
　
Master’s Thesis

Dynamic Taint Propagation Based on
Dynamic String Conversion Detection

（動的な文字列変換の検出に基づく DTP）

Supervisor: Professor Shuichi Sakai

48-106425 Hiroshi Toi

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY,

THE UNIVERSITY OF TOKYO

February 2012





Abstract

Currently, the security of web applications is faced with the threat of script in-
jection attacks, such as cross-site scripting, and SQL injection. DTP (Dynamic
Taint Propagation) has been established as a powerful technique for detecting
script injection attacks, but current DTP systems suffer from a trade-off between
false positives and false negatives. Therefore, Li et al. proposed an enhanced DTP
system called SWIFT [1]. SWIFT traces memory accesses, detects string opera-
tions, and only propagates tainted information under string operations. Although
the basic idea of SWIFT is quite promising, they only showed a preliminary im-
plementation on a simulator and failed to show advantage in accuracy over Raksha
[2], which is one of the most sophisticated platform DTP systems. In this paper,
we implement SWIFT to PHP interpreter to put SWIFT into practical use. More-
over, we succeeded to show that SWIFT has better propagation accuracy than
Raksha in real-world web applications.
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Chapter 1

Introduction

Along with the increase in web applications, attacks exploiting vulnerabilities of
these applications have also increased. Attackers exploit various security vulner-
abilities to carry out a wide variety of tasks, such as stealing secret or personal
information, making a profit, or just enjoying.

In the past, the most prevalent attacks were those aimed at client applications
in binary code, represented by buffer overflow attacks. The frequency of this kind
of attacks, however, has abated, possibly because most of these can be prevented
by NX bit and ASLR (Address Space Layout Randomization).

Instead, the most serious attacks in recent years have been script injection
attacks to web servers, such as cross-site scripting (XSS), SQL injection, and
directory traversal. Figure 1.1 shows the number of vulnerabilities reported to
the National Vulnerability Database [3]. The figure shows vulnerabilities to script
injection attacks have increased sharply in recent years.

DTP (Dynamic Taint Propagation) has been proposed to prevent these attacks.
DTP systems tag data from untrusted sources as tainted, dynamically propagate
taint information along the execution of the target program, and detect attacks
when tainted data are used for critical use, such as system calls.

Though DTPs are considered to have the potential to root out script injection
attacks, existing systems still suffer from a trade-off between false positives and
false negatives. To provide a solution the trade-off problem, Li et al. proposed
a technique called SWIFT [1]. SWIFT takes a completely different approach
to the conventional DTP systems. SWIFT tracks the memory accesses of the
target program, detects pairs of interleaving read and write string accesses from
the address trace, and propagates taint information from the read string to the
written string. As will be explained in Section 3, SWIFT is free from the trade-off
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that existing platform DTPs suffer from.
Although the basic idea of SWIFT is quite promising, Li et al. [1] only showed

a preliminary implementation on a simulator and failed to show advantage in ac-
curacy over Raksha [2], which is one of the most sophisticated platform DTP
systems. Then, the purpose of this paper is to overcome these weak points. The
contribution of this paper is as follows:

• We implement SWIFT to PHP.

• We succeeded to show that SWIFT has better propagation accuracy than
Raksha in real-world web applications.

Implementation on PHP Since SWIFT need only the address traces of target
programs, it is language-independent, that is, it can be implemented both as a
software module of interpreters for script languages and as a hardware module of
processors.

Li et al. implemented SWIFT on an IA-32 emulator Bochs [4] to evaluate the
taint propagation accuracy.

On the other hand, we implement SWIFT to PHP interpreter to put SWIFT
into practical use. We selected PHP because it is the most widely used in server-
side web applications.

New evaluation results Li et al. failed to show the advantage in accuracy over
Raksha because the web applications they used in the evaluation were too basic to
show the difference.

We found out that the trade-off that existing DTPs suffer from is mainly caused
from table references. Base64 is a typical example of such table references. Then,
we tried real-world web applications with vulnerabilities of Base64, and found
Raksha can’t detect attacks exploiting such vulnerabilities while SWIFT can.

The rest of the paper is organized as follows. Section 2 reviews background
knowledge of script injection attacks and DTPs. Section 3 describes two types of
string operations using table references to explain why existing DTPs are subject
to a trade-off between false positives and false negatives. In this section, we also
describe SWIFT in detail, which is free from the trade-off problem. Section 4
explains how we implemented SWIFT to PHP. Section 5 shows the evaluation
results with respect to propagation accuracy and performance overhead of the PHP
implementation. Finally, Section 6 states our conclusions and future work.
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Figure 1.1: Increase in script injection attack
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Chapter 2

Script Injection Attacks and
Dynamic Taint Propagation

This section reviews background knowledge of script injection attacks and DTPs.
Sections 2.1 and 2.2 explain SQL injection and its detection mechanism using
DTPs. In Section 2.3, we explain command parsing, in conjuction with which
SWIFT is assumed to be used. In Section 2.4, we discuss the problem with exist-
ing DTPs using Base64 as an example.

2.1 SQL injection
From cross-site scripting to SQL injection, attackers can use various techniques to
attack web applications. This section uses SQL injection as an example to explain
how script injection attacks occur.

SQL injection is one of the most common attacks. It allows an attacker to
access sensitive information from a Web server’s database. Figure 2.1 gives an
example of SQL injection.

Assume that a web page displays the price of a product that a user has selected
by typing its name into a text box. Figure 2.1(a) gives the associated PHP state-
ment on the web page to achieve this. The string the user entered into the text box
is stored in the variable $name. By concatenating $name and the constant string,
the statement produces the SQL command $cmd that is sent to the SQL server.

Normally, a user enters a product name such as ruby for $name, resulting
in the $cmd given in Figure 2.1(b). In this and the next subfigure, the substrings
corresponding to $name are underlined. The database then returns the price of a
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$cmd =
"SELECT price FROM prod WHERE name=$name"

(a) PHP statement
$name:
ruby

$cmd:
SELECT price FROM prod WHERE name=’\
ruby’

(b) Non-attack string and resulting command

$name:
dummy’; \
UPDATE prod SET price=0 WHERE name=’ruby

$cmd:
SELECT price FROM prod WHERE name=’\
dummy’; \
UPDATE prod SET price=0 WHERE name=’ruby’

(c) Attack string and resulting command

Figure 2.1: Example of SQL injection
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ruby.
If an attacker injects the string given in Figure 2.1(c) into $name, a different

$cmd shown in the same figure is produced, which updates the database without
the programmer’s knowledge.

As seen in this example, a script injection attack is carried out by making the
victim server interpret the string that includes attack code written in the scripting
language. As for binary injection attacks, even if binary attack code is successfully
injected, execution of the injected binary can easily be prohibited, e.g., using an
NX bit. As for script injection attacks, however, interpretation of an injected
script itself cannot be prevented because this is the key benefit of using scripting
languages. This is the main difficulty in detecting script injection attack .

2.2 DTPs to Script Injection Attacks
The use of DTPs is a promising technique for detecting script injection attacks.
The idea behind a DTP is to tag data from untrusted sources as tainted, for exam-
ple, data from network I/O, user input, or read from any untrusted device. The
tags are propagated during program execution. If tainted data is used in an unsafe
way, such as a system call or a SQL command, attacks are detected.

The original inspiration behind the concept of DTPs was provided by the taint
mode of Perl [5]. Since then, this kind of technique has been supported in various
programming languages, such as PHP [6, 7, 8], Ruby [9], Java [10, 11], and C
[12, 13] as well as its descendants. This language-level support is referred to as
language DTPs. On the other hand, Suh et al. first applied the Perl taint mode to a
processor to detect injection attacks to binary code, and called it DIFT (Dynamic
Information Flow Tracking) [14]. We refer to such techniques on processors as
platform DTPs. Although the purpose of platform DTPs was to detect binary
injection attacks and platform DTPs were affected by interpreting noise, Dalton et
al. pointed out that they could also detect script injection attacks and could provide
the same level of accuracy as language DTPs [2].

Interpreting noise is defined as instructions executed only for the sake of inter-
preting scripts, and which provide no help in information flow tracking. Tens of
native instructions are needed to interpret just a single instruction of an interme-
diate scripting language. These instructions are not directly related to information
flow tracking, and thus, for detecting script injection attacks, they behave as noise.

In the example of SQL injection in Section 2.1, the tainted substring is un-
derlined. Because SQL commands, such as UPDATE and SET, or field and table
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names, such as price and prod are tainted, SQL injection can be detected.
In the next section, we explain command parsing, in conjuction with which

SWIFT is assumed to be used.

2.3 Command Parsing
Su et al. showed that SQL injection can always be perfectly detected as long as
the SQL syntax is known and the substrings are correctly detected as trusted or
untrusted [15].

As in the example of SQL injection given in Section 2.1, the command parser
of the SQL server knows which substrings must be trusted and which may be
untrusted. Specifically, keywords, such as UPDATE and SET, or field and table
names, such as price and prod, must be trusted, whereas arguments such as ruby
could be untrusted. If the parser knows that the substring of $cmd corresponding
to $name, i.e., the underlined data in the SQL injection, is untrusted, the parser
can easily distinguish whether $cmd is an attack or not.

This command parsing can also be applied to any commands arising from
web applications. In general, data from untrusted sources should not specify the
names of the system resources, but may specify their contents. The names of
system resources include file names, command names, or field and table names of
databases.

Used with command parsing, therefore, it is not rational to let DTPs decide
which substring is untrusted based on its own judgment. DTPs should always
leave the substring corresponding to $name tainted even in non-attack cases. In
the example in Section 2.1, even if ruby is left tainted, the parser can distinguish
it from actual attack code. Academic researchers have had appropriate command
parsing to prevent many kinds of script injection attacks [16] [13].

In the next section, we use Base64 as an example to explain the problem with
existing DTPs.

2.4 Problems with Existing DTPs
Some web applications use Base64 to obfuscate sensitive input. For example, the
code shown in Figure 2.2(a) is found in Cubecart 3.0.3

After the base64 decode(), $redir is not sanitized, and this could lead to a
cross-site scripting attack.

7



$redir =
base64_decode($_GET[r̈edir]̈);

(a) PHP statement
http://[victim]cc3/index.php?act=login&
redir=L3NpdGUvZGVtby9jYzMvaW5kZXgucGhwP
2FjdD12aWV3RG9jJmFtcDtkb2NJZD0x

(b) Attack code
$redir:
/site/demo/cc3/index.php?act=viewDoc&docId=1

(c) XSS code

Figure 2.2: Example of Base64 vulnerability

For example, if an attacker creates and inputs a specially crafted URL in Figure
2.2(b), $redir in Figure 2.2(c) is generated after the base64 decode function.
When the code is executed, cross-site scripting occurs.

Existing DTPs do not propagate tainted information through Base64, and there-
fore they can not detect the cross-site scripting mentioned above. In the rest of
this section, we explain why existing DTPs do not propagate tainted information
through Base64.

The Base64 encoding procedure is as follows:

1. 3 uncoded bytes (8*3=24bits) are converted into 4 numbers (6*4=24bits)

2. 4 numbers are converted to their corresponding values using a conversion
table

The Base64 decoding procedure is the reverse of the above process. The key point
is that Base64 uses table reference for conversion. In general, a table reference is
as follows:

$ostr = $table[$istr];

We can regard a table reference as safe in the usual cases, but if it is used for
conversion, it is unsafe. In propagating tainted information, a table reference falls
into the trade-off between false positives and false negatives. If we regard table
references as safe, tainted information is not propagated from $istr to $ostr,

8



and this causes a security hole. On the contrary, if we regard table references as
unsafe, tainted information is propagated from $istr to $ostr, and this results
in plenty of false positives. Most existing DTPs select the former approach, so
they do not propagate tainted information through Base64.

9



Chapter 3

SWIFT

This section explains SWIFT [1]. SWIFT provides much higher accuracy for
detecting script injection attacks than conventional DTPs.

First, we consider the essence of DTPs in Section 3.1. Then, we describe two
types of string operations on table references, namely, loop-in-select and select-
in-loop, in Section 3.2. Finally, we present a detailed algorithm for SWIFT in
Section 3.3.

3.1 Radio Button and Text Box String Operations
Radio buttons and text boxes are two representative user interfaces commonly
found on web pages. Radio buttons are used to choose one of several options,
while text boxes are used to obtain arbitrary strings.

As described in Section 2.1, text boxes are unsafe to injection attacks and
the programmer must carefully check the string entered through a text box. On
the other hand, radio buttons are considerably safer. Since the options of a radio
button are provided by the programmer, the string that the user chooses is under
control of the programmer, and it is practically impossible for attackers to attack
through a radio button.

The string operations in web applications can also be divided into radio but-
tons and text boxes. In an application, strings travel from the input to the output,
experiencing one or more radio button and/or text box operations. A substring of
a string can be considered to be under the control of the programmer if it experi-
ences at least one radio button operation en route.

Therefore, what DTPs should do is to identify whether the operation that a

10



$table[’0’] = "ruby";
$table[’1’] = "sapphire";
/* ... */
$ostr = $table[$i];

(a) Sample code for radio button string operation: safe

$table[’a’] = ’A’;
$table[’b’] = ’B’;
/* ... */
for ($i = 0; $i < strlen($istr); $i++)
$ostr[$i] = $table[$istr[$i]];

(b) Sample code for text box string operation: unsafe

Figure 3.1: Two types of string operations

substring undergoes is a radio button or text box, and to propagate tainted infor-
mation from the input string to the output string only if the operation is detected
to be a text box.

Note that this will propagate tainted information to the output even if it is not
an attack. This is acceptable because SWIFT is assumed to be used in conjuction
with command parsing described in Section 2.3. The parser can then detect that it
is not an attack even if a substring such as ruby is tainted.

3.2 Loop-in-Select and Select-in-Loop Structures for
Table References

In Section 2.4, we mentioned that table references fall into the trade-off between
false positives and false negatives. In this section, we discuss in detail why this is
the case.

Figure 3.1 shows that string operations using table references can be classified
into two types: radio buttons and text boxes. Figure 3.1(a) shows sample code of
radio button string operations. In this code, there is a table containing strings like
ruby and sapphire. The string is assigned to $ostr by referencing the table.
It is assumed that $i is specified by the user and is tainted. Figure 3.1(b) shows
sample code of text box string operations. In this code, there is a table containing
capital letters corresponding to each index. An arbitrary string is stored in $istr
and the string is converted from lowercase to uppercase by referencing the table.
As in Figure 3.1(a), it is assumed that $istr is specified by the user and is
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Figure 3.2: Loop-in-Select structure: safe

tainted.
The string operation in Figure 3.1(a) is safe because the string that the user

chooses is necessarily under the control of the programmer. Thus it is practically
impossible for attackers to attack through this operation. On the other hand, the
string operation in Figure 3.1(b) is unsafe because the user can control the output
and obtain an arbitrary string. It is thus, possible to attack through this operation.
This string operation includes a string copy and all kinds of string conversions
such as case or code conversions.

The string operations in Figure 3.1(a) and Figure 3.1(b) are almost the same
except that the table reference in the latter unsafe string operation is used in the for
statement. We can distinguish these two types by focusing on the address trace.
Figure 3.2 and Figure 3.3 show the address traces of these string operations. In
these figures, the x- and y-axes indicate the address and time, respectively. There
are four types of triangles. Upward triangles △ and N indicate load instructions
of untainted and tainted data, respectively. Downward triangles ▽ and H indicate
store instructions whose store values that should be untainted and tainted, respec-
tively. The load/store instructions that do not relate to DTP are not drawn in these
figures.

Figure 3.2 corresponds to the sample code of the safe string operation shown
in Figure 3.1(a). The first tainted load indicates the load of input variable $i. In
this case, the value of $i is ‘0’, and then the constant string “ruby” is copied
to the output variable $ostr. Figure 3.3 corresponds to the sample code of the
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Figure 3.3: Select-in-Loop structure: unsafe

unsafe string operation shown in Figure 3.1(b). The tainted input string “ruby”
is converted to “RUBY”.

In both figures, the load instructions of the string read and the store instructions
of the string write appear in an interleaved fashion. The obvious difference is that
the loads are untainted in the safe string operation, whereas they are tainted in
the unsafe string operation. If we regard the table reference as a “select” and the
interleaving read/write as a “loop”, we can see that the safe string operation can be
represented by the loop-in-select structure in Figure 3.2. We can also see that the
unsafe string operation is depicted by the select-in-loop structure in Figure 3.3.
Existing DTPs do not pay attention to non-local structures such as loop-in-select
and select-in-loop, and are therefore prone to the table reference trade-off.

3.3 Algorithm of SWIFT
In this section, we explain the algorithm of SWIFT in detail.

3.3.1 Overview
SWIFT is a proper method for distinguishing loop-in-select and select-in-loop
structures. Unlike existing DTPs, SWIFT does not track information flow instruc-
tion by instruction. Instead, SWIFT only observes the address traces of executed

13



load/store instructions and detects select-in-loop string operations.
SWIFT detects sequential memory accesses as string accesses. Moreover,

SWIFT detects an interleaving string read and write as a string operation. If the
read string is tainted, SWIFT detects this string operation as a select-in-loop string
operation and propagates the tainted information from the read string to the write
string.

3.3.2 Select-in-Loop String Operation Detection
Streams and Interleaving Pairs

A read stream is a sequence of read accesses to a string, and a read access in a
read stream is referred to as a stream read. Likewise, a write stream is a sequence
of write accesses to a string, and a write access in a write stream is referred to as
a stream write.

The purpose of the algorithm is to detect an interleaving pair of a read stream
and a write stream. Figure 3.4 shows an example of an interleaving pair. This
figure shows an address trace of base64 encode. In an interleaving pair, the stream
reads and writes appear alternatively. The read stream is divided into multiple
read substreams through occurrences of the stream writes, and vice versa. Each
of the read/write substreams contains one or more stream reads/writes. A read/
write access in the read/write stream of an interleaving pair is referred to as an
interleaving-stream read/write.

Tables

Two tables are used to detect read and write streams. Each of the entries in the
read/write stream tables is allocated to a stream.

An entry in the tables has the following fields:

• start The start address of the stream.

• next The predicted next address of the stream.

• n access The current number of accesses in the stream.

• n substrm The current number of substreams in the stream.

• switched A flag to calculate n substrm.

14
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Figure 3.4: Address trace of base64 encode

Stream Read/Write Detection

On a read access to addr, the next value of all the entries in the read table is
compared to addr. If there is no match, a new entry is created, start, next, n access
are initialized to addr, the address next to add, and one. If there is a match,
n access is incremented and next is advanced for the future access. An entry with
n access greater than a threshold is recognized as a read stream. In other words,
if addr matches the next and n access is greater than a threshold, the read access
is detected as a stream read. The same holds true for the write table and write
accesses.

Interleaving Stream Read/Write Detection

When a stream write is detected, the switched flags of all the entries in the read
(not write) table are set. Thereafter, a read access of a stream is detected as the
first access to a new substream because switched is set. Then, n substrm is in-
cremented, and switched is reset for the possible second access in the same sub-
stream. An entry with n substrm greater than a threshold is detected as the read
stream of an interleaving pair. In other words, if addr matches next and n substrm
is greater than a threshold, the read access is detected as an interleaving stream
read. The same holds true for the write table and write accesses.

15



3.3.3 Propagation and Backtracking
Every time a stream read is detected, the taintedness of the read is stored in the
taintedness variable. Then, when an interleaving stream write is detected, the
taintedness of the written word is set to the value of taintedness.

When the detector detects streams, the same number of accesses as the thresh-
old have already been performed. Thus, backtracking is needed, that is, these
written characters should also be tainted. The start field of the entry is primarily
used to locate the start address of the stream.
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Chapter 4

Implementation of SWIFT to PHP

We implement SWIFT to PHP interpreter to put SWIFT into practical use. We
selected PHP because it is the most widely used in server-side web applications.

First we give an overview of our implementation in Section 4.1. Thereafter,
we describe how to cope with native functions in Section 4.2. In Section 4.3, we
explain the PHP interpreter. Finally, we explain in detail how to acquire memory
addresses from the source code of the interpreter in Section 4.4.

4.1 Overview
Figure 4.1 shows a general overview of our implementation. A PHP script is com-
piled to intermediate code by a runtime compiler and is executed by an executor.
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Figure 4.1: General overview of our implementation
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Figure 4.2: Relationship among script, intermediate code and source code

The PHP interpreter is written in C. SWIFT’s engine has a hash table of taint-bits
whose access keys are memory addresses. SWIFT is written in C++.

Since SWIFT focuses only on address traces of the program execution, we
must obtain memory addresses corresponding to the load/store instructions from
the PHP interpreter. In this research, we insert hook functions in the source code
of the executor. As described in subsequent sections, hook functions can be au-
tomatically inserted in a fairly simple algorithm using our Perl program. Because
we utilize information from the source code, only the memory addresses of strings
can be acquired. If we exactly obtain memory addresses of the strings, it is pos-
sible to propagate tainted information correctly using the SWIFT algorithm de-
scribed in Section 3.3. Note that SWIFT can work even if all memory addresses
are obtained, that is, including addresses other than those of strings.

4.2 Coping with Native Functions
Parts of an interpreter are generally implemented as native functions.

In platform DTPs, it is difficult to propagate tainted information through an
interpreter because there is plenty of interpreting noise as mentioned in section
2.2. Conversely, it is easy to do this through native functions because there is no
influence of interpreting noise.

In language DTPs, however, the ease of taint propagation mentioned above
is reversed. It is easy to propagate tainted information through an interpreter be-
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cause we can utilize the interpreter’s information, whereas it is difficult to do this
through native functions because we can not utilize the interpreter’s information.

As described in detail in subsequent sections, it is fairly easy for us to obtain
memory addresses from the source code of the interpreter, because we can identify
the memory accesses to strings by merely focusing on the macros.

On the other hand, it is generally difficult to implement DTPs to native func-
tions, and it also seems to be difficult to obtain the memory addresses of strings
from the source code of native functions. However, we are able to insert hook
functions automatically in a simple algorithm using our Perl program.

All variables are stored in a data structure called zval in the PHP interpreter.
The string data of zval are passed to the native functions in a uniform way in the
form of char pointers. In native functions, strings are treated as char pointers.
After processing of the native functions, the string data are passed to zval in a
certain way. This is why memory addresses can be acquired easily by focusing
only on char pointers in the source code of the native functions.

If built-in C library functions are used, we do not know exactly how load/store
instructions are executed internally. However, if built-in C library functions, such
as memcpy and strcpy, are executed, we must obtain memory addresses because
these instructions operate as text box operations and move the location of strings
by interleaving load/store accesses. If the source code of these is available, mem-
ory addresses of the load/store instructions can be obtained. In practice, however,
the source code may not be available.

To obtain memory addresses and to propagate tainted information correctly
through built-in C library functions, we take advantage of source and destination
addresses, and the number of moved bytes. For example, if memcpy is used, the
data pointed to by the second argument is copied to the memory block pointed
to by the first argument where the number of bytes to copy is specified by the
third argument. Therefore, the data pointed to by the second argument can be
regarded as a read string, with size equal to the number of bytes specified in the
third argument, while the data pointed to by the first argument can be regarded as
a write string, with the same size as the source string. Tainted information of the
read string is directly propagated to the write string.

We also know the memory blocks of read and write strings for other built-in
C library functions, so tantied information can be propagated correctly.
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struct zval struct {
zvalue value value; /* value */
zend uint refcount gc;
zend uchar type;
zend uchar is ref gc;

}zval ;

Figure 4.3: Zval structure

4.3 PHP Interpreter internals
In this section, we discuss the knowledge of the PHP interpreter internals needed
to describe our implementation details in the next section.

4.3.1 Relationship among Script, Opcode and Source code
Figure 4.2 shows the relationship among the script, intermediate code and source
code of the PHP interpreter. On the left of Figure 4.2 is a sample PHP script. The
intermediate code in the middle has been dumped using vld [17].

The intermediate code is an ordered array (an op array) of instructions (known
as opcodes) [18], such as DO FCALL and ASSIGN. We call the source code of
each opcodes a zend opcode handler.

The sample script uses base64 encode, which is a PHP built-in function. We
call the source code of each PHP built-in function a zif function. Zif functions
correspond to native functions.

The sample script also uses caselow, which is a PHP user-defined function.
In the bottom half of the intermediate code, the PHP user-defined functions are
considered op arrays as well, as if they were miniature scripts.

Therefore, we have only to acquire memory addresses from zend opcode han-
dlers and zif functions.

4.3.2 Variable Management
In PHP, all variables are zvals. Figure 4.3 and Figure 4.4 show the C structure of
a zval and its complementary data container, respectively.

To access various types of data, macros in source code of interpreters, which
take zvals as their arguments, can be used. For instance, if we wished to extract
the string buffer (char* val in Figure 4.4) for zval, zval* and zval**, we would
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typedef union zvalue value {
long lval;
double dval;
struct {

char *val; /* string value */
int len;

} str;
HashTable *ht;
zend object value obj;

} zvalue value;

Figure 4.4: Data container for zval

#define Z STRVAL(zval) 　　　　 (zval).value.str.val
#define Z STRVAL P(zval p) 　　 Z STRVAL(*zval p)
#define Z STRVAL PP(zval pp) 　 Z STRVAL(**zval pp)

Figure 4.5: zval-to-C data type conversion macros

use Z STRVAL, Z STRVAL P and Z STRVAL PP, respectively, as defined in the
source code(Figure 4.5).

4.3.3 Memory Management
The PHP interpreter uses its own internal memory-management wrapper func-
tions as given in Table 4.1. In the following description, we regard memory-
management wrapper functions as built-in C library functions. In particular, we
focus on erealloc and estrndup.

4.3.4 Declaration of zif functions
Figure 4.6 shows the declaration of zif functions using zif base64 encode as an
example. In a zif function, zend parse parateters is used to extract the variables
passed into a zif function from the zvals. The third argument “s” specifies the
string type of data. The next argument, &str, is a reference to the C variable that
fills out with the value of the argument. As a result, the string data of the zval is
treated as the char pointer in zif functions—in this case “str”.
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Table 4.1: Memory-management Wrapper Functions
Function Usage
void *emalloc(size t size) malloc() replacement
void efree(void *ptr) free() replacement
void *erealloc(void *ptr, size t size) realloc() replacement
char *estrndup(char *str) strndup() replacement

01 　　 PHP FUNCTION(base64 encode) //zif base64 encode
02 　　 {
03 　　 char *str;
04 　　 unsigned char *result;
05 　　 int str len, ret length;
06 　　
07 　　 if (zend parse parameters(ZEND NUM ARGS() TSRMLS CC,
08 　　 ”s”, &str, &str len) == FAILURE) {
09 　　 return;
10 　　 }
11 　　 result = php base64 encode((unsigned char*)str, str len, &ret length);
12 　　 if (result != NULL) {
13 　　 RETVAL STRINGL((char*)result, ret length, 0);
12 　　 } else {
13 　　 RETURN FALSE;
14 　　 }
15 　　 }

Figure 4.6: Declaration of zif functions

4.4 Acquisition of Memory Addresses
In this section, we explain how to acquire memory addresses. Only memory ad-
dresses of strings can be acquired because we can utilize information from the
interpreter’s source code. As explained in Section 4.3.1, we only need to acquire
memory addresses from zend opcode handlers and zif functions.

4.4.1 Zend Opcode Handler
The string access opcodes are the following:

• ASSIGN, ASSIGN DIM

• ADD CHAR, ADD STRING, ADD VAR

• BW AND, BW NOT, BW OR, BW XOR

• CONCAT

• POST INC, POST INC OBJ
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1 　　 swift load(&Z STRVAL P(T->str offset.str)[T->str offset.offset],1);
2 　　 Z STRVAL P(T->str offset.str)[T->str offset.offset] = Z STRVAL(tmp)[0];
3 　　 swift store(&Z STRVAL(tmp)[0],1);

(a) The macros access an element of a string using subscripts

1 　　 memcpy(Z STRVAL P(result), Z STRVAL P(op1), Z STRLEN P(op1));
2 　　 swift memcpy(Z STRVAL P(result), Z STRVAL P(op1), Z STRLEN P(op1));

(b) built-in C library functions take the macros as their arguments

Figure 4.7: Acquisition of memory addresses from zend opcode handler

• PRE INC, PRE INC OBJ

We focus on the zend opcode handlers corresponding to these opcodes. In a zend
opcode handler, string access is done using the macros mentioned in Section 4.3.2,
and thus we can recognize a string access. We insert hook functions in the follow-
ing two cases.

The first case occurs when the macros access an element of a string using
subscripts. For example, assume the source code given in line 2 in Figure 4.7(a).
If the string access is on the right of the assignment operator, we regard it as a
load access. On the other hand, if the string access is on the left of the assignment
operator, we regard it as a store access. In this code, both load and store accesses
occur. We use swift load and swift store as hook functions to obtain memory
addresses in lines 1 and 3 in Figure 4.7(a). The first argument of these functions
is the memory address of the load/store access while the second argument is the
byte size of the load/store access. In our implementation, the second argument is
always 1.

The second case occurs when built-in C library functions take macros as their
arguments. The functions to which we should pay attention are the following:
estrndup, erealloc, memcpy and memmove.

For example, assume the source code as in line 1 in Figure 4.7(b). In this
case, Z STRVAL P(op1) corresponds to a read string while Z STRVAL P(result)
corresponds to a write string, and thus, we should obtain the memory addresses
of Z STRVAL P(op1) and Z STRVAL P(result). We use swift memcpy as a hook
function as in line 2 in Figure 4.7(b). The first and second arguments are, respec-
tively, a pointer to the destination and a pointer to the source. The third argument
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is the number of bytes to copy.

4.4.2 Zif Functions
The following functions constitute zif functions for which we must obtain memory
addresses.

• String Functions(e.g., htmlentities)

• POSIX Regular Expression Functions(e.g., ereg replace)

• Perl Compatible Regular Expression Functions
(e.g., preg replace)

• URL Functions(e.g., base64 encode)

• Multibyte String Functions(e.g., mb eregi replace)

Because only char pointers are passed to zif functions, we can not insert hook
functions focusing on the macros. As mentioned in Section 4.2, hook functions
can be inserted automatically into zif functions based on a simple algorithm in our
Perl program. In this algorithm, we need only consider char pointers. As in zend
opcode handlers, hook functions are inserted in the following two cases.

The first case occurs when a char pointer accesses its element using an aster-
isk or subscript. If the string access is on the right of the assignment operator, we
regard it as a load access. On the other hand, if the string access is on the left of
the assignment operator, we regard it as a store access. In the source codes for
base64 encode, for example, we obtain memory addresses as in Figure 4.8. As
described in Section 2.4, Base64 uses table references for conversion. In line 10,
base64 table is used as the conversion table. When line 10 is executed, current[0]
is loaded and *p is stored. As a result, we obtain the memory addresses of cur-
rent[0] and p as load and store accesses in lines 9 and 12, respectively. Lines 11
and 13 are required to correct the memory addresses pointed to by p.

The second case occurs when a built-in C library function takes a char pointer
as its argument. According to our investigation, the functions to which we should
pay attention are the following: estrndup, erealloc, memcpy, memmove, strcpy,
strlcpy, strncat, and strlcat. swift memcpy is also used to obtain memory ad-
dresses of these built-in C library functions.
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01 　　 PHPAPI unsigned char *php base64 encode
02 　　 (const unsigned char *str, int length, int * ret length)
03 　　 {
04 　　 const unsigned char *current = str;
05 　　 unsigned char *p;
06 　　 unsigned char *result;
07 　　 /* ... */
08 　　 while (length <2) {
09 　　 swift load((char*)&current[0],1);
10 　　 *p++ = base64 table[current[0] >>2];
11 　　 p– –;
12 　　 swift store((char*)&p,1);
13 　　 p++;
14 　　 /* ... */
15 　　 }

Figure 4.8: Acquisition of memory addresses from zif function
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Chapter 5

Evaluation

We evaluated the taint propagation accuracy of PHP-SWIFT compared with Rak-
sha and PHP-taint.

Raksha [2] is one of the most sophisticated platform DTPs. Since Raksha does
not by default track address flows, we implemented algorithms with and without
address flow tracking, which we refer to as Raksha−a and Raksha+a, respectively.

Regarding PHP-taint, we used the PHP-taint 20080622 package [6]. PHP-taint
was the first implementation of taint support for PHP released in November 2007.

In addition, we also evaluated the performance overhead of PHP-SWIFT.
In Section 5.1, we explain our evaluation method. Sections 5.2 and 5.3 show

the experimental results of the taint propagation accuracy and performance over-
head, respectively.

5.1 Evaluation Method

5.1.1 Environment
We used the IA-32(x86) emulator Bochs 2.3.5 [4] to implement Raksha. We added
per-byte taint bits and their propagation to Bochs. Although the actual proposal
for Raksha was implemented at word granularity in taint tracking and an imple-
mentation of Raksha at byte granularity increases the precision of taint tracking, in
order to test and verify the taint propagation precision fairly, our implementation
of Raksha supported byte granularity.

Our measurements were taken on a 3.2 GHz Intel Core i7 machine with 6 GB
RAM. Table 5.1 gives the details of our evaluation environment.
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Table 5.1: Evaluation environment
PHP-SWIFT PHP-taint Raksha

Host OS Windows Vista x64
Emulator VMware Player 3.1.4 Bochs 2.3.5
Guest OS Ubuntu 10.04 Red Hat Linux 8.0

Web Server Apache 2.2.14 Apache 2.2.11
SQL Server MySQL 5.1.37 MySQL 4.1.22

PHP modified PHP-5.3.1 PHP-taint 20080622 package PHP-5.2.5

5.1.2 Methodology
PHP-SWIFT and PHP-taint automatically taint data from outside the PHP scripts.
As for Raksha, data from the network are manually tainted when the data are read
by Apache because PHP interpreter is installed as an Apache module.

To evaluate the taint propagation accuracy of PHP-SWIFT and Raksha, we
checked which substrings of the output strings were tainted when the target pro-
grams called sensitive functions. As for PHP-taint, we merely recorded the secu-
rity exceptions it raised.

To evaluate the performance overhead of PHP-SWIFT, we inserted a micro-
time function, which is a PHP built-in function, at the beginning and end of the
scripts and measured the execution time of the interpreted scripts.

5.2 Taint Propagation Accuracy
To evaluate the taint propagation accuracy of PHP-SWIFT, PHP-taint, and Rak-
sha, we executed typical string operations and a wide range of common script
injection attacks on the real-world web applications.

5.2.1 String Operations
Table 5.2 summarizes the results of the basic string operations. PHP-SWIFT cor-
rectly propagates tainted information for all the operations, whereas Raksha and
PHP-taint do not. The string operations include string copies and case and code
conversions, which are commonly used in web applications. Operations(2) to (7)
are PHP built-in functions, and thus they are written in C.

(1) concatenation, (2) substr(), and (3) ereg replace() each execute a string
copy at the end of the operation, and all the models propagate taint correctly.

(4) ereg() is a regular expression match, and all the models untaint the scalar
result.
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Table 5.2: Results of string operation
Operation PHP-SWIFT PHP-taint Raksha−a Raksha+a

FN FP FN FP FN FP FN FP
(1) concatenation
(2) substr()
(3) ereg replace()
(4) ereg()
(5) strtoupper/tolower()

√

(6) urlencdoe/decode()
√ √ √

(7) base64 encode/decode()
√ √

(8) untaint table
√

(9) taint table
√ √

(10) toupper (switch-statement)
√ √ √

FN : false negative FP : false positive

(5) strtoupper/strtolower() are case conversions. Raksha+a taints the output,
whereas Raksha−a does not. This is because the functions use a translation table.

(6)urlencode/urldecode() and (7)base64 encode/base64 decode() carry out
encode and decode operations. As a result, PHP-taint untaints the outputs of all
these functions. This may be a matter of policy. Since these code conversions
include address and control flows, they are difficult for Raksha to deal with. Al-
though Raksha+a tracks address flows, both Raksha+a and Raksha−a produce
false negatives in (6) urlencode/urldecode() because they do not track control
flows.

(8) untaint table and (9) taint table retrieve values from tables with taint keys,
and store untainted and tainted values, respectively. Since PHP-taint regards the
values from tables as safe, it results in false negative in operation (9), taint table.
On the other hand, PHP-SWIFT and Raksha can track the flow between the input
and the output values through a table. SWIFT and Raksha taint the contents of the
table when the tainted input is copied to it, and also taint the output of the table
when it is copied from the tainted contents. Raksha+a, however, also propagates
the taint from the index to the output because it tracks address flows, resulting in
false positives.

Operation (10) is an uppercase conversion. Though the function is the same as
(5) strtoupper(), it is written in PHP like Figure 3.1(b). Operation (10) is written
with a switch statement construction. Raksha−a and Raksha+a produced false
negatives for switch statement because they untainted the input when it was com-
pared. PHP-SWIFT produced no false positives or negatives because PHP-SWIFT
can correctly propagate tainted information for all the operations. Therefore, even
if programmers use operations such as these as the input arguments for applica-
tions, PHP-SWIFT can still provide high precision.

28



http://[target]/qwiki/index.php?page=
../ config.php%00

(a) Attack code
data/../ config.php%00

(b) Path argument

Figure 5.1: Qwikiwiki 1.4.1 vulnerability

5.2.2 Real-World Web Applications
Web Applications with Known Vulnerabilities

We executed seven web applications with known vulnerabilities written in PHP.
The applications are phpSysInfo 2.3, QwikiWiki 1.4.1, phpBB 2.0.8, PHP-Nuke
7.5, Cubecart 3.0.3 and PHP-Nuke 7.1. In choosing the web applications, we
selected applications whose specific exploit codes could be found on the web.
These applications use various input variables as arguments without validation
or even with string operations applied to them. We conducted script injection
attacks such as cross-site scripting (XSS), SQL injection, and directory traversal
according to the exploit code. As summarized in Table 5.3, PHP-SWIFT produced
no false positives or negatives. However, Raksha−a caused several false negatives
and Raksha+a resulted in plenty of false positives. PHP-taint also produced false
negatives.

Cubecart 3.0.3 and PHP-Nuke 7.1 use Base64 in a risky way. As described
in Section 2.4, to exploit these vulnerabilities, attackers should encode their at-
tack code using Base64, and use this base64 encoded code to create a specially
crafted URL. Since Raksha−a does not deal with address flows, it can not prop-
agate tainted information correctly through Base64. Therefore, it produced false
negatives in these applications. Raksha+a resulted in frequent false positives in
all the web applications because it makes a great part of the address space tainted.

The vulnerabilities of other web applications are elementary.
In the rest of this section, we explain QwikiWiki 1.4.1 and PHP-Nuke 7.1 in

detail.

QwikiWiki 1.4.1 QwikiWiki 1.4.1 has a directory traversal vulnerability in “in-
dex.php”. It allows attackers to read arbitrary files via a .. (dot dot) and a %00 at
the end of the filename in the page parameter.
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$nukeuser =
base64_decode($user);

(a) PHP statement
http://[target]/nuke71/modules.php?name=
Private Messages&file=index&folder=
inbox&mode=read&p=1&user=eDpmb28nIFVO
SU9OIFNFTEVDVCAyLG51bGwsMSwxLG51bGwvKjox

(b) Attack code
$nukeuser:
x:foo’ UNION SELECT 2,null,1,1,null/*:1

(c) SQL injection code

Figure 5.2: PHP-Nuke 7.1 vulnerability

For example, assume the attack code is configured as in Figure 5.1(a). Then, it
raises an open() system call with the string in Figure 5.1(b) as its path argument.
This will open config.php, which an attacker is not allowed to access. PHP-
SWIFT successfully tainted the underlined substring.

QwikiWiki first stores the parameters such as page in a hash table, and then
uses them from the table. Therefore, the same situation as in operation (9), taint
table, in the previous section arises.

PHP-Nuke 7.1 PHP-Nuke 7.1 has a SQL injection vulnerability in ”modules.php”.
When we checked the source code of ”modules.php”, we found the code as shown
in Figure 5.2(a).

We can see the Base64 decoded global variable $nukeuser; however, the
application does nothing to validate the variable. This means the variable $nukeuser
can contain user supplied data without sanitization and this can lead to SQL in-
jection.

For example, if an attacker inputs a specially crafted URL in Figure 5.2(b),
$nukeuser in Figure 5.2(c) is generated after the base64 decode function. Con-
catenating the substring of $nukeuser and the constant strings provided by the
programmer, produces the attack SQL query.

Thus, we can bypass the user-level authentication via this exploit.
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Table 5.3: Results of web applications with known vulnerabilities
Program Attack PHP-SWIFT PHP-taint Raksha−a Raksha+a

FN FP FN FP FN FP FN FP
phpSysInfo 2.3 Cross-site scripting

√

QwikiWiki 1.4.1 Directory traversal
√ √

phpBB 2.0.8 Cross-site scripting
√ √

PHP-Nuke 7.5 SQL injection
√ √

CubeCart 3.0.3 Cross-site scripting
√ √ √

PHP-Nuke 7.1 Cross-site scripting
√ √ √

PHP-Nuke 7.1 SQL injection
√ √ √

FN: false negative FP: false positive

Table 5.4: Results of Latest web applications
Program Number of requests(valid requests) FN FP

Drupal 7.2 7(5)
osCommerce 3.0.1 959(17)

phpBB 3.0.8 180(28)
WebCalendar 1.2.3 10(1)

WordPress 3.3.1 523(272)
XOOPS 2.2.0 348(24)
Gallery 3.0.2 11(0)

Latest Web Applications

To carry out further evaluations of PHP-SWIFT, we executed the latest famous
web applications written in PHP. The applications are Drupal 7.2, osCommerce
3.0.1, phpBB 3.0.8, WebCalendar 1.2.3, WordPress 3.3.1, XOOPS 2.2.0, and
Gallery 3.0.2. For each application, we assigned a value to each parameter of
the GET and POST requests, and started each application. As shown in the sec-
ond column of Table 5.4, valid requests were approximately 17% of all requests
that were generated. As summarized in Table 5.4, PHP-SWIFT produced no false
positives and negatives.

5.3 Execution Speed
Table 5.5 gives the performance overheads for web applications relative to an un-
modified version of PHP. The table includes the execution time of unmodified
PHP(column 2), the execution time of PHP-SWIFT(column 3), and the perfor-
mance overhead(column 4). The overhead is between 6% and 95%, with an aver-
age of 55%. This overhead is greater than previous results reported by PHP-taint
[6]. Optimization of the implementation is our future work.
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Table 5.5: Performance overheads
Program Attack Unmodified PHP(ms) PHP-SWIFT(ms) Overhead

phpSysInfo 2.3 Cross-site scripting 1.10 1.16 6%
QwikiWiki 1.4.1 Directory traversal 9.25 18.08 95%

phpBB 2.0.8 Cross-site scripting 13.96 23.99 72%
PHP-Nuke 7.5 SQL injection 20.58 27.73 35%
CubeCart 3.0.3 Cross-site scripting 45.59 84.05 84%
PHP-Nuke 7.1 Cross-site scripting 25.27 38.66 53%
PHP-Nuke 7.1 SQL injection 21.31 29.04 36%
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Chapter 6

Conclusion

In this paper, we implement SWIFT to PHP interpreter to put SWIFT into practical
use. Moreover, we succeeded to show that SWIFT has better propagation accuracy
than Raksha in real-world web applications.

SWIFT uses a completely different approach to that of conventional DTPs.
To detect script injection attacks precisely, SWIFT observes memory accesses of
the target program, detects string operations, and propagates tainted information
through them. Since SWIFT only uses address traces of a program, it can be
implemented both as a software module of interpreters for script languages and as
a hardware module of processors.

Having implemented SWIFT to PHP, we compared its accuracy with that of
PHP-taint and Raksha and evaluated the performance overhead. PHP-SWIFT
can correctly propagate tainted information for typical string operations and real-
world web applications with known vulnerabilities, whereas PHP-taint and Rak-
sha cannot. The average performance overhead is 55%.

In this research, we created a naive implementation of SWIFT to PHP. Clearly,
it is necessary to consider optimizations for the implementation and reevaluate the
system. This is our future work.

Another aim of our future work is to carry out further evaluations using real-
world web applications without known vulnerabilities to verify that no false posi-
tives are produced.

We intend distributing PHP-SWIFT in the near future.
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