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Summary

Rotational motion of a rigid sphere placed in gravity and
temperature fields is studied in the hope of getting some clue as to
time-dependent mantle convection. The estimate of mechanical couple
exerted to the sphere due to thermal expansion leads to an equation
of motion which is given in a form of non-linear integral equation
provided proper account is taken of heat conduction. Solving numeri-
cally the integral equation thus obtained, it is found that the sphere
overturns in a way studied by Griggs. For cells having radii of 100
and 1000 km, the rapidly accelerating period is estimated to last some
108 and 10° y»s respectively. The effect of heat conduction is serious
for a small cell of which the radius is of the order of 100k, while
it can be ignored for a cell having a radius of 1000k or more.

1. Introduction

The theory of non-steady convection in the earth’s mantle developed
by D. Griggs? and F.A. Vening Meinesz” has been attracting much
attention of geologists as well as geophysicists because the theory seems
to account for a number of geological and geophysical events, for
example mountain-building, formation of basin and such like, which
otherwise cannot be explained very successfully.

The theory is based on dynamical instability arising in the mantle
due to the cooling of the earth. If we think of a mass in the mantle
of which the temperatue is low at the top and high at the bottom, it
is obvious that the mass is under an unstable equilibrium because,
owing to thermal expansion, the top of the mass is heavier than the
bottom. In the presence of a small force such as that due to a horizontal

1) D. GrIGGS, Amer. Journ. Soc., 237 (1939), 612.
2) F.A. VENING MEINESZ, Quart. Jour. Geol. Soc. London, 103 (1948), 191.
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temperature inequality as suggested by Griggs and Vening Meinesz, the
whole mass tends to overturn on condition that the surroudings have
some fluidity. Such a rotation comes to an end when the lighter material
occupies the top. After that, the mass would slowly recover the tem-
perature gradient given in the beginning, the condition necessary for
the next ceycle being thus provided. During the overturn the bottom
of the overlying crust would be dragged by the subcrustal material in
motion forming mountains at the earth’s surface.

It has been considered that the influence of heat conduction on the
cooling and heating of the moving medium is very small because
even a motion having a velocity of the order of 1c¢m/yr as generally
accepted for mantle convection current is so fast that the heat carried
away by the motion is overwhelming. Griggs estimated the lengths of
period required for the various stages of convection cycle though it does
not seem to the writer that his estimate was based on exact mathematics.
According to Griggs who dealt with a convection cell extending from
the surface to the core of the earth, the overturning would start very
slowly, so that the phase corresponding to the slowly accelerating currents
covers some 25 million years. If the overturning has once started, the
currents are greatly accelerated because of the dynamical instability.
This period of rapid currents lasts from 5 to 10 million years. Then
comes the decelerating stage because the instability becomes less as the
hot material goes up and the cool material covers bottom of the cell.
The period during which we have decelerating currents is also estimated
as 2b million years. Tinally, the stage of dynamical equilibrium is to
be attained though it would take some 500 million years to recover the
initial temperature distribution by conduction, so that the part of the
mantle occupied by the cell would keep quiescence for at least 500 million
years. Another cycle of convection may take place after this period.

Vening Meinesz has applied a similar idea to tectonophysics on a
smaller scale. Being classified by him as “episodic” convection current,
the hypothesis of mantle convection seems to have much advantage in
the explanation of a number of geological and geophysical phenomena.
In recent years, the existence of convection currents in the mantle
becomes more plausible than it was some time before through measure-
ments of heat-flow anomaly on deep sea-floor.”*

In view of the importance of mantle convection hypothesis, the

3) R. VoN HERZEN, Nature, 183 (1959), 882.
4) R. VoN HERZEN and S. UYEDA, To be published.
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writer would here like to re-examine the Griggs theory on the basis of
dynamics coupled with the theory of heat conduction. Since it is of great
difficulty to advance a theory of non-steady convection in a viscous fluid,
a rotational motion of a rigid sphere placed in a viscous fluid is studied
in the presence of gravity force and temperature gradient. Although
no accurate results can be obtained by examining such a simple model,
it is hoped that we may have some clue as to the time-dependent
behaviour of convection currents in the mantle.

2. Theory of heat conduction related to a slowly rotating sphere
embedded in a medium of infinite extent

Let us suppose a sphere of radius a buried in a medium of infinite
extent. The thermal conductivity and diffusivity are assumed to be
the same both for the medium and the sphere. It is assumed that the
sphere is slowly rotating, not neces-
sarily with a constant angular y
velocity, about the z-axis, while the y
medium outside the sphere is
stationary. Let us then take a
co-ordinate system (', ¥', ) fixed to X
the sphere which is rotating about
the z-axis as can be seen in Fig. 1
in which a co-ordinate system (z, ¥, B
2) fixed to the space is also shown. 0

We are now in a position to
study heat conduction referring to
the rotating co-ordinate. As for the
initial distribution of temperature,
which is applicable to the later
problem, we may assume a linear
one parallel to the a'-axis in the sphere and zero temperature outside
the sphere. Only the deviation from the equilibrium state is dealt with.
The equations of heat conduction, that are not affected by a slow motion,
are then given in the following for the outside and inside of the sphere
respectively.

Fig. 1. Co-ordinate systems.

P =k, (1)
PUy= k1, — pUyr sin 0 sin ¢’ , (2)
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where u, and u, are the temperatures in the respective regions, while
t and p denote the thermal diffusivity and time-operator 9/6t. —U, is
the temperatue gradient initially assumed in the sphere as well as in
the surrouning, (r, 8, ¢) and (r, 4, ¢) are the polar co-ordinates relevant
to the stationary and rotating systems.

If we put

k= ,c~—1/2pl[2 , ( 3 )

the solutions of (1) and (2), which do not become infinitely large at
r—oo and r—0 respectively, can be given as

u,= A(kr) 2Ky ,(kr) sin 6 sin ¢’ , (4)
u,=— Uy sin 0 sin ¢'+ B(lr) ™ L,(kr) sin 6 sin ¢’ , (5)

in which A and B are functions of p, while I, and K, are modified
Bessel functions of degree 3/2.

The conditions to be satisfied at the boundary of the sphere or at
r=qa are the continuity of heat flow and temperature provided the
interface drop is ignored. They are written as

U=, , (6)
ou, _ ou, , (7)
or or

(6) and (7) enable us to determine A and B involved in (4) and (5).
We thus obtain

A= —Uaka) I,(ka) , (8)
B=Ua(ka)’*K;.(ka) . (9)

Putting (9) into (5), the temperatue inside fhe sphere is then
determined as

u,=— Uyr sin 0 sin ¢’ + Usa(ka)*(kr) 2Ky, (ka)L(kr)sin 0sin ¢’ . (10)

3. Mechanical couple exerted to the sphere

When we refer to the co-ordinate system fixed to the space, the
temperature within the sphere as given by (10) can be transformed to

u,= — Uyr sin 0 sin (¢p— B) + Usa(ka)**(kr) Ky, (ka) I, ,(kr) sin 0 sin (¢p—f) ,
11)
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in which £ is the angle O’ as shown in Fig. 1.
In the presence of a gravity field of which the acceleration is denoted

by g, a volume element of the sphere undergoes a force which is given
as

pagu.y® sin 0 drdodg , 12)

where p and « denote the density and the volume coefficient of expansion.
The mechanical couple exerted to the sphere is therefore given by

1'—_-pag§: S: gz"ug cos ¢ r*sin® 0 drdddg , (13)

while the gravity field is assumed to be perpendicular to the z-axis.
On performing the integrations involved, (13) reduces to

1':%aﬁpag Ud1— 51, (k) Kyp(ka)] sin A , (14)
which may be regarded as the operational form of the couple, so that

the couple as a function of time can be written as

1'(t)= %aﬁpagUo[ sin f— 5~d

dt Sos’f’(t—f) Sin /?dr] for t>0, (15)

on the assumption that 8 is zero for t<0. ¢(t) is given by
ty==\ t* - L —)dt . 16
o) =5 7 exp (L) L (2 (16)

4. Equation of motion

Supposing that the sphere has been placed in a temperature field
having a gradient — U, in the direction of the y-axis over such a long
period that the sphere reaches a state of thermal equilibrium, the
mechanical couple obtained in the above can well be applied to forming an
equation of motion of the sphere. Denoting the moment of inertia and the
coefficient of resistance respectively by C and R, the equation of motion
becomes

dzﬂ dﬁ_ . . d‘r —-z'" .

where

G =%a5pagUo . (18)
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A small couple f is introduced in the equation. f plays an important
role in starting the motion though the dynamical instability of the sphere
controls in the main the course of overturning after it has started.
According to the hydrodynamics of viscous liquid,” it is known
that .

R=8mpa’, (19)

for a slow rotational motion where ¢ denotes the viscosity.

The first term on the left-handside of (17) may well be ignored
because the motion concerned is extremely slow. In that case, measuring
the time in units of R/G, (17) can be rewritten in a form

idf_ —gin B —5%§:¢(t—f) sin fde+tc , (20)
in which all the quantities are non-dimensional and ¢ is defined by
c=fIG . 21)
Meanwhile, ¢(t) becomes
t A=Vt
ot=—| Lttt (22)
2 ¢
where
G
v W R (23)
(20) can be integrated as
t
B=ct+ §0[1—5¢(t—z-)] sin pdr , 24)

because f=0 at t=0 as already mentioned. (24) is a Volterra’s integral
equation of the second kind. Since the equation is non-linear, no analy-
tical solution of (24) can easily be obtained.

5. A solution of the equation of motion

We may assume that

a=100km , p=3.5 gm/em’ ,)
a=2x10"/°C, g=10°cm/sec’, (25)
U,=1°Clkm , 5

5) H. LaMB, Hydrodynamics, 6th ed. Cambridge (1932), 589.
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which can possibly be taken as likely values for estimating a time-
dependent mantle convection.

#=38x10%c. g. s. (26)
is also assumed after N.W. Haskell.” In that case, we obtain

G =5.86 x 10® ¢m? gm/sec’ , @0
R=17.54 x10% em® gm/sec ,

so that
R|G=1.29 x10"sec (=4.10x10"yr) , (28)

Nothing is known about f. We may assume, however, that the
initial velocity of the sphere, which is governed solely by f, takes a
very small value, say, 10~*c¢m/yr at the surface of the sphere. Such a
velocity is much smaller than the one generally accepted in theories of
mantle convection. We thus assume that

dB\ _ o2 ,
a<ﬁ>o—10 emfyr 29)
which leads to
agy _ AT eyt
(-&?)0_3.18x10 sec | (30)
On the other hand, we have
g\ . )
B (”d?)t:rf ’ (81)

which enables us to estimate f as
JS=2.40 < 10¥ ¢m?® gm/sec® . (32)
¢ is therefore estimated from (21) as
c=4.1x10"2 . (33)

We next have to calculate v from (23). On assuming £=0.01c. g. s.,
which is a likely value of the thermal diffusivity in the mantle, (23)
leads to

=194 . (34)

6) N.W. HASKELL, Physics, 6 (1935), 265.
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Since we could, in the above, estimate all the numerical values of
the constants involved in (24), the next task is to solve non-linear integral
equation (24).

K. Hidaka” advanced a numerical method for solving a Volterra’s
integral equation of the second kind. Although his example was linear,
his method can be applied to a non-linear one such as

w@)=f@)— | K@, OF[u@)]dé . (35)

For w%O, it is obvious that
u(0)=,(0) . (36)
If we choose a sufficiently small &, we approximately obtain
u(h) =f(h)—{_;-K(h, 0)F[u(0)]+%f<'(h, WFuh, 37
so that we may get w(h) that satisfies (37) by making use of a trial-

and-error method, all other quantities involved being known. We further
have

w(@h)=F2h)— {%K(zh, 0)F[u(0)] +%K(2h, W Fuh)]
+%K(2h, 2h)F[u(2h)]}2h , (38)
w(Bh)=f3h)— {%K(i’)h, 0)F[u(0)] - %K@h, WF[u(h)]
+%K(3h, 2h)F[u(2h)]+%K{3h, 3h)F[u(3h)]}3h . @39)
u(4h) =f(4h)——{%K(4h, 0)F[u(0)]+%K(4h, W Fuh)]
+%K(4h, o) Fu(2h)] +%K(4h, 3h)Fu(3h)]
+%K(4h, 4h)F[u(4h)]}4h , | (40)
which can be successively solved with regard to w(2h), w(3h), u(4h) and

SO on.
7) K. HIDARA, Sekibun Hoteishiki Ron, Kawade Shobo (1941), (in Japanese).
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In applying the method to (24), there are a few practical difficulties.
It is not practicable, for instance, to continue the procedure over a wide
range of ¢, so that some larger & should be taken for solutions for
large values of ¢. This causes errors in B to be solved. The part of
the solution for large values of ¢ as is illustrated in Fig. 2 is thus not
very accurate. ¢(t), which has been already estimated by the present
writer? in a theory of electromagnetic couple related to rotation of a
conducting sphere placed in a magnetic field, is obtained also by numerical
integration which necessarily causes some error.

IBOF

120F
B 9of
60}

30}~

4 8 12 16 20 24 28 32 36
Non-dimensional Time -

Fig. 2. Changes in B for a sphere of 100km in radius. The influence of heat
conduction is taken into account for Curve A, while it is completely neglected for Curve B.

In spite of difficulties, £ is solved as shown in Fig. 2 (curve A) in
which the non-dimensional time is taken as the abscissa. As the curve
for B is smooth, we may think that there would not be serious errors.

6. The case in which the heat conduction is completely neglected
Going back to (20), the equation of motion for a case in which the

influence of heat conduction is ignored becomes

%’%zsin p+e, (41)

8) T. RIKITAKE, Journ. Geomagn. Geoelectr., 14 (1962), 66.
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which can be solved as

LHVI=e op (v 1—ey=Y 1 cos frosinf 41 (42)
sin f4-c¢

on condition that =0 at ¢=0.

The course of overturning for such a case is also shown in Fig. 2
(curve B) while the same c as before is taken. It is apparent that g
asymptotically reaches a value sin™ (—¢) which is slightly larger than =.

7. Discussion

Curve B of Fig. 2 shows that the rotational motion of the sphere
agrees qualitatively with that suggested by Griggs.” The overturn
starts rather slowly being followed by a rapid rotation. The angular
velocity then decreases asymptotically. We see, however, that the
influence of heat conduction is so large that Curve A is significantly
different from Curve B. The speed of overturning becomes much less
and no marked contrast between the second and third stages as defined
by Griggs can be observed.

For a sphere of 100 km in radius here concerned, the periods covered
by each stage are estimated as shown in Table 1.

These periods are largely affected by ¢ because they are proportional
to p. If we assume a p ten times as small as the one given in (26),

the periods in Table 1

Table 1. The periods of various stages of become one-tenth. As
convection cycle for a sphere of has been pointed out

100 km in radius. by Griggs,” however,

T e : : ~ there is a possibility of
Stage of convection cycle A B . .
U ‘ . a much smaller viscosi-
Slowly accelerating stage 1.2x10%yr 8 X107yr ¢ty in the mantle. Ac-
Rapidly accelerating stage 1.2X108 8 X107 cording to the results

Decelerating stage

- 1.5x10 1.6x10° of experiment, rocks

do not behave as a
viscous fluid, but as a “pseudo-viscous” fluid as was called by Griggs.
In a pseudo-viscous flow, the logarithm of velocity is proportional to
the stress, so that the pseudo-viscosity becomes small when the stress
increases. For lack of experimental data for the mantle, however, it
would not be practical to pursue discussion in further detail.

As long as we take a viscosity value generally accepted, it is
estimated from Curve A that the maximum rotation speed is 0.06 cm/yr
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at the surface of the sphere. Even from Curve B, it is estimated to be
as small as 0.2¢m/yr. It is therefore unlikely that a speed of convee-
tion current of the order of 1 e¢m/yr is attained by a mechanism considered
in this paper provided an eddy having a 100 km radius is assumed.

Let us next study convection currents of a larger extent. Assuming
a=1000 km, we obtain

" RIG=1.29 x10%sec (=4.10x10°yr) , (43)
while we get
y=1.94x10*, (44)

so that we see that ¢ involved in (24) has an appreciable influence on
the solution (24) only when the non-dimensional ¢ reaches a value of
the order of 10%, that is of the order of 10°yr as we can readily see

180

150

120

30

| ! ! I | | ! { N
4 8 |2 [ 6
Non-dimensional Time —*

Fig. 3. Changes in 8 for a sphere of 1000 km in radius.
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by taking (43) into account. For values of ¢ that cover the periods of

overturning, ¢ takes a very small value as will be seen in the following.

It is therefore seen that the influence of heat conduction can be ignored

for the equation of motion of a sphere having a radius of 1000%km or

larger as long as a convection cycle having a period of 10°-10"yr is
concerned.

Ignoring the heat conduction, the equation of motion becomes the
same as (41). If we assume a value for ¢ which initially gives a
velocity of 0.01c¢m/yr at the surface of the sphere, we have to take
¢=4.1x107° in this case. The changes in  with time are then calculated
on the basis of (42) as shown in Fig. 8. In this case, the lengths of
various periods are estimated as in Table 2.

Comparing these periods with

Table 2. The periods of various those estimated by Griggs,” who
stages of convection cycle for a studied a convection cell extending

sphere of 1000 km in radlus from the top to the bottom of the

: = mantle, we observe that his
Stage of convection cycle ‘ Perlod . .

e estimate gave periods much longer
Slowly accelerating stage 3.6X105, yr  than those of the present estimate.
Rapidly accelerating stage = 1.2X10° The present writer is of the opinion
Decelerating stage ‘ 2.0><7106 that Griggs’s estimate should be

subjected to a modification though
his result is qualitatively correct. Attention should be paid to the fact
that the length of slowly accelerating period is largely controled by the
initial velocity. Since the initial velocity has been taken rather arbitrarily,
the lengths of this period either for a=100%m or 1000%km are by no
means realistic.

The maximum linear velocity of the convection cell of 1000 km in
radius can also be estimated from the curve in Fig. 3. It amounts to
as much as 2m/yr which is so large that an objection from the geological
standpoint may be made against such a rapid motion.

It is of considerable interest that the behaviours of convectlon cycle
for small (¢=100%m) and large scales are distinctly different from one
another. The couple due to dynamical instability is proportional to the
fifth power of the radius while the viscous force to the third power,
so that the ratio of the former to the latter increases enormously as
the size of convection cell becomes large. Meanwhile it becomes clear
that the effect of heat conduction cannot be neglected for a small cell
having a raduius of 100%m or so though there is practically no cooling
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in the course of a convection cycle in the case of a relatively large
cell having a radius of the order of 1000 km.

No account has been taken of the threshold stress below which no
continuing flow takes place. Even if account is taken of the threshold
strength of the mantle material, it seems unlikely that the behaviour of
overturning would become very much different from the ones studied
in the above because the dynamical instability controls the motion if it
once starts. Some modification would however be necessary for the initial
stage if the effect of threshold strength is to be taken into account.

8. Concluding remarks

A theory of non-steady convection cycle, based on a spherical model,
in which proper account of the dynamical instability due to tempeature
distribution is taken together with the effect of heat conduction, leads
to the following conclusions.

A period of the order of 10°yrs is required for a cell of 100 km in
radius to complete the rapidly acceleration stage of overturn. The
influence of heat conduction for such a small cell cannot be neglected.
Owing to the gradual cooling of the cell during the overturning, the
rotation speed becomes markedly smaller than that for a model in which
the effect of heat conduction is entirely ignored. Meanwhile, the rapidly
accelerating period is estimated as 10°yrs or so for a cell having a
1000 km radius. In this case, very little cooling oceurs during a cycle.
General aspects of the convection cycle here studied agree with what
Griggs suggested many years ago.
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