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Introduction.

Methods of determining the nature of the motion at the foeci of
earthquakes have been developed by many seismologists (Hodgson 1959,
1961; Honda 1962). In every method one is led to correlate seismic ob-
servations with mathematical solutions to certain problems in elasticity
theory. Recently the mathematical models on which these solutions are
based have been examined from the viewpoint of dislocation theory.

A. V. Vvedenskaya (1956) found a system of forces which may be
equivalent to a rupture accompanied by slipping in the theory of dis-
locations (Nabarro 1951). She has developed her method on the con-
sideration that a rupture accompanied by slipping is the most probable
form of movement in the earthquake foci under the conditions which
occur in the earth’s crust and in the upper part of the mantle, in which
stresses may be supposed to have a considerable duration. It was inter-
esting that the source in this case can be constructed by integration of
the well-known force system type II, i.e. a pair of coplanar couples
with moments of equal magnitude acting at right angles to one another,
along the fault surface. However, Nabarro’s formulae on which this
method is based were obtained by replacing the system of static forces
which is found in a static dislocation by the system of dynamic forces
which has step function time dependence. A.V. Vvedenskaya (1959), after
F. R. N. Nabarro, obtained formulae for the case of sudden formation of
general Volterra dislocations (Volterra 1907), but she did not treat of the
basis of the theory of general dynamie dislocations.

J. A. Steketee (1958 a, b) suggested independently that the theory of
dislocations might be the proper tool for problems connected with
faultplane studies of earthquakes and with fracture zones in the
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crust and mantle and states that as dislocation theory may be described
as that part of the theory of elasticity dealing with surfaces across
which the displacement components are discontinuous, the suggestion
seems reasonable. He clarifies the fundamentals of the elasticity theory
of static dislocations and considers a number of problems of static
dislocations. He shows force equivalents of static dislocations with
reference to the force models of earthquakes. However, his considerations
were confined to static cases.

L. Knopoft and F. Gilbert (1959, 1960) applied dynamic dislocation
theory to the consideration of the elastodonamic radiation resulting from
the sudden occurence of an earthquake due to faulting. The fault plane
is visualized as a geometrical discontinuity across which there exists a
sudden discontinuity in either one component of the strain tensor or one
component of the displacement vector. They developed the study on the
basis of formulae obtained earlier by one of the authors (Knopoff 1956).
They deal with the first motions (the high-frequency solution) from the
impulsive excitation of the fault surface in detail. As to the forece
equivalents they show that the sudden formation of a fault results in
the same first motions as that due to either double couples in the case
of displacement dislocation faulting or to single forces in the case of
strain dislocation faulting.

In this paper we shall present rigorous fundamental formulae in the
case of general dynamic dislocations by deriving them from well-known
relations in a straightforward fashion, and consider the force system
equivalent to a dynamic dislocation without neglecting low-frequency
terms. Mathematical notations here used are largely after J. A.
Steketee (1958 b).

Theory.

We begin with the reciprocal theorem of Betti, which is a relation
between two possible but different displacement fields, stress fields and
body forces for a particular elastic body which occupies a region D+S
with S as its boundary. The mathematical statement is as follows:

w _ U\, e Sg (1), (2)
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where the superseripts inside parentheses refer to the two different sets
of displacements, stresses and body forces; all quantities are referred
to a rectangular cartesian- coordinate system, and the summation con-
vention applies. In equation (1), ¢ denotes time, p density of the elastic
body, ;" and u{ two sets of displacements, z{) and z{2 the surface trac-
tions, F" and F the body forces (k=1, 2, 3). The surface traction z;,
is a component of the forece per unit area on a surface element as

Try =TV o » (2)

where v,’s are the direction cosines of the outward normal to the surface
element, 7;; is a component of stress tensor (k, 1=1, 2, 3).

v Now we consider a homogeneous, isotropic, elastic body, which may
be unstrained and at rest and occu- :

pies a region D+ S with S as its
boundary. Then we imagine an open
surface >, which may be situated en-
tirely in the interior of the body, make
a cut over >, and deform the two
faces of the cut, which we denote
as >, and >, in different ways
by applying some force distibutions
to them (Fig. 1). We consider two
points P and @ in D, with cartesian
coordinates (&, &, &) and (2, @, ;)
respectively, and define a vector r(r,
Ty T5) s fsllows, v ‘ Fig. 1. Dislocation surface Z

r=PQ or r=x,—-§ (k=1, 2, 3) } (3)

Irl=r =/ T
Hereafter the expressions of differentiation' with respect to &, and z, are

simplified by the aid of subscripts and superscripts respectively as

% | k_ Op
= = ’ 4
Pr=" £ ¢ o, (4)

where ¢ denotes an arbitrary function.

If we apply proper tractions over S, >* and 3, the body will be
deformed as if it were a portion of an infinite elastic medium. When
a force e,d0(t—t;) is applied in @, where e, denotes a unit vector in the
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positive z,-direction and 6(f) Dirac’s delta function, and when such sur-
face tractions as will be generated by the force in an infinite medium
are applied on S, >.* and >, the displacement field and the stress field
in D will be the same as in an infinite medium and they can be obtained
from the well-known formulae (Love 1927). Therefore as the first set in
the reciprocal theorem we take a body force e,é(t—t,)Q) in @, displace-
ment field u7(P, t) and stress field (P, t) which are generated in P in
an infinite elastic medium by the force. As the second set we may take
an arbitrary possible displacement field u,(P, t) and the corresponding
stress field z,,(P, t).

According to the well-known formula in Love (1927) the expression
of ur(P, t) is as follows,

r/b
up(P, t)=— {(}-)S "ot —to+2)dr

o \7r
1 L s(e—t,+ 1 _l«< —t,+ T ]
+ T'r,m'r,k[azo(t t0+a) ~oft—tt b)
~ 1Tl 7
-}-omk?[z;o(t bt 2]} (5)
where a¢ and b are the velocities of P- and S-waves,
N Y (6)
P P

and where 1 and ¢ are Lamé constants. In equation (5) we take a con-
verging wave as to u(P, t). Stress components <f; (P, t) due to the dis-
placement field (5) are computed from the general relation,

i (Py 8) =207 o+ UL+ ul) 5 (7)

where 6,, is Kronecker delta.
The reciprocal theorem in our case may be written in the form,

Sﬁp[z?mﬁ(t—to)(Q)— 361:11" ]ukpdV-i- “zﬂzwsu"r"m‘ 2,dS

R s, @

where integrations are taken over coordinates of variable P for fixed Q.
The surfaces 3.* and 3.~ being considered as two faces of the cut
over an open surface 3, u™P, t) and 3 (P, t) as displacement and stress
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fields in an infinite elastic medium, w™P, ¢) and %% (P, ¢t) will be con-
tinuous across 3,. Therefore following relations hold,

vi=—vf(=v), - (9)
and

uFt=up-, b=l (10)

where »; and y; denote direction cosines of the normal to >,* and >~
respectively. We may use simply v, for vi by equation (9). The pos-
sible %,’s and 7,,’s are here considered to be discontinuous generally
across >, ; we define 4du, and 4r, as follows,

du,=ui —u; (11)
and
dry=1th —7th . (12)

In equations (9), (10), (11) and (12), superseripts + correspond to the
values for a point P*, originally being in P on >, but now situated on >.*,
and superscripts — for a point P, originally in P but now situated on
>.~. Equation (8) may then be written in the form,

nggpum(P, t)5(t——to)(Q)pdV=S§S (u,, 9@1‘"’ —ug 66‘:; )pdV—i—SSz S dS,

- “zui"drkmdz - S Ssukr;’ft v dS+ S Lu;fwlds . (13)

The outer surface S is here assumed to be left free from forces,
hence the last term of the right hand member of equation (13) vanishes.

Now we integrate equation (13) with respect to ¢ from —co to +oo.
The left hand side gives us %.(Q, &). Assuming the permissibility of
the inversion of the order of integration and natural boundary conditions
with respect to t, (8/0t)u(Foo)=u(+o)=0, we find the first. term
of the right hand member to vanish,

[ukau’,f —up oy, ]°° —0
ot ot I-=

By virtue of the formula on oé-functions,

|~ opeo—oat=(—1r o) , (14)

where n inside parenthese denotes nm-th derivative, the integration of
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the second term of the right hand member of equation (13) gives us

Sf duE)n () mdt
= 4_];‘0 {Gp[— YL S S S T: + 50T ]g, tdu,(to—1)dr
| 0290 T2 — 2ot — 2o T 12 [ Ly (1, 7]
r r r r° a® a
+ F2;10,,,—+3/lomk—+ 3/10,,,,3—— 12 rﬂ——][ 1 Auk(to ——)]
7 7 b b
T L IR r
+ )o“ - +2p —dw{ &y — —
rt a® a
+ p«?mk—%ﬂtém% —2#%][%_414(% — %)]}vl : (15)
The integration of the third term gives us
oo m 1 r/b
- wp(t) ey, (v, dt = —4— - Oml. +3 y tdry,(t, — r)dr
— ,—;-p r/a

Pty 1 _L]
+[ 73 ][ a’ A‘“<t° a)
~ 1 r.r 1
+[° o rsk][b" Ar“(“ b)]}”" (16)

To obtain a formula for an infinite medium, we assume that S recedes
to infinity requiring at the same time that Q is not at infinity and ¥,
has no points at infinity either. Then in the fourth term of the right
hand member of equation (13) we have dS=7d?2, where d? denotes the
solid angle subtended by dS at @, and integration gives following terms :

S: az-u(to—r)d- 0(r3),
u(t—L)-007, (17)

u’(to —%)-O(r) ,

where ¢ represents a or b, If we make r sufficiently large, contributions
from these terms can be neglected; we may assume some small dis-
sipation.
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Thus we can compute displacement components at an arbitrary point
@ in an infinite medium as a function of ¢, if the possible discontinuities
in displacement components and in stress components are given on the
dislocation surface Y, as functions of ¢.

For the sake of simplicity we define ¢,(t) and ¢,.(t) as follows,

ult) = S:dt' S:lduk(t”)dt"
sbkz(t):S:dt' S:'Ar“(t“)dt“ . }

This type of integral is used after V. I. Keylis-Borok (1950). The ex-
pression of u,(Q, t) may then be written

wn(@, t):SST’"dZ —“U"LdZ , ~ (19)

where we write ¢ for ¢, in equations (15) and (16),

v )

~+ 6/1[ 5“-——3mk— 5zm +5Tk’rl j":lsb"‘ (t _l)_l% (t— 1)]

(18)

re a a b b
290 T — g0 T 20, T 12p T [ g (1 7]
B r r r 7 o a
+ szaﬂ—ummk— 80, e — 120 [ L gy (1 7))
| r3 rd b? b
| 20 Le 2ptn0n [ L gir(s )]
L r rt a? a
i r r P m 1 ,.., r
+ _#Bmk’r_; +ﬂ81m/r_: _2/1—’01”1——][—[)3* &1 (t _T>]}Vl , (20)

and

0o —oud e - ) e 2)]
R e Gl
[ L (o))

- T e
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In order to clear up the nature of displacement field u.(Q, t) we
turn back to the formula of Love (1927). When a body force in the
positive x,-direction e,x(t) with time dependence in the form x(¢) is ap-
plied in P in an infinite medium, the m-component of the displacement
field in @, Up[¢], may be expressed as follows,

Uz,"w]:zlr;{(%)'”§”"rx<t—r>dr

rla

R G G Pl A B Gl
=gl o) (5]

NENERRSY Fo S es)

NESN (t__>] N kUGl

=ULly], | (22)
where ¢(t) is defined as

gty=\.at | uerar . (23)

In equation (22) we take a diverging wave as in ordinary circumstances.

From Up[¢] we can compute a displacement field 7’7 [¢] defined by
such combinations of derivatives of UL[¢"] with respect to x,’s, the co-
ordinates of @, as follows,

m[¢]=—20u,(Unl¢D)"— (U] — (U L9 =TT [¢] (24)
We obtain
Tals]

1 { [ T T~ Ti g TilTm ][ ( r> ( r)]
== {6yl —6—"—0m———0jp——+5L L2 | Mt ——)—Jlt——
4zp a o T O N 77 i a ¢ b
+ 6#[_§klfi_5mkﬂ.—6lm L +51M][l ¢'(t _f_>_l¢,’<t _1)]
rt r rt re a a b b

+[<z— R L B e e ]
3 73 s rd a? a
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[ 200 T2 B0 488 T —12u T | Ly 7))

g b b
s ][%*""’(*9]
+[#Bmk—+p&m—— 2pTiTn ][Tls—sb”'(t-%)]}- (25)

The displacement fields U%' are usually referred to as nuclei of strain;
for k=1 we have a double force without moment, for k+1 it is a double
force with moment; for example from the definition

Ust=lim{ LUy, + dny )~
A,

m xl? e

4370 o ( )}

we observe that U} is considered as the m-component of the displace-
ment field in @ due to a double force without moment in P (Fig. 2).
It follows that T'7[¢] may be considered

as the displacement field due to some U
combination of nuclei of strain; in > ---- ™
the case k=1l that is a center of ax u”’
dilatation which is a combination of <> < - "
three equal, mutually perpendicular P(&) Q)

double forces without moment and an
additional double force without moment
in the Fk-direction, A-nucleus after
Steketee ; in the case k1 it is a com-
bination of two coplanar mutually per-
pendicular double forces with moment, B-nucleus after Steketee. If we
denote a center of dilatation by a sphere after Steketee, the two com-
binations may be schematically represented as in Fig. 8.

Here we show that nucleus B is equivalent to a combination of two
mutually perpendicular double forces without moment (Fig. 4). If we
denote by o and v two directions perpendicular to one another, and by
« the direction which makes an angle z/4 with ¢ and v, by £ the direc-
tion which makes an angle 3z/4 with o and an angle z/4 with v, either
of which is in the plane made by o« and » (Fig. 4), we obtain the fol-
lowing equation which means that the two nuclei shown in Fig. 4 are
the same.

Fig. 2. U3}, is the displacement field
in @ due to a body force in the x;-direc-
tion in P. UL' is the displacement field
in @ due to a double force in P.

—(Ug»+Uyo)y=—U%*+U8®, (26)
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(1) (22) (33)
2 /H:-" /25—2
|/ [} ]
(23) (31) (12)

Fig. 3. (kl) is a combination of double forces in P which generates the dis-
placement field T in Q. (11), (22) and (33) are A-nuclei; (23), (31) and (12) are

B-unclei.

v v where UZ, for exémple, represents as
A & before the m-component of the dis-
\ /' placement field in @, when a body force
T / \ c 7(t) is applied in the «-direction in P;
U=%= reprensents the directional deri-
vative of U% in @ along the «-direc-

Fig. 4. Equivalent two nuclei. tion, that is,

1 . 1 .
Uso=—= (UL +U%)= (Ug +U+ U3+ UL") .
3 ( +U%”) 2( + U3+ +U%7)

From equations (19), (20), (21), (22) and (25) we observe that u,(Q, t)
in (19) may also be written in the form,

1@, = | Tal1udS + | [UEl—guluds . (7)

It follows that the displacement components u,(Q, t) in equation (19)
may be considered as the resultant effect of a distribution of strain
nuclei of which strengthes change with time in just the same manner
as du, over >, and a distribution of single foreces of which strengthes
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change with time in just the same manner as —4r, over . It is
natural that the effect of discontinuity in stress can be desecribed by a
single force. With the aid of equations (9) and (12) we have

- Amvde = (Tlsz?L +T1:1Vt_)dz ’

where the right hand side can be considered as the k-component of the
vector sum of the forces exerted across d>* and d3,~ from the out-
side of the body (or by the inner portion surrounded by > and ).
Hence as we can see from (18) and the equation

U;':‘[—sﬁkz]vde = Ukm[—sl’kzvde] ’

the second term of the right hand member of (27) is interpreted as a dis-
placement component due to a distribution of single forces exerted across
2." and 3>~ from the outside of the body (or
by the inner portion surrounded by S+ and
SO )M

In order to clarify the meaning of equa- .
tion (27) further, we consider a surface 4—?
element d3 of >, with the normal in the =, .
direction (Fig.5). Its contribution to the yig. 5. Surface element d3;

3

in P with the normal in the xs-

displacement in @ is direction.
Aun(Q, ) ={TE[L ]+ T2l + Tl ]} dS

The double forces and single forces equivalent to Au, and —dry, in P
on d, are shown in Fig. 6. The contribution of discontinuty in dis-
placement in P 4u,(P, t) to the displacement field in Q is the same as
that of a strain nucleus in P, (k8), which varies its strength with time
in the same manner as 4u,(P, t). The contribution of discontinuity in
stress in P Az, (P, t) to the displacement field in Q is the same as that
of a single force in P, (k), which varies its strength with time in the
same manner as —dr(P, ¢). It is clear that 4u, and 4u,, which are in
directions perpendicular to the normal, may be called the slip, while 4u,
represents the discontinuity in displacement of the two faces d>;* and-
d>.,” in the direction of their normal. The effect of the slip can be des-
cribed by nuclei of type B while the effect of normal discontinuity is
described by a nucleus A. ,

For some purposes it is convenient to express the time factor of




478 T. MARUYAMA

w
o
o

(13) (23) (33)

(1. (2) (3)

Fig. 6. Nucleus (k3) in P varies its strength with time in just the same
manner as 4dui(P, t). Single force (k) in P varies its strength with time in
just the same manner as —dz3(P, t).

the displacement field in the form exp (iwt). Let the Fourier transform-
of ¥(t) be denoted as ¥(w), then we have by definition

7@ =|" upeat,
- (29)
X(t)=2—:g_m2(w)e‘“‘da) .

The factor which appears in the form of integral in equation (22), by
the aid of (29), can be written as

r/b 1 o 1 . .
S TX(t—‘Z')d’Z": S Z(a))dw{___q_[ezw(t—r/a) _euo(t-r/b)]}
2 - o

r/a T

+.L§°° 7(w)da){i[le‘m”—ﬂ“)_ieiw(t—-r/b)]} ,
2 )" twla b

so that as to ¢(¢) in (23) we may take the following integral

T J—

it follows that
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got) =\ oy Aw)edo, (30)
7T J—=

-where ¢™(t) denotes n-th derivative of ¢(f) with respect to ¢ (=0, 1,
2,--+). In order to write our expressions in compact forms we introduce
spherical Hankel function of the second kind A{”(p) defined as

h2(p) =1/ 2” H,2x(p) 31)
P

‘where H{,, is Hankel function of the second kind. For a few integral
values of the order » we have

W) =(L)e

L A
o=( p-l—p)e | )

hé”(p)=(—i—3 1 +3L'3>e—ip

o

PP

hi (0)= (—1——6—2 ~15-2 4 1514)6—“’ :
| poe ©op

Let the Fourier transform of Au,(P, t) be denoted as 4i, (P, w) or simply
dit(w), and the Fourier transform of 4, (P, t) as 47,(P, ) or simply
.dz—-kl(ﬂ)), that iS,

du(w)= gw Auk(t)e'-iwtdt , Au,(t) :%g“ Aﬁk(w)eiwtdw ,
oo o
(33)
Lry(w) = S dry(t)e~*dt ,  dry(t) :%S L) dw .
e )

Replacing ¥(w) in equation (30) by i (w) or by 4r,.(w) and using (32)
and (33), equation (19) becomes

Un(@Q, ) =%§ixei“’tdwg SdﬁkTﬁ(w)vle

—éﬁl@*w‘dwﬂ Un(w) fidS, (34)

T

‘where
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u(w)—4—;{ah‘ (ar) (ﬁ‘%)(““? )_<(‘.2/5)#>(6""'% +0’”_o~k_>]

2+2u r i+2p
- @B 5 Tms T s T (-2 _W”m]
+a’h (a’r)[ <} #)<0L1T O ” +O0im ” )'*‘ 2+2/[> 3
(o) 3 0.2
+ﬁoh(2)(ﬁ/r) E( “l"_!_ +5mk& +6lm£>_2m:|} » (35)
5 r r r r?
and
Ur@) =] (= 5 e )16 ) (= s T2 i) |
(= 2o nirim + (Fous— To )h;”(ﬂr) I (36)
and where
Py P (37)
a b

The meaning of T'#(w) and UT(w) here defined are comprehensible owing
to (22), (23) and (24). By putting

2(t)=e""
in (22), (23) and (24), we have
TH¢]=T ()™
and
Url¢]l=Ul(w)e™" .

Hence T7i(w)erp(iwt) is the m-component of the displacement field in
Q due to such dynamic double forces as shown in Fig. 3 the time de-
pendence of which is exp(iwt) in P, while Up(w)exp(iwt) is the m-
component of the displacement field in Q due to a single dynamic force
in the k-direction the time dependence of which is exp(iwt) in P.

The formulae for static cases will be easily obtained from (19), (20)
and (21). Here, for form’s sake, by tending » in (35) and (36) to zero
we find formulae for static cases. In view of the Laurent expansions of
the spherical Hankel functions,
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B () =i+ 1=t -

B ()= 40+ T +p -

B (p)=8ip™>+ 0+ Lip+ 0+ Lip -
8

hé”(p)=15ip"‘+0+%ip’z+0+%’i+0+ e

we obtain, as w— 0,

O

47 \\ 142 A+-2n/ P
and
m 1 A+3p 1 Ap \ rT
Uz =~—{(— Omie— (—— —L} . 39
FO)=5 Hzﬂ) G ra) (39)

Interchanging the order of integration in (34), for static cases we can
write in the form

um(Q)=ggdukT}:‘luld 5 —SSU;;‘Arklule , (40)

where T% is T7(0) in (88) and Uy is Ur(0) in (89). In equation (40)
T7 represents the m-component of the displacement field in @ due to
such combinations of static double forces as shown in Fig. 8 in P, while
U7 represents the m-component of the displacement field in @ due to a
single static force in the k-direction in P. The first term in the right
hand side of equation (40) is the same as shown in Steketee (1958 a, b).

Remarks.

We have seen that the displacement field due to a dynamic dislocation
is exactly equivalent to that due to a distribution of some combinations
of dynamic double forces in the absence of the dislocation surface, if
we define a dislocation as discontinuities in displacement components or
stress components across a dislocation surface. In this way for a mov-
ing dislocation we have a train of the above-stated elementary force
systems distributed on the whole surface, each of which varies its
strength with time in the form of an approximate step function



482 T. MARUYAMA

of which outset shifts from point to point in accordance with the
velocity and the direction of propagation of the dislocation.

As for the discontinuities in components of the stress tensor, there
are some occasions when we are justified in neglecting them. We imagine
that it is under uniform pressure or uniform tension between 3\* and 3.~ ;
the former is realized by inserting some fluid between them. In these
cases the normal stress in P* and the normal stress in P~ are of equal
magnitude and of opposite direction and the tangential stresses are zero,
therefore we have 4r,;=0, since the coordinate system of reference (con-
cerning independent variables in the surface integrations) is taken natu-
rally as the body-fixed coordinate system which may be fixed in the
body in the initial moment. Besides we can imagine the following oc-
casion, that is, surfaces 3.+ and 3~ are deformed as they are in contact
with each other. Then an element of 3} exerts a force on the con-
tacting element of >~ and vice versa, where two forces should be of
equal magnitude and of opposite direction. Although the point P+ is
situated in the point P~ at time ¢=0, they are in different positions
at arbitrary time ¢; d>.* and d>,~ are not always in contact with each
other. However, if the relative displacement is not large, we have the
relation

i d> = —tydS, or 4, =0. (41)

Thus, if 3% and >~ are deformed in any way, in some situations we
can reasonably assume the relation (41) chiefly on the basis of the law
of action and reaction, and the second terms of the right hand side of
equations (19), (27), (28), (34) and (40) will vanish.

So far as the theory of ideal elasticity is concerned, the displace-
ment field associated with a dislocation over 3 is independent of the
initial state of stress and strain owing to the linearity of the equations
of motion. Therefore if an earthquake is the result of the vanishing of
accumulated strains along certain surfaces, since our equations will be
applicable to the discontinuities in displacement across the surfaces
which will be caused under those circumstances, our equations might
be important in the study of earthquakes.

The formulae (19) and (34) are equations applicable to the most
general dislocations in which 4u, (P, {) may vary from point to point
along >, and may vary with time ¢t. V.I. Keylis-Borok (1961) pointed
out that in a model obtained by analogy with dislocation theory there
is a peculiar distribution of pre-faulting stress which can not correspond
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to a real earthquake source. However, this difficulty will be overcome
by taking 4u, as a function of coordinates, which corresponds to a Somi-
gliana dislocation in static cases (Steketee 1958b), and by taking Au,
sufficiently small in the neighborhood of circumference of >, while Keylis-
Borok calculated the stress due to a simple type of discontinuity in wu,,
4u,=const. along >}, which corresponds to a special case of Volterra dis-
location in static cases (Steketee 1958Db).

According to dislocation theory it is possible to suppose the nature
of the focus of an earthquake, if we can accout for seismic observations
on the surface of the earth either by an A-nucleus or a- B-nucleus in an
_infinite elastic medium with due regards to the effects which actual seismic
waves will suffer within and on the earth’s crust or mantle.

B-nucleus after Steketee is the well-known force system type II,
and as we have seen above, it corresponds to a slip fault.

The normal discontinuty in displacement to which a nucleus of type
A after Steketee corresponds might appear in the actual earth, if the
voluminal change of material along a certain surface, which might be
caused by the phase change of the focal substance, should occur indeed
in the earthquake focus. Or, as Steketee (1958 b) suggests, if the magma
suddenly forces itself into cracks and crevasses in the wall of a cavity
in the earth, the source might be essentially described by dynamic A-
nuclei. However, if the voluminal change might not be the major feature
of the actual earthquake, a single A-nucleus will not represent the focus.

For the earthquake mechanism type I, no simple dislocation model
is fit and Knopoff and Gilbert (1960) have suggested a configuration of
two dislocation surfaces parallel to one another, the dislocations on which
are of opposite sign. If one sticks to a single surface of elastic dislo-
cation in an infinite medium, type I must be interpreted by two forces
of opposite direction located at some distance on the surface.

Voluminal models of the earthquake focus have been studied usually
by making use of the solution of equation of motion in terms of spherical
harmonics. However, dislocation theory also provides some plain means
to voluminal models. The extention of a voluminal source in one direc-
tion may be considered as a positive normal discontinuity in dislocation
theory which corresponds to an A-nucleus in the same direction, while
the contraction in another direction may be considered as a negative
normal discontinuity which corresponds to an A-nucleus of opposite sign
in the latter direction. Therefore in some cases we shall be able to get
an equivalent representation of a voluminal model by taking more than
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one dislocation surfaces and by superposing the A-nuclei in different
directions, the strengthes of which may vary from point to point and with
time.

Here we consider an example of the force system corresponding to
a focus of which volume suffers little change. If a small voluminal
source suffers an extention in one direction, e. g. in the z,-direction, and
contractions in two directions at right angles to the former, e. g. in the
x,- and x,-directions, and if the latter two mutually perpendicular con-
tractions are of equal magnitude, the corresponding equivalent force
system can be obtained by superposing a positive nucleus as (33) in Fig.
3 and two negative nuclei of equal strength in the x,- and w.,-directions.

The resultant force system is a combination

of a center of compression and a double force

without moment. If we denote by a sphere

of broken line a center of compression, the

y 2 combination may be schematically repre-

' - 1’ sented as in Fig. 7. This force system makes

the conical type distribution of initial motions

which has been detected and discussed by

Japanese seismologists since 1931 (e. g. Ishi-

moto (1932), Kawasumi (1933, 1934), a brief

review in Mikumo (1959)). Ishimoto (1932) considered this model as the

evidence of his ‘““magma intrusion theory’ or ‘ plutonic earthquake

theory ” of the earthquake occurrence, and it is the Model A of Kawa-

sumi (1933, 1934) (Kawasumi’s Model B agrees with B-nucleus after
Steketee).

In the same way B-nucleus in dislocation theory can be considered
from the point of a voluminal model. Since the superposition of a center
of dilatation and a center of compression of equal strength has no effect,
it is clear that a nucleus of type B corresponds to a small source which
suffers no voluminal change but suffers an extention in one direction
and a contraction of equal magnitude in another direction perpendicular
to the former.

Fig. 7. Nucleus correspond-
ing to Ishimoto’s model.
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