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Abstract

Head pose estimation technique is a core of many computer vision applica-
tions. Head pose estimation is often used as cues to estimate human at-
tention. Due to limitations such as camera placement location or system
resources, it is not always appropriate to install high resolution cameras on
every system. Head pose estimation from low resolution images are desired
in such situation.

Although many methods have been proposed for head pose estimation
from low resolution images, there are many technical limitations for the im-
plementation of the system. To construct an effective head pose estimation
system, a large number of head pose training samples collected from the same
environment as test environment are desired because the process of acquiring
such dataset is extremely time-consuming and makes it impossible to prepare
scene-specific dataset for every scene.

The first part of this paper describes the method to automatically obtain
scene-specific dataset. This method exploits the observation that people
are more likely to to turn their head to where they are walking. With this
observation, the tracking method is applied to the video taken from the scene
beforehand. Head pose training data are then inferred from tracking results
and are acquired automatically. This method enables automatic acquisition
of training data and solves the problem of data collection.

The second part describes the method to improve head pose estimation
in scenes with short available videos or low number of walking pedestrians
so adequate amount of head pose samples cannot be captured. Datasets
captured from various scenes are used to alleviate the problem and increase
the accuracy significantly.

The third part describes the method which improves head pose estimation
accuracy for scenes with dramatic difference within the scene. This method
adaptively divides scenes into multiple parts in order to localize head pose
estimator.
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Chapter 1

Introduction

1.1 Background

Head pose conveys a lot of information, for example, human head pose could
convey where his attention point is. Moreover, human will turn their head
to the person they are talking to as the nonverbal sign to direct his attention
and to inform him that he is about to talk. As humans turn their head to
the direction of the objects they are focusing on, head pose is an important
factor in inferring the focus of attention of humans in computer vision.

Recently，estimating humans’ visual focus of attentions has become very
popular research trends as these researches enable a lot of applications in
our daily life. One example would be to estimate attention of people in
the meeting, making it possible to create automatic system to capture and
understand the meeting flow. They could also be used with the camera fixed
at the board to estimate human attention, to find out the poster people pay
most attention to. For this reason, techniques for estimating head pose have
been considered an important research task.

Although various image-based approaches have been proposed for esti-
mating head pose (see [24] for a recent survey), one of the major remaining
technical challenges is to deal with low resolution images. In some applica-
tion scenarios like visual surveillance, it is often the case that head regions
in input images are quite small. Small images contain limited information,
thus it is still a challenging task to achieve accurate estimation results in
such cases.

Recently it has become well known that the use of appearance-based
approaches is a promising way to estimate head poses from low resolution
images. Compared with model-based methods like active appearance mod-
els [11, 22] which rely on geometric facial models, appearance-based methods

1



Chapter 1. Introduction 2

directly treat image features and are known to work even with low resolution
images.

Accuracy of the appearance-based head pose estimation method relies
heavily on a good dataset. Systems trained with dataset containing samples
similar to test samples can achieve high efficiency while dataset different from
the scene yield poor results when used. Therefore, a dataset is usually taken
from the same scene as target scene. Such dataset is called scene-specific
dataset. However, there is currently no publicly available datasets for head
pose estimation on low resolution images. The ground truth dataset for
each work is mostly taken from low resolution video and hand-labeled the
direction.

Orozco et al .[25] use manually cropped 800 head images, 100 for each pose
class from i-LIDS[17] dataset. Gourier et al .[16] use downsampled images
from Pointing’04 dataset into low resolution image of dimension 23x30. In
Robertson et al .[29][30], ground truth has been produced by a human user
drawing the line-of-sight on the images.

To obtain ground truth labels, training data need to be manually labeled
or an intrusive device is needed to record head pose directions. More impor-
tantly, head appearances can change significantly from scene to scene, and
according to camera properties even in the same scene. Accordingly, head
pose estimators work best if trained with data from the same camera and
setting. However, it is prohibitively expensive to collect ground truth data
manually every time a head pose estimation method is applied to different
scenes.

In some cases, there are not always enough head pose training data for
training estimator models. Estimators trained with those data would not
be generic enough to cover all possible head pose appearances. This prob-
lem can be alleviated by introducing generic dataset, which were taken from
other domains, to help training estimators. Although, as mentioned before,
high accuracy could not be expected from generic dataset, with the tech-
nique called transfer learning which has recently being extensively researched,
generic data could be made use of in order to improve generalization of the
estimator while retaining the accuracy for the domain.

Transfer learning is the technique used in cases where there are not enough
training data which were taken from the same domain as test data, these data
are called target data. The problem can be alleviated by introducing the data
called source data which is different from target data but is related in some
ways to the target data. Although source data is not collected from the same
domain, the abundant amount of the data can be made use of by the transfer
learning techniques to improve estimation accuracy of the estimators. For
more information, we refer readers to the extensive survey made by Sinno et

2



Chapter 1. Introduction 3

al . [26].
When labeled data in both domains are available, transfer learning can

improve estimation accuracy by using knowledge from source domain to re-
inforce the estimator for target domain. For example Kamishima et al . [19]
performs transfer learning together with bagging technique to combine weak
learners to create a strong learner which improve performance for estima-
tion tasks. Transfer learning has shown to be successful in data mining and
machine learning tasks, however, there has not been any works which apply
transfer learning techniques with head pose estimation from low resolution
images yet.

Furthermore, even in the same scene, there could be severe head pose
appearance difference. Some caused by severe illumination differences. For
example some areas might reside in building shadow while the others in
direct sunlight. Camera parameters, especially camera angles could also
cause appearances in the same scene to be different. Appearance difference
might cause head pose estimators trained with these data to be inaccurate
due to large variations of head pose samples from the same class. However,
no work as of now has yet solve this problem.

From this section, it can be seen that there are a lot of problems yet to
be solved and by offering our solutions to the problems we aim to contribute
to the computer vision society and hope to enrich research activities in this
area.

1.2 Overview

In this section, we gave an overview of our proposed solutions to existing
problems on head pose estimation from low resolution images.

In Chapter 3, the method that automatically collects training dataset
from test scenes is described. Based on the observation that people tends to
turn their head towards where are walking, we track pedestrians in the video
in order to automatically acquire head pose training samples Pedestrians in
the input image sequence are tracked first to achieve their head images and
walking directions. After rejecting outliers which are facing different direc-
tions, their walking directions are used as ground truth labels of their head
orientations. In this way, our method does not require a tedious and time-
consuming task of collecting a large amount of ground truth data. Figure 1.1
shows the framework of our proposed method.

In Chapter 4, we describe the method to solve the problem of highly
biased distribution of training samples. The idea is to integrate a generic
dataset, i.e., manually labeled head images taken from a different scene, with

3



Chapter 1. Introduction 4

Input video sequence

Head images
+ Walking directions

Pedestrian tracking

Head pose dataset

Head pose
estimator

Head image

Figure 1.1: Proposed framework for chapter 3. Given an input video se-
quence, our method first track pedestrians in the video and obtain their
head images and direction they are walking. By using the walking directions
as a cue to infer head pose directions, out method constructs an appearance-
based head pose estimator.

the automatically generated scene-specific dataset. Higher accuracy cannot
be expected for generic datasets as discussed above, however, to comple-
ment the drawbacks of both datasets, our method seamlessly integrates the
scene-specific dataset and a generic dataset via transfer learning technique.
Figure 1.2 shows the framework of our proposed method.

Chapter 5 describes the method which aims to solve the problem of ap-
pearance differences within the same scene. The scene is divided into multiple
regions using graph segmentation method and a classifier is constructed sep-
arately for each region. Figure 1.3 shows the framework of our proposed
method.

4



Chapter 1. Introduction 5

Input video sequence

Head images
+ Walking directions

Pedestrian tracking

Head pose dataset

Head pose
estimator

Head image

Generic dataset

Transfer Learning

Figure 1.2: Proposed framework for chapter 4. Generic dataset is integrated
into the model by transfer learning technique.
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Input video sequence

Head images
+ Walking directions

Pedestrian tracking

Head pose dataset

Head pose
estimator

Head pose
estimator

Head pose
estimator

Head pose
estimator

Graph Clustering

Area 1 Area 2 Area 3 Area 4

Figure 1.3: Proposed framework for chapter 5. A scene is intuitively di-
vided into multiple regions with similar head appearances and classifiers are
constructed separately for each area.
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Chapter 2

Related Works

Recently there have been numerous attempts to tackle the problems in head
pose estimation from low resolution images. Due to the difficulty of this
problem, this field is being researched by many research groups and is being
paid a lot of attentions to in the field of computer vision.

Referring to the categorization by Murphy et al .[24]’s survey on head
pose estimation, recent approaches for head pose estimation in low resolution
images can be categorized as follows.

2.1 Appearance-Based Method

Appearance-Based method use image-based comparison method to match the
input with the examples from each pose class and select the pose which match
the input the best as the estimation. Usually, the descriptor is extracted from
the image for comparison. Finding the good descriptor for low resolution
image is still a challenging task for appearance-based method. Then the
descriptor is then divided into multiple classes using many techniques such
as binary search tree[29], Randomized fern[6], multi-class Support Vector
Machine (SVM)[25]

Robertson et al . [29] used skin color as a descriptor and a binary tree
algorithm to establish a head pose classifier. Body direction is also used to
filter out poses which is not physically available such as human walking to the
north direction but his head turns to south. Figure 2.1 shows the example
of the feature descriptor and estimation results of this work.

Benfold et al . [5] proposed a descriptor which learns a model of skin
color automatically and used a randomized fern algorithm for head pose
classification. Figure 2.2 shows the example of the feature descriptor and
estimation results of this work.

7



Chapter 2. Related Works 8

Figure 2.1: Example of the feature descriptor and estimation results of the
method from Robertson et al . [29].

Orozco et al . [25] proposed an image descriptor which does not require
explicit segmentation of skin and hair pixels by using similarity distance maps
with class-mean appearance templates, and used the descriptor with a multi-
class SVM (support vector machine) for head pose classification. Figure 2.3
shows the example of the feature descriptor and estimation results of this
work.

Their work has been applied to surveillance videos, and it is shown that
head poses can be estimated even from low-resolution head images.

However, current appearance-based methods suffer from one important

8



Chapter 2. Related Works 9

Figure 2.2: Example of the feature descriptor and estimation results of the
method from Benfold et al . [5].

problem when they are used in realistic scenarios. That is, a large number of
training images with ground truth labels, i.e., correct head orientations, are
needed. For instance, Orozco et al . [25] and Robertson et al . [29, 30] used
100 images for each head pose class as training data.

To alleviate this problem, Benfold et al . [7] uses tracking method to track
and automatically capture head pose images and its tentative directions and
uses Conditional Random Field to model the interactions between the head
motion, walking direction, and appearance to recover the gaze directions.
Figure 2.4 shows the example of captured head images and Conditional Ran-
dom Field’s factor graph of this method.

The methods in this category have the advantage in the ability to train
the model using only positive samples without the need of negative samples.
Furthermore, expanding the samples to the template model could be done
anytime. These methods work well with very low resolution head pose images
for head size as small as 10 by 10 pixels.

However, these methods usually require good localization of the head
image and localization of low resolution head images is not a trivial task,

9



Chapter 2. Related Works 10

Figure 2.3: Example of the feature descriptor and estimation results of the
method from Orozco et al . [25].

therefore good localization techniques are needed for these methods.

2.2 Detector Arrays Method

Detector arrays methods use techniques similar to face detection, which has
been developed and was very successful in the past. The method use separate
face detectors for each pose class, then assign the pose with the greatest score
from the detector.

Zhang et al.[39] uses FloatBoost classifiers, which is a variant of AdaBoost[36],
to classify head poses into 5 classes.

These methods have the advantage that they do not require head localiza-
tion techniques because the detectors are trained to detect the head for each

10



Chapter 2. Related Works 11

Figure 2.4: Example of the captured head images and Conditional Ramdom
Field’s factor graph in Benfold et al . [7].

pose. However, training the detectors is burdensome, because they require a
lot of training data, including both positive and negative ones.

The problem also arises when multiple detectors simultaneously detect
the same window; it would be hard to determine what pose the input should
be assigned to. Rowley et al.[31] suggests the solution using router method,
which first assume that the window contains the face and determine its orien-
tation, then rotate the face and use the face detector to confirm the existence
of the face. So the detector can be trained with only small range of rotation,
in this work, the detector is trained within the range -10◦ to +10◦

11
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2.3 Nonlinear Regression Method

Nonlinear regression methods map the head pose from the input image space
to the pose directions. Usually the training data is labeled with discrete or
continuous angles. Examples pf the nonlinear regression methods are neural
network and Gaussian process regression methods.

Stiefelhagen et al.[34][33] uses separate neural networks to train and clas-
sifies the pan and tilt angles of the head pose. Gourier et al.[16] uses linear
auto-associative neural networks techniques to estimate the head pose.

These approaches have the advantage of being fast due to it only requires
positive samples, but this method also requires good localization of the head
and is prone to errors from bad localization.

2.4 Tracking methods

Tracking methods utilize the movement between frames of the head images to
estimate the head pose. These methods usually require proper initialization
of the head image.

Pappu et al.[27] generates the synthetic views offline using head tracking
methods, then find candidate head poses from the generated views and find
the pose which minimizes the difference in appearance between the input and
the generated head poses.

Morency et al.[23] uses stereo-motion based head tracking which utilizes
depth and brightness gradient tracking combined with initialization and sta-
bilization modules to produce system robust to strong illumination changes.

Wu et al.[38] builds ellipsoidal model of points, where each points main-
tain probability density functions of local image features and use maximum
a posteriori (MAP) estimation to estimate the pose. This technics is robust
to illumination change due to the use of local edge density feature which is
independent of person and illumination.

These methods have the advantages that the results are quite accurate due
to the ability to track small drifts between images. However, these methods
require first initialization of the head to track, which means these approaches
requires the face image to be in some pose in order to initialize the system
and the system could not handle large drifts between image frames, making
the application unusable in some systems.

It can be seen that each approach has its own advantages and disadvantages.
What method to use for each situation will depend on contexts of the scene
such as image resolution, image appearances and number of data available.

12



Chapter 2. Related Works 13

As our task aims to determine head pose from images as low resolution as
10 by 10 pixels, from all approaches mentioned, appearance-based head pose
estimation methods are the most suitable ones and become the focus of our
approach.

13



Chapter 3

Head Pose Estimation with
Automatic Data Acquisition

This chapter describes the appearance-based head pose estimation method
which address the problem that it is extremely difficult to obtain head pose
training data for every scene.

3.1 Appearance-Based Head Pose Estimation

Head Pose Estimation is a task to determine head pose of the given image.
Head pose estimation ranged from coarsest level, which head poses are di-
vided into multiple discrete classes, to the finest level, which head poses are
estimated across multiple degree of freedoms (DOFs).

In low resolution images, however, the information on head poses are
usually not enough to infer head pose up to multiple degrees of freedoms and
thus it is generally accepted that it is enough to conduct head pose estimation
on head pose direction relative to the image. Head pose estimation tasks
from low resolution images are usually divided into 2 categories, classification
task and regression task. Figure 3.1 shows an example of general head pose
estimation task from low resolution images. In classification task, head poses
are divided into multiple discrete classes. In regression task, head poses take
continuous values between 0 and 2π.

Appearance-based head pose estimation methods are shown to be the
most successful method for head pose estimation from low resolution im-
age. These methods assume that head regions have been detected and cor-
rectly localized, thus robust head detection and localization are required for
appearance-based head pose estimation methods.

Appearance-based head pose estimation methods are usually divided into

14



Chapter 3. Head Pose Estimation with Automatic Data Acquisition 15

1

2

3

4
5

7

8

6

(a) Classification (b) Regression

Figure 3.1: Illustrations of head pose estimation tasks. Head pose is defined
as (a) discrete classes in the case of classification and (b) continuous values
between 0 and 2π in the case of regression.

3 phases, data collection phase, training phase and pose estimation phase.
Figure 3.2 shows the summary of these 3 phases.

In data collection phase, head pose labels are collected. Head pose label
describe head pose appearances of each pose class and will be used for training
the model. Each head pose label l = {I, θ} consists of head image I and its
corresponding pose direction θ.

Because image intensities might not effectively convey information on the
head pose, new representation of the image called feature descriptors are ex-
tracted instead. Feature descriptors are a set of values which describe the
image in a way which is suitable for the task. For high resolution image,
feature descriptors might be the position of the eyes, mouth and nose of
the person. In the low resolution case, however, those features could not
be reliably detected so usually more low level features such as Histogram
of Oriented Gradients (HOGs) [12] or horizontal and vertical edges are ex-
tracted. In appearance-based head pose estimation, feature descriptors h
are extracted from each head pose image and a training dataset D = {p}
containing training samples p = {h, θ} is constructed.

This dataset is very crucial to the accuracy of the system. If the prepared
head pose images are similar to the test dataset, high accuracy of head pose
estimation could be expected. On the other hand, low estimation accuracy
occurs if prepared head images are different from test data. Therefore, the
training datasets are usually collected from the same scene with the same

15



Chapter 3. Head Pose Estimation with Automatic Data Acquisition 16

Data Collection

Training

Estimation

Classifier
Classifiers

- Support Vector Machine

- Random Trees

- Etc.

DescriptorDescriptorDescriptors

Color, Edge, Intensity, etc.

Training

Figure 3.2: Appearance-based head pose estimation methods are usually
divided into 3 phases, data collection, training and pose estimation phase.

setting as test data.
Estimator models for head pose estimation from low resolution images can

be divided into classifiers for classification tasks, and regressors for regression
tasks. With the input feature descriptor h, regression models θ̂ = f(h)
output the estimated value θ̂. Classification models p(θ) = f(h), θ ∈ θ
output the probability p(θ) for each class in all available classes Θ. In the
training phase, given head pose training samples p = {h, θ} with feature
descriptors h extracted from images I in the training dataset D is used to
estimate the mapping function f .

Head pose estimator is usually one of the machine learning estimators
such as support vector machines (SVM), random forest [9] or randomized
ferns. The choice of the estimator is one of the most important factors in
head pose estimation task. Estimators suitable for the task at hand will yield
more estimation accuracy than other estimators.

Finally, head image with unknown pose is taken as input to the model.
For regression task, the continuous value θ̂ is estimated. For classification
task, the probability p(θ) of each class is estimated. In the simplest form of
application, the class with the highest probability is chosen as the estimated
head pose and the task could also be written in the same manner as regression
model θ̂ = f(h).

As discussed earlier, an important problem that was largely ignored in
the previous studies on head pose estimation from low resolution images is
how to obtain appropriate training samples. Since we assume the under-
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lying mapping function f(h) is identical in both training and test scenes,
classification accuracy highly depends on how similar these training and test
scenes are. In other words, if lighting conditions and camera positions are
significantly different between the scenes where training and test images are
taken, mappings between pose and appearance would also become different.
However, it is not always possible to collect training samples for every test
case.

3.2 Proposed Method

Our basic idea is to use walking direction as a cue to acquire training samples
with automatically assigned labels of their head poses. Figure 1.1 shows a
basic framework of our method. Given an input video sequence, we first
track pedestrians in the video and obtain their head images and directions
they are walking in. As these pedestrians are most likely to turn their head
to their walking directions, the walking directions can be assumed to indicate
the head poses of the images.

However, this idea cannot be applied in a straightforward manner. Since
people can move their heads freely even while they are walking, it is obvi-
ous that our basic assumption does not always hold and the training labels
contain a certain amount of noise. Head pose estimation algorithms are not
always robust to such outliers, and thus it is ideal to reject them prior to
the learning stage. Furthermore, walking directions are unevenly distributed
in most of the scenes, and this can result in a biased estimation result with
larger error.

To address this problem, we introduce a strategy to reject unreliable
data from the tracking results. Each tracking trajectory is first divided into
straight line segments in which each pedestrian walks in a straight line. Un-
reliable line segments are rejected and then one representative image per line
segment is constructed and used as the training data. Oversampling is then
applied to handle the imbalanced dataset. Details of the proposed strategies
are described in the following sections.

3.2.1 Pedestrian Tracking

We used the Benfold et al .’s method [6] to track pedestrians in input videos.
The method combines a head detector and velocity estimation with feature
tracking. With this method, not only are the head of people in the video
properly tracked but method also yields good results on centering the head,
which is in most cases vital to appearance-based head pose estimation. Here
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the pedestrian tracking method is briefly explained for reader’s benefit. For
more details, readers are referred to [6].

The tracking method is based on a Kalman Filter [18] with two types
of measurements. The head location from the head detector based on a
histogram of oriented gradients (HOG) [28] and head movement velocity by
combining the velocities of multiple tracked corner features [35, 21]. For
every tracked frame, the head image h, the head location u = (x, y), and the
size of covariance matrix for each location measurement c = (c(x), c(y)) that
can be used as an error measurement is then collected for analysis.

The pedestrian tracking algorithm is applied to the whole input sequence
and a trajectory, i.e., a set of head images {h1, . . . ,hN}, head locations
{u1, . . . ,uN} with error measurements {c1, . . . , cN}, is acquired for each
pedestrian. N denotes the length of the trajectory and it varies for each
trajectory.

3.2.2 Walking Direction Estimation

As discussed above, our method first divides the trajectories into straight
line segments. More specifically, each trajectory is divided into M seg-
ments {S1, . . . , SM} by polyline simplification using the Douglas-Peucker
algorithm [14]. Douglas-Peucker constructs a minimal set of lines so that
the orthogonal distance from each point to the nearest line is less than a
threshold. The algorithm starts by taking a set of points {u1, . . . ,uN}, then
constructs a line from point u1 to uN . The algorithm then finds a point un

with maximum orthogonal distance from the line. If the distance is more
than a threshold, the algorithm divides the point set to {u1, . . . ,un} and
{un, . . . ,uN} and repeats the above process on these two sets recursively.
The algorithm stops when the maximum distance becomes less than the
threshold.

Figure 3.3 shows an example of polyline simplification. It can be seen
that the pedestrian in this image is not walking straightly, and thus treating
all images as one direction will definitely be erroneous. With the polyline
simplification algorithm, the trajectory is divided into 4 line segments in
which the pedestrian walks straight. In the figure, the curved line shows the
raw tracking result and straight lines show line segments obtained using the
polyline simplification algorithm.

Next, the walking direction of each line segment is estimated. Since
polyline simplification only considers the start and the end point of each
segment, using polyline simplification to estimate the pose direction may
yield an inaccurate result. Therefore, a line fitting method which considers all
points in the segment is employed to analyze and estimate the pose direction
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Figure 3.3: Example of polyline simplification result. Curved line shows
tracking result and straight lines show simplification result.

for each segment. Given a set of T tracked head locations in the segment, a
line which minimizes a sum of residuals is computed and the direction of the
line θ is assigned to the segment as the walking direction.

3.2.3 Outlier Segment Rejection

After the polyline simplification and the line fitting, walking directions can
be estimated accurately for pedestrians and can be used as their head ori-
entations. However, as discussed above, walking directions do not always
correspond to head orientations and line segments are not always suitable
for training samples and a scheme for rejecting outlier segments is necessary.

In this work, we apply four rules to reject segments: 1) with a high
number of erroneous points, 2) in which a person walks short distances or
walks slowly, 3) with large line fitting errors, and 4) with high image variance.
The details of each rule are as follows.

Segments with a high number of erroneous points Let us denote
the T head locations in the segment as {u1, . . . ,uT}. Segments with many
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erroneous points, i.e., points that are regarded to be false positives of the
tracking algorithm, are rejected because of low reliability. Specifically, a
point ut is judged as erroneous if the error measurement of the tracker is
significantly large compared to head sizes:

c
(x)
t

sx(ut)
> α and

c
(y)
t

sy(ut)
> α. (3.1)

where ct = (c
(x)
t , c

(y)
t ) is the error measurement of the corresponding frame

and α is a constant value. sx(u) and sy(u) are position-dependent head
width and height defined as:

sx(ut) = Axt +Byt + C and sy(ut) = Rsx(ut), (3.2)

which assumes that heads are fixed size and moving on a plane under a per-
spective projection. The parameters A, B, C and R are manually set. Using
this measure, reject segments if the number of erroneous segment points is
larger than a predefined threshold τe.

Segments with short distance or slow movement Short segments are
better to be rejected since they do not have enough information for the line
fitting. Similarly, segments with slow walking speed are rejected since the
pedestrians are likely to be doing something else, e.g ., talking with each other
and not facing straight. Specifically, reject segment if

|uT − u1|
s̄

≤ τn or
|uT − u1|

T · s̄
≤ τv (3.3)

where τn and τv are predefined thresholds. s̄ =
∑T

t=1

√
sx(ut)2 + sy(ut)2/T

is the average head size factor of the segment and introduced to make the
measurement scale-invariant.

Segments with large line fitting error If the line fitting error is large,
it is natural to assume that the person is moving in a curve or the tracker
failed to track the head. Therefore, reject segments if

T∑
t=1

|yt − g(xt)|√
m2 + 1 · |uT − u1|

≥ τl, (3.4)

where τl is a threshold and the left side of the equation is a scale-independent
line fitting error of the estimated line y = g(x) = mx+ c.
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Segments with high image variance Segments with high image variance
imply unstable head images due to, e.g ., frequent changes of head orienta-
tions. Specifically, we calculate the variance of resized I-dimensional head
image vectors {ĥ}. Segments are considered to have high variance if∑T

t=1 |ĥt − h̄|2

T · I
≥ τvar, (3.5)

where ĥt denotes the t-th resized image, and h̄ is a mean image calculated
from all resized images ĥ in the segment.

3.2.4 Selecting Representative Images

With the rules above, most outlier segments are rejected and the remaining
segments contain correct data. One representative image per segment is then
selected and used as training data. Since only one orientation is assigned to
each segment, most of the images in the accepted segments are redundant.
Moreover, it is beneficial to use only one image per a segment in order to
reduce computational cost of training classifiers.

In this work, we propose and examine three different selection methods.
Basically, we select the image which is most similar to the mean image of the
segment. For each segment, the Mahalanobis distance from the mean image
is calculated for every resized image ĥt in the segment and the image with
lowest distance is selected. This enables us to select the most representative
image without suffering from effects that can be seen in the mean image,
e.g ., blur or distortion. However, it is not always the case that blur and
distortion cause poor estimation results. We also found simply using the
mean or median image as the representative image can be an option in some
cases. Further discussion will be given in Section 3.3.

3.2.5 Handling Imbalanced Data by Oversampling

By applying these processes to all of the successfully tracked pedestrians,
a scene-specific dataset is acquired. Figure 3.4 shows an example of a dis-
tribution of walking directions in the sequence 1 (See section 3.3 for more
details). In this sequence, the majority of the pedestrians walk in down-
left (class 2) and up-right (class 6) directions. Imbalanced data causes low
accuracy of head pose estimation for directions with few training samples.
In order to handle this problem, oversampling is used with our classifiers.
Oversampling technique is proved to be beneficial in reducing the effect of
imbalanced data for classification task [37, 3]. The oversampling technique
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Figure 3.4: Head pose frequency captured from the video sequence 1. The
horizontal axis indicates tracked walking directions and the vertical axis in-
dicates numbers of samples obtained from the video sequence. Each class
number is defined in same way as in Figure 3.1.

resamples data from classes with small amounts of data until every class
has an equal number of data. By using oversampling, the accuracy of the
classifiers is significantly improved.

3.3 Experimental Results

In this section, we present experimental results to demonstrate the effective-
ness of our method. As mentioned earlier, it is hard to collect ground truth
data manually for every scene, thus we show that training data from our
method which automatically generates scene-specific training data performs
better than using available data from other scenes. In order to demonstrate
that our method is not limited to one classifier, a multi-class SVM classifier
and a Random Trees classifier are also tested. The effectiveness of the head
image selection method is also compared to other alternatives. The effect
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Table 3.1: Settings of scene-dependent parameters.

Sequence 1 2 3
A 0 0 0.008
B 0.014 0.04 0.04
C 36.4 8 33
R 1.1 1.1 1.1
τn 3.0 0.5 0.5
τv 0.03 0.03 0.01
τvar 0.0035 0.0055 0.0035

of imbalanced data and the effectiveness of oversampling method are also
shown.

3.3.1 Experiment Settings

We conducted experiments using 3 video sequences with different length,
which were recorded using different cameras in different scenes. Example
frames in the video are shown in Figure 3.5. The scene images are input
video frames with pedestrian tracking results overlaid. Examples of obtained
head images are also shown with its estimated walking direction shown on
their right part of the image.

The resolution of sequence 1 was 1920×1080 pixels and recorded at 30 fps
for approximately 7 hours. Sequence 2 was 1120×780 pixels and recorded at
30 fps for approximately 10 minutes. Sequence 3 was 1280× 720 pixels and
recorded at 30 fps for approximately 10 minutes. As a result of pedestrian
tracking, direction estimation and image selection, 5930 head images were
captured from sequence 1, 1265 head images were captured from sequence
2, and 564 head images were captured from sequence 3. At the same time,
test images (320 for sequence 1, 314 for sequence 2 and 227 for sequence 3)
with manually-labeled ground-truth head poses were acquired from the same
sequence and estimation accuracy was evaluated using these test images. To
construct a generic dataset, 1477 samples were taken from Gaze Direction
Dataset [4], which has been used in [6]. The set is divided by head pose
into 8 classes and each class contains 100 ∼ 200 images. Figure 3.6 shows
examples of head images included in the generic dataset.

In the experiments, the parameters were empirically set as follows; α = 1.0,
τl = 0.8, τe = 0.4, and other scene-dependent parameters were set as summa-
rized in Table 3.1.
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Sequence 2 Sequence 3

Sequence 1

Figure 3.5: Example frames in the test video sequences. The input video
frames are overlaid with pedestrian tracking results . Examples of obtained
head images are also shown, the right part of each image presents its esti-
mated walking direction.

3.3.2 Head Pose Estimation Test

For the head pose estimation method, we conducted two classification tests.
The first classification test uses a linear SVM as classifier from the Liblinear
library [15] and the second test uses a Random Trees classifier [10] from the
OpenCV library [8]. All of the head images were converted to gray scale,
normalized and resized to 20 × 22 pixels. Feature vector was defined as
a 440-dimensional raster-scanned and normalized image vector in the fol-
lowing experiments. To evaluate the effectiveness of the proposed method,
we compared two results: Generic result based on the generic dataset and
Proposed result based on our method.

Classification accuracy comparison between our proposed method and
the generic dataset is summarized in Figure 3.7. The accuracy is calculated
from the average accuracy of each class. Standard deviations are indicated
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Figure 3.6: Example images in the Gaze Direction dataset.

as error bars.
As can be seen, the accuracy of classification using the generic dataset

is significantly lower. In contrast, our proposed method achieved higher
accuracy than the generic result. The result also shows that the accuracy
improved a lot for sequence 1 which utilizes 7 hours video. It is also shown
that even for only 10 minutes of video as in sequences 2 and 3, the accuracy
is significantly improved over using the generic dataset. Standard deviations
also become smaller in the proposed result.

We also compared our representative image selection method with 2 other
selection methods. For the first alternative, we calculate the mean image
from images in each segment and use it as the representative image. For the
second alternative, we calculate the median image. Each pixel in the median
image is constructed from the median pixel intensity at its location over all
images in the segment.

Classification accuracy for each image selection method is summarized
in Figure 3.8. It can be seen that the Mahalanobis image selection method
performs comparatively well to other methods. However, it should be also
noted that the other two methods also show better results than the generic
results in Figure 3.7. It indicates that our proposed idea has robustness to
the image selection method.

Figure 4.2.1 shows confusion matrices of the classifiers. We compared con-
fusion matrices of classifiers applied to test data from scene 1. The Generic
result uses generic dataset as training data for the classifiers, the Imbal-
anced result uses data obtained from our method without oversampling
data to train the classifiers, and the Proposed result uses data obtained
from our method applied with oversampling to train the classifiers. The ef-
fects of imbalanced data can be seen in Figure 3.9(c) 3.9(d). As the majority
of pedestrians in the sequence walked in the direction as shown in Figure
3.4, the results are biased towards class 2 and 6. The improvement using
oversampling can clearly be seen in Figure 3.9(e) and 3.9(f).
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3.4 Conclusions

This chapter proposes the head pose estimation method with automatic
scene-specific adaptation. We automatically acquire scene specific head pose
samples without manual labeling. The result also shows that the accuracy of
the classifier trained with data acquired with our proposed method improves
significantly over the classifier trained with generic dataset.

With this method, head pose estimation system could be constructed
without requiring extremely time consuming manual works as traditional
methods.
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Figure 3.7: Accuracy of the head pose classification for SVM classifier and
Random Trees classifier. Generic result is based on the generic dataset,
Proposed result is based on our proposed method. The accuracy is based
on normalized average of 8 classification classes. Standard deviations are
indicated as error bars.
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(a) SVM classifier
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(b) Random Trees classifier

Figure 3.8: Accuracy of head pose estimation for each image selection
method. Mahalanobis result is based on using Mahalanobis distance to
select sample. Mean result is based on using mean image to select sample.
Median result is based on using median image to select sample. The ac-
curacy is based on normalized average of 8 classification classes. Standard
deviations are indicated as error bars.
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1 2 3 4 5 6 7 8

1 0.15 0.25 0.03 0.13 0.23 0.2 0.03 0

2 0.03 0.1 0.05 0.3 0.23 0.2 0.1 0

3 0.03 0.15 0.03 0.13 0.38 0.25 0.05 0

4 0 0.03 0 0.08 0.53 0.38 0 0

5 0 0 0 0 0.53 0.48 0 0

6 0 0 0 0 0.13 0.83 0.05 0

7 0 0.03 0.08 0.03 0.13 0.6 0.15 0

8 0.1 0.03 0.03 0.08 0.2 0.2 0.3 0.08

(a) SVM - Generic

1 2 3 4 5 6 7 8

1 0.25 0.5 0 0 0.1 0.13 0.03 0

2 0.1 0.28 0 0.2 0.33 0.1 0 0

3 0.03 0.2 0.03 0.33 0.4 0.03 0 0

4 0 0.05 0 0.05 0.9 0 0 0

5 0 0 0 0 0.85 0.15 0 0

6 0 0 0 0 0.35 0.58 0.08 0

7 0.13 0 0 0 0.1 0.43 0.35 0

8 0.25 0 0 0 0.05 0.15 0.55 0

(b) Random Trees - Generic

1 2 3 4 5 6 7 8

1 0 0.8 0 0 0 0.13 0.08 0

2 0 0.95 0 0 0 0.05 0 0

3 0 0.6 0.18 0 0 0.23 0 0

4 0 0.08 0.05 0 0 0.88 0 0

5 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0.93 0.08 0

7 0 0.1 0 0 0 0.43 0.48 0

8 0 0.13 0 0 0 0.15 0.73 0

(c) SVM - Imbalanced

1 2 3 4 5 6 7 8

1 0 0.95 0 0 0 0 0.05 0

2 0 1 0 0 0 0 0 0

3 0 0.8 0.1 0 0 0.1 0 0

4 0 0.08 0.1 0 0 0.8 0.03 0

5 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0.98 0.03 0

7 0 0.13 0 0 0 0.33 0.55 0

8 0 0.3 0 0 0 0.08 0.63 0

(d) Random Trees - Imbalanced

1 2 3 4 5 6 7 8

1 0.58 0.08 0 0 0 0.03 0.03 0.3

2 0.23 0.65 0 0.03 0 0.03 0.03 0.05

3 0.03 0.23 0.43 0.18 0.03 0 0 0.13

4 0 0 0.05 0.7 0.13 0.08 0 0.05

5 0 0.05 0.03 0.2 0.38 0.3 0.05 0

6 0.03 0 0 0.08 0.05 0.5 0.33 0.03

7 0 0 0.03 0.03 0.03 0.15 0.65 0.13

8 0.08 0.05 0 0 0 0.03 0.4 0.45

(e) SVM - Proposed

1 2 3 4 5 6 7 8

1 0.55 0.05 0.03 0 0 0 0 0.38

2 0.25 0.68 0 0.03 0 0 0 0.05

3 0.08 0.23 0.58 0.1 0.03 0 0 0

4 0 0 0.1 0.63 0.2 0.03 0 0.05

5 0 0.03 0.03 0.13 0.68 0.15 0 0

6 0 0.03 0 0.03 0.3 0.3 0.35 0

7 0.05 0.05 0 0 0.05 0.08 0.45 0.33

8 0.1 0.05 0 0 0 0 0.1 0.75

(f) Random Trees - Proposed

Figure 3.9: Confusion matrix of SVM classifier and Random Trees classifier
using data from scene 1 with Mahalanobis distance as the image selection
method. Each class number is defined in same way as in Figure 3.1. Generic
result is based on using generic dataset as training data. Imbalanced result
is based on scene-specific dataset without oversampling method. Proposed
result is based on using the mean image as selection method.
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Chapter 4

Transfer Learning with Biased
Data Correction

Due to the fact that pedestrians do not walk uniformly over all directions,
sometimes obtained dataset will be biased and head pose data in some classes
might not be sufficient.

In this chapter, we introduce the idea to integrate a generic dataset,
i.e., manually labeled head images taken from a different scene, with the
automatically generated scene-specific dataset. Higher accuracy cannot be
expected for generic datasets as discussed above, however, the scene-specific
dataset often has a highly biased distribution of training samples and does
not necessarily have enough training samples for all directions.

4.1 Proposed Method

To complement the drawbacks of both datasets, our method seamlessly inte-
grates the scene-specific dataset and a generic dataset via transfer learning.
We tested the above idea in both classification and regression cases, and
our method estimates head pose more accurately than using just a generic
dataset, without the need to manually collect labeled data from the test
scenes.

Transfer learning are techniques which address the problem of training
estimators with low amount of train data for the task, called target data,
by using a large amount of generic data, called source data. Source data
and target data are different set of data captured with different settings but
they are related in some way. In transfer learning problem, there are a lot
of source data but target data are scarce, therefore, we try to make use of
source data in order to solve the problem of scarcity of target data.
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In our case, source data are head poses acquired from different scenes with
different camera settings. The tasks and the general properties of head poses
are, however, similar to our target data. Therefore, with transfer learning
techniques, we could incorporate these generic dataset with our target data in
order to improve the accuracy in classes which lack training data. Figure 1.2
shows a framework of our method.

In this chapter, for clarification purpose, we denote generic dataset as
Dg and scene-specific dataset which we acquire from previous method in
chapter 3 as Ds.

As mentioned earlier, walking directions contained inDs are unevenly dis-
tributed. The accuracy of head pose estimation tends to be low for directions
with few training samples. In chapter 3, we use oversampling technique to
handle biased data distribution. However, with our proposed method, han-
dling biased data can be incorporated with transfer learning seamlessly.

To improve the accuracy, generic datasets taken from different scenes
are incorporated in our method. As we discussed, generic datasets can-
not achieve accurate estimation unless the scenes are significantly similar.
However, it is much easier to collect a uniformly distributed dataset in such
cases. To complement the biased data in the area in which the data is scarce,
a method based on transfer learning is used. A modified version of TrBagg
Algorithm [19] which combines bagging with transfer learning is introduced
to incorporate data from the generic dataset. TrBagg was originally designed
for classification tasks. Here we introduce a modification on TrBagg so that
it can be applied regression tasks, too.

The overall process is summarized in Algorithm 1. Given a generic dataset
Dg = {(hk, pk)} with ground-truth head poses and the scene-specific dataset
Ds, it outputs a set of head pose estimators F ∗.

Let D be a merged dataset which consists of all of the samples in Dg

and Ds together. First, training bags B = {B1, . . . , BT} are constructed by
randomly selecting training samples from D. To select each training sample,
a random number θ between 0 and 2π is generated and a training sample
in D with the closest head pose to θ is added to the t-th bag Bt. The
algorithm is repeated until the data for every bag is generated. A set of
estimators F = {f1, . . . , fT} is then constructed from B, i.e., each estimator
fi is trained with data from bag Bi. Another classifier, f0, is trained with
samples from the scene-specific Ds and added to F . This is done to prevent
negative transfer when no useful data is found in Dg.

The empirical error of each estimator f ′
t on Ds are then evaluated. In the

case of classification task, it is defined as the number of incorrectly classified
samples. In the case of regression, an average angular error is used. The
classifiers are sorted by their respective errors in ascending order {f ′

0, . . . , f
′
T},
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Algorithm 1 Transfer learning with biased data

Input: Generic dataset Dg, scene-specific dataset Ds, number of bags T ,
and bag size S

1: Merge datasets D ← Dg ∪Ds

2: for t = 1, . . . , T do
3: Bt ← {}
4: for s = 1, . . . , S do
5: θ ← random number from 0 to 2π
6: P ← sample in D whose pose is closest to θ
7: Bt ← Bt ∪ P
8: end for
9: end for
10: A set of estimators F = {f1, . . . , fT} is constructed from B by training

ft with data from bag Bt

11: Learn an estimator f0 from the scene-specific dataset Ds; F ← F ∪ {f0}
12: Compute errors on Ds of each estimators in F and sort estimators in

ascending order of these errors: {f ′
0, . . . , f

′
T}

13: ϵ← empirical error of f ′
0 on Ds

14: F ′ ← {f ′
0}; F ∗ ← {f ′

0}
15: for t = 1, . . . , T do
16: F ′ ← F ′ ∪ {f ′

t}
17: ϵ′ ← Average error of output from estimators in F ′ on Ds,
18: if ϵ′ ≤ ϵ then
19: F ∗ ← F ′

20: ϵ← ϵ′

21: end if
22: end for

Output: F ∗

wheref ′
0 is an estimator with lowest error on Ds and f ′

T the highest. This
process is summarized in Figure 4.1

The empirical error of f ′
0 is then chosen as the base error ϵ. The candidate

set F ′ and the best result F ∗ are both set to {f ′
0}. The bag with the next

lowest empirical error is then selected and added to the candidates F ′, and
the error ϵ′ using F ′ is calculated. In the case of classification, the set F ′

estimates a value based on the majority vote of the classifiers in the set.
Specifically, the estimated pose class θ∗ is given by

θ∗ = argmax
θ∈Θ

∑
ft∈F ′

It, (4.1)
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Figure 4.1: Overview of first part of the modified TrBagg method. Generic
dataset and scene-specific dataset are combined and sampled into bags.An es-
timator is then created for each bag and evaluated with scene-specific dataset
to measure the accuracy. The bags are then sorted by their accuracies.

where

It =

{
1 (ft(h

∗) = θ)

0 (otherwise)
, (4.2)

and h∗ is an input head image. If vote count are the same for more than one
class, the priority is given to votes of classifier with lower error value.

In the case of regression, the estimated head pose angle is the average
of the values from each classifier in the set. Because the angle values are
discontinuous at 2π degree, we compute θ∗ such that

sin(θ∗) =
1

|F ′|
∑
ft∈F ′

sin(ft(h
∗)), (4.3)

and

cos(θ∗) =
1

|F ′|
∑
ft∈F ′

cos(ft(h
∗)), (4.4)

where |F ′| indicates a number of regressors in F ′.
If ϵ′ is smaller than ϵ, it means the combination of bags in F ′ is better

than any combinations in the past and hence F ′ is stored as the best result
F∗ and the lowest empirical error ϵ is updated to ϵ′.
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Figure 4.2: Overview of second part of the modified TrBagg method. Accu-
racies for sets of bags are evaluated and the set of bags with highest accuracy
is then selected.

When every bag is considered, the set of classifiers with the lowest empir-
ical error, F ∗ is output. For a given head image h∗ the corresponding head
pose p∗ is estimated using Eq. (4.1) in the classification case, and Eq. (4.3)
and Eq. (4.4) in case of regression. The process is summarized in Figure 4.2

4.2 Experimental Results

In this section, we present experimental results to demonstrate the effective-
ness of our method. We conducted experiments using results obtained in the
same manner as Chapter 3 as scene-specific dataset.

To construct a generic dataset, 1328 samples were taken from CAVIAR
dataset [1]. The set is divided by head pose into 8 classes and each class con-
tains 100 ∼ 200 images. Figure 4.3 shows examples of head images included
in the generic dataset.
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Figure 4.3: Example images in the CAVIAR dataset.

4.2.1 Classification Test

We first conducted a classification test using a linear SVM classifier [15]. To
evaluate effectiveness of the proposed method, we compared three results:
Generic result based on the generic dataset, Näıve result based on all of
the scene-specific data, and Proposed result based on our method with
outlier rejection and transfer learning.

Classification accuracy is summarized in Figure 4.2.1 with two types of
measurement. The first type of measurement is a sample average which is
computed as a simple average among test samples. Because of the camera
position in our experimental setting, the number of test samples for each
class is not equal. Hence another type of measurement, a class average, is
also shown. In this case, sample averages are computed in each class first,
and an average of these 8 averages is computed as the class average. Standard
deviations are indicated as error bars.

As can be seen, the accuracy of classification using the generic dataset
is significantly low. In contrast, even Näıve result achieved higher accuracy
than the Generic result. However, the improvement of the sample average
is much higher than the one of the class average. This is because the test
data is taken from the same scene and has similar pose bias as in the scene-
specific dataset. In the Proposed result, the class-average accuracy was also
improved through transfer learning. Standard deviation also become small
in the Proposed result.

Figure 4.2.1 more clearly shows the effect of the transfer learning. Con-
fusion matrix for Näıve and Proposed result in the sequence 1 is shown
in Figure 4.2.1. Each class number is defined in same way as in Figure 3.1.
In Figure 4.5(a), it can be seen that classification accuracy is extremely low
in class 1 and 5. They are corresponding to downward and upward direc-
tions which appear only infrequently in the video. By doing the transfer
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learning, classification accuracy on these classes are improved as shown in
Figure 4.5(b).

4.2.2 Regression Test

Next, we show results of regression using neural network [2]. Estimation accu-
racy is summarized in Figure 4.2.2. It shows average and standard deviation
of estimation errors of three regressors: Generic, Näıve and Proposed,
which are same as in Section 4.2.1.

Since ground-truth labels of the generic dataset is quite sparse, its per-
formance on regression is lower and hence the contribution of the transfer
learning cannot be expected so much. However, it can be seen clearly that the
estimation accuracy was significantly improved in the Näıve result and the
standard deviation was reduced through transfer learning in the Proposed
result. Figure 4.7 shows some examples of the Proposed result. White lines
indicate estimated head poses and red lines indicate manually-labeled ground
truth poses.

4.3 Conclusions

Because scene-specific dataset often has a highly biased distribution of train-
ing samples and does not necessarily have enough training samples for all
directions, this chapter introduces the method which incorporates generic
datasets into head pose estimation model.

Although using only generic dataset itself do not yield efficient results,
with the assumption that only some samples in the generic dataset are similar
to target data, the algorithm is applied to select best sets of data which yield
best accuracy based on available scene specific data.

This method also incorporates bagging, which is the technique to improve
accuracy of estimation tasks. Bagging method reduces biases each estimator
has by averaging the results from multiple estimators, thus make biases cancel
out each other.

With this method, estimation accuracy improves for both classification
and regressions tasks.
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Figure 4.4: Accuracy of the head pose classification. Generic result is based
on the generic dataset, Näıve result is based on all of the scene-specific
data, and Proposed result is based on our method with outlier rejection
and transfer learning. The sample average indicates average classification
accuracy among test samples, and class average indicates the normalized
average of 8 classification classes. Standard deviations are indicated as error
bars.
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1 2 3 4 5 6 7 8

1 0.00 0.00 0.25 0.00 0.00 0.13 0.50 0.13

2 0.00 0.23 0.18 0.00 0.05 0.00 0.05 0.50

3 0.00 0.05 0.85 0.04 0.04 0.01 0.00 0.00

4 0.00 0.00 0.16 0.37 0.11 0.37 0.00 0.00

5 0.00 0.00 0.13 0.31 0.06 0.50 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.90 0.10 0.00

7 0.00 0.00 0.11 0.00 0.00 0.02 0.81 0.06

8 0.00 0.17 0.11 0.00 0.06 0.00 0.33 0.33

(a) Näıve

1 2 3 4 5 6 7 8

1 0.50 0.38 0.13 0.00 0.00 0.00 0.00 0.00

2 0.23 0.68 0.05 0.00 0.05 0.00 0.00 0.00

3 0.00 0.13 0.57 0.23 0.03 0.04 0.00 0.00

4 0.00 0.00 0.00 0.47 0.05 0.42 0.05 0.00

5 0.00 0.00 0.06 0.25 0.19 0.50 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.90 0.10 0.00

7 0.00 0.00 0.02 0.00 0.03 0.10 0.68 0.18

8 0.22 0.11 0.11 0.00 0.00 0.00 0.00 0.56

(b) Proposed

Figure 4.5: Confusion matrix of the classification task. Each class number is
defined in same way as in Figure 3.1.
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Figure 4.6: Average error and standard deviation of the regression task.
Definitions of Generic, Näıve, and Proposed are same as in Figure 4.2.1.
Standard deviations are indicated as error bars.
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Figure 4.7: Examples of head pose regression. White lines indicate estimated
head poses and red lines indicate manually-labeled ground truth poses.
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Chapter 5

Adaptive Scene Segmentation
for Localized Head Pose
Estimation

Even within the same scene, appearances of people can be drastically different
due to lighting conditions or camera angles. Figure 5.1 shows difference in
appearances of people in a scene for down-right class. Head pose images
captured from nearby location tend to be similar while head poses taken at
different locations tend to be different even if they are from the same class.
Using one head pose estimator for each scene with such difference yields poor
results.

5.1 Proposed Method

Instead of constructing a head pose estimator for each scene, we proposed to
construct an estimator for each area which head poses are similar and the
result show that the accuracy improves drastically compared to using only
one estimator. Figure 1.3 shows a framework of our method.

Due to the observation that a scene can be divided into multiple areas in
which head pose images are similar, we proposed a method to analyze those
areas based on head pose samples taken from them.

A scene S can be viewed as a collection of non-intersecting areasA1, A2, ..., An

i.e.

S =
N∪
i=1

Ai, Ai ∩ Aj = ∅,∀Ai, Aj ∈ S, (5.1)

In those areas, head pose samples are assumed to be similar.
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Figure 5.1: Example of differences in appearances of people in a scene. Head
pose images captured from nearby location tend to be similar while head
poses taken at different locations tend to be different.

In order to segment a scene into multiple areas, we divide a scene into a
completely connected graphG = (V,E) with set of nodes V = {v1, v2, . . . , vn}
and edges E connect every pairs of nodes, E = {(vi, vj)|vi, vj ∈ N}. These
nodes represent smallest unit to consider. Our area division will be more
flexible with smaller nodes with the smallest being treating each pixel as a
node, but doing so will yield large number of nodes and therefore increase
the computational time of our method. Figure 5.2 shows example of dividing
a scene into 10x10 nodes. Areas occupied by each node is called node area
and is denoted by square around node center.

Our proposed method segments a scene into multiple areas by applying
graph segmentation method to divide this graph into multiple areas which
contain similar head samples.

42



Chapter 5. Adaptive Scene Segmentation for Localized Head Pose
Estimation 43

Figure 5.2: Example of dividing a scene into 10x10 nodes. Each node occupy
node area defined by square around node center.

5.1.1 Graph Construction

In this section, we aim to define similarity for each node, in order to perform
graph segmentation to divide the scene into areas. The similarity in Graph
Segmentation is in the form of weight function w(vi, vj), which defines simi-
larity between node vi and vj. Weight function will be high for similar pair
of nodes and low for dissimilar pairs. Use of this function will be discussed
in section 5.1.2

With the dataset D captured with method in Chapter 3, we define Dvi

as head pose samples captured at node vi. Also for clarification purposes, we
defined Dvi,c as head pose samples of pose class c ∈ C captured at node vi,
with C the set of all pose classes.

Our data-driven approach compares samples within each node area to
determine similarity between each node and calculate weights for each pair
of nodes effectively. In this section, the method to construct the graph and
its corresponding weight function will be discussed in the top-down manner.

Weight Function

We first explore the weight function w(vi, vj) between two nodes vi and vj.
This weight function measures how similar two nodes are to each other.
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Similarity weight of two nodes w(vi, vj) are measured by two quantities.
The first being sample weight between two nodes, denoted by ws(vi, vj).
Sample weight measures similarity between samples captured from within
each node. If samples from node vi are similar to samples from node vj, it is
intuitive to assume that the two nodes are similar. Sample weight is defined
as

ws(vi, vj) = e
−Dnode(vi,vj)

σA , (5.2)

where Dnode(vi, vj) indicates node difference measure and σA a constant.
Dnode(vi, vj) measures difference between two nodes. Node difference is high
if two nodes are different and low if two nodes are similar. Details of this
function will be discussed in the next section.

Another quantity of the node weight is distance weight, denoted by
wd(vi, vj). Distance weight measures how likely node vi are similar to node
vj. From the intuition that samples captured from nearby location tends to
be more similar to samples captured from far away, we define this weight
based on the location of two nodes. Distance weight wd is defined based on
the distance between two nodes as follows

wd(vi, vj) = e
−∥Xi−Xj∥

2
2

σX , (5.3)

where Xi and Xj are the position of node vi and vj respectively and σX

a constant.
With sample weight and distance weight defined, the weight function

between two nodes is established as a product of sample and distance weights,
w(vi, vj) = ws(vi, vj) · wd(vi, vj).

Node Difference

As mentioned in the previous section, node difference measures difference
in appearances of each node. Head poses captured in node areas with low
difference are expected to be more similar than ones with high difference. We
take data-driven approach to measure this difference by comparing head pose
samples captured from each node. If head pose samples in two node areas are
similar, it is intuitive to assume that future head poses taken from those areas
will also be similar. Samples comparison is restricted to comparing samples
with the same pose class due to the fact that head poses from different classes
are not similar even if they are captured with the same setting.

Because some node areas might contain only a few head pose samples or
even not containing any samples at all, defining difference between each node
by comparing samples within that node alone yield poor result. Therefore,
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we proposed to incorporate samples from nearby nodes into the equation. Be-
cause samples from nearby nodes should have less importance in calculation
depending on how far they are from current node, we introduce importance
function f(v1, v2) → [0, 1] which will be high if node v1 and v2 is near and
low if they are far apart.

We define importance function as

f(vi, vj) = e
−∥Xi−Xj∥

2
2

σX , (5.4)

where Xi and Xj are the position of node vi and vj respectively with σX

a constant.
With the importance function f defined, we derive the difference function

between two nodes, Dnode, as follows,

Dnode(vi, vj) =

∑
v1∈Gi,v2∈Gj

Dpair(v1, v2) · f(v1, vi) · f(v2, vj)∑
v1∈Gi,v2∈Gj

f(v1, vi) · f(v2, vj)
(5.5)

where Dpair(v1, v2) denotes pair difference function. Pair difference func-
tion measures the difference between samples in two nodes.

Pair Difference

Next, we construct the measure of difference between head pose samples in
each pair of nodes. As previously stated, it is intuitive to measure class
difference by comparing samples with the same pose class in both nodes.
Figure 5.3 shows an example of comparing head pose samples with the same
class. Colored circles denote a sample within node vi and vj. Circles with
the same color denote samples of the same class.

With this intuition, we define distance Dpair between two nodes as follows

Dpair(vi, vj) =

∑
c∈C,hi∈Dvi,c,hj∈Dvj ,c

d(hi,hj)∑
c∈C
|Dvi,c||Dvj ,c|

, (5.6)

where d(hi,hj) denotes sample difference between two head pose samples
hi and hj .

Sample Difference

We will start the discussion from how to calculate the difference between
each pair of head pose samples. Given a feature vector h1 and h2 be the
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vi vj

. . . . . .

Figure 5.3: Example of comparing head pose samples with the same class.
Colored circles denote a sample within node vi and vj. Circles with the same
color denote samples of the same class.

feature vectors of two head pose samples, we define the difference between
them as the weighted distance between each feature in the feature vectors

d(h1,h2) =
√

(h1 − h2)TM(h1 − h2), (5.7)

where M is the diagonal matrix indicating importance of each feature.
Mi,i is the importance of ith feature in the vector h1 and h2. Mi,i is high if ith
feature is important and has strong effect in distinguishing head poses. These
are usually the feature which involve the area of face or human skin which
has high importance in discriminating between head pose classes. Features
with low importance might include background pixels which are irrelevant to
head pose discrimination.

There are many approaches to obtain the matrix M . One of them is to
train a Random Trees classifier [10] using dataset D and obtain this impor-
tance matrix.

With these functions defined, weight function w(vi, vj) is constructed.
In the next step, we perform graph segmentation method to divide nodes

V into NR sets, V1, V2, . . . , VNR
, where NR is a predefined constant.
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5.1.2 Normalized Cut

Graph segmentation is the problem hat given a weighted undirected graph
G = (V,E) and weights w(u, v) which defines similarity between node u
and v, we seek to partition the graph into set of nodes V1, V2, . . . , VN where
similarity among nodes in a set Vi is high and across different sets Vi, Vj is
low.

In graph theoretic language, partitioning a graph G = (V,E) into two
disjoint sets A and B is called graph cutting. Graph cut is defined as total
weight of the edges that has been removed.

cut(A,B) =
∑

u∈A,v∈B

w(u, v), (5.8)

Minimum cut of a graph is the one that minimizes the cut value. Although
this criteria is a good approximation for graph segmentation, minimum cut
criteria favors cutting small set of isolated nodes in the graph.

Therefore, new measure which takes into account this problem called
normalized cut [32] is created and defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (5.9)

where assoc(A, V ) =
∑

u∈A,t∈V w(u, t) is the total connection from nodes
in A to all nodes in the graph.

To compute optimal partition for Ncut(A,B), we can write the equation
as follows

min
x

Ncut(x) = min
y

yT (D −W )y

yTDy
, (5.10)

where x be N = |V | dimensional vector where xi = 1 if node i is in A
and -1 otherwise, x di =

∑
j w(i, j) and D be an NxN diagonal matrix with

d on its diagonal.
If y is relaxed to take on real values, we can minimize (5.10) to generalized

eigen value system,

(D −W )y = λDy, (5.11)

which can further be transformed into standard eigenvalue problem of

D− 1
2 (D −W )D− 1

2x = λx. (5.12)

Solving equation (5.12) requires solving a standard eigenvalue system,
which takes O(n3) operations, where n is the number of nodes in the graph.

47



Chapter 5. Adaptive Scene Segmentation for Localized Head Pose
Estimation 48

Figure 5.4: Illustration of the multilevel algorithm used in Dhilon et al . [13].

For the details on derivation of this equation and detailed discussions, we
refer readers to [32].

5.1.3 Graclus

Because computing the optimal partition for normalized cut requires solving
for eigen vectors thus requires computational time of O(n3), Dhilon et al . [13]
developed a method called Graclus which does not require eigen vector com-
putations with big data. We will briefly introduce the method. For more
details, readers are referred to [13].

Graclus method’s aim is to reduce computation speed while preserving
the quality of graph cutting. This work proposes multilevel algorithm which
divides graph clustering into 3 phases, coarsening, base clustering and refin-
ing phase. Figure 5.4 shows the illustration of the multilevel algorithm used
in this method.

We denote an input graph G0 = (V0, E0, A0), where V and E is vertices
and edges of the graph and A as weight matrix such that Aij equals to weight
between node i and node j

Coarsening

Starting with the initial graph G0, the coarsening phase repeatedly trans-
forms the graph into smaller graphs G0, G1, . . . , Gm such that |V0| > |V1| >
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· · · > |Vm|. The transformation used in Graclus is called heavy edge coars-
ening.

The algorithm start with all nodes unmarked. Until all nodes are marked,
randomly select an unmarked node x, select node y with highest edge weight
from unmarked nodes adjacent to x, then mark x and y. If all of the neighbors
of x have been marked, mark x and do not merge it with any node.

When all nodes are marked, the coarsening for current level is complete.
Coarsening is done until number of nodes are smaller than a threshold. In
this work, coarsening is done until the number of nodes are less than 5k,
where k is the number of desired clusters.

Base Clustering

In base clustering phase, conventional graph segmentation method is per-
formed. Because only a few nodes remain, this can be done effectively and
quickly.

This work proposes to use region-growing algorithm of Metis et al . [20].
This algorithm selects random nodes and grows regions around the node.
The algorithm select initial random nodes several times and choose the best
clustering result.

Refining

Given a graph Gi, this algorithm form a graph Gi−1 by combining nodes in
Gi. Using Gi−1 as initialization for the graph, the algorithm use weighted
kernel k-mean clustering to refine the graph.

The algorithm ends when the initial graph G0 is refined. Computational
time of this algorithm is up to 2,000 times faster than conventional methods.

With this method, we could divide areas in a scene S into areasA1, A2, . . . , ANR

where Ai is the area occupied by nodes in Vi.

5.1.4 Classification

In classification stage, a classifier is created for each area Ai, i = 1, 2, . . . NR.
The classifier in area Ai is trained with the head pose samples in node Vi.
Specifically head pose samples,

DVi
=

∪
vj∈Vi

Dvj , (5.13)

are used to train model for area Ai
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5.1.5 Improved Data Sampling

As with the data sampling method in Chapter 3, we select one head pose
sample per each line segment. Because a segment can pass through many
nodes at once, sampling only one head pose sample does not yield efficient
result as not every node this line segment pass through contain the head pose
sample.

Therefore, we proposed to sample multiple head images from a line seg-
ment. After outliers rejection, head pose samples are selected from a line
segment for every interval. Specifically, we capture head poses in line seg-
ments every ct frames. Pose direction is set to be the line direction in the
same manner as in Chapter 3, which mean poses acquired from the same line
segment are assigned the same pose direction.

Figure 5.5 compares previous and proposed method. Figure 5.5(a) shows
the previous sample method. Only one sample is selected for the line segment,
making head pose samples reside in only one node. Figure 5.5(b) shows the
proposed method. Head poses are sampled every ct frames, making samples
contained in multiple graph nodes.

5.2 Experimental Results

The algorithm with data obtained from Chapter 3. We divide the areas into
15x15 nodes.

We divided the tests into 2 categories, graph clustering test and classifi-
cation test. In graph clustering test, the graph clustering algorithm results
for varying RN are shown. Classification test shows the efficiency of our
proposed method in improving the classification accuracy.

5.2.1 Graph Clustering

With the obtained data, the weight for each pair of nodes are computed and
are used divide a scene into NR areas. Figure 5.6 shows the result of dividing
scene 1 into multiple areas with similar head samples.

It can be seen that with NR = 2, dark areas are separated from illumi-
nated areas and with NR = 3, 4 areas near the camera are starting to be
separated from areas far from the camera. Note that we only use sample
comparison and did not assume any kind of separation in advance.
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5.2.2 Classification Test

Figure 5.7 show the result of adaptive head pose classification using the
sampling method in Chapter 3. We set the value of the constant σX = 10.0.
A classifier is created for each area obtained by graph clustering method.
Head poses in each region are estimated using the corresponding classifier
created using head pose samples in its region. Classification accuracy at
NR = 1 serves as baseline, as it equals to normal classification task where we
use all pose samples to train a classification model.

Classification accuracy of the proposed head pose sampling method is also
shown. We set the value of ct = 30 which means head pose samples are taken
every 30 frames in a line segment. Figure 5.8 shows the classification accuracy
of the classifier trained with samples obtained with proposed method. The
classification accuracy improve significantly over previous method due to
increased head pose samples in every node.

Compared to baseline, our proposed method significantly improves the
classification accuracy.

5.3 Conclusions

This method proposes head pose estimation method which also considers
differences within scene. We divide a scene into regions and view them as
graphs, with each small square region in a scene view as a graph node.

Weights between each node tells how similar each nodes are to each other
and are defined based on similarity between head pose samples taken at
the location of those nodes. Pairs of nodes with higher weights tend to be
grouped together as the head pose samples within the node are more similar.

Our proposed method creates a classifier for every segmented region.
Head poses will be classified by different classifiers based on the location
those head poses are taken from. Experimental results show that our method
which utilizes multiple classifiers achieve significantly better result than using
only one classifier to classify the whole scene.
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(a) Previous head pose sampling method

          

          

          

          

          

          

          

          

          

          

(b) Proposed head pose sampling method

Figure 5.5: Comparison of head pose sampling methods. White rectan-
gles specify areas occupied by graph nodes. Previous head pose sampling
method samples a head pose sample from each line segment. Proposed head
pose sampling method. Head poses are sampled every ct frames.
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Figure 5.6: Result of dividing scene 1 into multiple areas with similar head
samples with NR = 1 to 6.
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Figure 5.7: Result of head pose classification by creating a classifier for each
region. Head poses in each region are estimated using the corresponding
classifier created using head pose samples in its region. Accuracy at NR = 1
serves as baseline.
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Figure 5.8: Result of head pose classification by using improved sampling
method. Previous shows accuracy of the classifier trained with samples
obtained from previous sampling method. Proposed shows accuracy of the
classifier trained with samples obtained with proposed method. The accuracy
significantly improves over previous method.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

Head pose estimation from low resolution image is crucial for many computer
vision applications and is still being active in recent researches in computer
vision. This research tackles one of the most important problems in head
pose estimation from low resolution image.

Our work proposes head pose estimation method which aims at acquiring
head pose samples automatically. This is done by tracking human head in
target scene from prerecorded image sequences. We analyze tracked results
to automatically acquire useful head pose samples based on the assumption
that human turn to where they are walking most of the time. We also propose
extensions to the method as follows.

In many cases the prerecorded image sequences are not long enough and
cause the constructed head pose estimators to fail on some head pose classes.
In this case, we proposed to integrate the generic dataset into the model and
perform the modified TrBagg algorithm.

Also, even within the same scene, lighting conditions or camera angles
might be different. We proposed the method to solve this problem by adap-
tively divide a scene into areas with similar head pose appearances. The
division is based on the data contained within each area itself applied with
graph segmentation method called Graclus.

Head pose estimation from low resolution images is itself a difficult task,
and there is a much room for improvement in both feature description and
classification/regression techniques. We believe these proposed methods would
serve as a good basis for further developments of head pose estimation from
low resolution images.
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6.2 Future Works

We divide the aims of our future works into 2 categories, to improve head
pose acquisition methods and to improve head pose estimation technique

Head Pose Acquisition

Head pose samples acquired with our proposed method still contains some
erroneous head pose images even with outlier rejection methods. Erroneous
samples are assumed to be of low amount in the model and are ignored.

One of the possible ways is to consider appearances of head pose samples
taken with the proposed method again. If there are only a small number of
erroneous samples, we could filter outliers out by removing head pose samples
which appearances are not similar to other samples of the same class. It is also
an interesting idea to integrate this with region division method in chapter 5
to further limit appearance difference to effectively filter out outliers.

Head Pose Estimation

Although head pose estimation from low resolution images are progressing
rapidly, they are still a long way from perfect. Because good feature descrip-
tor is one of the most important factors in head pose estimation and there
is still no state-of-the-art feature which outperforms existing features, this
topic is worth researching in as the future work.
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