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1. Introduction

Today the oscillations of buildings are being very actively studied,
and the problem of the effect of foundations is also being discussed.
In these investigations, however, when the oscillations of buildings are
discussed, the motion of the ground is assumed not to be affected by
the buildings, while in the discussion of the foundation the existence of
buildings are always neglected. It is evident, however, that such a
method of investigation is not adequate. We must solve for the coupled
motion of buildings and their foundations.

The calculation of such a coupled system is not easy, but fortunately
I. Toriumi® recently published an elaborate study, which makes it pos-
sible to obtain the result without special difficulty.

In this paper we utilize his result, consequently the assumptions
adopted in his study are also assumed here: namely

1) Buildings are supposed to be circular cylinders.

2) In the problems of vertical and horizontal oscillations, the stress
components are assumed to be constant within the circle of a
base and vanish outside of it.

3) In the problem of rocking, the stress is proportional to «
within the circle and zero outside.

We further assume, in the present paper, that the seismic waves come
vertically upward and the ground motion is a pure vertical of horizontal one.

2. Notations

Notations in the paper of Toriumi are also adopted with only slight
change, but many new ones are added, so all are given in this section.

1) I. ToriuMI, ¢ Vibrations in Foundations of Machines’’, Technology Reports of the
Osaka University, 5 (1955), 103.

I. ToriuMl, ‘‘Vibrations in Foundation of Machine on the Ground,” Journ, Seism,
Soc., Japan, [ii], 7 (1955), 216, (in Japanese).
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=2unry[(fiptifu). cf. (4.6).

=A/mp*. cf. (4.17). ‘

Amplitudes of incident waves vertical and horizontal res-
pectively.

=pro/(p/)=pr| V,=2nr,/(Wave length of S-waves).

Value of a, that gives the maximum magnification.

=1/ prrd/(fir+ifer). cf. (4.11).

=B/m,p*l,*. cf. (4.17).

Magnification coefficient of a forced oscillation of a seismo-
graph. . .

cf. (4.6). fi and f; in Toriumi’s paper. (Horizontal motion)

cf. (4.11). id. (Rocking motion)

cf. (8.4). id. (Vertical motion)

Damping coefficient of a pendulum. (=e¢/n)

Apparent damping coefficient of a building.

Moment of inertia of a building around its center of gravity.

Radius of gyration of a building.

Height of a building from its base to the center of gravity.

Mass of a building.

Moment of a force.

Frequency of the free oscillation of a building.

Circular frequency of incident waves.

Horizontal and vertical force transmitted from a building
to the ground.

Radius of a building.

=m,p*2mpr,.

=S/CLJ2=(P0/P) . (lo/'ro):(f’olp) - B.

Period of the free oscillation of a building.

Period of the incident wave giving the maximum amplitude.

Displacement at the free surface. (Horizontal motion)

Displacement of the center of base. (Rocking motion)

Additional displacement of the center of the base caused by
the existence of a building. (Horizontal motion)

Displacement of the center of gravity. (Horizontal motion)

Horizontal displacement of the center of gravity. (Rocking
motion)

Ratio of the frequency of the free oscillation of a building
and incident waves. (=n/p)

Maximum amplitude,




Part 3.] Vibration of a Building upon the Elastic Foundation. 547

w Displacement of the center of gravity. (Vertical motion)
W, Displacement of the free surface. (Vertical motion) .

X =By exp (—i9yz).

Y =Brp - exp (—idzp).

Z =By - exp (—1%y).

« =/,

B =0/,

r, Angle of inclination of a building. (Rocking motion)

T id. (Toriumi’s notation) '

v =a, (n/p). cf. (6.12)

A, p Lamé’s constants of the foundation.

Py Py Density of the foundation and building respectively.

Sy Py Phase difference between the incident waves and the oscil-

lation of the building. (Horizontal and vertical motion)
Sory¥rr  Phase difference between the incident waves and the hori-
zontal or angular motion. (Rocking motion)
LBy, By, cf. (5.1) and (3.2).
ByrBrr cf. (4.2) and (4.8).

3. Vertical motion

First we consider the problem of vertical motion. Incident waves
are assumed to be propagated vertically upward. The amplitude of the
waves is A, and the circular frequency is p. The method of solving
this problem is briefly illustrated in Fig. 1.

The oscillation of the free surface would be, were it

not for the building I
W
W,=2A4, exp (ipt). (3.1) wl-w.

Displacement of the building caused by this wave is Av (Toriumi)

assumed to be I ..
meW

W=2A, exp (ipt) - B, exp (=), (3.2) Fig. 1.

where B, and &, are both supposed to be real. Our present purpose is
to obtain these two quantities as functions of material constants and of
dimensions of the building.

An additional displacement caused by the existence of a building is

W—W,=2A, exp (ipt) - {B, exp (—id,)—1} . (3.3)

According to Toriumi’s theory, the relation between the vertical force
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transmitted from the structure to the foundation and the vertical dis-
placement of the center of the base is given by the following expression.

force®: —Q, exp (ipt) ,
displacement : Q, exp (ipt) - {fiy +ifor}/paro. 3.4)

10
s=geda20 AMPLITUDE OF THE
ar 15 VERTICAL MOTION
.25
0875
[
\ A 'w'
: 0.75

o] 05 10 L5 Qpapra/V,
Fig. 2.

Therefore the force from the building to the foundation, corresponding
to the displacement given in (3.3) is

2 His force is assumed to be plus when it acts toward the direction of —z.
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—(W—=W)) - prrol {frw +ifww} - (3.5)
The force from the foundation to the building is
+(W—=W)) « pavo {frv +ifor}
=24, exp (ipt) - {B, exp (—idy)—1} - parel {fiv +ifw} . (3.6)

This force makes the building with a mass m, have an acceleration W,
therefore

PHASE LAG OF THE VERTICAL MOTION v

0.25

0.2

o015
|

MAXIMUM AMPLITUDE
OF THE VERTICAL

MOTION

]
20 s 5242

\
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mW=m, (—p?) + 24, exp (ipt) + By exp (—id,) (8.7
must be equal to the expression given in (8.6).
By exp (—idy)=1/[1+28{f1y +ifi}], (3.8)

where
S=mop|2pmroe=as* (pulp) - (loro)=a3S, -

po and p do not change so widely, consequently S is chiefly deter-
mined by f=I[/r,, namely by the ratio of the height and the radius of
a building. Given the value of the parameter S, we can express L, and
Jy as functions of a, (=pr,/V,=2rrwave-length of S-waves). In this
expression, fi, and f,, are f; and f, with regard to the vertical motion
in Toriumi’s paper and are obtained from Fig. 2 in his paper. The re-
sult of our calculation is given in Figs. 2-3. The form of the curve of
Ly, is similar to that of the magnification function of a seismograph,
but that of the phase lag is somewhat different. In Fig. 4 the maxi-
mum amplitude is given as a funection of S,. For comparison with the
result given in later chapters, we gave the value of 8 in the abscissa
assuming p/p, to be equal to 4. Compared with the cases of rocking
and horizontal motion maximum amplitude is fairly small.

4. Rocking motion

Next we consider the case of the incident waves being purely
horizontal. Amplitude and the circular frequency of the incident wave
are Ay and p respectively. and ’the building is assumed to be rigid

Uy
8 /
Ur Lr\,
| Ma " /,.-?b.
i
Ug —(Toriumi)
Mz.o =
{
Uc"UI j
| (Torlumi) — 'c —_
Qy x
R TR
mOUR z
Fig. 5. Fig. 6.

enough to ignore its free oscillations. Horizontal as well as rocking
motion are considered and the scheme of the solution is given in Fig. 5.
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If there were no building the oscillation at the free surface z=0
would be

U,=2A, exp (ipt) . (4.1)

Displacement of the building caused by the incidence of waves is (cf.
Fig. 6)

U,=2A4, exp (ipt) - By exp (—i0y2)=24, exp (ipt) - X. 4.2
Deflection angle I", (clockwise is taken to be plus) is
I';=24, exp (ipt) - B, exXp (— i rp)=2Ap exp (ipl) - Y . (4.3)
As is clear from Fig. 6, the displacement of the center of the base is
Uy=Up—lI" =24, exp (ipt) - {X—LY} . (4.4)

The additional displacement of the foundation caused by the exis-
tence of a building is

U,—U,=24, exp (ipt) - {X—L,Y—1} . (4.5)

According to the study of I. Toriumi the displacement U’ caused by
“a force Qj exp (ipt) acting from 2 body to the ground in the direction
+x is

1

U'=Q, exp (i¢pt) -
271/1’)”0

{fuz +’if2n} =@, exp ("th)/A . (46)

If the displacement is given, the corresponding force is
Q, exp (ipt)=U'A. 4.7

Therefore the force acting from the ground to a building correspbnding
to the displacement in (4.5) is, changing the sign

—Qy exp (ipt)=—(Uy—U)A
——2A, exp (ipt) - {(X—1,Y—-1}-A. (4.8)

Since this force causes the displacement U, of the center of gravity
myU = —Qy exp (ipt) . (4.9)
Substituting from (4.2) and (4.8) we have
mpX={X—-,Y-1}A . " (4.10)
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Next we will consider the rotational motion. We will quote again

from the paper of I. Toriumi.
When the moment of the force acting from a building to the ground

is given by M,., (Counter-clockwise is taken to be plus.) the angular
deflection 7 is

r=i—ngﬂi"—eXp (ipt) + {fintifun} =D, exp (ip0)/B.  (4.11)

o

This expression also gives the deflection when the moment of a

force acting from the ground to a building is M,_, (taking the clockwise
direction plus).
If the deflection angle is given the moment of a force is

M,.,exp (ipt)=rB. (4.12)

When the deflectional angle is expressed by I'; in the equation
(4.3) '

M, ., exp (ipt)=IzB=2A, exp (ipt) - YB . (4.13)

Then the moment of a horizontal force —Q, exp (ipt) around the
center of gravity G acting on the base of a building is

1,Q, exp (ipt)=1245 exp (ipt) - {X-[,Y—-1}A . (4.14)

The angular motion I', is caused by the moment expressed in (4.13) and
(4.14), therefore we have

LI y=M,_, exp (ipt) +1,Q, exp (ipt) . (4.15)
Substituting from (4.8), (4.13) and (4.14)
—mkegp?Y =YB+1,{X—1,Y ~1} A . (4.16)

(4.10) and (4.16) are the simple linear equations of X and Y, so we
can easily obtain the next solutions.

Ly=y'~-1/{(1- & )8 +e)+1]

(4.17)
X=(B +a?) / {(1—%)(3'4—@ r1f,
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where

A'EA/mop'l: 1/S(fm + 'ifzzl) ’

B’EB/mopgl(f——— 1/8,32S(f13 + ifm) ’
and

a’=ki[l}?,

S=mp*|2npry=a,"S, =a02—&’ b . (4.18)
P 7o
Introducing the relations (cf. (4.6) and (4.11).)
A=277F7'o/ {fir +ifom} »
and .
B=7Z}1’r03/4 {fm‘*"’;fm} ’
into the above expressions and somewhat modifying we have
, . . 1 figtef
Y = [ 2 2 - 2y + Jur TV em
1[4 fon i ) + |~ g Tl ]
_1 1
aoz 85280( flR + ?:fZR) ’
1
X——{a + , /[ Z ]. 4.19)
{ 8 ay’Sy( fir +1 fzn)} (

Y’ is, in a few words, a magnification coefficient of a building with
regard to the rotational motion, and if the center of gravity remains
unmoved

Y'=—1. (4.20)

X is the magnification with respect to the translation, and if the building
moves with just the same motion as the foundation, the magnification
proves to be

X=1. (4.21)

The result of numerical calculations is given in Figs. 7-15.

Fig. 7 shows Rur=|Uz/U,|=1X|, namely the magnification of the
displacement of the center of gravity. The parameter in this figure is
B=Il,/r,. In this calculation a simple relation p,/p=1/4 is assumed, since
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22 .20 PHASE-LAG OF THE
[ To
18 |- ROCKING: HORIZONTAL DISPLACEMENT OF
HORIZONTAL AMPLITUDE
THE CENTER OF GRAVITY -argX
19 OF THE CENTER OF GRAVITY 180°
16 -
Ix|
150~
[X:]
14 |-
120
(4
12 - 90—
16
60|—
30|
!
1.5
Qespry/Vs
Fig. 8.
20t
ROCKING /
RESONANGE AMPLITUDE  /
1XImax
15
o 5 i 1.0 GoiPla/vs 15
Fig. 7.
ROCKING:
RESONANCE FREQUENCY
1.0 QoMaAX 10
5 5
B (=lo/ro) . B (=1e/70)
L L 1
10 1.5 20 10 15 20
Fig. 10. Fig. 9.
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150~ 18 20 ADDITIONAL DISPLACE-
16 i1
14 MENT OF THE CENTER
1.8
120k 12 3l W7o OF BASE  I1x-Y"-Il
10
90~
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it is too complicated to have two independently changeable parameters
polp and lyjr,. From (4.18) we have simply S,=1[,/4r,=([4, and the curves
in the figure give the cases S,=0.25, 0.275, 0.8, - - - 0.475 and 0.5.

Fig. 8 gives the phase lag of the same problem, namely ¢y ,= —arg X

=—argU,/U,.
Fig. 9 gives the resonance
PHASE-LAG OF THE . .
amplitude as a function of
HORIZONTAL DISPLACEMENT OF B=LlJr, and Fig. 10 shows the
value of @, corresponding to this
maximum amplitude. [A=4S, is
assumed in this calculation, too.

Figs. 11-13 give the results
of similar calculations with re-
gard to the rotation, or rocking,
of a building. Fig. 11 is the
graph of the angular amplitude
16Brp=|Y"|=|l,["x/U,| and Fig.
12 is the phase lag #y,= —argy
=—arg(/'x/U,)

Fig. 13 gives the maximum
magnification, but the corres-
ponding value of @, is not given,
! since it is almost equal to the
15 value given in Fig. 10.

Gerpra/ts Fig. 14 gives |X-Y'—1},

the ratio of the motion of the
base center to that of the ground without building. If the base of a
building moves exactly the same as the free surface, this quantity will
become identically equal to 1, but the calculated curves have maxima
and show that the movement is not the same. This suggests that even
a seismograph installed at the basement of a building cannot give the
unaltered motion of incident waves.

Fig. 15 gives the phase lag.

THE GENTER OF BASE =-arg(x-Y-l)

180

150

120

90

60

30

Fig. 15.

5. Horizontal motion

Suppose we have a system composed of the single mass shown in
Fig. 16. We will calculate the horizontal motion corresponding to the
shear vibration caused by a purely horizontal vibration incident from
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vertically below. The boundary condition at the base of a building is
assumed, as is done by I. Toriumi, to be X,=const.
The course of our calculation is given in Fig. 17.

Uy
|
‘«I’n
<] .
Mo U"
1 |
Un F
|—(Toriumi)
Up
D |
0 *——>I X U||+ Up
Uy+Up UH-(Ul+UD)
|-——(S eismometer)
z Uy
Fig. 16. Fig. 17.

The incident horizontal motion at the surface z=0 is, if there is not
the effect of a building,

U,=2A4, exp (ipt) .

We denote the displacement of the center of gravity G, referred to the
inertial system,

Uy,=2A, exp (ipt) - By exp (—18x)
=24, exp (ipt) - Z. (5.1)

A force acting from the ground to m, is
moUg=24A5 exp (ipt) « my(—13)Z , (5.2)

and the force from m, to the ground is
—myUpy - (5.3)

According to the theory of Toriumi, as quoted in (4.6) before, the
displacement U’ of the ground caused by Qg exp (ipt), a force acting in
the direction of # from a mass to the ground, is

U'=Qy exp (ipt)/A .

If, instead of Q, exp (ipt), we put (5.3) into the above expression,
we obtain that additional displacement U, at the base center of a building,
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caused by the existence of the building,
U,=2A4, exp (ipt) - mp*Z|A . (5.4)

The displacement of the base is, adding the displacement of the free
surface,

U+ U,=2A4, exp (ipt) - {1+mp’Z]A} (5.5)

The displacement of m, referred to the moving coordinates given
by (5.5) is

Un—(U+Up)=24, exp (ipt) {Z—1—-mp'Z| A} (5.6)

which is equal to the motion of a pendulum, having the same free
period and damping coefficient, and being excited by the motion of a
supporting point given by the equation (5.5). Therefore we can apply
the well-known theory of a seismograph.

If we denote the motion of the earth by x, and the displacement
of a pendulum referred to moving coordinates by y, then the next
equation holds, which connects « and y:

dy dy , d*z
42 S bpiy=— T 5.7
a " Car TV T g 6D
Assuming the form
=2, exp (ipt) ,
Y=Yn exp (ipt) ,
we have
y=cx , (5.8)
where c=1/{(w*—1)+12hu} ,
u=nlp, h=c¢/n.
Putting z—->U,+ U, ,
y—->Uy,—U,+U,), (5.9)

we have from (5.5) and (5.6)

24, exp (ipt) « {Z—1—mp*Z| A}
=c + 24, exp (ipt) « {L+mp*Z|A} . (5.10)
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Therefore
Z=1/[ 1 _mp | (5.11)
l+c A
Now, if we put
p=to_n _ 1 (5.12)

p  aVir, a

we have the following expression using (4.6) and (5.8)

Z—1 / [1—(i —12;%)" — 028 fm +z'f2,_,)] . (5.13)

a’
If the building itself has no damping, we may put =0, so that
Z (no damp)=1/[1—aa2/v2—ao2 o(fm'*"':ﬁuz)] . (5.14)

The additional displacement caused by the existence of the building is,
using (5.4) and (5.13)

Up=2Ag exp (ipt) « a°Sy(f 1+ om)

- [1—(5_ —i2h T ao2SO(f;,,+if;,,):| . (5.15)

If the building itself has no damping
Up=2A4, exp (ipt)-a,>Sy(fig + i on) [[1 — @[V —a’Si( fin + 2. on)] - (5.16)
In the case of resonance
n=p Or ay=v. (56.17)
Introducing this relation, we have
U, (resonance)= —2A4, exp (ipt) . (5.18)
Therefore
U,+ U, (resonance)=0 , (56.19)

which implies that the base center of a building does not move at all.
An interesting property.
A general expression for the motion of the base is

U+ Up=2A4, exp (ipt) - {1— (;_ —iQki—)-l }Z . (5.20)
- 0] 0
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When 2=0
U+ Up=244exp (ipt) - {1—a*+*} Z(no damp). (5.21)

The results of numerical calculations are given in Figs. 18-24,

We have now three parameters a,, S, and v. Besides there is another
one & which gives the damping property inherent in the building itself.
To avoid a useless complication we will assume that the building itself
is without damping (2=0), and show, as an example, the calculation of
the case v*=n**(¢/p)=1.

or

HORIZONTAL: 03
Iy,

Vs n(%’;) = ao(%)-uou

,..

1
0 .2 4 6 .8 10 12 14 1.6 1.8
Qo=pro/Vs

Fig. 18.

Fig. 18 gives the magnification LB, with regard to the displacement
of the center of gravity G (cf. (5.1)), and Fig. 19 the phase difference
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3y (cf. (5.1)). Fig. 20 is the magnification with regard to the displace-
ment of the center of the base of the building (cf. U,+ U, in (5.5)). In
this figure all the curves become
zero at the point a,=1, which
fact was mentioned before in vee i
(56.19). The values S,=0.3, 0.4 '8
and 0.5 are adopted because, it
seems, they can represent a  'S01
short, medium and tall building.
Fig. 21 gives the maximum 120}
magnification. Abscissa is

1v*=(plp)wre .

In the case of a simple pen- g0l
dulum there is a relation between
the maximum magnification Vyax 10
and the damping coefficient

PHASE-LAG OF THE HORIZONTAL MOTION

90—

-V'MAX=1/2h . (5.22) ° .5 .o

. 1.5
: . . %= Pro/Vs
If we apply this relation to the Fig. 19.

above figure and calculate the
apparent damping coefficient %,,,,r;, then we have the result shown in

HORIZONTAL:
(U, +Up) 77Uyl
al-
So= 05
| o5 Venl(d)an(P)c

[l [l 1 | 1 ! ]

1
o 2 4 6 8 10 12 14 16 18 o,

Fig. 20.

Fig. 22, This is the case when the building itself has no damping, and
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happarens 15 caused only by the radiation of energy from the building into

the elastic medium.
The value of a@,, giving Vy.x is shown in Fig. 23 as a function of

250
HORIZONTAL: S.»03
0.4
MAXIMUM HORIZONTAL:
200~ AMPLITUDE X L
05 08 172Vuax (=hgpparent)
150~ 06~
o4k
100~
oz
50
I I
o 5 10
L. /p . 15 l./V2
Ve nerge Fig. 22. The apparent damping
o ; I]O "5 coefficient when the building itself is
. without damping.
Fig. 21.
HORIZONTAL:
ToMAX
8r HORIZONTAL:
Set0.3
Vusp/neay/ GIVING
0.4 P v
= os MAXIMUM AMPLITUDE
[Kelm
ar
S,z 0.3
0.4
s 05
2
1l .17
VR nerge Ve neree
1 I t L L ’
o 5 10 15 . o] 5 10 15
Fig. 23. The resonance frequency as Fig. 24.

a function of 1/v2=(u/p)/(n2re?).
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1/v*. In a, and 1/»*, p and g are both involved and the above figure is
a little difficult to interpret, so a graph of a,/v=p/n=1/u is given in
Fig. 24 as a function of 1/»>. When 1/»* is large 1/u=p/n is nearly
equal to 1. That means that in the case of resonance the periods of
incident waves and of the building are nearly equal. (The former is
always a little larger and the difference becomes important when 1/»?
becomes small.)

6. Elements which affect the maximum amplitude

In this section the effect of the density, rigidity and the dimension
of the building on the maximum amplitude is discussed by means of
the method of dimensional analysis.

If the period of the external force or the frequency of the incident
seismic waves varies, the amplitude of the oscillation of a building
varies accordingly and takes a maximum value corresponding to some
value of the period of incident waves. We will denote this value as
VMAX'

As is in the case of a rigid building, if there is no such value as a
natural frequency of a building, so long as we neglect the effect of the
gravity, we can assume that Vy,yis a function of m,, », l; p, ¢ and p.

Viux=F(my, 14, lo; p, ¢ D) . (6.1)

In this expression, ¢# and p are the only quantities which have the
dimension of time. Therefore # and p can be involved in the function
F only by the combination p/1/, which does not have the dimension of
time. Or we may say that p and g are involved in the form a,=
pro/V/(#/p). Hence we can easily conclude that # does not affect Vi
directly, but only through a,. The rigidity ¢ only affects the unit of the
time axis, but does not affect Vy,x. This circumstance can be seen prac-
tically in the numerical calculation in § 3 and § 4.

The above discussion cannot hold if the building has its own natural
frequency. Horizontal motion treated in §5 is an example of such a
case. Vyux may represent any kind of the magnification : vertical,
horizontal or rotational.
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7. Approximate formulas giving the resonance period
and the amplitudes®

7.1 Rocking motion

In the case of rocking motion we can find that the resonance peaks
of the translation as well as rotation appear corresponding to the period
given by the following approximate formula

Tyax==6(L/ V) (7.1)
which is obtained from Fig. 10.
Also, using the Figs. 9,10 and 13, we canb‘deduce the next formula
[ X |yax==5.7 @™, ' (7.2)
and
[ Y hax=3.5a,", (7.3)

which give maximum magnification factors of the displacement of the
center of gravity and rotation of the building, respectively.
7.2 Horizontal motion

In a similar manner we can obtain the formulas in the case of the
horizontal motion. A one-mass undamped system shows maximum res-
ponse

| Z|yax=1.5 S, 'a,™* (7.4)

for the incident wave with a period

Tyax=+=1.3a,"T, (0.3<a,<0.7) . (7.5)

3) The authors owe entirely to Dr. H. Kawasumi for this szction. cf. H.KAWASUMI
and K. KANAIL, * Vibrations of buildings in Japan, Part I, Small amplitude vibrations of
actual buildings’’,
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