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Abstract

In order to make clear the phase relation of waves propagating on
a spherical surface to various quantities, theoretical seismograms
showing the azimuthal component of torsional disturbances are Fourier
analysed. Each phase of G waves is employed in the analysis and
the results are given in the figures, which show the polar phase
shift clearly.

The possibility and method of deducing informations on the charac-
teristics of waves from the Fourier analysis is proposed in this paper.

1. Introduction

The phase shift of waves propagating on a spherical surface when
they pass the pole and antipode was found by Nafe, Brune and Alsop?,
and has been successfully applied to the analysis of dispersive surface
waves.

Even in the plane boundary problem a similar phase shift to com-
pensate the phase variation with which waves diverge from a point had
been noticed and adopted in an attempt to reproduce the disturbance at
the source?®. -

The above phenomenon discovered by Nafe and others, which is
today called the polar phase shift, is valid for each wave component
with a definite value of frequency, while seismograms are usually a su-
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perposition of waves with various frequencies. Consequently, it usually
happens that the polar phase shift is not clearly observed on the seismo-
grams of natural earthquakes.

In this paper, to visualize the phase variation of waves propagating
on a spherical surface, the result of Fourier analysis on the theoretical
seismograms is illustrated.

2. Notations and Formulas

Disturbances propagating on the surface of a radially heterogeneous
sphere is expressed by the sum of free oscillations of various modes®

D=3, Ci-Ru(a, ip.)-f*(0.)-07(0)- ) mp-exp(ipat), (1)
where

a : Radius of the sphere.

Ccr :  Coefficient due to space distribution of the force applied,
m and n being the degree and order of the free oscil-
lation respectively.

f*ip,) : Fourier conjugate of the time distribution of external
force applied, f(t).

7 ¢ Unit of imaginary number.

iDn . Frequency of the free oscillation, 7 being the radial mode

number and n the order of free oscillation.
R.(r, ;p,): Function giving radial distribution of disturbance.

07(6). g?j‘ me: Function giving surface distribution of disturbance.
Or(6) implies associated Legendre function or its modi-
fied form. Actual expression of O7(§) depends on
the kind of oscillation, the quantity measured and the
component of disturbances, and their actual forms were
given in our previous paper® for typical cases.

The spectrum of the disturbances D obtained at a point on the sur-

face with an epicentral distance §=6, and an azimuth ¢=¢, is

Sp=Cr-R.(a, . F*(p.)-05(0) go mepo - (2)

-3) Y. SATO, T. USAMI and M. EwING, ¢ Basic Study on the Oscillation of a Homo-
geneous Elastic Sphere. IV. Propagation of Disturbances on the Sphere,”” Geophys. Mag.,
31 (1962), 237-242.
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When 7 is larger than m, and siné is not very small, the follow-
ing asymptotic expansion holds® '

P (cos 0)~(—)’”n"'1/ Eﬁ cos {(” + %)H_mzl_%}
0<8<n). (3)

As 67(0) is Py itself or its modified function, the asymptotic ex-
pansion has a similar expression to the formula (3), namely
1 mr 7w
02(0)~ Ar(@)- cos {(n + LYo+ 1T = _ b 4
) (6)- cos +2+2 ¢ _ (4)
in which A7() is a slowly varying function of #, and
« is an additional phase angle when the associated
Legendre function in @7 is differentiated with respect to (A)
0. «, therefore, is expressed as Iz/2, | being the num-

ber of differentiation.
Combining the two relations (8) and (4), the spectrum is expressed

as
Sy =103 Ry F¥(00)- A7(0)- S mop|
1 mr 7
-cos{(n + E)ﬂ%—(T—-—Z - a'>(1-|—23)+e} , (5)
where
s is the number of passage over the pole and antipode . (B)

¢ is the phase angle due to the sign of (C,T-Rn - F*Gpn)

-A;”(B)-gﬁf ’mgp) . When this function is negative e=n, ©
otherwise ¢=0.
In the formula (5), # is not restricted between 0 and .

3. Phase angle of waves propagating on a spherical surface

The phase angle of the complex spectrum, namely the Fourier trans-
form of disturbance D, is from the above consideration

80=(n+~;—>0+(m7”—%—a)(1+2s)+e, (6)

5) E. W. HoBSON, The Theory of Spherical and Ellipsoidal Harmonics. Cambridge
Univ. Press, p. 303. ‘
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This is the formula when the real part of the time factor in equation
(1) is adopted, while the phase angle should be
1

Ss:(n+§)0+(7—7;1—%—a)(1+2s)+s+%, (7)

if the imaginary part is employed.
In order to illustrate the phase relation of waves propagating on a.
spherical surface, theoretical seismograms are analysed by the method
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Fig. 1. Three-dimensional figure of phase angle showing phase relation to epicentral
distance and frequency. Unit of time is (2= (radius of sphere)/S wave velocity).

Initial phase angle is —=/4 and 3z/4, and the gap on the curves of constant frequency
is =/2, which is the polar phase shift.
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Fig. 2. Phase angle as a function of epicentral distance and frequency obtained by the
method of Fourier transform from theoretical seismogram showing azimuthal displacement
of torsional oscillation of degree O for a case of homogeneous isotropic elastic sphere. Unit
of frequency is (Velocity of S wave on the surface)/(2n (radius of the sphere)). This figure
'shows polar phase shift of amout n/2 at each passage over the pole and antipode which
'shows good agreement with the theory. Initial phase for smaller frequency is—n=/4, and is
3n/4 for larger value of frequency.

of Fourier transform. These seismograms are the calculated disturbances
.of the torsional oscillation caused by a localised stress around the pole®.
Each phase of G waves is analysed separately and the phase angle of
the Fourier transform is shown in Figs. 1 and 2 as a function of epi-
central distance and frequency. Since the theoretical seismogram em-
ployed is the azimuthal displacement of torsional oscillation mentioned
above, we have ‘

Or(@)=dP,(cos 6)/d8 ,
and , m=0 and ¢=0.

(8)

As the imaginary part of the time factor in the expression D is employed,
the formula (7) is applied and we have a==/2 from (A)".

6) Y. SATO and others, loc. cit., 3).

7) A similar consideration was given by one of the present authors more briefly. Y.
SATO, ¢ A Note on the Relation between the Initial Motion and the Azimuthal Characteristic
of a Focus from the View-point of the Phase Shift near the Origin,” Bull. Earthq. Res.
Inst., 40 (1962), 653-655.
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As a whole, the phase angle at the origin is

1) (7: - r:) = e
—}x0 X0—2—2)142x0)+0 +=—— 9)
<n+2 +(2 = 242X 0+ 0+ Z=—2 (9)

which is clearly seen in Figs. 1 and 2¥. The polar phase shift of amount

%{=%+4—§—gﬂ, (10)

is also seen in the same figures at an epicentral distance §=nx (2= in
formula (10) is an uncertainty appearing in the calculation of phase angle).

As is seen in the formulas (6) and (7), the phase angle of the spec-
trum is a function of m, %, 6 and e. The last factor ¢ takes = or 0 ac-
cording to the time and space distribution of the force applied, the structure
of the sphere, quantity measured and azimuth of observation station.

(cf. (C))

4. Summary

The above consideration suggests that, if stations are favorably dis-
tributed, the following information can be deduced concerning the charac-
teristics of waves from the complex spectrum of the disturbances at
these stations.

i) Comparing the periods of spectral peaks obtained by Fourier
transform of actual seismograms with those given by theory, we can
determine whether the wave observed is spheroidal or torsional.

ii) Once the kind of oscillation, spheroidal or torsional, is identified,
the actual form of function 07(6) is determined except the value m since
we know what quantity is measured.

iii) The degree (m) of waves is inferred from the following three
methods. First, from the formulas (6) and (7), we can determine whether
m is even or odd from the jumping amount of phase angle at =mn=.
(See Figs. 1 and 2. Intercept phase angle, or initial phase.) Second,
among the factors forming the expression of disturbance D in the equation
(1), cosmg (or sinme) is the only function relating to the azimuth.
Therefore, the number of sign changes of cosmg (or sinmg) between

8) In another paper prepared by the present authors, =/4 was added and the initial
phase angle for small p was put to 0. This is because the authors intended to show the
value of arg (f*(p)) clearly. See Y. SATG and T. UsaMI * Spectrum, Phase and Group
Velocities of the Theoretical Seismograms and the Idea of the Equivalent Surface Source
of Disturbances.” (in print).
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¢=0° and 360° is same as the number of jumps of the phase angle by
the amount z. This is closely connected with the push-pull mechanism
of the source of disturbance. The third method is described in our pre-
vious paper®.

iv) Frequency p has effects on the phase angle through e (cf. (C)).
The phase angle expressed as a function of p jumps by an amount = at
frequencies where CyR.(a, ;p,): f*(:p,) changes its sign. Therefore, from
these jumps of phase angle as a function of p, we are informed as to
the nature of the above function. '

5. A remark on the propagation of waves on a sphere

Although theoretical seismograms were computed using only the first
kind associated Legendre function, they show similar features to those
of natural earthquakes, and their Fourier analysis gives satisfactory coin-
cidence with theory. This result indicates that the superposition of
Pr(cos 6) functions is enough for the complete description of the phenom-
enon including the propagating waves. This might be anticipated from
the equations (4), the disturbances on a sphere being reduced to the sum
of waves propagating in the positive and negative directions. These
features are similar to the wave propagating on a string which is ex-
pressed as the sum of normal modes.
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