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Based on the linear theory, the decay with distance of the first
wave of a tsunami in an infinite sea of constant depth is discussed
generally. In particular, for the case of a uniform source distributed
in a rectangular area (horizontal dimension: major axis 2e, minor
axis 2b) the decay is approximately proportional to the following
power of the distance 7, except for a distance close to the source
area (for comparison, the case of one dimensional propagation is
also shown).

Initial surface elevation or .

Nature of the sudden bottom deformation Surface impulse
the source

Pa>3 Pa<l pu>3 Ppa<l
One-dimensional
propagation 0 —1/3 —1/3 —2/3
Two-dimensional
propagation —2/3 -1 -1 —4/3

pe=(6~Hlg/t)'/*(a/H), t: time, H: depth, g:acceleration of gravity.
For a wave in the direction of the minor axis of the source, a should
be replaced by &.

The ratio of the leading wave heights in the directions of the
major and the minor axes varies from b/a to 1 depending on the
values of p. and ps, so that the directivity of the leading wave
height due to the elongated source distribution disappears at a very
long distance from the source area. The time interval between the
leading wave crest and the second one increases in proportion to #1/3.
The present theory can also be extended to the dispersive wave
train in the later phases of a tsunami for an arbitrary source
distribution.

1. Introduction

Many theoretical discussions have been advanced, mainly in Japan,
to explain the generation of tsunami in water of uniform depth when
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a portion of the bottom is dislocated vertically.”» Most of these linear
theories are, however, confined to a rather limited scope of wave
properties because of mathematical difficulties confronted in the elucida-
tion of formal solutions. Thus, apart from the numerical approach
adopted by several authors,”*»:® common procedures utilized are either
the so-called long wave approximation or, at the other limit, the deep
water wave approximation, and the analytical discussions including the
intermediate range of wave lengths are quite limited because of the
transcendental character of the dispersion curve. For a long distance
from the source, however, the behavior of a leading wave can be handled
analytically by means of an integral analogous to the Airy integral,”-®.9.10
where the approximation involved is essentially similar to the one used
to derive the wave equation near the wave front including the effect
of curvature of the water surface, and the general characteristies of
waves can be estimated from the ansalysis of this equation.1?
However, there seems to be some misunderstanding of the behavior of
the leading wave at a long distance from the source. For example,
the discussions of the first wave of a tsunami given by Kranzer and
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Keller (1959),” and Takahasi (1961) are not valid because of their
incorrect application of the ordinary method of the stationary phase up
to the wave where the Airy Integral should be considered, and also
Van Dorn’s arguments™ on the amplitude decay of the maximum wave
with distance is not accepted as evidence of good agreement between
theory and observation because he did not compare the corresponding
observed wave at different locations for which the theory predicts the
decay law, and besides no distinction was made of the theoretical results
for the one-dimensional and two-dimensional dispersion except for the
factor 2. Similar deficiency of understanding is obvious in Wilson’s dis-
cussion’ of the amplitude decay and period increase of the leading wave.

From a general point of view, this kind of problem is a part of the
general theory related to the Cauchy-Poisson wave theory concerning
the generation and propagation of water waves, and the fundamental
properties of linear waves are considered to be well known. However,
it seems to be worthwhile to look into the problem anew with expression
making use of a time dependent Green’s function. By this approach,
the dispersive characteristics of generated waves and their relation to
the nature of the source can be clearly understood.

In particular, this paper deals with the dependence of the maximum
elevation (or depression) of the water surface on the dimension of a
source just after the instantaneous bottom deformation, the distinction
between the one and two dimensional decay of the leading wave height
at a long distance ‘from the source, and the directional difference of
wave height generated by a non-axially symmetric wave source. The
limitation of the long wave approximation for the leading wave is also
discussed. Finally, the method is extended to treat the dispersive wave
train in the later phases of a tsunami for an arbitrary source distribution.

2. Fundamental equations and a time-dependent Green’s fuction

Agsume incompressible water of constant depth H and take origin
of the Cartesian co-ordinate («, ¥, 2') at the undisturbed free surface
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15) W.G. VAN DORN, “Some characteristics of surface gravity waves in the sea
produced by nuclear explosions,” J. Geophys. Res., 66 (1961), 3845-3862.
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17) J.J. STOKER, Water waves (Interscience Publishers Inc., New York, 1957), 569.
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with the vertical axis 2z’ upwards. The irrotational motion in homo-
geneous water may be expressed by means of a velocity potential ¢
where the velocity vector V' is given by V'=grad ¢'. For convenience
in the later discussions, physical quantities are written in nondimensional
form unless otherwise noted by putting the independent variables as
follows:

v=«'|H, y=y|/H, and t=tVg/H,
(quantities with prime are to be the original form)

where ¢ is time and g is the acceleration due to gravity. The non-
dimensional form of the derived quantities are:

surface elevation: 7=7|H

velocity : V=V |[VgH
potential D e=¢'|(HV ¢H)
pressure: 2 p=(p'|p)(gH)

where p is density of water, p’' is the anomaly of the surface atmos-
pheric pressure from the mean value, and the vertical component of V
is written as w.

Within the limit of linear approximation (deformations z° at the
surface and at the bottom are assumed small compared with the wave
length 2" and the depth of water H together with the condition z'A*/H*<1,
so that the boundary conditions are satisfied at the undisturbed surfaces),
the kinematic and dynamic conditions at the free surface are,

D= » (1)
for 2=0,

¢=—7—D, (2)
and the bottom condition is,
¢,=wp, forz=-1, (3)

where w, is the assumed bottom velocity corresponding to the bottom
deformation and the partial differentiations are abbreviated by letter
subseripts of the respective variables.

To find a velocity potential ¢ satisfying (1), (2), and (3) together
with suitable initial conditions, it is advantageous to derive a time-
dependent Green’s function G which should be a harmanic function in
the variable (z, ¥, 2) with a singularity of appropriate character at a
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certain point (%, %, 2,) introduced at the time t=r. Hence,
G=G (2, Yo, 20} 7|2, Y,y 25 T)
and G should be a solution of the Laplace e'quation,
F*G=0, for 0>z>-1, t>r, (4)
satisfying the free surface condition
G,;+G,=0, for z=0, (5)
and a bottom condition
G,=0, for z=-1. (6)

At z, y—oo, we require G, G,, and their first derivatives with respect
to space coordinates to be uniformly bounded at any given time ¢. At
the point (x,, ¥, 2,) we require (G—1/R) to be bounded where R?
=(@—2,)V+ Y —Y)+(2—2). As initial conditions at the time t=r, we
assume

G=G,=0, for 2z=0. (7)

These conditions determine G uniquely.

Following the similar line described by Stoker'®, the Green’s function
for the case of three dimensional motion in water of finite depth can
be derived: for 0>z, z,>—1,

G(we, Yo, 203 7l, ¥y, 2; )

- S“M[sinh m{1— |2 — 2]} —sinh m{1+(z+20)}
o cosh m
-}-2‘2— {1— cosy(t—7)} ™ __ cosh m(1+2) cosh m(1+ zo)]dm, (8)
e coshm

where 7=(x—2,)'+(¥y—¥,)* and P’=mtanhm. It is evident from (8)
that G is symmetric with respect to (x,, ¥, 2,) and (z, ¥, 2,) and also ¢
and r, 7. e.:

G0, Yoy 205 1%, Y, 25 O)=G(w, Y, 2; |0, Yo, 20} V=G (%0, Yo, 20} t|%, Y, ¥; 7) .

Making use of the Green’s formula together with the above Green’s
function, we may write

18) loc. cit., 17) 187-196.
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ow, v, 7 )= (GG midSi— L[| (Gt .6.).penidS:

Az R 4; 5

(9)
where dS,=dx,dy, and integral on the lateral boundary in water vanishes
because of the condition imposed on G.

The integration of (9) with respect to = from 0 to ¢ and the sub-
stitution of the conditions (1), (2), (6), (6), and (7) for ¢ and G yield,

¢, ¥, z; )—¢(®, ¥, 2; 0)
== L I[ Ge=Gneo 4| pGctc .ot %S“;(G%T)zobldrd&.

4= T

(10)

The first integral shows the contribution from the surface condition
and the second one from the bottom condition.
At the surface z=0, (8) is simplified to give

G(xo, Yo, 205 7lv, Y, 0; 1)
(=2 o Jo(mT)
=\ Z{1— cosy(t—r7)}mcosh m(1+z,) =2 "“dm, (11)
oy cosh m

and since the surface elevation 7 is given by (2), the substitution of
(10) into (2) yields

G+p)= ||E+ R s, (12)
‘s
where
Fl:(nggzo—G—.tr/)-.=0; ZOZO ’ Z:O ’ (13)
and
Fo= | Gt (0G0 | 14
or alternately,
F2:—Stp‘=G~.td7_(pG1t)'-=0 ; 2=0, 2=0, (15)
0
and
F=| G, ds, (16)
0 Pl

or
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t
Fo=—{Gupde=@.)eess  m=—1, 2=0. 17)
It is clear that (138) is the contribution of the initial velocity and
elevation of water at the surface, (14) or (15) is the contribution of the
the surface pressure, and (16) or (17) is the contribution from the
bottom deformation.

The expression (12) together with (13) to (17) is quite general and,
in essence, represents the application of the principle of superposition
in a linear system starting from a point source solution. Since G can be
computed without regard to external conditions at the source, it may
be quite suitable for numerical computation.

For certain special source conditions with respect to =, (13) to (17)
can be simplified as follows with the aid of the Dirac’s Delta function
3(2_)19): :

(a) water is initially at rest with initial elevation Hj;

Flz_HSGxt ’ (7:0 ) z=0 ’ 20:0) (18)

(b) water is initially at rest and applied pressure at the surface
is impulsive at r=0%, namely p=1I(z);

F2=ISG1W ’ (T=0 ’ 2=0 ’ z0=0) (19)

(¢) water is initially at rest and the deformation of the bottom is

completed instantaneously at r=0* with the total deformation H,,
namely w;=H(z);

.Faz'_HBGt-:) (T=0, ZZO, z‘):_]‘) (20)

(d) water is initially at rest and uniform velocity of bottom defor-
mation is given for a time interval 0<r<r*, with the total deformation
Hj, namely (wz).=Hy{0(0)—a(z*)}/*;

F=H{G(r=0)—G(r=t"}/c*, (=0, z=-—1) (21)

(e) water is initially at rest and impulsive bottom motion is given
at r=0*" with no net deformation of the bottom after >0, namely

So wpde=I,5(c) ,

19) I1.N. SNEDDON, Fourier Transform (McGraw-Hill Book Co., Inc., New York 1951),
542,
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where I, is the maximum deformation of the bottom;
After slight modification of (17), we have

FSZIBGH: ’ (T:O ’ z2=0 ) zo=_1) . (22)

It may be possible to represent other kinds of source conditions in
simplified forms too; for example, an atmospheric pressure disturbance
such as a pressure jump line moving with the constant velocity can be
simplified, but further discussions will not be attempted here.

The comparison of (a) to (e) shows that the instantaneous deforma-
tion of the bottom (c) is analogous to a given initial elevation (a), and the
bottom impulse (e) can be treated as a surface pressure impulse (b).
The difference lies only in the evaluation of the Green’s function G at
the surface (2,=0) or at the bottom (z,=—1) which amounts to the
decrease of high frequency components by a factor 1/coshm for the
bottom source. As will be shown later in the evaluation of the Green’s
function, the leading wave form for a large distance from the source
is determined mainly by component waves of very low frequencies 7y
(r<r*<1) so that 1/coshm is almost one and (a) and (c¢); (d) and (e)
become identical and furthermore, (d) is reduced to (c) provided r*r*«1.

For simplicity, we write,

o, v, =] ||H.Pas,, (23)
([0, o
gsgf-lr,,Razso , (25)
§:§HB{S(r=0>—S(r=r*>}/r*dso, (26)

for the cases of initial elevation Hj, initial impulse I5, sudden elevation
of the bottom H,, uniform velocity of the bottom deformation H,l*,
respectively. The functions P, @, R, and S are considered to be water
waves generated by point sources of the particular characters at =0
and are given by evaluating the corresponding form of the Green’s
function (11) as follows:

p=1
27

rcos rt-mJdy(mrydm , 27
0
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Q="r,, (28)

R=S,, (29)

Szzir sin yt - mdy(mF)/(y cosh m)dm , (30)
T Jo

where 7F=(x—2,)*+(¥y—1¥,)’, and for S(r=r*), ¢t should be replaced by
H=t—1*).

The central problem of the wave generation theory in the present
formulation is to evaluate P, Q, R, and S as well as possible. Now,
returning from (23) to (26), it is easy to show that these expressions
comform to the usual expressions derived on the basis of the Fourier-
Bessel transform of a potential function and source conditions from the
beginning (Appendix I). The advantage of the present formulation may
be seen in the separation of the source distribution and the wave
dispersion characteristics of the medium.

The Green’s function G* in the two-dimensional motion (zx, z plane)
can be derived essentially by the similar method in which the singularity
imposed on a fluid should be of the type such as (G*—InR*) to be
bounded. In (8), Jy(m7) is then replaced by (cos mZ)/m where Z*=(x—
%,)’. In the application of the Green’s formula in (9), the line integral
should be taken instead of the surface integral and 1/(4n) is replaced
by 1/(27). The subsequent deduction is the same and the result can be
expressed by

77(961 t): i

SHSP*de , 31)
XISQ*de : (32)
SHBR*de , (33)
s =0~ S = rdas, (34)
where ’
pP* =lrcos rt-cos mxdm , (35)
T Jo

Q*=P} , (36)
R*=S;, 37)
S* =lr sin rt-cos mZ/(y cosh m)dm , (38)

T Jo .
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and for S*(r=¢*), t should be replaced by #(=t—z*). It is remarked
that (35) to (88) can also be derived from (27) to (30) by integration
with respect to 9, from —o to + oo with the aid of a formula,

glJo(mV(w—fco)”r(y—yo)ﬂ) dyo=:7 cos M(T— %) -

3. Surface elevation at the initial time (t—0) for the case
of a sudden deformation of the bottom

For t—0, (29) may be witten as
R= (2,—:)—‘SmmJo(m1‘~)/cosh mdm .
0

The expansion of 1/coshm in terms of exponential functions and the
integration term by term yield,

R=(1/) i (—1)"@n-+1){(2n+1)y+7)5 . (39)

In (39), # can be interpreted as the amount of reflection of the source
disturbance at the surface and at the bottom, and the summation of

2
(x) r

Fig. 1. The initial surface displacement due to a point source at the bottom.
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reflection for infinitely many times contributes to the total deformation
of the surface.
For one dimensional waves, (837) becomes,

R*=(2/7r)g‘,’(—-1)"(27’&-&-1){(2%4—1)2—l—952}”1 , (t—0). (40)

The initial surface elevations (40) and (39) due to a point source in
one and two dimensional waves are shown in Fig. 1, which indicates
that the elevation is extended over the distance comparable to the depth
of water, and no clear-cut wave front is formed.

Taking the origin of the polar-coordinate at the center of an axially
symmetric bottom deformation H, the elevation of the water surface
given by (25) at t=0%, =0 becomes

7=2 3 (—1y"(2n-+1) rHB(ro)ro{(Zn—l-1)"’+T§}‘3’2dr0, (t=0%, r=0) . (41)

n=0 0

For one dimensional waves, the combination of (33) and (40) gives
77=(2/7T)i (—1)"(2n+1) Sm Hy(x){2n+1y +ai}*d, , (6=0%, 2=0). (42)
n=0 ——c0

Particular examples are given below:
a) The uniform deformation of the circular area of the bottom;

Hy=const . for <r<a,

=0 for P> . (43)
(41) becomes
’7/H3=2§ (=1 [1—{1+a*/@n+1)y}"], (44)
and for very small values of a(a<1),
7/ Hy=a? z:i (—1)"2n+1)"*~0.924" .
b) The parabolic deformation of the circular area of the bottom;
Hy=H {1—(r,/a)y} for 0<r,<a, (45)

=0 for To>0a .
(41) becomes
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9/Hp=7|Hy—7.[Hp (46)
where 7,/H, is identical to (44) and

7 [Hp=2 i‘,o(— D{Cn+1)/ay[{1+a/@Cn+ 1)} +{1+a?/(2n+1)}2—2] .
- (47)
For very small values of a (a<1),

7/”2/HB:(1/2)771/H0 ’
so that
7/ Hy~0.46a° .

¢) Theuniform deformation of the bottom (one dimensional propagation);

Hy=const. for [/<a,)

48
=0 for |z >a f (48)

(42) becomes
7/H =(4/z)%(—1)”t&n"{a/(2n+1)} ) (49)
and for small values of a(a<1),

7IHy=(4a2) 5 (~1y@n+1) " =a.

The initial elevation of water surface at the center of the bottom
deformation, (44), (46) and (49), is shown in Fig. 2, from which it is

n
T +
/He t=0 r=o0
| O
] N
N
[<3
] \Q/ ’Q\
05 &
J
\
T T T 1 = T T T 11 T T T T é T T T T 'ﬁ
: 4
a

Fig. 2. The initial surface displacement at the center of the bottom
deformation: One-dimensional case (1)-(c), two-dimensional case (2a)-(a),
(2b)-(b).
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found that the elevation of the surface at the center reaches the
height of the bottom deformation if the radius of the deformation is
about 3 to 4 times the depth of water. On the other hand, for small
scale deformation the surface elevation is proportional to the volume of
the bottom deformation,

4. Approximate evaluation of the Green’s function

a) Shallow water waves (m<1, y=m):

In shallow water, it is usual to adopt the long wave approximation
which assumes that the pressure in water is hydrostatic. In the present
formulation, the assumption corresponding to the long wave is m<«1
and y=m,

The evalution of the Green’s function for this case is rather easy
and the results are,

S =(27r)‘1r sin mtJ,(m7)dm

@y (E =)0, for t>F, (50)
:{0, for t<7,
and
P=R=S,; Q=P,=S,. GY)

If we shart from the beginning on the assumption of a long wave
by expanding ¢ in power series of z and retaining the first order terms
only, we arrive at a two dimensional long wave equation with respect
to &,

Cu—Vial=w—Dy , (52)

where w is the bottom velocity, ¢{=»+p, and 72,=0%0x*+08%0y. It
should be noticed that S given by (50), where ¢ is replaced by #(=t—1),
is nothing but a Green’s function of the wave equation (52) and can
be used with advantage for the studies of storm surges® and tsunamis®.
Near the wave front for a long distance from the source, we may

20) K. KAJIURA, “A theoretical and empirical study of storm induced water level
anomalies,” Tech. Report, Ref. 59-238F, Dep’t of Ocn. and Met., Texas A and M, (1959),
97.

21) L.N. SRETENSKY and A.S. STAVROVSKY, “Computation of the height of tsunami
waves along the coast,” Trans. Marine Hydro. Inst., Acad. Sci. USSR, 24 (1961), 23-43.
(Transl. scripta technica, inc., for the A.G.U.)
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approximate

P — 7 ~2F(t—7)
so that (50) and (51) are reduced to

S=2z)F 20t —F), t>7F, (53)
P=R=—2=)"'7F20t—7)}", t>F, (54)

and
Q=(2z)8F 2 2(t—7)) ", t>F. (55)

These expressions show that, for a fixed value of (t—7), P, @, R, and
S are all proportional to 7% irrespective of the source characteristics
and at the front, t=7, the degree of singularity increases from S to P
or B and P to Q. However, for a long distance from the source, the
usual long wave approximation presented here is not valid near the
wave front because the curvature of the water surface plays a role in
the dispersion. In other words, it is necessary to assume y=m—m?/6
in the neighborhood of 7/t~1 and ¢>1.

For one dimensional waves, the same long wave assumption gives

P* :(1/,—.)rcos mt cos mTdm
=(1/2){o(t +Z)+6(t —z)} (56)
and
R*=P*; Q*=Pr. (57)

(56) indicates that one half of the initial surface elevation moves with-
out change of form in the positive and the negative directions respectively.

b) Wave form mear the wave front (m<1, y=m—m?*6):
For a long distance from the source, (30) may be replaced by

S— 21 S” msinrt /

cos(mr —=/4)dm ,

o 7 cosh mV Zmr

and then transformed into
S:(27:)“(::7“)“/25w{sin(m?—l—rt—7:/4)
1]

—sin(mF —rt—=/4)}/V sinh 2mdm . (58)
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It can be shown that the use of the asymptotic expression for J(mr)
results in the error of the order ! for S. Now, since 7,t and 7, m
are positive, the contribution of sin(yt+m7—=/4) term to the integral
for a long distance is of the order . Thus, (58) may be approximat-
ed by

S= —(271')“1(77:17’)#1’2500 sin(mF —yt —z/4)/\/sinh 2mdm . (59)

For the leading wave of a tsunami (7/t~~1) for a long distance
from the source, it can be shown that the main contribution to S comes
from small m so that it is possible to assume 7 =m —m?/6 and sinh 2m=>~2m.
Therefore, by replacing m’t/6=u*, (59) becomes,

S=(2r)(=7)*(6/t)"*T(p) , (60)
and

T(p):Re[[(Hi)reXp 'i(u6+pu2)du], (61)
where Re[z] means the real part of z and

p=(6/t)"(F—1) .

If we neglect #° term in the power of the exponential in (61), we
have,

T(p)=V'z[@lp]),  for p<0,
=0 R for p>0,
and S is reduced to (53).
Since ¢ is large and the varlatlon of (6/t)* with respect to ¢ is

small, we may replace the derivative with respect to ¢ or » by the
derivative with respect to p, and we may write,

P=R=02r) " (zF) V6/t)(—T,) , (62)

and
Q=(2r) @) B[ty ° Ty, (63)
For one dimensional waves, the asymptotic expression for R* can

be derived parallel to the case of two dimensional waves. Thus, for
large positive values of ¢ and Z, (37) is reduced to

R* =(2n)‘15:cos{(t/6)m3—I—(o“c——t)m}dm+O(§‘l) . (64)
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Putting ¢=p/3=(1/3)(6/t)"*(z—1t), and m=(6/t)"*v ,
we have

R* =(27:)"‘(6/t)"3g:cos (v +3qu)dv .

The integral can be identified as an Airy Integral Ci,(q) where
Cig)=V"q[3K.,(2¢"") ,

and

Cif—q)= (7:/3)1/?{J113(2q3l2) + J_1/3(2q3/2)} ; ¢>0.

Here, K,;(v) is a modified Bessel function and J,,(x), J_,,(x) are Bessel

functions®™. (64) is essentially similar to the integral discussed by

Eckart®™, and Hendrickson®, who treated the asymptotic behavior of

the leading wave of the one dimensional tsunami generated by an initial

elevation and a bottom deformation of the small scale respectively.
For convenience in later discussions, we define T*(p),

) T*(m:gjcu(p/?))dp , (65)
Then, it follows,
R*=(2z)(6/t)"(—T%) , (66)
S*=(2x)"'T* , (67)
P*=R*,
and
Q* =(2=)"(6/t)°T;, . (69)

Comparing S and S*, R and R* (P and P*), @ and Q*, it is evident
that, even if we take the factor »7'* due to geometrical spreading
effect out of consideration, the decay law of amplitude with time for
the leading wave is different for the one dimensional and two dimen-
sional waves. Furthermore, the decay laws of the leading waves for
the initial elevation and initial impulse are different. A mathematical
reason for these differences lies in the fact that, in the evaluation of
the integral, the factor in front of the oscillatory term, say, the

22) S. MORIGUCHI, et al, Mathematical Formulas, III (Iwanami Book Co., Ltd.,
Tokyo, 1959), 231-232, (in Japanese).

23) loc. cit., 9).

24) loc. cit., 2) Appendix 2.
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amplitude spectrum for small values of m plays a deciding role.

For example, the decay law of the leading wave amplitude for a
long distance from the source of the type of initial elevation or the
sudden deformation of the bottom:; namely the variation of the first
maximum values of R and R* are (rt)™* and ¢t respectively. The
decay law of (rt)* for two dimensional waves was first noticed by
Takahasi® but was somehow abandoned in his later paper®™, and the
decay law of t** for one dimensional waves is taken for granted for
two dimensional waves as well*®, except for the factor »=**, In the
Appendix II, the decay law for one dimensional waves is derived by
means of the superposition of two dimensional waves to show the dif-
ference of the decay laws clearly.

For the leading wave generated by a surface impulse, the amplitude
decays proportionally to »~*%~%% and ¢~** for the two dimensional and
one dimensional cases, respectively.

In both one and two dimensional waves, the wave form of the
leading part of the wave train is completely determined by a parame-
ter p so that, with the increase of ¢, the crest of the wave is retarded
with respect to the reference point moving with the velocity of ordinary
long wave 1gH, by a factor t* and the surging part in front of this
crest spreads outward. Furthermore, the time interval between the first
crest and the second one increases proportionally to t'°.

T,T, and T,, for two dimensional waves and 7%, T¥, and T} for
one dimensional waves are shown as a function of p in Fig. 3 and Fig.
4 respectively. Numerical values of T(p) are originally given by
Takahasi®, but the re-computation is carried out by a different method.
The result shows a slight modification of the Takahasi’s values. Apart
from the decay factor already mentioned, the wave forms for the two
dimensional waves and the one dimensional waves are qualitatively
similar provided the position of the first maximum is a little later for
the one dimensional wave than for the two dimensional wave. As will
be shown in the later section, the wave form for the leading wave of
a tsunami at a very long distance from the source is considered to be
well represented by T, and T} for the cases of the initial surface ele-
vation or the bottom deformation and by T,, and T}, for the case of

25) loc. cit., 8).
26) loc. cit., 14).
27) loc. cit., 15).
28) loc. cit., 2).
29) loc. cit., 8) Fig. 13.
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the initial surface impulse. From the figures, it is found that for the
one dimensional wave started from the initial elevation or the bottom
deformation (T}), the leading wave has the maximum height for a
very long distance from the source, but for waves started from the
initial impulse (7)), this is not the case, and in many cases of practical
interest, the leading wave may not be recognized because of its low
amplitude and long wave length. For the two dimensional wave (7T,
T,,), the leading wave may not be the wave with the maximum height
for very long distances from the source area, and the second or the
later crest will have the maximum height. The intervals between the
first maximum and the second one are the same for all T, T%, T,,, T,
and the numerical value in terms of p is 5.7.

Qualitatively similar conclusions concerning the change of the wave
form can be obtained on the basis of the one dimensional long wave
equation including the effect of curvature of the water surface. Ac-
cording to Keulegan and Patterson®®, the velocity « of propagation of
an element of volume of an intumescence satisfies the relation,

7;t+(77w)z:0 ’
and the wave equation including the second order terms is given by
77!!'_(7;-*_7/‘:1'/3):::0 )

provided (3/2)7?<(1/3)7.. or 7,/*/H*<1 (7,: wave amplitude, 2': wave
length, H: depth of water). This wave equation is essentially similar
to the assumption y=m—m?*6. The combination of these two equations
and the integration with respect to z give,

w=1+7./(67) .

From this relation for the velocity of propagation of a volume element
of an intumesence moving in still water (say 7>0), we can easily find
that the wave front moves faster than the ‘‘long wave velocity’’ and
the first crest (maximum point) is retarded with respect to the point of
inflection where 7,,=0 and w=1 as shown graphically in Fig. 5.

As for the time interval between the first crest and the second,
the different approach made by Munk® about the period increase of the

30) loc. cit., 11).
31) W. H. MUNK, “Increase in period of waves travelling over large distance, with
application to tsunamis, swell and seismic surface waves,”’” Trans. Amer. Geopys. Un., 28

(1947), 198-217.
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conservative waves in general may be ap-
plicable. A simple solution for the tsunami 220, -0 ;‘u
given by Munk can be further simplified

for the case of a constant depth as follows: |

r=(¢—J/7)]a, |
1
{=t—u, [
d
ana. w>l w=1 w<!
J=2r¢ , Fig. 5. The behavior of the

. A . leading wave.
where r is the wave period at the time ¢

and the distance x (all quantities are in the non-dimensional form), and
¢ is an arbitrary constant. For a long distance from the source, the
time interval between the first and the second crests is approximately
equal to t—x and also to the wave period r, so that we may put
r~t—x. Thus we have

r={22/(1—a) Pz |

Furthermore, since x/t~1, we can conclude that the period increase is
proportional to ¢, ,

The effect of finite duration of the deforming motion at the bottom
can be examined by means of (26), which may be written as

V:SSHBICZSO
S
where
I={S(z=0)—S(r=r*)}/c*
In terms of p, I is replaced by

I=—@2x)(=7)~*(6/t)*{T(p)— T(po)}/(p—p0) ,
where ‘

p=(6/)*(F—t+7*) and p,=(6/t)*(F—t) .

Judging from Fig. 4, the variation of T with respect to » in the
neighborhood of (7,)... is almost linear in the interval (p—p,)<1, so
that

I~ —(2n)~(=F)"X(6/t)*T,=R .

Thus the assumption of the instantaneous deformation is valid in the
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evaluation of the first crest for the deformation with the time interval
* provided (6/t)'*s*<1. For one dimensional waves too, the same
condition approximately holds.

¢) The wave train in the later phase:

The asymptotic solution of (30) or (56) within the limit of appli-
cability of the stationary phase method is given by,

S=A sin(y,t—m¢7)/(v, cosh m,), for t>7>1, (70)
where

r=Vmtanhm ,
and

A=2z)7F (maroflre DV (71)

In (71), primes of 7, indicate differentiation with respect to m and the
suffix 0 shows the values to be evaluated at m=m, which is a real
root of the equation, 7y =t/7.

Neglecting the time derivative of the slowly varying amplitude
compared with that of the carrier wave, we have by differentiating S
with respect to ¢,

P=A4 cos(yit —mT) , (72)

Q= — Ay, sin(yit —m,7) , (73)
and

R=A cos(y,t —m,¥)/cosh m, . (74)

For one dimensional waves, (38) is reduced to

S* = A* sin(y,t — mZ—=/4)/(7, cosh m,) , for t>Z>1, (75)
where
A* =2z B 7o )2 (76)
and the other functions can be derived straight-forwardly:
P*=A* cos(yit —mI—=/4) , (77
Q* =~ A%, sin(yt —mZT—=/4) , (78)
and
R*=A* cos(y,it —mT —=[4)/cosh m, . (79)

For the case of deep water waves, 1. ¢. when the wave number m
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is much larger than unity and 7 is approximated by m'?, the asymptotic
solutions are reduced to well known formulas where

A=A 2)=F)'m, , (80)
A*=(zZ) " Pm? (81)
m,=1*/(47*) or ¥*[(4%°) , (82)

ro=1t/(27) or t/(2Z) . (83)

The frequency and wave number of the individual wave is fixed by
70=t/(27), and m,=t*/(47*) respectively. The decay laws with distance
of the amplitude for a fixed wave number are 7' and Z~** for the two
dimensional and one dimensional waves, respectively.

In both one and two dimensional waves, it is evident that for a
fixed location the amplitudes of P and @ increase with time but @
increases more rapidly than P because @ =P, and for @ weight is placed
on high frequency components which arrive at the fixed location later.
In contrast, R has a maximum at some intermediate time, because, for
very high frequency components of waves, the factor 1/cosh m, domi-
nates and the amplitudes of high frequency components are surpressed
by the factor exp(—m,).

5. Leading wave of a tsunami

Consider the leading wave of a tsunami for a long distance from
the source area enclosed by —a<#,<a, and —b<y,<b where waves
may be generated either by the de-
formation of the bottom or by the

T ! initial elevation of the surface. Tak-
\'%v——)x ing the origin of the co-ordinate (z,

k_xﬁf % . y) at the center of the source area,
i ' ] _
S t ket we may assume V a’+b*r<1 where
Fig. 6. Geometry of the source point r=x+y .

@0, ¥o) and the observing point (x, ¥).

Geometry of the source point
(%o, o) and the observing point (z, y) is illustrated in Fig. 6, where, for
simplicity, the observing point is placed on the wz-axis, and ¢ is faken
as the distance of the observing point relative to the moving reference
point where x=t. Assuming 7~%, we may write

p=(B/t)"(T—1)=(6/1)"*(¢ — o) (84)
=p*—p,
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where
D=8/t m, DT =(B]t}% .

Thus, p is independent of ¥, for an observing point on the x-axis.
From (25) together with (62), waves generated by the bottom de-
formation are given by

;7:(27:)“(::7‘)““(6/0"25SHE(—Tp)dS'O (85)
S
Since T, is independent of , for a long distance in the z-direction from
the source, we may rewrite (85) with the aid of (84) into the form:

77:(2:)—l(nr)-vs(e/t)vsr“ W(—T,)dp, , (36)

—Pa

where

W:S "Hydy, and p,=(6/t)"a .
—b

In general, we may put H,=0 at the outer edge of the source
area, p,=p, and —p,, so that the partial integration of (86) gives,

7=02x)"(=r)"}(6[t)"°U , (87)
where

uen=|" W, i-Tw—p)ip, . (88)

If we introduce an explicit distribution of H,, U(»*) can be computed
as a function of p, and p* and the surface elevation 7 is determined
from (87).

For small values of p,, T, does not change significantly near the
maximum of —7', so that we may approximate (86) by

Pmax = (27) 7 (@) V(6/E)H(— T )max V (39)
where
a a b
V—:X de(): g S HBd'yodxo .

—a —aJ—b
(89) shows that the shape of the source does not affect the height
of the crest or trough of the leading wave for a very long distance
from the source (p,«1). The wave height is proportional to the total
volume of the original deformation of the bottom and decays approxi-
mately proportional to (rt)™* which is already expected from the
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analysis of R. If the total volume V of the deformation of the bottom
is zero, the leading wave at a very long distance from the origin
decays inversely proportional to a higher power of the time than 1/2.
For one dimensional waves, we may derive similar equations. From
(33) together with (66), the wave generated by bottom deformation is
given by
7=@|" Hy(-Tdp, (90)

and (90) may be transformed into

b

y=—@|" (H), T, (o1)

sinece
Ty;=—T; and H,=0 for |p|>p, .

For very small values of p,, (90) is reduced to

Timax = (270) "V (6/6)*(— T3 )imax » (92)
where
ve=|" Hyds. .
Particular examples are given~ in the follows:
a) The uniform deformation of a rectangular area of the bottom;

Hy=const. for |z|<a, ly|<b,
=0 for [x|>a , or |y[>b . , (93)

For waves in the z-direction, we may put
W=20H,, for —p,<p,<7P,,
so that

W o= WHo(~p.)—0(p.)}
(89) gives,

U=W{T(p*—p,)—T(®* +p,)} . (94)
For small values of »,,

U = (40D H )(6/)"(— T Yo » (95)
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and for very large values of p,,

Umax = .H,[:Zv(pﬂ< - pa)]max s (96)

since T(p*+p,)—0 for large values of p*+p,. Here, (—T,)..x is located
at p*=—0.75 and T.,. is located at p*=p,—2.3.

b) The elliptic deformation of an elliptic area of the bottom;
H = Hpo{1—(9o/b) — (%ol @)’} , (97)
within the region enclosed by
(Tola)* + (o/b)' =1 .
For waves in the z-direction, we may write,

W=(4/3)H,b{1— (mo/a)z}zl2 ’
so that
W o, =(4H 5ob)(— Do/ DL — (Do D)} .
(89) gives

U= (4Hmb)§1 T(1— ) ada (98)
where a=p,/p, end T=T(p*—p.x) .
For small values of p,, we have

Umax :(7:/2)Hlmab(6/t)1/3(— Tp)max y (99)

and for large values of p,, we cannot reduce (98) into a simple relation
as in the case of a rectangular source.

c) The wuniform deformation of the bottom (one dimensional
propagation);

Hy=const. for |zl<a
100
=0 for |x)l>a . } (100)
We may write,
(HB)po:HB{a(—pa)_a(pa)} ’
and
9[Hp=27)"{T*(p* — p)— T*(p* + 1)} - (101)

For the one demensional leading wave according to (101), 7../H, and



The Leading Wave of a Tsunami 561

p* for which 7., is attained are shown as a function of p, in Fig. 7,
which indicates that 7,,./H; is considered to be a linear function of p,
for small values of p, say, for p,<1, so that the leading wave
amplitude varies proportional to @ and t~*. On the other hand, for large
values of p,, say for p,>8, the leading wave height reaches 0.635H,
and does not change with the scale a and the time £. The time interval
between the reference point (moving with the long wave velocity /gH
from™the origin) and the arrival time of the leading wave crest given

Pmax ;= —— . L p"*

Hp ™ L
0.6 { one dimensional wave —=1.0

N -

{4 N i

gel \ I

0.4 1 o ?uy N i

o]
1 | N I
lead N
amplitude arrival time \
0.2 A <
A 1.0
T T T T T T T
| 2 3 4
Pa

Fig. 7. 7maz/Hg and p* as a function of pa: (c).

ISj B p*
& fwo dimensinal wave B
Umox 4 L
2oHe ] arrival time 1o

e ——_/ L

1.0 - —~ - T —b__ -

1 ~ ~.za S _ delay :
T x
R y ~ [ 0
- nb \_

; N

0.5 ‘armplitude ~ lead -
| N L
. \ -
4 \ 1.0
_ \ L
N
T T F T T T T
| 2 3 4
Pa

Fig. 8. Umx/(2bHjp) and P* as a function of p.: Ila-(a), IIb—(b).
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by p* implies that the crest is retarded with respect to the reference
point as the wave travels further, showing the velocity of the crest
movement to be smaller than /gH .

For the two dimensional leading waves according to (94) and (98),
U..:/(2bHp) and p* for with U becomes maximum are shown in Fig.
8, which indicates a trend with respect to p, which is qualitatively similar
to the case of the one dimensional wave. As for the directional dif-
ference of the leading wave height, the ratio of the leading wave heights
in the x- and y-directions for the same time and the distance is given
by

Dl = Ui/ UM . (102)

Thus, it is easy to compute the ratio from Fig. 8 if p, and p, are known.
For large values of p, and p,, say p, and p,>38, the leading wave am-
plitude decreases as "%~ and the amplitude ratio approaches appro-
ximately to b/a. On the other hand, for small values of p, and p,, say
P, and p,<1, the amplitude decreases as (+t)~** and the directional dif-
ference of the leading wave amplitude disappears.

The leading wave generated by the surface impulse can be discussed
along & similar line of argument and the surface elevation derived from
(24) and (63) is given by

= (2:)"(::7')""9(6/1&)’/28: I TppdDs , (103)

where

J=§" Ldy, ,
-0

and for small values of p,, we have

Dimax = (27) 7 (z7)TO6/0) K [Ty plinas » (104)
where

K=S“ S TLdydz, .
—aJ-b

For the one dimensional case, the elevation may be derived from
(32) and (67) as follows: '

D

7= 6| L Tidp,, (105)

and for small values of p,, we have
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Vmax = (271‘)*1(6/t)2/3K* * [T;)kp]max ’ (106)
where

K*:S“ Idz, .

Thus the decay of the leading wave height for the case of the surface
impulse is greater by the factor ¢~° than that for the case of the initial
surface elevation or the sudden deformation of the bottom. However,
the directional difference of the leading wave heights follows a rule similar
to the case of the initial surface elevation.

6. Dispersion of a wave train in the later phase

Making use of the approximate representation of the Green’s func-
tion, it is straight-forward to derive the expression of a wave train in
the later phase, originating from an extended source area (|z,|<a, |y,|<b).

For a large distance from the source, (1/ a*+ b /r<1), we may ap-
proximate

r=r—1ry,cosd,,

Therefore, the substitution of (72) into (23), which répresents the waves
started from an initial surface elevation Hy, yields,

7(r, t) :A[cos (r0t~mor)§ SHS(TO, 0,) cos (m,r, cos 0,)r,dr,do,
S

—sin (gt —mor)gSHS(ro, 8,) sin (mqr, cos 0a)rod7'0dﬂo] . (107)
S

For the special case of an axially symmetric source, Hy=Hy(r,), it is easy
to show that

(7, t)=AHgs(m,) cos (rot —m,r) (108)
where

Hylm)=2a| H(r)Jmoryrar, -
In the derivation of (108), the following formulas are used:

SM cos (z cos 0)d0=2rnJ(z) ,
0

and
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Sﬂzsin (z cos 0)d0 =0 .
0

In a similar way, the waves originating from the axially symmetric
surface impulse, Ii(1,), are given by

7(r, 1)=—Arls(m,) sin (it —myr) , (109)

where
I(my) =2:§: I(1))Jo(mero)rodr, .

(108) and (109) are identical to the solutions given by Kranzer and Keller®®
who gave the detailed discussions of the wave characteristics derived
from these solutions. However, it may be remarked that their con-
clusions related to the leading wave should be understood with some
reservations because the leading wave should be treated as an asymptotic
solution of the Airy phase.

It is noticed by examining (107) that for a source function different
from axial symmetry, the computation of the elevation becomes com-
plicated in the polar co-ordinate. On the other hand, in the rectangular
co-ordinate for 7 in the x-direction, (107) can be integrated with respect
to ¥, without regard to the sine or cosine term since 7,cos @, may be
replaced by =,

Hence, (107) may be written as

7(z, t)=A[cos (rot—mgr)r W cos mwd,

a

—sin (1 — mor)g W sin mofvod.’vo] , (110)

—a
where
b

bHs(mo, Yo)d Y, .

Wiz,) :S

The integrals in the right hand side of (110) are nothing but a Fourier
cosine and sine transform of W, and represent the amplitude modulation
for the carrier wave. For 7 in the y-direction, the integration with
respect to & can be performed first irrespective of the sine or cosine term
since we may put 7, cos 6,=1,.

Some specific examples are given below :

32) loc. cit., 13).
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a) The uniform initial elevation of a rectangular area of the surface;

Hy=constant  for |x,|<a, |l<b,
and H,=0 for |ax>>a or |y >b,

We have

(111)

y(x, t)=A(2bH)(2 sin m,a/m,) cos (rot——moﬁr)k . (112)

Replacing x by v and a by b, the elevation in the y-direction can be
obtained,

7(y, t)=A(2aH)(2 sin mb/m,) cos (yit—m,r) . (113)

Thus, for the amplitude of the carrier wave, the ratio in the x- and the
y-directions is

p(x, Oy, t)~(ADbm sin mPa)/(Aam sin m{b) . (114)

If we follow the same wave length m,, the amplitude ratio becomes
(b sin moa)/(a sin meb). In particular, if a and b are very small so that
mea, mdL1, the directional difference of wave amplitudes in the x- and
y-directions disappears. For deep water waves (y~m'?) and for the same
distance 2 =y, the ratio of the maximums of the modulation amplitudes in
the %- and y-directions becomes b/a and the arrival times of the corre-
sponding maximum amplitudes are given by

@D ~ (bja) .

Therefore, in the direction of the shorter axis, say in the y-direction if
b<a, the arrival of the modulation maximum is later and the wave
length of the carrier wave of the maximum amplitude is smaller than
those in the z-direction. In other words, the modulation has a larger
amplitude and wave length in the direction of the shorter axis than those
in the longer axis. : S

b) The untform deformation of an elliptic area of the bottom ;
| H,=constant ,
within the area enclosed by
(/@) + (ob)=1 . = (115)
We have,
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W=2Hs(blaW a*—x? (116)

and the substitution of (116) into (110) yields
7, t):A(szs){T"Jx(moa)/?no} cos (rot —myr) , (117)

where the following formuls is used:
Savaﬁ_m;—; cos M@edx, = =ad (m,a)/(2m,) .
0

In the y-direction, the wave train is given by
7Y, t)=AQRaHs){=J (mb)/mo} cos (rit —m,r) . (118)

It is shown that the above expression is reduced to (108) if a=b, be-
cause the Hankel Transform of the circular source with constant Hy is
given by

Hs(mo)/(Zf):HsaJx("noa)/mo .
Now, the ratio of the amplitude of the carrier waves is given by

7@, )5y, )~{AVbmy J(m{ a)}/{AYam{® J,(mPb)} . (119)

This expression is qualitativery similar to the case of a rectangular source
provided the sine term is now replaced by the Bessel function. There-
fore the qualitative conclusions regarding the difference of the modu-
lation in the x- and the y-directions are similar.

Similar treatments may be applicable to the cases of bottom defor-
mation or with the initial impulse at the surface. For the case of bottom
deformation, the result is obtained simply by replacing Hs by H, and
adding the factor exp(—m,). For the case of the impulsive generation
of waves, the result is obtained by replacing H; by I, changing the
carrier waves from cosine to sine, and multiplying the factor y,(~m¥?.

7. Comparison with experimental data

a) One dimensional propagation :

Prins®® investigated waves generated by an initial local elevation or
depression of uniform height in a two dimensional model. Within the

33) J. E. PrINS, ¢ Characteristics of waves generated by a local disturbance,” Trans.
Amer. Geophys. Union, 39 (1936), 865-874.
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range of Hia?/H*<1 (Hj: the initial height, a’: the half length of the
elevation, H: the depth of water), the leading wave height 7., is found
to be proportional to Hy and the proportionality factor may be read off
from Fig. 7 of his paper.

Table 1. 7%.../Hs: one dimensional propagation.

\\x’ D) 5 25
a’ (ft)\\ obs. } calc. \ Pa obs. calc. Da
2 0.49 { 0.42 122 | 0.25 0.26 0.71
1 0.29 ' 0.23 0.61 0.13 0.13 0.36
1/3 0.00 0.08 0.20 0.045 0.045 0.12
Depth of water H: 2.3/
Elevation H, : 0.1, 0.2/, 0.3

Table 1 shows the comparison between the results of the theory and
the observation and it may be said that good agreement is obtained for
the distance 2'=25. For «'=5’, the agreement is not as good as for &' =
25’, because the approximation made in the theory is not accurate for
a short distance from the source.

b) Two dimensional propagation :

Takahasi and Hatori®® carried out a model experiment for the gene-
ration of waves by the deformation of a bottom portion of the elliptic
shape. The conditions of the experiment are:

Depth H: 5c¢m and 17.3em
Dimension of the source: 2a =90cm, 2b'=380cm

The final form of the displaced bottom surface is approximately parabolic
with the maximum height H, at the center, and the duration of the
bottom motion is of the order of 0.1 sec. (the bottom motion is simulated
by the deformation of a rubber memberance). The results which are of
interest in the present discussion are shown in Table 2.

The theoretical values for the maximum elevation at the center are
estimated approximately by taking (a'+b')/2 as the representative dia-

34) R. TAKAHASI, and T. HATORI, ‘‘ A model experiment of the tsunami generation

from a bottom deformation area of elliptic shape,”” Bull. Earthq. Res. Inst., 40 (1962), 873-
883, (in Japanese).
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B VTable 2. 7/Hy and 7979 : two dimensional propagation.
Ratio of the leading wave heights

© Maxi vati : . A . .
Maximum elevation at the center, in the directions of the minor axis

Depth H 7/ Hpo r t nor :
(cm) and the major axis, 7" /7
obs. calc. obs. ' cale.
5 0.55 1.00 1.8 1.6

17.3 0.27 0.58 1.6 ‘i 1.3
o |

légttom deformatiér; Hpo: 'vrairiablre.
meter of the deformation of the type 2b in Fig. 2. The observed values
for the ratio of the leading wave heights in the directions of the major
and the minor axes are the average over the distance 1m to 4m but the
theoretical values are computed for the distance of 4m on the basis of
Fig. 8 curve IIb.

The observed elevation at the center is about half of the theoretical
value and the ratio of the observed wave heights in the major and minor
axes for the distance of 4m is larger than the theoretical values. The
reason for this disagreement between theory and observation may lie
partly in the inadequate representation of the theoretical model for the
actual experimental model conditions, particularly with respect to the
time dependence of the bottom motion, and partly in the uncertainty of
the model data which show considerable scattering when several simu-
lations are recorded.

8. Concluding remark

The theory developed in the present paper may be severely restricted
in application from the practical point of view, because of the various
assumptions made in the course of study, such as 1) the linear approxi-
mation in the equations, 2) constant depth and no lateral boundary, 3)
the leading wave at long distances from the source, 4) time dependence
of the source to be of the Delta function type. Since the area of the
tsunami generation lies meinly on the continentzal slope along the Pacific
QOcean, the assumption (2) should be removed to have a little more realistic
picture of the tsunami. The coastal boundary and the continental shelf
produce reflected waves and waves travelling along the boundary, so that
the wave-train of the tsunami observed along the open coast will be
quite different from that expected from the theory with no boundary.
Moreover, the irregularities of the ocean bottom and the existence of
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islands would change the wave-form significantly during the course of
propagation by refraction and diffraction. Unless these factors are ade-
quately taken into account, it seems impossible to understand the wave
train of a tsunami clearly. For example, the prevalent period of about
one hour observed along the coast of Japan at the time of the tsunami
of the Chilean Earthquake cannot be considered to be of local origin, say
the oscillation of the bay and the shelf nearby, but of some distant
origin. However, it is unlikely that the dispersion is responsible for the
wave train of this long period. The reflected waves along the coast of
South -America and North America, the boundary waves propagated along
the coasts and/or the interference of the refracted waves along the course
of propagation of the direct waves might be the cause.

As for the assumptions (8) and (4), the numerical computation with
the aid of an electronic computor would remove the restriction. Here,
the application of the principle of superposition would be very useful to
examine various cases of the source condition.

Lastly, the assumption (1) may be justified for the ordinary cases
when the deformation of the bottom is not so large compared with the
depth of water and also the lateral extent of the source. However, in
shallow seas, the condition may not be satisfied and the non-linear effect
comes into play. At the coast, the run-up of the tsunami should be
discussed separately.
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Appendix 1

For example, (28) may be integrated first with respect to dS, as
follows :

o, t):(zﬂ)—lg“’m cos rt[rrﬂs(’ro, 00)J0(mf7~)rodrod00]dm G )
0 0 Jo
Now, since 7=r*+7ri—2rr,cos ,, where (r, 0) are the co-ordinates of

the point in question and (r,, 6,) those of the source point, in the polar
co-ordinate with the origin at the center of the source area, we may
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expand,

T(mF) =y mr)Jy(mrr) +2 2; J.(mro) cos nd, . (1-2)
Thus, (I-1) is reduced to

(7 £)= g:m cos rt[Jo(mr)W)—i—Z i__'il Jn(mr)l,,(_m)] , (1-3)

where

2=
0

M):(zﬁ)'—lS S:Hs(rm b)) (mro)rdrdé, , (n=0,1, 2,:--), (I-4)

If Hg(ro, 6,)=Hs(7,): namely for an axially symmetric source, it is easily
shown that

To(m) = SwHS(rO)JO(moo'o)rodro . for m=0, (1-5)
and
I.(m)=0, for n+0. (I-6)
Appendix 1I

From the definition of R* and R, it is evident that
R* =§°’ Ry, = 2§°’Rr(fr2—xﬂ)—v2dr , (11-1)

where 2, is put zero for simplicity and #:=7'"—2
Writing » and « in terms of » and p* for a given time ¢;

r=(t/6)"p+t, and x=(t/6)*p*+t, (1I-2)
we have
(r*—a%)=(¢/6)*(p—p*){(¢/6)*(p+p*)+2t} , (I11-3)
and
dr=(t[6)"*dp . (I1-4)

Since R is very small for large positive values of p and the contribution
of B to R* is confined to small values of p only, we may put approxi-
mately,

r>t, and (r—ad)~24(t/6)"(p—p*) . (I1-5)
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And the substitution of (II-4), (II-5), and (62) into (II-1) yields,
R*(p*) = (@) " @In) 6]t ", — T,f(p—p*Vdp . (I1-6)
4

Thus, R* is proportional to ¢-%/2,

3. HEDE—-PEIKO>NT
(M D5tk RIICEIT % W SLATER)

HEMER M W R = Ef

MELLLDIEEMICE T, WBE DS VEEERS 2 bhic b 3MOAN UL 5 i BE LTE
ZHROBEDOMEITE S HOHRINTWE R, =2 Tk BEIC ERT2EO 7 ) — v E
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