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Abstract

The torsional oscillation of an earth model consisting of a homo-
geneous mantle and a soft homogeneous core is studied and the
following matters are discussed and proved. (1) When there is a
soft core those modes are predominant which have nearly equal
frequencies to that of a liquid core model. (2) These modes are
very high radial higher modes, and a simple formula that gives the
order number of them is presented. (38) Consecutive spectrum lines
far stronger than the other ones sometimes have nearly equal
amplitudes and frequencies, which fact proves to be a kind of
spectrum splitting phenomenon. (4) Depending on the density and
rigidity ratios of the core and mantle observable frequency is higher
or lower than that of a liquid core model, and there is also a pos-
sibility of two spectrum peaks having nearly equal amplitudes. This
phenomenon will be of use for the determination of the core rigidity
by means of the observation of free oscillation periods.

1. Introduction

Ten years ago, when the possibility of exploring the nature of the
earth core by the use of long period surface waves was suggested, the
present author calculated the torsional oscillation period of a simple
elastic earth model.? This model consisting of a homogeneous mantle
and either a liquid or rigid core, was far too simple to explain observed
data, but still gave some clue giving a free oscillation period of 42.6

* Lamont Geological Observatory Contribution No. 696.
1) T. MAaTUMOTO and Y. SATO, “On the Vibration of an Elastic Globe with One
Layer. The Vibration of the First Class,” Bull. Farthq. Res. Iust., 32 (1954), 247.
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minutes for a liquid core and 33.8 minutes for a rigid core.

Later study,” however, revealed that the free torsional fundamental
period for a model with a finite core rigidity did not come out between
the two values cited above, but the period increased indefinitely when
the rigidity of the core tended to zero. This apparently strange pheno-
menon, which one can hardly be expected to observe, was rather insuf-
ficiently explained in that study. In the present paper, however, in
which a very soft core is assumed, the following matters are discussed
and explained; 1) the periods which are to be observed, 2) the soft
core splitting of spectrum lines, 3) comparison of the periods of a
liguid core model and a soft core model (an idea of over, under and
double frequencies) and 4) the radial mode number which is likely to
give a large amplitude.

2. Characteristic Equation. and the Solution

Following an ordinary way of solving the wave equation referred
to polar coordinates solutions are obtained in the form:
u=0,
v=mR(r)- P7(cos §)[sin 0 -sin me-exp (ipt) , (2.1)
w=R(r)dPr(cos #)/df-cos m¢-exp (¢pt) ,
where u, v and 1w are radial, colatitudinal and azimuthal displacement
components respectively. The function R(7) is expressed by spherical

Bessel functions 7, and v,. The boundary conditions are, at the surface
r=a

Displacement; R(a)=A-j,(k.a)+ B-y,(ka)=K(constant) ,

oo ) cnale ) enofe (42

=4’ (ordinarily zero), 2.2)

In the same manner, at the interface r=b,
Displacement ; A-j,(kd)+ By, (kb)=C-5,(kb),
i d (7u(kob) Iy @ (VBN _ , L5 @ (3.(E:D) }
Stress; ”"A{ db( b )}“”"B{bdb( b >} Pﬂ{bdb( b ) ’
O (2.9)

2) Y. SATO and T. MATUMOTO, “Vibration of an Elastic Globe with a Homogeneous
Mantle over a Homogeneous Core. Vibration of the First Class,” J. Phys. FEarth,
9 (1961), 1.
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in which k3=p*pi/po=(p[V,)* and ki=p’p;/w;=(p/V.)*, p, p and V are the
density, rigidity and shear velocity respectively, and o and % always
refer to the mantle and core respectively.

From the above equations, after a little modification, the characteristic
equation is obtained as follows: :

FJ¢) FY(©) 0

E(n e b Viom 3>: GJ(E) GY() 0.
o Voo GJ) GY() il GIE)
FJ() FY() FJ©)

where FI§)=65,6), GJE)=£-0(j.(8)/6)/0¢,
FY(§)=£y.8), GY()=&-0(y.(6)/¢)/0¢ (2.4)

(==

and
E=ka, 7=(0la)s, (=(Vi/V)y.

An ordinary form of the characteristic equation is

V= b Veom
D ViVy=—B(n & o 3 B 0), (2.5)
=FJ()- L&, 7)— (il ) GI() - Ro(E, 7) =0,
where L., 9)=GJ()-GY(5)—GY(€)-GJ(), (2.6a)
R.(€, 7)=GJ()-FY(7)—GY(€)-FJ(3). (2.6b)

The torsional frequency for a liquid or a rigid core model is obtained
as a root of

Ln(E! 77)=0 ’ | (2.73)
or
R, 79=0. (2.7b)

When the core rigidity is finite and the density ratio being fixed,
the free torsional frequency & is given as a function of (V/V,), and the
(V;/V))—¢& plane is divided into a mesh by the following two groups of
straight lines:

(i) parallel lines determined by the equations (2.7a) and (2.7b),
and (ii) straight lines which pass the origin and are given by the equa-

tions
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FJ.(0)=0, (2.82)
and
GJ.(()=0, (2.8b)

of which the first equation gives g#;,=0 and the second gives p;=c.

In Fig. 1 the shadow zones are the parts where no solution can exist,
and the black circles are the points which the frequeney curves must
pass. In this way the curves are separated into independent branches.
Fig. 2 shows the result of an exact calculation assuming the density
ratio p;/p,=2.0. The lower-most curve is the fundamental mode and
others are the radial higher modes.

N=2

10+ (Pi/Pp=2.0)

[&)] » w o] ~

NON DIMENSIONAL FREQUENCY ¢

n

Fig. 1. Areas where solutions cannot exist (shadow zone) and the
points (black circles) which curves must pass. Blank area, left half
of the figure, should be filled similarly to the other part. Horizontal
lines give the values of ¢ for a liquid and a rigid core model,
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Fig. 2. Frequency curves as functions of Vi/Vo. In the blank
area there is an infinitely large number of similar curves. Black
circles on the straight lines indicate points where the frequency of
each mode becomes equal to that of a liquid model. p;/po=2.0 is
assumed.

Most parts of the curves nearly coincide with the straight lines
given by (2.8a), which are the lines of y,=0. This is a natural con-
sequence of our assumption that the core rigidity is very small.

3. Soft Core Spectrum Splitting

Although there are many branches of radial higher modes, not all
of them have appreciable amplitudes, but only those satisfying the fol-
lowing condition are actually excited and observed.

In our previous work® it was proved that the speectrum amplitudes

3) Y. SaT1d, T. Usami, M. LANDISMAN and M. EwWING, “Basic Study on the Oscilla-
tion of a Homogeneous Elastic Sphere (V),” Geophys. J., 8 (1963), 44.




are proportional to

A=(W_RM) , (3.1)

in which 7 is the radial distance and R(r) is the displacement amplitude
of the azimuthal component. The result of numerical computation of
A, for various values of i is shown in Fig. 3 assuming n=2 and p;/p,=

T
Lid  '|°
2Tz
|
h v v v i
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Vi/Vo=0053
(Pi/Po=2.0)
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Fig. 3. Spectrum lines for the liquid core and soft core
models. For soft core models there are many small spectrum
lines between two large peaks. However, most of them are
too small to be found in the figure. Abscissa is the non-
dimensional frequency & (n=2)

2.0. From this figure we can deduce a number of interesting conclusions.

1) When the core is liquid there are widely separated spectrum
lines. The first and the largest is the fundamental mode.

2) When the core is a soft solid there are many spectrum lines
corresponding to many curves given in Fig. 2. However, only those
which have nearly equal frequency to that of the liquid core model are
predominant.

3) There is a [possibility that two or more spectrum lines have
considerable amplitudes, which fact is a kind of spectrum splitting
phenomenon caused by the existence of a soft core.
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4) The intervals between consecutive spectrum lines are determined
only by the distribution of material in the radial direction.

The phenomenon will be called the “soft core splitting” of spectrum
lines hereafter. o

4, Interpretation of the Soft Core Spectrum Splitting

If in the expression (2.5) we fix the two parameters V./V, and p;/p,,
and change the variable &, then the value of D, varies as illustrated in
Fig. 4. The zero points of D, are at first uniformly distributed. Near

Dn (€, Vi/ Vo) (pi/Po=2.0)

Vi/‘Vo=O.CI)6 /\ /\ | |
- \/ v
Vi/Vo= OO5 /\ /\ /\ \

VRV

Fig. 4. Da(g, Vi/ Vo) as a funetion of £ Near the point ¢=tiiquid,
undulation, consequenly the slope of curves becomes small. (n=2)

the point £=¢,u (=2.409), however, behavior of the curve becomes
different from the other part and extraordinary things happen. One
is an irregular interval of zero points. The second is a phenomenally
small amplitude of the undulations of the function D,, and the last
which naturally derives from the second, is the smallness of the in-
clination (8D,[0¢) of the curve D, at these points.

The amplitude of a mode is, introducing the relations (2.4) and (2.5)
into (3.1), calculated as follows:

Y O
=1/(—>=w=o’
_1/{ oE aE}

_E o,
00/ 0%
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Since (9D,[0¢) becomes small near the points £=£;,..« the amplitude
becomes large at these points.

5. Radial Mode Number

It was now proved that the radial higher modes which have large
amplitudes and are likely to be observed have always nearly equal fre-
quencies to those of the liquid core model. Consequently the radial
mode number of these modes is easily calculated by the following
procedure.

Black circles on the line ¢=¢,,,4 are the roots of the equation

FJ(O)=E£-7.(0=0. (6.1)

From the asymptotic formula of Bessel functions

FJ()~cos [C — {2("—+{1/22+_1}r] .

Equating this to zero

CN:% ‘I;:) éliquid = {%Z/MZ + (N_ %)n' )

Therefore

1/b V n
N—_——(—“——O'Sl ui )—— , 5.2
a V., ") g (5.2)

If n=2 and V,/V,=0.05, then inserting é&,,.:=2.409,
N=T or 8 (5.3)

which is the number found in Figs. 2 and 3.

6. Over Frequency, Under Frequency and Double Frequency

Let us look at Fig. 2 keeping in mind that the predominant modes
always have frequencies nearly equal to those of the liquid core model.
The strongest mode, which is the nearest to the line £é=¢,,,.4, can have
a larger value than that according to the value of (V;/V,), but might be
smaller, and sometimes there may be two modes having nearly equal
amplitudes, frequencies being located on both sides of ¢=¢,. In this
way V.|V, axis is divided into an infinite number of parts; over fre-
quency, under frequency and double frequency areas. (Fig. 5)
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This nature gives a clue for determining the shear velocity of the
core using only the free torsional period. If we accurately observe free

torsional periods for various
values of %, we can determine
whether they are larger or
smaller than the liquid model
frequency, or there are two
peaks with comparable am-
plitudes. These correspond
to over, under and double
frequencies respectively, and
referring to Fig. 6, we can
choose values of V./V, that
give the combination of over,
under and double frequencies
identical to the observed
one. If a sufficiently large

VELOCITY RATIO

AN
N\

Under>q\
Over F. A
i

Under F. A.
Over F, A.

Double F.

Fig. 5. Vo/Vi (or Vi/Vy) axis'is divided into
over and under frequency areas according as the
strongest spectrum line has a frequency larger or
smaller than that of a liquid core model. Between
these areas there are double frequency areas where
there are two peaks with comparable amplitudes.
(Not to scale)

(Vo/ Vi)

12 14 6 18 20 22 24

Fig. 6.
areas.
quency area,
quency area.

(Vo/Vi)-axis is divided into over, under and double frequency
This figure is for the fundamental mode.
Broken line: Under frequency area,

Bold line: Over fre-
Circle: Double fre-

number of frequencies is available, there will be only one value of

V.|V, that satisfies the observed condition.

Similar figures can be

prepared for frequencies corresponding to higher modes of liquid core

model.
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7. Conclusion

In this paper a very simple earth model, a homogeneous mantle
with a soft homogeneous core, is assumed. Consequently the numbers
given here cannot be applied to a complicated heterogeneous earth model.
Still, however, the same principle will hold even for the actual earth
having a complicated structure with a very small core rigidity. Namely :
(1) The observed period, which is a value for a high radial higher mode,
will differ little from the liquid core frequency. (2) The soft core split-
ting of the torsional oscillation spectrum will ocecur. (3) According to
the density and rigidity of the core the observed frequency will be
larger or smaller than the liquid core frequency, or there may be peaks
with comparable amplitude. (4) The order number of such a peak is
given by a simple formula. A detailed discussion of these phenomenon
will be given in the near future for heterogeneous earth models.
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