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1. As is well known, when a great earthquake occurs, the epicentral
region of the earth’s crust is subjected to severe seismal vibrations due
mainly to seismic wave-energy propagated from the earthquake origin,
in addition to which permanent crustal deformations occur in the re-
gion, accompanied sometimes with considerable dislocation. This paper
is one of two preliminary studies of the dynamical nature of earth-
quakes. The other preliminary study® (already published) discussed
the statical deformations of the surface of a semi-infinite gravitating
elastic solid when a force acts on the surface of its spherical cavity.
2. Using the solutions obtained by K. Sezawa® of equations of mo-
tion of homogeneous isotropic solid in the case of steady state of simple-
harmonic motion, H. Kawasumi® and R. Yoshiyama obtained formulae
of displacements expressing the diverging bodily waves (longitudinal and
transverse) that emanate from a spherical cavity. The boundary-condi-
tions of stresses assumed by them for the inner surface of a spherical
cavity of radius o are
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is the centre of the spherical cavity. K. Sezawa® and W. Inouye® have
also studied the elastic waves radiated from a spherical cavity in an
elastic solid for the case when a variable pressure acts on the inner
surface of the cavity. The form f(f) of the time-variation of pressure
assumed by them are such that
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f) =0, t=r ]
f(H)=N, —r<t<z J ®)

where ¢t indicates time. The form (a) is assumed by K. Sezawa and
W. Inouye, while expession (b) corresponds to the form assumed by H.
Kawasumi and R. Yoshiyama.

3. When the boundary-conditions on the inner surface of the spheri-
cal cavity are expressed by

= —F (), ] (1)
=730, |

the diverging wave® radiated from the cavity becomes merely a longi-
tudinal wave, which causes only radial vibrations of particles in the
medium, as
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616 : G. NISHIMURA. ‘ [Vol. XV,

and v and V are the respective velocities of the longitudinal and trans-
verse waves in the medium, such as / ~7—#, / %
)

Now let the normal stress 77 on the inner surface of the cavity
be zero until the time becomes ¢,, when we shall express it by '
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(6)

where P denotes the maximum intensity of pressure when the time
becomes £,. Expression (3) then becomes '
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Now using Cauchy’s theorem of residues, we find that when th%a,
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and when t>—~ the evaluated integrals become
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Therefore the diverging wave radiated from the cavity is expressed by
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It will be seen from expression (12) that there are two kinds of radial
vibrations, one of which has its amplitude proportional to the inverse
ratio of the distance of the particle from the center of the cavity and
the other proportional to the square of the inverse ratio of the dis-



618 ’ G. NISHIMURA. ' [Vol. XV,

tance; whence it follows that the vibrations of a particle near the
cavity are more complicated than those some distance away from it.
The longitudinal vibrations of a particle in the medium far from the
cavity are expressed approximately by
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which are derived from p

expression (12).

~ To ascertain the na- /\
ture of the radial vibra-

tions of a particle, we

obtained Figs. 1~3 from
expression (14) when the v / \

) o
.

Poisson ratio of the me-
dium is 1/4, a/t,v being

tentatively put as 1. Fig.
4 shows the time-varia-
tions in the pressure on 0

<

20 40 /i 1 10
the surface of the cavity \ / / o

corresponding to ‘tﬁf:O,

0:50, and 1-50 respectively.
It will be seen from Figs.
1~4 that the particles in % N4

the medium that is far
from the spherical cavity
become damped radial vib-
rations and their ampli-

2/
JUv

Fig. 1. The radial vibration of a particle in the
a

R medium of Poisson’s ratio i, when =1
tudes reach maximum : 4 tmw
t . . and 1.=q. Unit of ordinate=ﬂ~(ff»), ab-
when -°.=0, in which case 28 271\ 1
m scissa T=%{t—%(7‘—a)} .

their apparent periods of )
vibrations in the initial state become also the longest. The apparent
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periods, of radial vibrations in the state of initial motion in the case of
sudden commencement of pressure generally become shorter than those
in the case of gradual commencement, and the periods of radial vibra-
tions, however, of the tail end do not depend on the form of the time-
variations in pressure on the surface of the cavity, but on the dimen-
sions of the cavity. The periods of vibrations in the tail are generally
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Fig. 4. Time-vatiations in pressure on the surface of the spherical
cavity when ~ttQ=0, f’l=0'50 and :izrso. Unit of ordinate=—P.
longer than those of the initial motion. Moreover, it may be seen that
Shida’s law of push-pull of the initial motion holds also in this case.

4. When the normal stress on the surface of the spherical cavity has

co-latitudinal and azimuthal distributions®, like
77,_,—= —Pf(t)sin2fcos $, (15)

and the shear stresses ?/'-t;,.za, @,,a are zero on this surface, the diverg-
ing waves radiated from the spherical cavity then become two bodily
waves, like the longitudinal and transversal waves, and the particles in
the medium as the effect of these two waves assume the following
vibrational motions of radial, co-latitudinal, and azimuthal displacements :

7) Honda has already studied the wave-motions when the pressure distribution
on the surface of a spherical cavity has the same distribution as in Section 4, but
the time-factor in his paper is simple-harmonie, like eirt. -

H. HoNDA, Geophy. Mag., 8 (1934), 153~164.
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In these expressions, u,, vy, w, are the radial, co-latitudinal, and azimu-
thal components of displacement due to the longitudinal wave, and wu,,
Vg, Wy are those due to the transverse wave. The functions of p, such
as ¢(p), P(p), Q(p), S(p), and T(p) in expressions (16) and (17) are
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Now let the time-factor f(¢) in expression (15) be

t+t0 1—-

F@)= (24)

when ¢2>0, and
& =0, @)

when t<{0 as in the case of Section 3. But since the integral expres-
sions in (16) and (17) have singular points of higher order, evaluation
of the contour-integrals becomes impossible, with the result that it may
be impossible to study the wave-motions of particles on and near the
surface of the spherical cavity with the present method®. We shall
therefore study the vibrational motions of particles far from the cavi-
ty when the pressure distributions on the surface of it are expressed
by (15). To simplify the mathematical treatment, let the Poisson ratio

8) 1If we calculate afresh the displacement-potentials consistent with the boundary-
conditions of stresses on the inner surface of the spherical cavity, it is possible to
investigate the vibrational motions of the particles on and near the surface of the
spherical cavity.
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be 1/4, as in the preceding section, when the radial vibration u, due to
the longitudinal wave, and the co-latitudinal and azimuthal vibrations
Vg, W, due to the transverse wave become

2 = /. ip{t-Lor-a))
s 18 ( )P (p)e sin2f cos ¢dp, (26)
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¢’ (p) expressed by (81) may be obtained from expression (19), and is
due to H. Kawasumi®. In this case, the respective amplitudes of the
co-latitudinal and the azimuthal components of displacements of the
longitudinal wave are less than the radial displacement of the wave,
and those of the radial component of displacement due to the trans-
verse wave are also less than those of the co-latitudinal and the
azimuthal components of displacement. We therefore omit these dis-
placements in studying vibrations far from the cavity.

By letting the time-factor f(t) be (24) and (25), the expressions
(26), (27), (28) become

9) H. KawasuMmI and R. YosHIYAMA, loc. cit.
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For evaluating the integrals of expressions (86) and (37), we found,

after laborious mathematical work, the following relations when-%_ =11

m

6 eab
P'(p) (7,—19) g‘ . (—71—10)?7;‘

,b'(p)(p—i;;)z_{p—(—alwﬂl)g} {p— (i) 2]

("Tz"'iaz)%; (7'2+i52)(§;§
T A o 7]
lp-(‘az‘*‘iﬁz)?{] I?"‘(“’z’*‘zﬂz)EJ'
(—rs-,+i63)9‘i (7'3+i63)cii—
* AN v)
{p (— d’s"'zﬁa ) lp (¢3+2.33)—J
7'4%; '5543—2

(38)

10) The vibrations of particles for the cases when ﬁ>1 and <1 will be the next

object of our study.
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By using these relations, we may. be able to evaluate the integrals in
(36) and (37) by Cauchy’s residue methods, the diverging waves far
from the cavity being determined as follows:
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Fig. 5a. The radial vibration of a particle due to the longitudinal wave
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Fig. 5b. The azimuthal or the co-latitudinal vibrations of a particle due to
the transverse wave when —‘—a—=1, L"‘=0. Units of ordinate are &(ﬁ)
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Fig. 6a. The radial vibration of a particle due to ‘the longitudinal wave
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Fig. ¢b. The azimuthal or the co-latitudinal vibrations of a particle due to
the transverse wave when %=1, E=0‘50. Unit of ordinate are ﬂ(i“_),
tu tm we\r
-cos 20 cos ¢ andfg—z (»g;)cosﬁsinqi for the azimuthal and the co-latitudinal

vibrations respectively. Abscissa /= % {t ——I—V(r— a)} .
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To get the vibrations of particles which are some distance away from
the origin of disturbance, we calculate numerically the expressions (46),

(47), and (48) for the cases when %’—:0, 0:50, and 1:50, the results

m

being shown in Figs. 5a, 5b, 6a, 6b, and 7a, 7b respectively.  The time-
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Fig. 7a. The radial vibration of a particle due to the longitudinal wave
when E——=1, : .=1-50. Unit of ordmate-iap( )sm20cos ¢, abscissa

_vf, 1,
_Ea\\t ;(7 a')f'
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7 1) 7 ) 7] ] 7760

LV

TFig. 7b. The azimuthal or the co-latitudinal vibration of a particle due to

the transverse wave when t_ =1, tt° =1-50. Units of ordinate are 2’; ‘L .
. (-‘;-)cos 20 cos ¢, and 21;‘; ( )cosﬁsmqﬁ for the azimuthal and the co-latitu-

dinal vibrations respectively. Abscissa 7/ ——*{t— 1 (r— a)}

variations in the normal stresses on the surface of the spherical cavity

for the cases when —io—=0, 0-50, and 1'50 are shown in Fig. 4. In Figs.

m
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Ba, 6a, Ta are shown the radial vibrations of particles due to the

‘longitudinal wave for the cases when —E‘L———O, 0-50, and 1-50 respectively.

Figs. 5b, 6b, Tb show the co-latitudinal or the azimuthal vibrations due

m

; t
to the transverse wave for the respective cases when t“ =0, 050 and

1-50. It will be seen from these figures that the vibrations of particles,

which are some distance away from the origin of disturbance, are due
to longitudinal and transverse waves radiated from the origin of distur-
bance and that they are damped oscillations. When the maximum
intensities of pressure on the surface of the cavity are constant, the
amplitudes of vibrations of the initial motions in the case of sudden
commencement of pressure, do not necessarily become larger than
those in the case of gradual commencement. It will. also be seen
from these figures that the apparent periods of vibrations in the state
of initial motion in the case of sudden commencement of pressure
generally become shorter than those in the case of gradual commence-
ment. Obviously, Shida’s push-pull law holds also in this case. It will
be seen, moreover, that the amplitudes of the transverse wave
become considerably larger than those of the longitudinal wave, and
that the apparent periods of the former wave in the state of initial
motion are also longer than those of the latter wave.”” Needless to say,
these theoretical results concerning the amplitude and period of the
bodily waves conform with seismometrical results. It will also be
seen from these figures that the apparent periods of waves in the state
of initial motion are generally shorter than those of the tail of the
waves. It will be seen, comparing Figs. 5a, 6a, 7a with respective
Figs. 1, 2, 3 in section 3, that the apparent periods of radial vibra-
tions due to the longitudinal wave in the state of initial motion in the
case of pressurelvariation (15) are comparatively longer than those in
the case of (1). ° '

5. When pressure is suddenly applied to the surface of the cavity in
the elastic medium, and its intensity exceeds the breaking stress of
the material, cracks may suddenly appear in the material near the ca-
vity, when the intensity [of pressure in:the cavity may vary dis-
continuously. Using agar-agar as the material, S. Yamaguti‘b has

11) Concerning the longitudinal and transverse waves of shock wave-type, W.
Inouye has also shown that the duration of time of the former wave becomes com-
paratively shorter than that of the latter wave. '

W. INOUYE, Bull. Earthq. Res. Inst., loc. cit.

12) S. YamaGuUTI, Bull. Earthq. Res. Inst., 13 (1935), 772.
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the mechanism of the occurrence

of earthquakes that the pressure o i

in the cavity varies discontinuously

at the moment the agar-agar
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begins to break. We shall now

consider the wave-motions when

the pressure in the cavity suddenly

increases and a discontinuity

il

appears in the timevariation in

2
I

pressure. )
(a) When the normal stress  *

acts uniformly on the surface of

the spherical cavity in the material,
and it shows discontinuous time-

e

pay

%
!

variations like A, B, C, D in Fig.
8, the diverging waves radiated

060}

from the spherical cavity are res-

pectively obtained by suitably su-
perposing the waves shown in Figs.
1~3 in Section 3. The results

are shown in Eig. 9, in which the
respective waves are the

Fig. 8.

100 200 J09 40 kL

600 &0

i) —

The time-variations in pres-

sure on the surface of a spherical
cavity. Unit of ordinate=—P.

o
=

diverging longitudinal waves

The waves with letters A,

radiated from the cavity. /\
I/

B, C, D correspond of course

to the respective normal stres-
ses A, B, C, D, the time-

=

variations of which are shown 8
in Fig. 8.

ko

(b) When the pressure
acting on the surface of the
spherical cavity has the dis-

\

//

O

(i

tribution sin26cos¢, and it
shows discontinuous time-va-

i

riations, such as A4, B, C, D -

in Fig. 8, the diverging
longitudinal and transverse
waves radiated from the

Fig. 9. The radial vibrations of particle due

to the longitudinal wave. Unit of ordinate=
Pa (a . SN PR WACEe I
Q’fﬁ(?)’ abscissa 7= a{t 1}(r a)I.‘
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cavity are respectively shown in Figs. 10a and 10b. Of course we

obtained these figures by suitably superposing the waves shown in
Fgs. ba, 6a, 7a, 5b, 6b, and Tb.

/.
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‘ | I
. !

(4

Fig. 10a. The radial vibrations of particle due to the longitudinal waves.

: . ~Pa (a\.: . v 1.
Unit of ord1nate~m(-r~>sm 20cosp, abscissa r—a {t 1)(r a)}.

d
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.
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Fig. 10b. The azimuthal or the co-latitudinal vibrations of particle due to

. . Pa (a Pa
the transverse waves. Unit of ordinate are m(-7;»>cos 20 cos ¢ and o’
-(%)cosﬂsinq} for the azimuthal and the co-latitudinal vibrations respec-
i issa /=20t -Lop_
tively. Abscissa © a {t v r a)}.

It will be seen from Figs. 9~10b that when the pressure acting
on the inner surface of the cavity shows discontinuous time-variations
as shown in Fig. 8, the apparent periods of the waves generally be-
come short. : : '

In conclusion the author expresses his sincere thanks to Professor

r
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K. Sezawa for his kind guidance in the course of the study, and he
also expresses his best thanks to Mr. T. Takayama for his assistance
in preparing this paper.
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