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The spectrum of seismic waves has recently become a matter of
increasing interest to seismologists and structural engineers. In view
of the trouble of numerical harmonic analysis without instrumental
means, other simpler means of approach to this problem have been
frequently sought, among which must be mentioned the frequency curve
of different periods examined by many investigators. Of late years,
however, electric analog computors and other instruments for this
purpose have been introduced and used conveniently. But so far as
the writer is aware, the basic principles of these vibration analysers
are not yet solved completely. He therefore presents some notes on
this subject.

Fundamental theory

It is well known that a simple linear oscillator which is subjected
to an external force serves as an analyser for the applied force-function.
This is based on the fact that the solution of the equation of motion
of the oscillator

Y+ 2+ n*y=+Va (1)
is
— o 0t
provided
X(w)= S” a(t)e-tdt—=A—iB (3)
and -

< %)=ie:}:7’, r=Vn-¢&

where X(w) is the so called spectrum function of w(z).

In the case when X(w) satisfies the Paley-Wiener criterion (that is
X(w), considered as a function of a complex variable w, is analytic in
the half plane defined by Im (w)<0) as in the physically realisable
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filters in the information theory, then (2) is integrated into

— 7_7;V iwt 8ty __ 4 w 90(0)1) iogt
y= T (X)X (8™} ~iV 5 V(w) £ (4)
where v
1 ¢(@)
Y(o)=.— o, X(w)=-T3" 5
(@) (0—a)(@—Pp) () D(w) (5)

and @(0,)=0. From the above assumption, Im («;) >0, and lim et =0,
t—o0
It follows when ¢— 0 and ¢ is large

y=+%(Asinnt—-Bcosnt) (6)
Thus we perceive that the amplitude of this oscillator in this stage
lol= LV EF B =21 %) (7)

is the function of circular frequency n of the oscillator, and represents

the spectrum of Stx(t)dt.
0

On the Spectrums Obtained by the SMAC Response Analyser

By means of the above fundamental theory we can analyse the force-
function 2(¢) from the motion of a set of linear oscillators with different
periods. On the other hand, instead of using many oscillators, we can
also analyse the force-function with one oscillator if we can change
the time rate of the variation of the force-function.

Since the spectrum-function of z(ct) is

X/(w)= S“’

a(er)e " dr= 1 r x(er)e™““lrd(er)= 1y (ﬁ) (8)
i C J-= C C

’

we have by (7) ‘
=Y = 2(2)x(2)

c
The resulting spectrum is, therefore, that of the first derivative with
respect to time of the force-function. This result applies to the SMAC
response analyser and the difference of the last case from the preceding
one was first noticed by R. Takahasi, the above result also being
independently obtained by him.

Thus we see that a linear oscillator with no damping serves as an
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analyser of a continuous spectrum but not a line spectrum. For the
analysis of the latter some other device must be used.

Use of an Analyser with Finite Damping

Theoretically speaking, an oscillator with finite damping cannot
generally be used as an analyser in the above sense. There is, however,
a case when such an oscillator can be used rigorously. It is the case
of a line spectrum, to which analysis an oscillator without damping
has been proved to be inapplicable owing to its behavior of resonance.

A line spectrum is here defined for a harmonic series

o(t)= 3 aysin (p,t+9,) (10)

as the limit when 7— o of

2 t+T/[2 .
X(t, w)= T St_”q x(z)e~dr

— 221 P ~w)i+ds5} g, (Bf—_w T) _e—i{(pj+w)t+6j}ga (jS‘ffT)j,
% 2 2

(11)
in which Sa(z) is the so called sampling funetion §Z_x The spectrum
function denotes the amplitude a, and the phase 8, in the above harmonic
series.

If we apply a force a(ct)=3a,sin(cp,t+4,) to an oscillator, we
have from the equation (1), when ¢ is large,

2Va,sin (p,ct+06,+¢,) 2ep,e
Y= J 1 2, tang,= LT 12
y V {n*—pic}* + de*pic? Z pict—n? (12)

If we here assume ¢=1 and = ig variable, then we observe, in the
stationary state, a maximum amplitude

Va,
T TR 13
=V (15)
when n=p,1/'1—2%* provided ~=e¢/n. Thus a set of such damped oscil-
lators give the spectrum of Hw(t)dtdt. On the other hand if ¢ is

assumed to be variable and % is constant as in the SMAC response
analyser, the maximun stationary amplitude is

Va,

I 14
n2h1/ 1 —h? (14)

|y,lm=
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when ¢=1"n*—2¢%p,. We perceive that the coefficient of @, in [y], is
constant so that the resulting amplitude as a function of ¢ represents
the spectrum of the force-function directly.

Temporal Spectrum at t of the Force-function

R. Takahasi inferred from the well-known solution

V(¢ . V( .
Y= -; Sow(r)e‘e“‘”sm r(t—7)de= - Sox(t —u)e~ sin yudu (15)
of (1) that the amplitude |y(f)| may possibly represent the temporal
or local spectrum in the neighbourhood of ¢ of the force-function.
This is based on the fact that the main contribution of wx(f—u)e ™ to
y is confined to the portion of x(¢—u) near u=0. To verify this infer-
ence, the writer defined the local or temporal spectrum by (11), with

the exception, that T=u2’", y being finite in this case. Now if we take,

for example, (i) the case When a(t) is approximated by x,(¢)sin (pt+0)
where z(t) is assumed to be constant in the interval {—3T and t+47T,
then, by (11)

1X(2, w)l=1/lX(t w)°X(t —o)|

—a e/} ]Sa : )+Sa (7“2r @ )-2c5; ot + a)Sd( p;‘;’T>S’a< f";‘” T)[
a(t)Sa P °T) (16)

when pT is moderately large.

Now the response amplitude of an oscillator for () in the last
example is the same as that of the general term in (12), provided T'
is not too small and the proper motion caused at t—3#T" of the oscillator,

which is proportional to ¢~%7, may be discarded. The result is therefore
the same as that for a line spectrum.
(ii) Next we shall examine a more concrete example

w(t) =2, sin (at +bt?) | (17)
Then the solution of (1) for this force-function is
r(3)
2

4iy la—a K=Of(l—n>

w v o T(3) :
“1(6:4_1)&)2} B pe_a Zl,(;‘z_n){ (ﬁ%f)a)z}
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s r(i) { —i4b } + ¢ s F(%\) { —i4b }
a+a ( )(a+a)2 B+a F(%_E) (B +ay

ei(at-!-bt p] ( ) { 7:4b }x

Ca—a— 2bt (1 ) (@ —a— 20ty

1
el(at+b& p) [‘(E’)

T ot F(_ >{(/9 Zlbzbt) }

Lo ( ) { —i4b }

a+a+2bt (1 ) (a+a+ 2bt)*
2

. 1“(}_..)
e iat+bt™) 2

T ftat 2t F( 1 ﬁﬁ) {“(B'J:ﬁz}}?)f}‘ | (18)
2

For a sufficiently large value of ¢ at which e~* is negligible, and when
4b/e* is also negligible,

Vi, sin (at +bt* + ¢) an ¢ — 2¢(a +: 2ﬁl - 19)

1/ {(a+ 20ty —n*}* + 4e*(a+ 20t )’ ¢ (@+2bt)*—

Here we take ¢=t,, and assume that = is variable then the maximum
response

Ve, -
(a4 2bt,)* 2RV 1 — A2

[¥]n=

is proportional to the spectrum of ﬂx(t)dtdz‘, as in the above example

(). The case for the SMAC response analyser is obtained by intro-
ducing ac and b¢* into (19) for @ and b respectively. We see the
maximum response amplitude is

__ V&

n*2hV'1—h?

for the time at which act+be't*=at,+bt or t=—(a+bt,)/bc when

Iy]m":
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c=1/n2—25".
a + 2bt,
tional to the temporal spectrum .
(iii) As a third example let us examine the case when a(¢)=(A+ Bt
+Ct?)sin (pt+6). The formula (15) gives the solution of (1) for this
case as follows:

B P MR WA
=20 2y vyl

—6‘”‘{@"4(;,‘1?‘5;1_7)_13( (p—l-ﬁ)" - (piﬁ)z)

The maximun response amplitude is again directly propor-

~2(G 25 ey}
+ ehamdl —i(A+ Bt + CtZ)(g_}a__ ﬁ)
+Br20n( ot o D)ol o1k

_6-i<m+6>{i(A+Bt+ Ct2)<p+%_ p__;l_—ﬁ)

1 1 . 1 1
+(B+2Ct — —i20 - ]
@+20( oy 5 )~ vy )
This equation again reduces to

Y== 1}/((;}1‘ ﬁ;‘_:-iizo‘ sin (pt+0+¢), tan ¢=_2522—E%;
when ¢t is modarately large and BJ/e and C/¢* are negligible. This is
essentially the same as (12) or (19). and a similar conclusion follows as
in example (ii).
(iv) Lastly we shall examine the case when the force is a unit
impulse given at ¢=t,. The temporal spectrum in the above definition is

X(, w)=§{e““"0=ie"‘°‘o

v
while the usual spectrum function is
X(a))=e'i“"0
Then the motion of the oscillator is given by (4)
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Y= —3V {em(t—tu)_em(z—zo)} =+ _I/:e—s(z—zo) sin T(t"to)
2r 7
and the maximum response, when ¢ is small, by

LV o =_r_. 1
[Yln=="" e~ vigz 00 —X(t, n)
n n

This also represents the spectrum of Hx(t)dtdt.

As for the SMAC type response analyser, the spectrum function of
z(ct) is by (8)

X’I(w)= % e-—iwto

and

LV = »_
[Yln==— —€™ 2 viti
n c

which shows that v
Yl o X(&o, 7).

From what we have seen we can conclude that the damped SMAC
response analyser gives the temporal spectrum of the force-function
a(t) itself directly, while the responses of a set of damped oscillators

give the temporal spectrum of ng(t)dtdt.

On G. W. Housner’s Definition of the Spectrum of an Earthquake

From the above fundamental theory we may conclude, in a case
when a seismometer or a one mass structure with no damping is
subjected to an earthquake acceleration «(¢), the final amplitude v,
after the earthquake is over, represents the spectrum function of the
earthquake velocity. Cautious readers will have already become aware
of the seeming contradiction of the above inference with G. W. Hous-
ner’s denominations of the displacement, velocity and acceleration
spectrum of an earthquake for y, ny, and »*y respectively, where y is
the response amplitude of the vibration analyser. His omission of the
words ‘‘motion of a structure due to’’ before ‘‘an earthquake’’ is
presumed to be for the sake of avoiding clumsiness or a matter of the
nuance of the word ‘‘an earthquake’.

Housner’s idea of response spectrum is correct and very useful in
earthquake engineering, and his use of the maximum amplitude for
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the spectrum is also correct in itself, although the amplitude of the
remanent or final motion of the oscillator after the earthquake must
be read in order to obtain the spectrum of the force-function from the
mathematical or physical point of view.
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