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Abstract

In the previous works, the author has developed a new method
which is very useful in treating the problem with the abruptly
varying boundaries. In the neighbouring parts of the abrupt
changing boundaries, new domains named ‘buffer domains’’ are
set up for easy corrections of the boundary conditions. Hence, this
method is called the method of the buffer domain.

In this paper, this method is verified as being applicable to the
case where the boundary changes suddenly in the vertical direction,
while the problems hitherto treated are the cases of horizontally
changing boundaries.

The primary purpose of the present study is to prove that the
method of the buffer domain is still applicable to the problem
which has an abrupt irregularity of the boundary in the vertical
direction. The present method is found to be very practicable to
the problem mentioned above.

The secondary purpose of the work is to examine the behaviors
of the waves in the surrounding regions of the irregular boundary.
As a result of a computation under the first approximation, it turns
out that:—

(1) The amplitude factors of the waves advancing through and
reflected from the step of the bottom is the same as those derived
from a consideration of flux of water which is introduced by Lamb.

(2) As far as the phase is concerned, the phase differences of
@19h and 2-a,9h take place for the advancing and reflected waves,
where @, is the wave number of the incident waves and 2 the
height of the step of the bottom.

(8) The damping terms (the terms of the disturbances in the
nearby parts of the irregular boundary) are of the second order of
the present approximation (the first approximation). Hence, these
terms have no significance in the computation of the first order of
the approximation.
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Excepting the first result (1), the results (2) and (3) cannot be
obtained by Lamb’s consideration.

Although the approximation is confined to the first order in the
present study, the further development of the theory will be made
in the more generalized approximation in a future article.

1. Introduction

In the previous papers, we have introduced a new method which
has conspicuous advantages in treating the boundary value problem with
an abruptly varying boundary. The published papers relevant to this
method are described in section 2.

The purpose of the present paper is a generalization of our method,
I.e. the method of the buffer domain, to other cases. In the works
studied so far, the variation of the boundary was restricted to a
horizontal case, while, in this article, the case where the boundary
changes abruptly in the vertical direction is considered.

The contents of this paper are as follows :—

In section 2, the method of the buffer domain is outlined.

In section 3, the general theory is developed for the case where the
bottom of water varies abruptly with a step.

In section 4, the reduction of the general theory obtained in section
3 is carried out under the approximation of the first order.

2. The Method of the Buffer Domain

In the problems of the waves in the wave guides, which include
the canal, the wave guide of the electromagnetic waves and the plate
for the elastic waves, we have often met the mathematical difficulties
caused by the irregularities of the boundaries. When the variation of
the boundary is slight, the treatment of the problem is usually carried
out by the methods of the perturbation or successive approximation.
But these methods are at our disposal merely for the cases of the
boundary problems with a relatively gradual variation. When the
boundary changes abruptly, the methods mentioned above are not
adaptable for the analysis of the problem.

On the contrary, the method developed by the author is very
practicable for the treatment of the problem with abruptly varying
boundaries. This method was first developed in the treatment of a
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tsunami in an L-shaped canal® to the first order of the approximation
and, later on, the application of the method was extended to the cases
in the approximations of the higher orders®-®. Other examples of the
applications of our method were demonstrated in the papers entitled
““The Effects of the Coastlines on the Tsunami (2) and some Remarks on
the Chilean Tsunami”, “ Tsunami in a T-shaped Canal ”®, “ Tsunami in
a Canal of Varying Width”® and “The Effect of a Bottle-neck on
Tsunami”,” where the first paper mentioned above (denoted by the
super-subscript 4)) is an article relevant to a long wave in an L-shaped
closed canal, developed in the first approximation, and a more generalized
theory of the last problem was presented in a paper named ‘Tsunami
in an L-shaped Bay”.?

Although the method of the buffer domain was detailed in the
papers described above, the outline of the method is given hereunder :—

The most outstanding feature of our method is an establishment of
the new domain named “buffer domain” in the neighbouring parts of
the wave guide where the surface of the boundary changes abruptly.
In solving the equation, we must firstly set up such domains in the
irregular parts of the wave guide so that other parts of the domains
have no irregular boundaries. This procedure makes possible a formation
of the formal solutions with unknown factors in each domain which
satisfy the boundary conditions in respective domain. And the solutions
in the domains excepting the buffer ones are composed of an infinite
number of the modes, which are resulted in from the boundary conditions
and have, in general, the orthogonalities between the different modes.
This characteristic of the solutions is very important for the reduction
of the equations in our method. Using the conditions communicating
the adjacent domains, we can connect the formal expressions of the
waves in each domain and each term of the mode solutions can be
expressed explicitly by use of the orthogonalities of the mode functions
composed of the solutions of the series.

As a second reduction of our method, the expressions of the solutions

1) T. Mowmol, Bull, Earthq, Res. Inst., 40 (1962), 719.
2) T. Mowmol, Bull. Earthq. Res. Inst., 41 (1963), 581.
3) T. Momol, Bull. Earthq. Res. Inst., 42 (1964), 369.
4) T. Mowmol, Bull. Earthq. Res. Inst., 40 (1962), 733.
5) T. Mowmol, Bull. Earthq. Res. Inst., 41 (1963), 357.
6) T. Mowmol, Bull. Earthq. Res. Inst., 41 (1963), 375.
7) T. Mowmol, Bull. Earthq. Res. Inst., 41 (1963), 573.
8) T. Momol, Bull. Earthq. Res. Inst., 41 (1963), 705.
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in the buffer domains are expanded in power series to retain the terms
up to an appropriate order. The order of the terms to be retained are
decided according to a required accuracy of the problem in question.

Here, in the above, although the expansion of the expressions in
the buffer domains is first made before the explicit expression of the
mode solutions by orthogonalities, the latter may be dealt with before
the former. The preference of the anticipation of the above two
reductions depends on actual situations of the treated problem. In the
example treated in the present purview, the integrands are expanded
beforehand.

At any rate, after the completion of the above two reductions, we
proceed to eliminate the expressions of the buffer domains by simple
algebraic reductions and reach the simultaneous equations which are
relevant to the unknowns only in the domains exeluding the buffer ones
(these domains are called ‘“non-buffer domains” in the subsequent
discussions). Then, if necessary, some other relations are used. That is
to say, when the problem under consideration is a two-dimensional one,
the relations of the wave numbers derived from a separation of the
variables of the equations become part of the above reductions. The
works"~® referred to already are included in such cases. On the contrary,
since the problem treated in this paper is a one-dimensional case, the
relations of the wave numbers do not come explicitly into the reduction.

Now, the simultaneous equations with respect to the unknowns of
the non-buffer domains are to be readily solved by elementary reductions,
which are derived following the foregoing procedures. Here it should
be noticed that, in reducing the equations, the approximations are
applied to the expressions merely in the buffer domains. Therefore, the
final expressions of the non-buffer domains have a physical meaning at
most to the order of the approximations in the buffer domains, so that
the discussion of the behaviors of the waves must be limited to the
range of the order approximated in the buffer domains.

In the next sections, the problem of the water waves is treated in
the case where there exists an abrupt change of the depth in water.
This model is different from the models treated so far?-® in the respect
that the boundary of the former varies vertically while the latter have
horizontally varying boundaries.
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3. General Theory

Referring to Fig. 1, the Cartesian co-ordinates ¥ and z are used, ¥
being measured at the undisturbed free surface of water and z vertically
upward. Let D; (j=1, 2) denote the domains (h<w, 0>2z>—H,) and
(x<0, 0>2>— H,) respectively, where H,=H,+h, and B; (=1, 2) the
domains (0<x<h, —H,>z>—H,) and (0<x<h, 0>2>—H,), where the
domains B; imply the “buffer domain ” mentioned in the preceding
section. Then the velocity potentials ¢; in four domains satisfy the
equations of the continuity : : :

A
Incident Wave
o .
1 T —>
T | i X
D | Bz | -
| |

iy

(Zr-Z =0 (=1, 2, BL, B), (1)
where the velocity potentials in the domains D,, D,, B, and B, are
expressed by ¢, ¢, ¢m and ép.

In like manner, the physical quantities relevant to the domains D,,
D,, B, and B, are described by subscriptions of 1, 2, Bl and B2 respec-
tively in the following discussion, unless otherwise stated.

Confining the proklem to the linear case of the theory, the surface
conditions (z=0) are :

0b; _ _ o 05 _ 00
AL Y PR (2)
(j=1, 2, B2)
or s 1 g0 g, (3)

ot? 0z
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where ¢; is the elevation of the water from the undisturbed free surface
of water, g the acceleration of gravity and ¢ a variable of time.
The bottom conditions are :

Oh0 (=—mH), (4)
%:0 (e=—H,) ,

%‘%:0 (x=0), )
B0 e=-Hy, (6)

where H, and H, and the depths of the deep and shallow waters
respectively, as shown in Fig. 1.

For the case of a train of the periodic waves, the equation (1) and
the conditions (8)—(6) are reduced to the following :

A YD '
(WjL‘azT)qu =0 (j=1, 2, Bl, B2) (1)
(—w2+g%)¢/=0 (7=1, 2, B2; 2=0) (3)

0y g /
Wnep @=—mH),

, (5)
0 (e
2z =0 @=0),
L (¢2=—H,), (6)

0z

where ¢, is the velocity potential eliminated the time factor exp(—1iwt)
(v : the angular frequency of the incident waves). Hereafter the prime
(") of ¢;" is omitted for simplicity.

Suppose that the incident waves are expressed by

bin=poe 71" cosh a® (H,+2)
(0)m ’ ( 7 )
1

or Lin=Go0miet e
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where ¢, and ¢, are the amplitude factors which are related with each
other by the relation (2), i.e.

=iy cosh al Heh (8)

. the solutions of the equation (1) satisfying the conditions (3" to (6)
become as follows :—
in the domain D,

b= (o= + AP e+e1"%) cosh o (H,+2)
+ i APe1"% cos @i (H,+2) ; (9)

s=1

in the domain D,,
I{

- (0)
¢, =APe "2 * cosh a”(H,+2)

+3 AP er’" cos e (H,+2) ; (10)
s=1 N

in the domain B,
=, Ap COS ap © cosh an(H+2); (11)
Bl

in the domain B,,
=) (Ap, Sin 0, 4 By, COS @ p,)
B2
% (@? sinh @ 5.2+ 905, cosh az2) ; (12)

where A", A" (r=0,1, 2,3, ...) are the arbitrary constants to be
determined by the conditions communicating the neighbouring domains ;
Ay, Ajp, denote the coefficients relevant to the wave numbers @z, @z in
the domains B,, B,; X, >. the integrations with respect to ax and ap,
(even the complex valBﬁes I:re permissible for ¢z and a,,); af”, a;” (r=0,
1, 2, 3, ...) are the eigenvalues of the equation (1) under the
conditions (3), (4) and (6, i.e. the solutions of «’=a”g-tanh
. a/;o)Hj:_a}S)g.tana,}s)H (1=1, 2; s=1, 2, 3, ...).
In order to determine the arbitrary constants A;” and A" (r=0, 1,
2, 8, ...), the following conditions are available :
at x=0 (0>z>—H,),

b=cp,

0y _ s [ (13)
ov ox
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at x=h (0>z>_H2);

bp =
O 0dy [ (14)
or o0
at e=h (— H,>2z>— H,),
=P
Opus_ 0y (15)
ox  ox
at z=—H, (h>2>0),
bp=p
b _ 0bm [ (16)
oz oz

In this stage, the reduction of our method is separated into two
ways, that is to say, one is firstly to approximate the expressions of
the buffer domains before the operations of the orthogonal functions
and the other to carry it out in inverse order, which has already been
made mentioned of in section 2. In this paper, the way of the former
is taken. Hence before substituting (9)—(12) into the conditions (13)—
(16), the approximation is given to (9)—(12).

Let the approximated functions be designated by the super-subseript
ap, and the approximated functions are substituted into (18)—(16). Then
the expressions (13)—(16) become as follows :—

at x=0 (0>2>—H,),

¢2= '
by _ 05 [ (13
dx ~ ox
at z=h (0>2z>—H,),
PE=d,
ops_ o, ( (14)
o ox

at x=h (—HJ>Z>—H1):
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D=
g Oy | (15)
ox ox
at z=—H, (h>x>0), )
PHE=0%H
(16°)

093 _ O3k
(774 0z

Allowing for the orthogonalities of the functional series
{cosh a " (H;+?2), cos a{” (H;+2); s=1, 2, 3, ...}

in the range 0>2z>— H; for respective j(=1, 2), the following integrations

are made :—
at £=0;
o ( T
] n
[, 1 09, cosh a§°’(H2+z)dz=S_H2-L ogsp cosh al(H42)dz,  (17)
or ox
. o . 5 i
S~H2 0, | COS a® (H,+2)dz = g~112 L Bpan( €OS a(H,+2)dz : (18)
ox ox
at x=h;
. ¢ , f 7
g_ﬂl 0, cosh a®(H,+2)dz= SMHQ {Gﬁ;’; cosh a{®(H,+2)dz
0w ox
. H
—|—§ H2 g cosh a” (H,+2)dz , (19)
—m | 9P31
o0r
. N \ ji
X o, { cos i (Hi+2) dz = S oz cos ai” (H;+2z)dz
—Hy | —TL —I, | =52
or ox
. pi
+] 7 pusgt cos ap (Hi+2)dz, (20)
—my | 2PE| T ‘
ox

where the expressions in brackets are taken in the same order.
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As far as the equations (16') are concerned, these relations are
treated, case by case, in convenient forms for the reductions. In section
4, these relations are used as they are. The integrations of these
equations over the range 0<x<h may be taken, if the case treated is
of a form convenient for these reductions.

The actual relations of the orthogonalities of the functional series

{cosh a " (H;+2), cos a{”(H;+z); s=1, 2, 3 ...}

are expressed as follows :(—9—10

IP = SO cosh? " (H;+2)dz

-
=11 Ginhoa0 H,+H,); 21
=3 wsm a;" H; il (21)

I,‘--"’:So cos’ af” (H;+z)dz

_Hj
:%(%;) sin 2¢° H, +H,.)
(s=1, 2,8, ...); (22)

SO cosh a"(H;+z) cos a{ (H;+2)dz=0
—H

J

(s=1, 2,3, ...; (23)

SO cos af(H;+2) cos a{"(H;+2)dz=0
_a,

J

(5, =1, 2,8, ...; sx7), (24)

for respective j(=1, 2).
Using the relations (21)-—(24), the equations (17)—(20) are reduced
to the following :—

AP IP , bz
= a h a”(H,
AP (—ia®)-IP } S_”:\ aa(l;zg ::S as"(H,+2)dz , (25)

9) T. H. HAVELOCK, *‘ Forced Surface-Waves on Water,” Phil. Mag., 8 (1929), 569.

10) K. TAkANO, ‘‘Effects d'un obstacle parallelepedique sur la propagation de la
houle,” La Houille Blanche (Mai 1960), 247.

11) T. Mowol, Bull. Earthg. Res. Inst., 41 (1963), 9.
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ap

Az(s) R Iz(S) . B2
. Zg dg2pr COS o (H,+2)dz ; (26)
AP a1 2 m »
(¢Oe—ia{°’n+A1(0)e+ia{°)n),Il(o)
(qf)oe”i“fo)”—A{‘”e““l(”)")-(—’ial(°))-I{°) }
ap ap
. B2 . ¥
:S agezr cosh a)” (Hﬁ—z)dz-i—g I: ozt cosh a”(H,+2)dz ,  (27)
_m,| 995 _x,
6x z=h ax x=h
A el I
A{S)'(—al(s’)'e—“l(S)"aI{s) }
ap ap
R B2 u Bl
ZX a2z COS a (H,+z2)dz + S : ozt Cos al (H,+2)dz ; (28)
—Hg | —— —

0% r=h or ).,

where s=1, 2, 8, ..., and I} (j=1, 2) are given in (21) and (22).
Now we proceed to the actual reductions of the equations (25)—(28)
under suitable approximations.
Firstly, in the next section, the above equations are solved in the
first order of the approximation.

4., The First Approximation

In this section, further reductions of the general theory developed
in the foregoing section are made under the approximation :—

cosa;x~1, sina;x=a;x,
cosha;y=~1, sinhay=~ay, 1,1
(j=B1, B2),
where
y=2z or y=H +tz.

Substituting (1, 1) into (11) and (12), the approximated functions of
¢z and ¢, become
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H = % Am ’
%z) = Z (AB2a'B2:U + Bm) (1: 2)
B2

X (@*apz+9az) ,
where »* and g are made dimensionless with characteristic time scale.
Using the above expressions (1, 2), the equations (25)—(28) are
reduced to the following :—

AP 1P =(* K" +9Ky") - >, By }
B2

1,3)
AL (—1a?) [P =(’K{® +9K3") - >, A,
B2

where
0
Ko :g z cosh al(H,+?)dz ,

—IHy

; (1, 4)

0

KQ =g cosh a’ (H,+2z)dz

—Hy

AP TP = (@KL + 9K)+ 3 By,
B2 } (1, 5)

AP I =K + gKL)- 3 Apais
B2

where ) .
KP= SO_” z cos as (H,+2)dz ;

o ;o 1, 6)
Ké*’:S . cos a;” (H,+z)dz

—4H2
(¢oe—ia1(°)h + Al(o)e+ial(°)n) IO
=(’K" +gKQ)- %‘4 (Apaioht+ Byt )+ K- % Ap,
1,7
(q&oe‘i"lw)" i Al(o)e+ia](_0)h) A(—iaP)- I
=(0*KP? +gK{®). % Apaz ,
where
z cosh ai”(H,+z)dz ,

—H,

" coshar(H+2dz, | 1, 8)
Hy

—I

* cosh a (H,+2)dz
m
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(®)
A® .gon P

=(?KP +9gK)- % (Al + Bpya )+ K - 521‘ A

A{s) _(_a£s)).e_a{3)h.11(s) (1y 9)

=(w2K§s)+gK£s))'BZJ Apaks

where
[}

K= g z cos a (H,+z2)dz ,

—H

0

K :S cos al (H,+2)dz , @, 10)

—1y

—-H
K= g * cos a?(H,+2)dz .

—m
And also substituting (1, 2) into (16') in section 3, we have :—

(_w2H2+ 9 '% (Amafzzm“l*BBza/m):% Ay,

(1,11)
@3, (Apasst+ Brag)=0, for h>x>0.

In the above, the second relation has a validity merely under the
existence of the factor «°, of which the order is (a{” H;)* from the
expression o*=a®gtanh a” H; (=1, 2). The meaning of this equation
is that the product of «* and ;,(Ama%grc-i-Bmam) is negligible in the

present approximation described in (1, 1), instead of rigorously zero.
Hence the identity

% (Apade®+ Byap)=0 1, 12)

which is derived from dividing the second equation by «? has no
significance in the reduction of the equations in the present study. If
one needs this expression, the relation of the produet form (1, 11),
instead of (1,12), must be employed in the reduction of our method.
A similar problem has already been experienced in the previous work.?
Putting the second equation into the first one of (1,11), we have

% (ABZaEEZx-*—BBzaBQ):%% ABI fOI‘ h/>x>0 -

12) T. Mowmol, Bull. Earthq. Res. Inst., 42 (1964) 449.
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Since the above equation holds in the range A>x>0, if one sets x
equal to 0 or %, the following equations are obtained :—
when £=0,

BZZ BB2(1’B2=%‘%:| Ap; 1, 13)
when x=h,
% (Ama/iezh‘l‘Bmam):%% Ap . 1, 14)

Substituting the left-hand side of (1, 14) into the right-hand members
of the first equations of (1,7) and (1,9), we have :—

from (1, 7),

(o1 AP etiet"r). [0 = PO 3 Ap (1, 15)
from (1, 9),

Af”e—ax‘s’h-I{”:P{”-% Ap (5=1, 2,8, -+); (1, 16)
where

Pr=S Kot KO HED (r=0,1,2, ) (1,17)

Likewise, substituting (1, 13) into the first relations of (1, 3) and
(1, 5), the following expressions are obtained :—

from (1, 3),
AP IO=P0®.S A, 1, 18)
Bl

from (1, 5),

AP -IP=PP -3 Ay (s=1, 2, 8, cee)s @, 19)

Bl

where

Pr=SKoLKP (r=0, 1,2, ). (1, 20)

g

Eliminating the expression >, A, from (1,15) and (1, 18), the
Bl
equation with respect to the unknowns in the non-buffer domain is
obtained, i.e.,
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- (0)
IP PP AL — [0 . PO .gria'h, 4O

=, 'II(O) .Pzw) .e-i,,{mh

283

1, 21)

In order to solve the equation in terms of the unknowns AP (j=1,
2), one more relation is needed.
From the second relations of (1, 3) and (1, 7), the elimination of the

expression >, Ap.a}. yields
B2 .

. (0)
Io ,(Pl(()) #Kém) VAP TO L PO L gia"r, A©

(0,

=+ [0 - PO . givs

where the expressions (1, 17) and (1, 20) are used.
Solving the simultaneous equations (1, 21) and (1, 22), we have :—

AP =

A=

2P0 —KP

©
5 Lp—ie2a®p
’

0 0
I° . 2P _e—ial(o)h
I® 2PO _K©

s
’

(1, 22)

(1,23)

Calculating the integrations (1,4), (1,6), (1,8) and (1,10), these

integrations become as follo

Kp=_1
(@)
Kp=_1
a®
KO — 1
8 a©®
1
1
(@

o _
K= a©
1

© —
K= a®
1
Ko=_1

@y

ws i —

(1—cosha”H,) ,

-sinh al"H, ,

-H,-sinh a®h

-(cosh a{” H,—cosh a"h) ,

+(sinh a{” H,—sinh a{"h) ,

-sinh a{®h ,

(—1+cosa"H,),

(1,24)
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1 .
K= -sin a{” H, ,
a(s)
2
1 .
Ky=—1_.H,sinaf'h
a,
(1, 25)
+— L (cosaH,—cosah) ,
(a(s‘))z
1
Ky=—1 _.(sinafH,—sinah) ,
a
KP = L sin ah .
a(s)
1

Since the theory is developed under the first order of the approxi-
mation, the expression cosh a’ H; and sinh a{” H; have physical meaning
at most to the first order of a®H;. Therefore, the integrated results
(1, 24) are reduced to the following :—

K{"=0,

K’=H,,

KO =Hph , (1, 26)
K®=H—h,

K®=h.

Likewise, applying the first approximation to (21) in section 3, (21)
is reduced to

I9=H, (j=1, 2). 1, 27)

Using (1, 26), (1, 17) and (1,20) become
P;°>=—‘§-th+m+h : (1, 28)
PO =H, (1, 29)

Taking into account that «° is the second order of aH;, i. e.
(@®)ygH(=1"a"g tanh a’ H;) (¢9: dimensionless value), (1, 28) is further
reduced to

PO=H,+h. (1, 30)

Now substituting (1, 26), (1,27), (1,29) and (1,30) into (1, 23), we
have the final expressions for A7 as follows:—
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AP =g Fam s i
b
H,+H,

_Z.‘H;. .e—i-al(o)h
H,+H,

(1,31)
AP =g,

In the above expressions, as far as the amplitude factors are
concerned, these factors are completely the same as those derived from
a consideration of flux devised by Lamb. On the contrary, the phase
factors appear in the solutions obtained by our method, while Lamb’s
method cannot yield these factors.

In this paper, our primary concern is to examine the applicability
of the method of the buffer domain to the problem in which there exists
an abruptly changing vertical boundary. Hence, the discussion of the
phases is postponed until the theory is developed in the second
approximation.

Next, let us consider the higher modes of the waves.

Substituting the expression %Am in (1, 18) into (1, 16) and (1, 19),

we have :—

P(S) I(O) (8)
(s) 1 . 2 .e+a1 h‘Az(O) ,

1 —_—

Pz(O) I{S)
1,32
wo PO IO !
P?f[)) Iés)

And AP and AP (s=1, 2, 3, ---) are proved to be the second order of
aY Hi(j=1, 2). Therefore, in the range of the approximation used in
this paper, the terms of the higher modes of the waves have no
significance. The verification is carried out in the following way.

Since «o* is of the order of (a{”)*-g-H{, the Airy’s relation
w'=—aPgtanaP H; (s=1, 2, 8, --+), which is derived from the equation
under the surface and bottom conditions, becomes

(@PyH,=—af tanal’ H; . (1, 33)
Introducing a parameter y, (1, 33) is separated into two equations
y=tan aP HY
(1, 34)
(af H))-y=—(af HY): .

And the solutions of (1,33) are given as the values of a{"H; at the




286 : T. MoMmor

intersecting points of the two equations (1, 34), of Whlch the curves are
shown in Fig. 2.
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Fig. 2.

The second equation of (1, 34) denotes the hyperbola, of which the
asymptotes are the a?H;- and y- axes. Since (a{”H,)* is very small,
this hyperbola runs so close to these asymptotes that the solutions of
(1, 33) can be approximated by

o Hy=snr—8(a" Hy) , (1, 35)

where o(af’ H;) is very small in amount.
Substituting (1, 35) into (1, 33), (1, 33) becomes

(@ H)*= —{sr—o(ay H, ~)} -tan o(a’ Hj) . (1, 36)
Usmg tan é6(af Hy)=d(a” H;), the expressmn (1, 36) is reduced to
{0(af Hy)Y—sm-0(af Hy) +(a” H;)*=0 . - 1, 37)

Solving the equation (1, 87), we have

5(a;.s>Hj)=_ {sn':i:sr /1- 4( a;" H; )} .

S?Z‘

Expanding the expression of a square root by power series and
allowing for a requirement that é(a}”H;) must be positive, the above
expression is reduced to
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5(a""H)——~ (@ Hyy' - ' (1,38)

Now we find that &(a"H;) is of the second order of (a{H,).
Therefore, neglecting the term of the second order of (a{”H,), the value
of (a;"H;) becomes, from (1, 35)

e Hy=sz (s=1, 2, 3, +++) (1, 39)

By use of (1,39), the expressions (1, 25) are further reduced to the
following forms :—

=0 (s : even)
K(S)
oo H YV .
—_2 ( . > (s :0dd),
Ky =0,
K = = H, n a®h
5 (1,40)

n (£>2{(— 1y —cos a”h},
ST

H,
Ky =——2.sina{h ,

S

K = H, -sin a{®h .
sw

From (1, 17), (1, 20) and (1, 40), the following is obtained :—

P® _&.[M’.sul a,(s)h
g 7
+ (- Y -1 —cos apmy], |
57 (1, 41)
=0 (s : even)
(s)
Ps =2 (Y (52000 .
\ g S

Likewise, substituting (1,39) into (22) in section 3, we have

I;s)=%f1rf (j=1, 2) . (1, 42)
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Finally, putting (1, 27), (1,29), (1,41) and (1, 42) into (1, 32), the
higher modes of the waves are expressed as

2
w H, .
AP —_2.__.[_2 -sin aih

g s
+- 21y —cosa{s)h}] ereiin. A®
(s ) - (1, 43)
=0 (s : even)
AP :
=12 (f)z (AP (s:0dd) .

The first expression in the above has a factor exp (a{"%). Since the
expression of the wave height in the domain D, is defined in the range
w>h, the term exp(ai’h) in the first expression of (1,43) does not
actually contribute to the magnitude of A{". That is to say, if one

describes the higher modes of the waves in complete form, these terms
are expressed as

APe=4"% cos q (H,+%7)
T H,
:2-——-[8—2-s1naﬁ’h+ (=D —cosa i} |
T

(s)
xe 1 . AP cos ' (H+2) .

The above expression has a significance only for the range x>, so
that the value of the factor exp {—a{’(x—h)} is smaller than 1.
As already mentioned, the following approximation is valid, i. e.,

o*=(a?)gH .

By virtue of the above approximation, it turns out, from (1, 43),
that the higher modes of the waves in the advancing and reflected
waves are of the second order of (al® H;).

In the next paper, the theory will be developed in the second order
of the approximation. And also the discussion will be detailed for the
behaviors of all modes of the waves advancing through and reflected at
the step of the bottom.
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19. =5y 7ROKESR S 2kFiIcEBIT 5
Buffer Domain o520 [1]

wEpEs Bk A m R

RV, BANQICEED X 5703 T B W AT & R 5 IR s TR A LT
I 20E, LK BT A1 e &), ol B0 RIS AT 5 5 AR 642 buffer domain &
HREINBHLUWIIREEO LT B 25 THB. Thiltic, DKL buffer domain oJjiks S
Hbh b,

SO D P NIEERANIEH TS & OZRTHOr, KRBk T, FHIZ ok
2%, BRI FECACEAS BT L EAL 85 2 22 e A & RA, FRICHEHTES 2
L&D,

AHEOER AiE, buffer domain DFHEA, BRI N2z 28 bS5 S5 ORI
e ch s o L&+ b o L Thh, Uik BEI’JJ: LT, AREM 5RO ; @TVJ&OHQTYE%:
MBZETHD. TLTAT » THETOWEDHEE L TR O A,

1) A7y Z7EMOTELE, BIUAT» 7O KT 5 OIRIBETL, 7 4O
éklofwahéiaﬂLféé

(2) LT, A5y 7%WET5 HZH LT a1®h, 255 7Y 0 K35 oL T
20,k ORED R LARETWS, 2750 a© ILEABEOEE, b 32T 7OEITH B,

@) AT v TEBEOWEOMWKINL ROEOBNITH S, Tiib 0{(a; @ Hy2} (Hj (ki
AT TH5B.

FB o Rl o 5, Q) i ), @) OfESUL S A DTS X o TTE Bhiau.




