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Introduction. In his previous paper® the writer studied theoretically
the waves propagated through a heterogeneous medium, in which 4, one
of Lame’s elastic constants, is a function of the distance » from the

centre of symmetry, such that / 4 +)2/‘ =a—br?, rigidity p, and density
/

p are constant. He there worked out a general solution in special
coordinates (¢, 3, ¢), the origin of which coincides with the centre of
the disturbance.

From the calculations, it appears that waves of irrotational dilata-
tion can be propagated independently of waves of equivoluminal rota-
tion, as in the case of a homogeneous medium, and that the velocity
of propagation of dilatational waves varies with its wave length.
Here a question arises with respect to the physical meaning of .
While £, calculated by the integral (3), is independent of wave length,
the same integral is accepted as giving the travel time of a dilata-
tional wave that originated at the coordinate origin O, and observed
at that point, of which ¢ is one of the above mentioned coordinates.

So long as waves of dilatation and waves of rotation are able to
travel independently of each other, it can be easily proved by a process
of discussion similar to that adopted by Love in the case of a homo-
geneous medium,” that the velocity of propagation of the surface of

discontinuity is either ‘/ )i"fi or —; , acccording as there is no rota-

tion or there is no dilatation. It is, therefore, evident, from Fermat’s
Principle of the wave path, that ¢ is the travel time of a disturbance
of dilatational character, so long as the rigidity and the density of the
medium are constant. However, the wave motions through a hetero-
geneous medium, in general, including such as those considered in this

1) R. YoSIYAMA, Bull. Earthq. Res. Inst., 11 (1933), 1~13.
9. A. E. H. Love, The Mathematical Theory of Elasticity, 4th ed., p. 297.
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paper, are neither purely dilatational nor purely rotational, so that the
above mentioned process of discussion seems inapplicable.
‘ Now, in this paper, the writer discusses the waves propagated
through another particular heterogeneous medium, in which rigidity
#=0, while 2 and p vary with . The propriety of interpreting ¢ as
travel time of disturbance will be shown analytically. The solution of
waves thus obtained will be helpful not only in elucidating the question
of the waves in the earth’s core of the nature as usually accepted,
but also that of sound waves in the atmosphere and that of atmospheric
oscillations.

The writer hopes also that some possible applications of the present
process of analysis will be found in future to the problems concerning
a heterogeneous medium of more general character.

1. Putting =0 in the equation.of motion (2),

az
pﬁDz— —grad{(2+2y) 4} —2rot ;. W+ 2[grad s, W1

—2dgradp+2 (€ grad p), (2)
we have
D
Pz = grad2d, (56)

and it will be seen from the equation that certain components of rota-
02
tion of % do not vanish when the medium is heterogeneous in its

density, so that the wave motion through the medium cannot be purely
dilatational.

By performing the divergence operation on both members of the .
equation we obtain

dp %,  9%4
@ o TPape =V ) (57)

where u, represents the »-component of displacement.
Eliminating «, from (57) and the »-component of the vector equa-
tion (56), we get the equation

2
) a?_rz 2d=2y? (1) _—j— a3 G, (58)

o dr or
and in virtue of the relation,

VP =¢yvip+2(gradggrad¢) + gy, (59)
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the equation transforms to

92 Ad 2 : 1 Ad
- e 2__ 2 Yy
T —p W=V rv van )1/ P (60)

The integration of equation (60) is effected on some initial or
boundary conditions which, we may assume, are given with regard to
voluminal change or stress. In our present problem, there are three
normal stress components equal to 44, but no tangential stress. The
resultant integral, on being put into equation (56), gives the requisite
solution of the problem under discussion, although, unless some initial

)
conditions are given to D and va—Q , the results will, to a certain extent,

be indeterminate, because any additional displacement may be superposed
such that both acceleration and divergence vanish, since such displace-
ment satisfies equation (56) and is unaffected by the initial or boundary
conditions on the voluminal change or stress.

Putting

= {1—) grad¢, (61)

1, 1dpdg 1 f, 4 ., 1)
J~{)V2¢ pt odr v Vp lV21/'? ¢V21/",Jf (62)

Let ¢, be a function independent of time T, such that

o 1
2_ 10 2 . 63
Y Y p Pov e (63)
Then the displacement

D,=(A +BT)—{1) gradg,, (64)

in which 4 and B are constant, satisfies the equation of motion (56)

22 s
with TTIT)=O and divD=0, and has no bearing on the conditions
referred to voluminal changes or stress. The indeterminateness occurs
also when the problem is concerned with a homogeneous medium, and
the displacement is, as may be seen from (64), everlasting or everin-
creasing.

As regards the everlasting displacement component, % grad ¢,.
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The equation of elastic equilibrium in statics, when there is no body
force, being

grad2d=0, (65)

this displacement component will appear when a constant traction acts
on a boundary surface. For example, let us examine the results of
the investigation concerning “ Elastic waves animated by the potential
energy of initial strain” by Dr. H. Kawasumi and the writer.? In
case (b), therein stated, a constant traction P, acts on the boundary

a*P, in
i
1»2

surface r=a, and the displacement component expressed by

(19) and other equations, is obviously quite similar in nature to that
mentioned above.
Now, concerning the ever-increasing displacement component,

BT % grad¢,, the imperfection of the equation of motions should be taken

[)
into consideration. In the equation, for example in the r-component,

2 02
terms such as oU, U, , etc, are ignored on the assumption that these

T oraT

o%u, 22D . . .
are negligible compared with T2 , and EVoh is written instead of
2D ] 1 ou, %, .
a7 However, if D—-BT? grad ¢,, ST 3 af does not vanish,
5 :

whereas Wu; vanishes. Therefore, it is desirable to prescribe the

initial or boundary conditions properly, so that the displacement under
consideration will at least be negligible compared with the other com-

ponents.
2. Now in order to discuss the problem more concretely, we shall
assume that

)) = (a—br?)2, (66)

1
~1/ V=g, (67)
and, substituting (61) and (62) in equation (60), we get

G $
T 1/() (V _1/I’V1/p vary

3) H. Kawasumri and R. Yosivama, Bull. Earthq. Res. Inst., 13 (1935), 496~
503,

(68)
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This equation can be solved by the method given in the writer’s .
previous paper, with the sole substitution of p?—a for p% - The result
is

g= 0 ) 2V o ayy

vV a—br? sinh 2vab t
sinm
- P (cos f3) ('De*“”, =1, 2, (69)
cosme

in which p denotes the frequency in 27 sec. and UP(v/p?—a—abt)
is the function worked out by the writer in his previous paper, which
corresponds to Hankel's cylindrical function in the case of a homo-
geneous medium, and we have, moreover,

1 { , ¢ , 1 1 1 2%
A=\ W T e (70)
When ¢ is large, we can approximately put

2 /ab o Ve -2t w)
U(D~ / }/ 1 (ViE—a—aht -— , 71
I 7p ' sinh 21/abt (71)

. T2y ab et
UP=~ / ;/ e e, 72
2 sinh 2v/abt (72)

where f, and f, are respectively a certain function of p, ab, ¢ and n.®
Since a, b, and @ are constants, the surface of the same phase of
a wave is given by t=—const., which is a wave front. The phase velocity
¥V, normal to the wave front when ¢ is large, is given by

= S N :
(@01 —ap (73)

and,

1% " a+ab
op =—(a—br )1/p2 b (74)

Thus we find that the phase velocity depends on the period of the
wave, and the larger the absolute value of @ +ab the larger the de-
gree of the dispersion. Normal or anomalous dispersion occurs accord-
ing as a+ab is positive or negative. In either case, as frequency p
increases, a+ab becomes comparatively negligible, and the velocity

4) Concerning the asymptotic expansion of U., the previous paper contains an
error with respect to the terms f,, fs.
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- approaches a—br?2, which is greatest when @ +ab is negative, and is least
when a+ab is positive.

It will be noticed that the degree of dispersion depends on a +ab,
and not on @ or ab separately. If a+ab=0, although the medium is
heterogeneous, the wave is not dispersive, while the reverse is the case

even when b=0, that is, even when / f—} is constant throughout the

medium, the wave is dispersive, provided @ is not zero. For example,
assume b=0, and that
/,~2

P=pe———— , (75)
sinhﬂ/ 7
then
N o _ sinme |
- 0, / 3 » _'tpT, 76
#= 7 B2 P a )P (cosB) o (76)

where H{?; is Hankel’s cylindrical function, and the phase velocity

a7 = ™

and is dependent on frequency p.
From (66) and (67) we get p as a function of 7 in the form

1 2v/ ab cosech 21/ ab t,

Vo Va—br? {Asinhy/ @ +abt,
+Bcoshy a +abt,), _ (78)
where
1 ., 2V abr
to= 5/ ab’ arcsinh abr? . (79)

A and B being arbitrary constants. For certain assumed values of a
we get p;

b ~
=T PR a—br)
. — 7"2 -
@=0i = A By
a2 —br2
a=3ab; ! (a br)

P = Ar ¥ B(a+br?))?
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72(a—br?)?

@=15ab; p= [Ar(a+br2) + B{(a—br2)2+8abrt} P

3. We shall now discuss the propagation of a disturbance. A
slight modification of the notations in (69) gives

— V) BV gy preos ) S g, (g
¢ 1/a;b1'2 sinh 2_‘/65t n (p ) n (C f ) cos Mo e ’ ( )

where @/2=a +ab is the constant of the medium, the period of the
wave being 27/v/p?+a’?, whence the phase velocity is
2 78
V= (a—b'rz)—1 p ;—a . (81)

This is, remembering (51) and (52), generalized into thé form

v p (sinh2vab t)” sinme
Y \—=—F===) P?(cos
v/ a—br? 21/ab (cos £) cos me

( 2v/ab d\ 2yab g“

—_ — . —ipt+ VP2t & 12T
sinh 2y/abt dt ) sinh2)/abt O{fl (P)e

¢=

+ 91 (p) eipt—-il/‘ PEROET L f2 (20) e-ipt-iVpEre’2T 4 9> (p) eipz+n/pa+a'2r} dp. (82)
Let us first suppose the initial condition

21/ab cosech 21/abt
= s 3
4 'l/ P (a—brz)% ¢y (t)

- L (83)
384 2v/ab cosech 2v/abt :
T~ vV p(a=b1?)2 #2(8)

at T=0.
To determine f,(p), (D), 9:(P), g2(p) in order that (82) may satisfy
(83), we have relation (70) and Fourier’s double integral theorem,

9”‘“%7{56@8 ¢(«»)e"“""’dw+s dpg ¢(w)e"’"‘“"”dw} (84)
0 el 0 =

Thus we have

2v/abcosech2v/abt °°/ %
4= 71‘1/7(@.'_1”02)12: {S_ ‘;l((t')dw

cosy/ pi+a2Tcosp(t—w)dp
0

- ” siny/p? + 2T
+S ‘Mw)d‘"g e cosp(t—0)d)|
n ,
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2+/abeosech2y/ab ¢ ( 9 g“’ . (w)dmgw siny/pTT @2 T
= 1 —

=/ p @=br9i o7 Vprgan  OSPUmd

o o0 - —h ,2
+1 ¢p(w)dw Sm1/2%+a;2 T cosgo(t—m)(lpl . (85)
. 1/2) +a J

-0

Putting =T, y=p, z=a/, y—_—-;— and T'cos¢=u in the known for-

mula,”

g cos (2y cos ¢)J,_;(wz sin ¢) (sing)*+idg
0

T zv-1 o 1
— - /12 2 (s —_
/zx (yz+22)§ Jv(il?] ) +2 ): S}\('J)> 2 (86)

we get
sin v/p?+a2T

r
- T/*I*—)Em’; a’;zT’ = S COS pu JO (a.’VTTuQ) du. . (87)
0 .

We have, thérefore,

cos p{t—w)dp

1 c“‘Vsin Vpi+al2T
Vpi+al?

o 4
=%S COSP(t-w)dpg cospu Jo(a'v' TE—u?)du. (88)
S0

0

With this equation, let us compare Fourier’s integral theorem

oo o

cos ax daS f(A)cos aldi, (89)

0

f(@) =§S

0

which holds when f(x) is an even function of x, whence we get

Zcos p(t—w)dp= %Jo(a’x/TZ— (t—w)?) |t—ow|<T

1("siny/p*+ 2T
Vpi+a?

J0
=0, |t—(l),>T

By means of this relation, we get from (85) as the final result,

5) See, for example, ‘‘ Ooydsugaka ’’ p. 348 by Dr. S, SANO.
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_V/ab cosech 2)/abt| ?
V(@b \ T

L+
S Jo(a'V TP — (t—w)?) ¢y (0)do

L+ T
+S Ty (@' TE=(E = 0)?) ga(w)do) . (90)
t-T

For convenience in physically interpreting this result, let us suppose
that, at first, when T=0, the disturbance is restricted to that region
of space within a closed surface t=t,, and that it is observed at a point
outside the closed surface where the coordinate t>t,. Since ¢,(f) and
&, (t) vanish when t=t,, the upper limit of the integration becomes %,.
And as far as t—T>t,, that is, T<<t—1,, ¢1(®) and ¢,(w) are zero,
so that the integrals also vanish. It is when the time T is so large that
t—T=t, or T=t—1,, that ¢,(f,) or ¢,(t,), the disturbance on the sur-
face t=t, at T'=0, first begins to contribute to the integral. Conse-
quently, in current terminology, t—t, is equal to the travel-time of the
disturbance.

Since ¢, (@) and ¢,(w) respectively have their meaning only when
©>0, the lower limit of « is zero, and when {—7T=0 or T= t the
effects of ¢, (0) and ¢,(0) apparent. :

In problems of sound waves in the atmosphere, we frequently meet
with cases in which @’2 is negative. In such cases, certain restrictions
to the initial conditions will be necessary in order that the results,
mathematically obtained, as mentioned above, may preserve their reason-
ableness when interpreted physically. Besides, discussions with respect
to those restrictions may lead to the study of the problem of stability
of the state of the medium. In this paper, however, we shall confine
~ourselves to a study of the effects of the dispersion assuming @’2 positive,
that is @/ real.

When the constraint in the medium is released by itself, ¢, () =0.
And

Jd= Jo(&'VTE=(t - 0)2) ¢, (0)dw

t=7

v/ab cosech2y/abt 3 °
Vv p (a—=br2)? 2T

1/ab cosech 2v/ab ¢

~ b (B

to /TJ T2 t—w 2
_S - a’'TJd (a 1/ ( ) )9/'1((0)cl(u} . (91)

V2= (t—w)?

The second term represents the effect of dispersion. Further study
will be made of the following two cases (a) and (b).
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(a) When T>t(>t,), the lower limit of the integration becomes
zero, and, moreover, we can put, approximately,

3
Iy T (= a)?) }/2— cos(a/ T—Hn)
VIE=(t—w)? VAT T
So that the effect of dispersion, which remains as a damping oscillatory

motion after the disturbance of the form prescribed at the origin pasqed
by, will be estimated in v1rtue of the expression,

© @TI (@Y T = (E—w)?)
e [ ¢4 [) d 1.
S V= (—wye (0o
5 /=7 to )
.—}/i‘/% cos(a’T—%rr)S ¢(w)do, (92)
0

(b) When the initial motions, observed at a position sufficiently
distant from the origin of the disturbance, are concerned, 7=t and

'/ T?— (t—w)2<1.
Then we may put, without serious error,

fo ;TJl(a/.‘/Tz (t-—-(o))
oy VI

Lo

¢1(0)do=0.4a"2 tg ¢ (w)do, (93)

Jt=7

because ila(ci) decreases uniformly from 05 to about 0'4 as z increases

from zero to unity.
In order to get a concrete knowledge of the effect, we assume that

;/;i)-:(a—brz)

= T'5 km/see at »=6300km
=125 km/see at »r=5100km

p= a — b’ r2 -
= 30 at *=6300 km
= 47 at r=5100 km,

and we get @2=0'4 x107% and, by writing = for the time elapsed after
the first arrival of the disturbance, (93) may be written

0-16 x 10’41,8 Ji(w)dow.

lo-7
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If ¢,, to which the dimensions of the initially disturbed region is propor-
tional, be 5 seconds or so, even when t=>500 sec., that is when the wave
is observed at a position on the surface #=6500km. and about 10 de-
grees distant from the centre of the disturbance, the effect of dispersion
on the maximum value of voluminal change, as well as that of acce-
leration, velocity and displacement of the motion, caused by the distur-
bance propagated, does not amount, in rough estimation, to even 5 per
cent. It is not possible to arrive at any conclusion regarding the effect
of dispersion at every instant without assuming the form of ¢,(?).

4. When, instead of (83), the initial condition are given in the
form

94  (2y/ab cosech2v/abt)™ _ sinme
4 or éf— v p (@—b1r?)% (e 'B)cosmgo
: < d__ )"21/%cosech 2v/abt- ¢ (t) (94)
d(sinh? v/ab t) v ’

the problem can be studied, remembering (82), and applying a process
similar to that above mentioned to the function under differentiation.

5. The suface, t=const., will now be examined. Eliminating ¢
and 3 from (25) and (26), we get

.0
sinhMt_ (r—h)2+4hrsm2§

vab T { " (a-br?) (a—bh?) ’ (95)
or
PERIP S o 2
7.2{1+ (a—Dbh?) _Sth;@} o hco ﬂn.}}_b_ﬁ@( —bh?), (96)

from which it will be seen that the surface is spherical, the centre of
which moves on the line §=0.

6. When a is not constant, equation (68) is not solvable in the
form (69). However, if the gradient of ¢ is small, or if our atten-
tion is confined to a sufficiently restricted region, the solution may be
approximately expressed by (69). It then appears that t=const. does
not represent a surface of the same phase; the form of the surface of
the phase front of a wave depending on its period. Even in that case,
by confining our attention to a sufficiently small region at every instant,
and by applying similar reasoning to that just given to such successive
small portions, we may conclude that the velocity of propagation of a

disturbance is / %
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Appendix.

For convenienee of future application, we shall examine the nature
of R, or X, -function.

For simplicity of notation, p?—a—adb is substituted by p% Con-
sider then the two differential equations

a¢ - 4ab /L(n-}-l)} _

at? +l” sinhteyape) P70 D
¢y [ o 4abn(n+1) } b
de [q " ginh22y/abt =0. (98)
From (97) multiplied by ¢, subtract (98) multiplied by ¢, and integrate
with respect to ¢ from zero to 2,

aRs
S LA |
hdt = —— . :
Somdt pZ—qZ[,dt oo (99)
Putting '
F=XP0Y, $=XP(at), 0207
A
dX,(qt dX.(pt
an(pt)xu<qt)dt=%{xu( H %=1 x, (g P (100)
0

As will be seen from the results worked out in the previous paper, we
have, when ¢ is large,

u=27/ab coth 2)/ab t =21/ab {1+ 0 (e-*))

1 - . -
X..(pt) =~p;{fq,(p)sin(pt_ n—1 %) — . (D) cos(pt _n - 1 n-)}

- f1+0(e ], (101)

aX.(pt) _ 1 [, n—1 in(pt — =1 }
dt - pn—l {fﬂ(p)cos(pt_ 2 ’ 7T) +g“(p) Sln(pt - 2 ”)

A1+oe), (102)

in which

6) Of the two X.-functions, studied iﬂ the previous paper and given in (492),
we have taken X{°. Suffix (1) will hereafter be omitted.
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) fo(p)=0 ) 9,(p)=1
hpy=2vab 7:(®)=p
fo(p)=6vabp 9:(p) =p?—16ab
f3(p) =127/ab p*—48(ab)i  g4(p) =p3—44abp

etc. (103)

Substituting (101), (102), and similar expressions related to X,(qt) in
the right hand side of (100),

X
1 1
Xn(pt)Xﬂ(qt)dtz 2 2 92y
SO 2(p*—q*) p'q

* [(p'l" Q) (fn(p)fn(q) +gw(p)gn(q) } Sin(p—Q)a
+(0—q) {f.(0)f.(2) —9.(P) 9.(q) }sin{ (p+ q) A—n=)
—@—-0){9.()f.(q) + [.(9) 9.(9) } cos{ (p + @) A—niz}

~ 0= 0) (0.0 (@)~ @) 9,(0) je0s (p—)2|{L+0(e)}  (104)

It will,readily be seen that, as shown in (103), of the two functions
[.(p) and g,(p), the one is even and the other odd, so that

9.(0)f() +1.(0) 9:(9) = (0 + D) Gy (D, 0) (105)
92(0)f(2) =1.(0) 9.(0) = (D— @) G2 (D, @) - (106)

where G,(p,q) and G,(p, q) are respectively certain polynomials of p
and q. Let us multiply both members of (104) by

$(q)dq

| X, (D, ) || X.(q, )] ’ (107)
where
) (108)

[X. (g, ) | :%1/ Ful@) +9.(0) J

and integrate from e to 3, and then consider the limit to be 4 — .
Now it is known that

If ¢(x) be continuous, except at a finite number of discontinuities,
and if it have limited total fluctuation in the range (@, ), then, as

A —> oo,
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L S & (0)sin 20 d0 =o(%>
S‘ J(l)cosi0d0 =0(%> | (109)"
1L g (0 S“"w d6=0 S >0
%{ (+0)+f(—0)}; @ <0, f>0
=%f(+0), ;a=0,3>0
=—’21f(—0) s a<0, B=0 (110)®
Therefore, with a suitable restriction on the form of ¢(q),
B
i $(q) _
I:?,g X0, )| 1 X0, oo)l(p Q) {9.(0)1.(@) + . (0) 9.(0))

: cos{(p+q)1%nn_>dq

B .
$(0) - G (P, Q) R PR
_—llmg IXo(p, ) [|X.(q, o )Ibos{(p+q)~ nr}dg=0.

In like manner, the integration involving cos(p—¢q)4 vanishes. Thus

8 * Xn(pt)X“(qt)
2S¢¢(Q)dqgo [Xu(p’ oo) | 'Xn(q’ CO) ! dq

=lim
A>roo,

" AWA@+0.00.(0)  sinp—ag)
S @)+ VE@ +9(@  p—q $()dg

8 .
n1s _ Afn(p)f'niq-)tgngp)gn(Q_)A . Sin(p+ Q)R
(=1 h“;g VR® 0 VE@-9X0 prq T D%

which in simplified notation is

[ sin(p—q)2 sin(p+q)/
Zlim| @,(p,q dg+ (—=1)" lim\ @,(p,q) “ LD 50 (111
lmg 1(p,0)- P g+ (=1)" Im&z 2 (9, Q) piq g (111)

A>enJB v P

7) Modern Analysis, 4th ed., p. 172. _
8) A modification of Dirichlets integral. See, for example, * Sugaku-gairon.”

p. 115, by Dr. K. TERAZAWA.
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Putting, now, p—q=0, in the first mtegral arid p+q=0 in the second
integral, we have

p—q

%€ >en,

3 rp-o
limg ) e Clm hmx 0. -0 1)

Aren p~B

8 p+B
2
ng Dy (p, )—SE(%";—Q)—dq hmg D, (p, 0—Dp) sin 0d0 (113)

ArenJa Aren/pta

If 0<{a<p<p, integration (113) vanishes, while (112) becomes

=@ (p, p)=7p(p).

" We have thus proved that by putting ¢ =0, f—o,

X, (p1) X..(q?)
X.(p, ) || X.u(q, ) |

() =— g¢(q)dq8 | (114)

provided

S |$(q) | dg=finite.
0

This shows that |
5~ X.(pt - h
if ¢(t)=;/%g $(») X (;)p ))pol .

. (115)
then 95(20)"]/‘“S ¢(t) I%dtl

This functional relation corresponds to Hankel’s reciprocal theorem in
the Bessel function, '

i @ =S $(2), () ]
. (116)

then d(2) =g & (), () Ad?, [
0

although X.(pt) is not a function of pt alone, depending on p and ¢
respectively in a different manner, this cannot be written in a strictly
reciprocal form.

Although when b<<0, the relation which cerresponds to (115) cannot
be easily obtained, it will be noticed that r—c corresponds, by (95), to
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t_>1Tl¢WSin—1/ a—'%ﬁaz—’ where b'=—0. Therefore, the integration
T

with respect to ¢ should be performed within a finite range.
In virtue of the relation (115) with the known theorems referred

to Legendre’s function, the problems of propagation of disturbance will -

be discussed in a future paper under more general conditions.
In conclusion, the author desires to express his sincere thanks to
Professor T. Matuzawa and Dr. H. Kawasumi for their kind criticisms.
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