscillator @2, and also the current intensity is adjusted by the
electric amplifier, shown in Fig. 8. Thus, the rotational vibrations of
pendulum (1) are recorded, through a suitable device, stem @ and
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recording needle @), on the soot coated paper tied round the surface
of drum ® which is made to rotate by a synchronous motor with reduc-
tion gears.

5.2. Analysis of Motion of Gravity Pendulum.
The equation of motion of gravity pendulum @ is as belows:

Ii+kaFF=0, (24)

where I=I,4+mr*, k=(MR—mr)/g, F=r'(M+m), and

revolution angle,

moment of inertia,

moment of inertia of revolving parts excluding weight @),
mass of revolving parts excluding weight @),

distance between the center of revolving axle 3 and the center
of gravity of parts excluding weight @),

distance between the center of revolving axle 3 and the center
of gravity of weight @,

mass of weight @),

radius of revolving axle ®,

coefficient of friction between axle and bearing,

acceleration due to gravity.

Rewrltmg equation (24), we have

s PR ~Sw

@ R 3 S

i+ wl(@Fe,) =0, (24)
where w,= M (25)
Iy+mr®
_pr'(M+m) 9
T MR—mr (26)

and, in which , and ¢, can be varied by changing the value of 7.
According to equation (17), an average curve, that is the curve to be
recorded on the recording paper should be of the form of damped vibra-
tion having the damping constant h=(x;w,)/(rAw®).

5.3. Results of Experiment and Consideration.
The experiment was conducted by varying r (consequently w, and x;)
and amplitude A of high frequency vibration.
Figs. 10 and 11 show the change of T0=~22 and «, with that of r,
Wy
in which, however, z, is the displacement in the recording paper. The
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sec , mm | |
T5 100————— };
o } % ]
4 | ]
3 /
/ 50 //
2 —
] 1~
-150 —100 —-50 0 50 100 mm -15%0 -100 -50 0 50 7(’7.0 mm
r
Fig. 10. Relationship between » Fig. 11. Relationship between r
and T0<=E). and 2s.
wo

conversion ratio of revolution angle on the recording paper is 211 mm/rad.
With a greater value of r exceeding r==80mm, 2, was made too great
to be measured; when 7 is made even greater, equation (26) is made to
forfeit its physical significance and the pendulum would be made to stop
at any position. This means that since the current experiment is con-
ducted under such magnitude of amplitude which is not too great, x,
could be considered to be F/K and to become infinity with k—0.

Fig. 12 shows the relationship between the input current for exciting
vibration and converted value of vibration amplitude on the recording
paper.

mm

0 2.0
3 |
E‘J.S //
<

10

5

7

0 5 1.0 1.5 204
Input Current

Fig. 12. Relationship between input exciting
current and amplitude of vibration.
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Fig. 13. Record of pendulum motion when r 149.5 mm,

_ o
To=11Ts, xy=94mm, A=1.5mm, | 100 ¢/s.

Figs. 13, 14 and 15 show some examples of pendulum vibration.
Figs. 16 (a)~16 (g) were so obtained by plotting the difference of
adjacent width of amplitude 4w with regard to the concerned width of
amplitude w of pendulum vibration subjected to the three kinds of
vibration of high frequency by varying the value of » from r=-100 to
150 mm. The inclination or tangent of this straight line with regard
to w axis represents the magnitude (¢ 1) and the distance between
the origin and intersecting point of this line with regard to 4w axis
indicates those of 2p(1-+e™) in which p represents the solid frietion.
Tables 3 (a)~3 (d) show the values of h, thus calculated from these

graphs and those of ,-',(l'i‘ "."”") obtained theoretically.

A 5

In Table 3 (b), however, the value of @, corresponding to 7', 5.2sec
is not that directly obtained by an actual measurement, but it is the
alculated value from the equation a,w;—F/I—const. Moreover, when
T, is large and A becomes small, it i1s very difficult to obtain the real
value of damping constant /, in the current experiment.
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Fig. 14. Record of pendulum Fig. 15. Record of pendulum motion
mection when » 30.2mm, Ty—1.40s, when »=65.1mm, Ty—2.48s, x; =47 mm,
ry=9%4mm, A=L5mm,  =100¢/s. A=15mm, 100 ¢/s.

From Tables 3 (a)~3(d), it is clear that the damping constant h,
obtained by the experiment is somewhat greater in its magnitude than
h, calculated theoretically and Figs. 17 (a)~17 (d) show the relationship
between the values of h experimental and those by theoretical method.

The fact that the experimental value &, differs from the theoretical
one i, and the difference between them is dependent on the magnitude
of amplitude, is not as yet given a full and complete explanation. For
clarification at this stage, however, various factors could be considered :
for instances, in controlling the amplitude of vibration, an indirect
method had to be taken by reading and controlling the input electric
current which excites the vibration after previously converting the
magnitude of amplitude into the corresponding amount of current, and
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Fig. 16. Relationship between the amplitude w
and the difference of the adjacent amplitudes Jw.
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Fig. 16 (b). r=85.0mm, T9y=3.35s, xs=85.0 mm.
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Fig. 16 (c). r=65.1mm, Ty=2.48s, xy=47 mm.
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Fig. 16 (d). r=40.0mm, To=1.94s, xy=32mm.
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Fig. 16 (f). r=-85.15mm, Tv=1.23s, xr=12mm.
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Fig. 16 (g). r=-—149.5mm, To=1.17s, xr=9.4mm.

the variation of the current greatly affects the value of 4; or due to
some unknown reasons, the conversion rate of A and current does not
remain invariable according to the conditions of experiment; or further,
the frictional force that would appear between the axle and the plain
bearing would vary according to the condition of experiment and the
magnitude of relative velocity, and so forth.

Next, referring to Figs. 16 (a)~16 (g), there can be considered such
a case where the solid friction continues to keep its existence even
though it is exposed to the axle vibration under the large value of z;.
In the actual experiment, however, when the pendulum comes to a

Table 3 (a).

L =72 c/s.

h. (by experiment) ! h: (theoretical)

117 | 8.9 | 0.0565

1.37 , 13.3 | 0.140
1.90 28.2 —
2.40 43.2 —
3.10 71.3 —

4.20 | (130) —

0.0334
0.050
0.0695
0.0995
0.127
0.245

A=0.78] 1.10 | 1.30

0.0202
0.0567
0.0759
0.120
0.131
0.227

1.65 0.78 1.10  1.30 1.65

— 0.0465 | 0.0228 * 0.0204 —
— 0.0615 | 0.0296 0.0245 —

0.0688 — 0.0461 © 0.0398 | 0.0338
0.0541 — 0.0551 © 0.0468 | 0.0410
0.0786 — 0.0698 | 0.0580 | 0.0506

0.116 | — 0.0962 0.0825 | 0.0708
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Table 3 (b). -2 =100¢/s.
he (by experimental) i h: (theoretical)
T (sec) xf (mm) I R p—
i A=0.725 | 1.5 1.8 {0.725 1.5 1.8
1.17 9.4 0.0376 !‘ 0.0204 0.0185 % 0.0353 0.0172 0.0159
1.23 12.0 0.0392 | 0.0324 0.0258 | 0.0427 0.0207 0.0182
1.40 18.5 0.055 | 0.0328 0.0363 ‘ 0.0580 0.0281 | 0.0264
1.94 34 0.097 ’ 0.0583 0.0459 l 0.0770 0.0375 0.0346
2.48 47 0.097 | 0.0590 | 0.0510 | 0.0835 0.0403 0.0374
3.35 85 0.137 0.086 L 0.0636 ‘ 0.112 | 0.0541 0.0452
. (5.2) (205) 1.0) ‘ (1.0) ‘ 0.675 | — } 0.835 0.697
Table 3 (¢). -2 =180c¢/s.
‘ h. (by experimental) : h: (theoretical)
To (sec) 'z s (mm) ‘ ’; , o
l A:O.ZS} 0.52 . 0.74 l 1.05 | 1.25 ; 0.28 | 0.52 | 0.74 | 1.05 | 1.25
1.17 ! 8.1 0.503 !0.0300 0.0156 {0.013210.0118 | 0.0506 0.025830.0173 0.01310.0106
1.37 ] 15.3 0.846 | 0.0698 | 0.0255|0.0204 0.01341,0.0786 0.0407l0.0272 0.021110.0171
i {
1.90 | 32.5 |(0.424) [(0.0309)0.0255{0.0284 0.0318:0.138 |0.0678|0.0426 0.0324|0.0272
2.40 | 48.0 —  (0.0475)/0.0455|0.0430 0.0370 — | 0.08020.0500 |0.0382:0.0317
3.10 ‘ (91.6) — ‘(0.0480) 0.0700(0.0620(0.0459 — |0.115 1[0.0752 0.0564 |0.477
Table 3 (d). ;’ =316¢/s.
h. (by experimental) h: (theoretical)
Ty (sec) zr (mm) |— - o
A=0.23 0.29 0.34 0.23 0.29 0.34
1.19 9.4 0.0252 0.0245 0.0185 0.0370 0.0294 0.0250
1.40 17.9 0.0425 0.0325 0.0392 0.0583 0.0462 0.0386
1.98 31.6 0.0473 0.0538 0.0410 0.0748 0.0595 0.0507
2.50 47.2 0.0637 0.0619 | 0.0530 0.0885 1 0.0770 0.0600
3.30 73.1 0.0955 0.0835 0.0637 0.104 | 0.0825 0.0705
4.1 (113) 0.137 0.115 0.087 0.129 ’} 0.103 0.087
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complete stop, it has returned to and assumes its zero point, which
indicates that the so-called non-sensitive zone due to the solid friction
does not make its appearance in the current experiment. Therefore, the
aforementioned phenomenon could presumably be attributed to any pos-
sible difference in the way of action of frictional force when the ampliude
of vibration of pendulum is large and when it becomes small.

6. Conclusion

The current experiment thus conducted would still involve problems
that would after all remain unsolved and in need of further study for
their clarification in future. Nevertheless the following conclusions can
be derived from the analytical study developed thus far and within the
scope of results obtained by the current experiment.

1. The solid friction can be eliminated from the solid frictional
surfaces when they are subjected to the vibration of high frequenecy.

2. When the pendulum is subjected to the free vibration under an
existence of vibrating solid friction of high frequency, its motion becomes
the damped vibration, and its damping constant % is, when it is calculated

theoretically, k=

, Whereas it becomes a little greater than the
AW

theoretically calculated value when it is obtained experimentally.

3. From a purely theoretical view-point, any small size seismic
system is so made as to be possible to provide the period of infinite
magnitude.

In closing, the authors would like to express their appreciations to
Professor Yasuo Jimbo of the Department of Precision Mechanics, Faculty
of Engineering, Univ. of Tokyo for his cordial discussions regarding
their researches.
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