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Let AA in Fig. 1 be the plane of the earth’s surface along which
the gravity values are known from point to point, and BB another
plane which is at a depth d
from the surface and on which A A
are distributed surface densities
responsible for these gravity
values. Assume further that d
the surface densities along BB
and, consequently the gravity -
values along 4A, do not change B 0 P 3‘ ) B
in the direction that extends
from + o to — o perpendicu-
larly to the plane of this paper, so that they can be expressed by o(¥)
and g(«x) respectively, « and y being the abscissae along AA and BB,
with line OO as the common origin. The gravity g(x) at z=2a due
to p(y) is then given by

0 3(36) — 2

Fig. 1.

+ oo

g(x) =2k2(l8_w( - —x(T‘j)*_i_ 72 dy.

The direct analytical solution of this integral equation for an
actually observed g(z) is usually not possible, and it has been for this
reason that problems of this kind have been studied in the other direc-
tion, viz., by searching such p(y) by trial and error method that will
give gravity values which agree best with the observed. The numerical
solution of the equation, though theoretically simple, becomes almost
insuperably complex, were more or less accurate results required.

If p(y) were a harmonic function of 7, then matters would be
greatly simplified.”

Thus, if

1) It has been informed that a similar idea was proposed by H. RAINBOW.
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p(y) =p, cos ny,

then
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Conversely if

then

g(x) =g, cos nz,

()= é%zew cos ny.
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(1a)

(1b)

(2a)

(2b)

That there is no other density distribution at depth d that pro-
duces the same gravity values as p(y) can be proved in the following
If ¢(y) be any one of such distributions, then the gravity
values on the earth’s surface due to {0’ (y)—po(¥)) must be zero from

way.

point to point.

other words p'(y) and p(y) are equal everywhere.
From the relations (1) and (2), we see that

(1) g(x) and p(y) are harmonic functions which
are in phase with each other, and the ratio of
amplitudes is given by 2=k2e"?,

(2) for given p, and d, g, decreases if n increases,

(8) for given p, and =, g, decreases if d increases,

Therefore {¢'(y) —p(y)} cannot be other than zero, in
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(4) for given g, and d, p, increases if » increases,
(5) for given g, and %, p, increases if d increases.

While the relations (1) and (2) hold for the simple case with a
single value of n, those for different n's may be superposed by mere
addition in order to get corresponding relations which hold for more
general and complicated cases. Thus, if

p(y) =>"A, cosny + >°B, sin ny,
then
g(x) =2nk? {ZA,le‘"d cos nx 4+ >'B,e " sin n@} ’
and conversely if
g(2) =@, cos nx+ >3, sin na,
then -
p(y) — 1 fzd/ e-ml CcoS 'I’LZI-*‘ZB ecul Sin ny ]
27Tk2 l n » 2 e J ’

Although the summations in the above expressions do not necessarily
imply that the n's are successive integers as in the case of Fourier
series, this constitutes the most important field for application of the
above relations to actual problems.

If a distribution of gravity gradients along the earth’s surface is
given instead of that of gravity values, there is a similar method for
finding the subterranean density distribution that is responsible for
these gradient values. Thus, if '

° .
5g= S°4, cos nz+ 3B, sin na,
then
g(x) =Z~4ﬁl sin na —Z% cosnw +G,
so that
— 1 [ A” 1l 3 ‘ B” nd
W) =53z 72 ¢ sin ny--; e cos ny} +P.

Before proceeding to apply the present method to practical pro-
blems, investigations will be made of the range of its applicability and
of the errors that may arise therefrom. In the above theories, each
elementary strip of the subterranean plane has been assumed to extend
from +c to —c and to be of uniform density in the direction per-
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pendicular to the paper, which condition, however, is never met with
in practice. Errors would therefore arise in the values of the gravity
if an elementary strip of a subterranean plane that is actually of a
finite length were regarded as infinitely long. Let the length of the
strip be 2l and the linear density g, then the gravity at point P, which
is at a vertical distance d and a horizontal distance s from the middle

point of the strip, is given by

_ 2id
RN
The value of ! which gives )
the same ratio, -, varies &
with the values of s as shown /O

by the curves in Fig. 2. If
both I and s are several times
d, then the ratio is 'greater
than 090, so that in these
cases the errors in question
are less than 1094.

In the second place, the
plane on which the densities
are distributed has been
assumed to extend from -+
to — o in y-direction also.
If the width of this plane is
finite, say 2y, the gravity

(1+

d2?+ s

12

50%

Fig. 2.

due to it at the point above its centre is given by

g=4K%p tan~! ;

which tends to

if y tends to infinity. The ratio gi is there

g

<)

9.=27k%p

7

v_2 tan !
e ¢

fore given by
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the values of which are plotted in Fig. 3. If zg‘ is greater than 6,'
d

errors arising from regard-
ing the plane as of infinite
width will be less than
1095.

Since in both the above
calculations, the surface
density on the subterranean
plane has been assumed
to be uniform throughout,
estimations of errors are
subject to certain changes,
were the variation in density
along this plane taken into
account.

The third problem to
be investigated is on errors
arising from substituting

J

A

/-0

o5

&loe

=
-Fig. 3.

10

the actual masses that are distributed in spacé by those that are

hypothetical and which are
condensed on a single plane
at a certain depth.

In Fig. 4, let the shaded
rectangular portions be cross-
sections of masses of thickness
a, width =, and density 1 which
are infinitely long in the
direction perpendicular to the
paper and which are distribut-
ed at a regular periodic in-
terval =. The density distribu-

X

NN
ag

Z

<—7[~+{—7( ——>§ T

Fig. 4.

tion in y-direction along a layer at depth z and of thickness dz is

p(y) =dz

=0

I<y<=
r<lY<2m.

As the Fourier expression for p(y) is

p(y) = {; + %E

2n+1

sin 2n+1)y ]clz,

J

the corresponding surface gravity is given by

ey
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e ~-(Cn+1)z
2n+1

dg(x) =2nk2l 5 + Z sin (2n+1)x}dz.
Integrating this throughout the whole thickness of the masses from
(d—a) to d, we have finally

g (x) =2rk? [ ~ Z(Znil) {e‘3'"“3("““)—-e"@”“”} sin (2n+1)w].

On the other hand, the surface gravities due to the same masses if

they were respectively condensed at depths d, d—%) and (d—a)

would be

gu() _9nk2[ a -l-—z 2n+1 —e " gin (2n+ 1)@},

a

gll—'_:—’(x) = 27Tk2 { 2

+ 22n+1 e~@+n(a-5) sin (2n+1)a }
€

and

[ a

Gu-o(@) =272 z e~ =D gin (2n+1) }

2n+1

These values of gravity are compared in Tables I, IL

TABLE 1.
27 =40 km.
w s .

a=_"= 5 km. unit=milligal.

X g - ga .(/‘(z—_f‘r ’ Ya-a ‘ ga—g gd—%—g ga-a—¢g
90° 290 24 288 324 —26 -2 +34

120° 284 258 280 314 — 92 —4 +30
150° 255 237 253 279 —18 -2 +24
180° 209 209 209 209 0 0 0
210° 163 180 166 140 +17 +3 —23
240° 135 161 138 105 +26 +3 —30
270° 128 154 130 95 +26 +2 —33
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TABLE II.
2 =40 km. d=§=10km.

a=4£=2-5km. unit=milligal.
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x g gz Ya-2 ga-a ga—9g | Ga-L—g Gi-a—g
90° 138 132 137 145 —6 -1 +7
120° /134 128 134 140 —6 0 +6
150° 123 119 122 126 —4 -1 +3
- 180° 104 104 104 104 0 ¢ 0
210° 87 90 87 82 +3 0 -5
240° 75 80 75 69 +5 0 —6
270° 71 77 71 64 +6 0 -7

It will be seen from the tables that the errors are very

masses are condensed on their middle plane at depth (d—;).

small if the

Consider in the second place the case in which two layers of dif-
ferent densities are bounded by a sinusoidal cylindrical surface of

amplitude a. If the difference
in density is 1, to find the
gravity values due to this mass
distribution is equivalent to
finding the same due to the
mass distribution shown in
Fig. 5.

As in the preceding exam-
ple, consider a layer at depth
z and of thickness dz. The

0 « - ML 2m-d

.

f=+1

f=0

zZ

Fig. 5.

density distribution in y-direction along this layer is,

for the upper half,

p(y) =0 0<r<e,

e(y)y=dz < x<<T—a,

and for the lower half,

p(y) =0 O<a<z+a,
p(y)=—dz nt+a/<x<2m—do.

The Fourier expressions for b(y) is,

for the upper half,

T—a<lp<<2r

2 —a/<2r
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_; 7r—2oo sin 2n~
P(?/)——l o Z 5 cos 2ny

2 _,cos 2m+1)a

; |
- om+1 sin (2m + l)yrldz

and for the lower half,

[ —2«/ sm2n !

p(y) = " 2 T Z cos 2ny
2 cos Cm+1)e . 1
- Z——2m+1 sin (2m+1)yjdz

The surface gravity which corresponds to this elementary layer is,
for the upper half,

and for the lower half,

Zac’ 2 s1n2nao

dg (x) =2nlk? {—L— Z‘,— e~ cos 2nx

2;

cos 2m+1)e’

o1 e~m+zgin (2m+1)x}dz.

2

+;z
To find the gravity values due to the whole mass, these expressions
must be integrated with respect to z throughout the full range of
amplitude of the sinusoidal wave, but this is unfortunately not possible
and a numerical integration has to be resorted to. Dividing the mass
into ten elementary layers as in Fig. 5, the mass in each layer which
is regarded as being rectangular in shape, is condensed on ifs re-
spective middle plane and the gravity values due to all these are
summed up. On the other hand, if the whole mass is condensed on
the middle plane of the sinusoidal curve, the density distribution along
this plane is given by

p(y)=acosy
and the corresponding gravity values by

g () =2rk?ae~? cos x.
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The gravity values due to these two different mass distributions
are compared in Table III. From these results, we see that if the

TABLE III.
d=%=10km. d=%=1okm. d=%=15km d=%=15km.
A=2r=40km. A=2r=40km. A=2r=40 km. A=2r=40km.
a=%=2 5 km =% =5.0km a=%=25km a=%=1-25km.
: | E|E|E |8 |2 |E 8|2 €8 % &
[«] [=] [«] [«
4|0 |RI S S |R|Z|S|R|Z]|S|R
90° 48| 44|— 4| 106| 87|— 19| 10| 96 |- 14| 51| 48|- 3
120° 40| 38|- 2| 8| 76|/-10] 90| 8 |- 7| 43| 4a1|- @
150° 22| 22| o 45| 4a|- 1| 43| 48|+ 5| 93| wl+ 1
18° |- 2| o+ 2|- 9 0+ 9/— 9| o+ 9]- 2| o+ 2
210° |- 24 |- 22|+ 2|-47 |- 44|+ 3|-53|— 48|+ 5|— 95 |— 2|+ 1
240° |- 38|-38| o0|-77|-76|+ 1|— 81 |- 83|— 9l—41|-4a1| o
270° |- 44 |- 44| 0|— 87 |- 87| 0|— 91|— 9 |— 5 |- 46 |— 48 — 2

amplitude of the sinusoidal curve is less than one-fourth its mean
depth, the errors arising from condensing the masses on the middle
plane are negligible.

The fourth problem to be investigated is on the convergency of
the Fourier series used. The differentiation of a convergent Fourier
series, term by term, does not always give another convergent series.
Since in practical problems, it will suffice to treat them with a Fourier
series of finite term number, convergency of the series is out of ques-
tion. It has been shown that if

9(x) =S, cos nax + S8, sin nx
then :

p— LI nd nd 3 1
. oY) = Sl lZacﬂe cos ny + >38,e™ sin ny IR

If g(x) is convergent, p(y) is not necessarily also convergent, because
the factor e™, which is increasing with increasing n, is multiplied to
the &’s and f#'s. If p(y) thus obtained is found to be divergent, the
physical interpretation is that this particular gravity distribution can-
not be produced by a condensed density distribution at depths greater
than d, and d must be less than that threshold value for which the
series becomes convergent.

Applications of Fourier series as just described imply that the

L 23
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same distributions of gravity together with distributions of subterranean
density are repeated periodically also beyond the range in which they are
expressed in those series. Although this is evidently not actually the
case, results obtained on this assumption will not greatly differ from the
actual, because the. mass distribution corresponding to the difference of
the actual and the hypothetical Fourier density distributions beyond
this range will produce no large gravity in the range in question.

What will now be given are some of the many examples of the
applications of the present method.

Fig. 7.
(1) In Figs. 6 and 7, let the thick lines represent sections of
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strips of planes at depth d, with width =, and surface density 1.

The density distribution along y-direction is

1 2= 1
oY) =‘*2*~;; TR sin (2’n+ 1)y
so that the surface gravity is
g(x)= 27102[———-2 omil® e~ gin (2n+ 1)x]

and the gravity gradient is

%% = A2 et 008 (2n+1) 4.

The' values of e~ @*Y¢ gre shown in Table IV for different ns and d's.

TABLE IV.
d T T T T T T T T
N 12 2)(1*2 SXE 4><r2 SXE 6><1*2 7><1—2 8><1—2 9><1—2
0 0:770 0592 0456 0-351 0:270 0-201 0-160 0-123 0:095
1 456 201 .95 43 20 9 4 1
2 270 73 20 5 '
3 160 25 4
4 95 9
5 56 3
6 33
7 20
8 12
9 7
10 4
11 - 2

The values of g(x) and %9 are plotted in Figs. 6 and 7, in which
: x

curves of different patterns correspond to quantities along the earth’s
surfaces represented respectively by lines of the same pattern. It will

be seen that, as the depth of the mass increases, both g(x) and g—g
z

rapidly approach the harmonic form. This is owing to the fact that
the coefficient e-@*"? rapidly tends to zero with increasing d, especially
for larger values of n.

(2) The next problem is to ﬁnd the subterranean mass distribu-

.,
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tion that will produce surface gravity of the form
g(x)=g.e ",

If we use in this case Fourier integral instead of Fourier series, we
have

2 o (Moo 2 .

g(x)= % e~*"cos nx cos nididn,
’ 0

and because

* ,/““ n2
S e~ *cos nidi= %e'T,

(]
we have

=

g(@)=

AN

—_
7

o0
n2
OS e~ T cos nadn.
].

0

The corresponding subterranean mass distribution is therefore -

-
o

p(y)= o 38 e"*1cos nydn.

2k2‘-[-2

[

n?

Because the coefficients ¢~ 7 rapidly tends to zero as 7 increases, as
shown in Table V, this integral may be substituted by a summation of

finite terms with sufficient accuracy.
The values of p(y) are plotted in Fig. 8. It is remarkable that in
order to have surface gravity values

TABLE V. of the type of a probability curve it
~C is necessary to have a certain negative
~_ % o5 10 15 ; :
nN density.
05 | 1206 | 1-548 | 1.988 24
15 1206 | 2552 | 5403 /\
25 731 | 2:552 | 8908
35 29 | 1-548 | 8905 P
45 60 | 569 | 5403 - A T dmes
55 18 127 | 1988 / \ Z=10
65 1 17 444 ——
75 1 60
85 > Fig. 8.

(3) The final example cbncerns the results of actual gravity
measurements made by Vening Meinesz® in the Dutch East Indies.

2) VENING MEINESZ, Gravity Expeditions at Sca 1923~1932., Vol IL. (1934),
Delft.
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The regional isostatic anomalies along his profile No. 21, as shown by
him are given in Table VI. Plotting these values according to distance
as in Fig. 9, and connecting them by a smooth curve, the values for

every 25km were read off from the

TABLE VI. curve, of which there are 36 in all. As

Point Reg. Isos. An. the curve seems to tend to 40 milligals
No. 394 + 2 toward both ends, this value was sub-
395 + 1 0 5
396 - 23
397 — 47 g Jookm %10
—104
398 10 oo [P 4
29 + 12 4p
29
399 + 33 7
400 + 7 Fig. .

tracted from all the observed values so as to get the very local gravity
anomalies alone. With these 86 values, the gravity anomalies were
subjected to harmonic analysis. The coefficients of the Fourier terms
found were :

TABLE. VII.

n sin cos ‘ n | sin I cos \ n } sin cos
0 — 46°1 7 1-0 13 14 - 02 0
1 —42:6 —44-6 8 - 07 0-7 15 — 0-1 - 02
2 22-9 —14-5 9 — 04 |- — 02 16 0 - 01
3 68 134 10 - 01 — 03 17 + 02 - 03
4 —-.7'5 4-1 11 0-2 - 02 18 — 01
5 - 2:0 — 44 12 0-4 0
6 24 - 15 13 - 01 0-2

If we assume with Vening Meinesz that the mass responsible for
these gravity anomalies is at the depth of 25 km, which corresponds to

Iﬂé’ then the Fourier coefficients for 2k2zp(y) become :

TABLE VIII.

n sin cos ” n sin l cos l‘ n | sin cos
0 — 461 7 3.4 4-4 14 — 23 0
1 —507 —53-1 8 — 2-8 2:8 15 — 14 - 27
2 325 —20-6 9 - 19 — 10 16 0 — 16
3 11-5 22:6 10 — 06 - 17 17 4-2 - 62
4 —151 82 11 14 — 14 18 — 2:3
5 — 48 | —10'5 12 32 0
6 6:8 — 43 13 - 10 19
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This density distribution is also shown in Fig. 9. At the negative
maximum
2rk20=0.200,
therefore

B 0-200
0= 531 %67 x10-8

This is equivalent to a mass of density 06 and thickness 8 km,
which result is in exact agreement with Meinesz’s assumption.

=5 x 105,
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