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ABSTRACT

The aim of this study is to analyze the underlying thermodynamic relations

governing the self-organization in turbulent fluid/plasma systems. Many of

the turbulent systems are open non-equilibrium systems from the macroscopic

point of view. The debate on the entropy production rate has not been settled

over; the “minimum entropy production rate principle” is known to be widely

applicable to characterizing the self-organized structures in non-equilibrium

thermodynamic systems, but is often disproved by the observations of “maxi-

mum entropy production rate states”. Here we reveal a “dual” relation between

the minimum and maximum principles; the mathematical representation of the

duality is given by a Legendre transformation. We study a phenomenological

model of heat transport in the boundary layer of fusion plasma. The mech-

anism of hysteresis (which is characteristic determining of the bifurcation of

the so-called H-mode, a self-organized state of reduced thermal conduction)

is explained by the tangent line problem. Taking the neoclassical theory of

H-mode for example, this phenomenological model is proved to be connected
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smoothly to the realistic theory.
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Chapter 1

Introduction

1.1 Background

Self-organization phenomena, such as the formation of a zonal flow in planet’s

atmosphere[1] or tokamak plasma[2], occurs in various turbulent fluid or plasma

systems. To describe these, inherent mechanisms for each phenomena can-

not help being considered individually. On the other hand, these are non-

equilibrium open thermodynamic systems from a macroscopic point of view.

All kinds of the phenomena are expected to be explained by thermodynamics

– any physical system cannot violate thermodynamic law –. In thermody-

namics, seeking variational or extremization principles is often quite fruitful;
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The principle of maximum entropy and the principle of minimum free energy

are the examples in equilibrium thermodynamics. Well-known equilibrium

thermodynamics using entropy, however, may not explain non-equilibrium

phenomena. The entropy production rate (EP) is deemed capable of dictat-

ing “self-organized structures” in non-equilibrium thermodynamic (or macro-

scopic) systems (Remembering equation of motion in dynamics, breaking the

balance of power induces acceleration (change “rate” of velocity)). There are

two seemingly opposing variational principles about entropy production rate

– the principle of maximum entropy production rate and the principle of min-

imum entropy production rate –.

Figure 1.1: Typical examples of zonal flow[3]
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Prigogine[4] and the collaborators found that many of structures (heteroge-

neous distributions of physical quantities), which emerge and sustain in non-

equilibrium thermodynamic systems, are characterized as the minimizers of

some appropriately defined entropy production rates. This “minimum entropy

production rate principle” is certainly a natural extension of Dirichlet’s prin-

ciple of the linear diffusion equation to some class of nonlinear dissipative

systems (primarily the reaction-diffusion equations).

However, the minimum principle is not universal; Paltridege[5] found that,

in the heat transfer through the planet’s atmosphere, the temperature contrast

between the tropical region and the polar regions tends to be maximized, thus

the entropy production rate (= heat flux multiple of the temperature contrast)

prefers the maximum. The maximization of temperature gradient between

warm tropics and cool region is also found in other planets too[9]. Ozawa et

al. proposed that these maximization of entropy production rate is caused

by fluid mechanical instabilities[10]. Dewar proposed statistical mechanics

theory possibly explaining maximum entropy production in non-equilibrium

systems using Jaynes formalism[11, 12]. Yoshida & Mahajan[13] pointed out

that a “flux-driven system” tends to maximize the entropy production rate.

A simple example of flux-driven systems can be composed by connecting a
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(nonlinear) impedance (Z) to a constant-current (I) power supply, which is

compared with a “force-driven” counterpart composed of the impedance and a

constant-voltage (V ) power supply. In the former case the entropy production

rate is ZI2, while in the latter case it is V 2/Z. If the nonlinear impedance

has bifurcated operation points, and the system selects the largest value of Z,

the constant-current (flux-driven) system maximizes the entropy production

rate, while the constant-voltage (force-driven) system minimizes the entropy

production rate. In this paper, we shall formulate the mini-max duality of the

entropy production rate (or relation between the flux-driven and force-driven

systems) as a Legendre transformation.

As previously mentioned, a turbulent fluid system tends to maximize the

entropy production rate. Yoshida & Mahajan explained the reason by for-

mulating a flux-driven model of turbulent heat transport (to be reviewed and

extended in Chapter 2). How energy flux drives turbulence is always the cen-

tral issue of turbulence theories; for example, Kolmogorov’s model of energy

cascade is derived by the dimensional analysis of the energy flux (injection rate

= transfer rate = dissipation rate), energy spectrum density, wave number, and

the kinematic viscosity.
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1.2 Variational principle of entropy produc-

tion rate

The entropy production rate without mass flow is exactly written as a vol-

ume integral of the inner product of heat flow f and thermodynamic power

∇(1/T )[14, 15] (see Appendix A).

Ṡ =

∫
V

f · ∇
(

1

T

)
d3x (1.1)

In general, diffusive process without flow is thought to be explained by

“minimum entropy production rate”. Since Fick’s law is kept in this “quasi

linear state”, irreversible flow is written as f = −D∇T . Then entropy pro-

duction rate is,

Ṡ =

∫
V

−D∇T · ∇
(

1

T

)
d3x =

∫
V

D

(
∇T

T

)2

d3x

=

∫
V

D(∇ ln T )2d3x

(1.2)

Now we prove Ṡ is saturated in minimum in the final state of time evolution.

Time variation of Ṡ, defining U ≡ ln T , is calculated as,
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d

dt
Ṡ = 2D

∫
V

∇U · ∂

∂t
∇Ud3x

= 2D

[∫
V

∇U ·
(
∇∂U

∂t

)
d3x −

∫
V

∇2U
∂U

∂t
d3x

] (1.3)

The second term of the right hand side equals zero by Gauss’s law and

boundary condition ∂U/∂t = 0 on ∂V . Energy conservation law without mass

flow is,

∂

∂t
(ρu) + ∇ · f = 0 (1.4)

where u is internal energy. Heat capacity at constant volume is defined as

CV = ∂U/∂T . Therefore we obtain the change rate of T as,

CV
∂T

∂t
=

∂

∂t
(ρu) (1.5)

From equation (1.4) and (1.5) we obtain following relation.

CV
∂T

∂t
= D∇2T (1.6)

Dividing both side by T we obtain,

CV
∂U

∂t
= D∇2U (1.7)

13



Substituting this into equation (1.3),

d

dt
Ṡ = −2CV

∫
V

(
∂U

∂t

)2

d3x < 0 (1.8)

The entropy production rate decreases as time goes by. Then the final

condition is realized as the minimum of entropy production.

Next, tangible profile of temperature shall be found out. To obtain the

extremum of Temperature field T (x), the variation δ[F (U,∇U,x)] = 0 is cal-

culated where F (U,∇U,x) ≡ (∇U)2.

From Euler-Lagrange equation

∂F

∂U
−∇ · ∂F

∂(∇U)
= 0 (1.9)

the solution is ∇2 ln T = 0 (∇2U = 0). That is to say, if we assume the system

as one dimensional, temperature field profile is T (x) = T0 exp[x ln(T1/T0)/L]

with boundary condition T (0) = T0, T (L) = T1.

This differs from Fourier’s law that is deemed to be holding in the lin-

ear diffusion state. Under the assumption of small temperature gradient

(∇T/T ' k∇T ), entropy production rate (1.2) turns into κ
∫

V
(∇T )2d3x.

Though variation of approximated entropy production rate yields the Fourier’s

law, this is not strict.
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Above discussion is predicated on linear relation between flow and ther-

modynamic power. In these words, minimum entropy production is obvious

only in a state as the linear relation holds. When we consider systems far from

equilibrium (existing flow v), the situation is more serious because the linear

relation is violated; Fick’s law f = −D∇T may not be kept. Furthermore

energy conservation is far complicated than equation (1.4),

∂

∂t
(ρe) + ∇ · [ρev + (P + Π) : v + f ] = 0 (1.10)

where e = u + |v|2/2 is the energy density, P and Π are the pressure tensor

and stress tensor respectively. From Appendix A, entropy production rate

with mass flow is represented as,

Ṡ =

∫ [
(f + Π : v) · ∇

(
1

T

)
+ Π : ∇ (−fvT )

]
d3x (1.11)

It is obvious that evaluating this functional is far more complicated than the

linear case. Therefore we attempt to formulate the entropy production rate

from the macroscopic side as consistent in thermodynamic laws.
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1.3 H-mode

In fusion plasma, a state with improved energy confinement occurs because of

an emergence of the transport barrier firstly observed by Wagner et al.[16]. The

transition from the low-confinement phase (L-mode) to the high-confinement

phase (H-mode) shows sudden and sharp increase of temperature and density

gradient (Fig. (1.2)), by a factor of 2 and the width of the barrier is order

of a few centimeters. The transition is observed when the entering heat flux

exceeds threshold value. This threshold value intricately depends on various

plasma parameters or experimental conditions. Many research has been done

to understand L-H transition because more efficient plasma operation is at-

tained by the improving of confinement. In experimental devices other than

tokamak such as stellarator , H-mode is also observed [18].

Another characteristic feature is hysteresis [19]; The input power of H-L

transition (backward transition) is lower than that of L-H transition (forward

transition). In other words, once high confinement realized, the plasma sustain

the improved state.

A number of proposal have been done to explain the mechanism of L-H

transition. Recently suppression of turbulence is generally accepted as a cause

16



of transport barrier. Sheared E × B flow due to radial electric field provides

a universal mechanism for the turbulence reduction[20, 21].

Figure 1.2: Evolution of plasma density n̄e, energy βp⊥ and hydrogen Lyman

alpha radiation Hα [17].
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1.4 Objective

As we mentioned firstly, understanding self-organization phenomena in various

turbulent systems is significantly fruitful. However usages of inherent mech-

anisms for each phenomena are unavoidable. Therefore we are motivated to

describe these phenomena by deep and abstract mutual theory; The common

term of any physical system is energy. In this research, we intend to reveal

mathematical structure of the phenomenological model proposed by Yoshida

& Mahajan which fulfills the above requirement.

In the next chapter, we prepare for analysis. In Sec. 2.1, we shall start

by formulating a thermodynamic (phenomenological) model of turbulent heat

transport in a tokamak boundary layer — an annular thin layer surrounding the

high-temperature core plasma and connecting to cold (room temperature) heat

bath. This thin layer set the stage for the plasma to self-organize a structure

(ordered shear flow) which reduces the heat transport (or improve the plasma

confinement and produces the so-called H-mode). The aim of this paper is not

to analyze the “mechanism” of the self-organization, but is to elucidate the

underlying mathematical structure that determines the bifurcation and stabil-

ity. In Sec. 3.1, thermodynamic stability is discussed in “flux-driven system”
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and “force-driven system” respectively. The state is proved to bifurcate to

nonlinear in both case. In Sec. 3.2, we shall introduce thermodynamic func-

tions by which we can represent the bifurcation of different states and measure

the entropy production rate. The mini-max duality of entropy production rate

will be explained by a Legendre transformation between the force-driven and

flux-driven parameterizations of the thermodynamic function. In Sec. 3.3, we

discuss how the hysteresis occurs. The application of this model is discussed in

Chapter 3. We take one neoclassical model as a concrete example of H-mode

and prove it equals our phenomenological model in a thin layer.
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Chapter 2

Formulation of a

thermodynamic model of

plasma heat transport

2.1 Boundary Layer Model

Firstly, we follow the phenomenological model invented by Yoshida & Maha-

jan. The phenomenon they considered are highly developed turbulent sys-

tem. While there exist various kinds of such a turbulent systems, for example

20



planet’s atmosphere, H-mode is brought as a typical example; A sudden sharp-

ening of the temperature gradient and a confinement efficiency improvement

occur (bifurcation) at tokamak boundary layer when the entering heat flux

exceeds some critical value. Developed disordered turbulence already exists at

this boundary (Fig. 2.1 (c)), but an increase of heat creates order in turbulence

and then raises temperature gradient (Fig. 2.1 (d)).

Oscillation of molecular Convection Oscillation of vortex Structure formation

(a) (b) (c) (d)

Figure 2.1: Bifurcation of fluid system. We intend to discuss the transition

from (c) to (d).

H-mode has nonlinear heat transport through convection, while that in

disordered turbulence is via linear dissipative L-mode. This is similar to a

bifurcation from the linear dissipation state to the nonlinear convective state

like Bénard Convection. The mechanism of this process has been proposed by

many researchers; Suppression of turbulence by sheared flow originated from

21



E × B drift is one possibility of a explanation of the transport barrier[22].

Yoshida & Mahajan, on the other hand, illustrated bifurcation phenomena

only with simple thermodynamics without considering electromagnetism and

fluid mechanics. Here we note our intention is not to reveal the mechanism of

H-mode but to find the backbone of structure formation that is common for

various turbulent systems. In other words, we develop the theory that can be

applied to any open system (independent to a mechanism).

The thermodynamics of idealized thin plasma layer, bounded from the

internal core plasma and from the outside cold heat bath, is discussed. The

inner-boundary temperature is T1 and the outer-boundary is fixed at T0 (heat

bath). Heat flux flowing through this layer is represented as F . The plasma

considered here is steady and relaxed enough; Flux F equals both to the energy

injection rate and the energy dissipation rate. There is no mass flow across

the layer. We set η as an impedance (inverse heat diffusivity) against F .

Generally impedance η shows complicated response to controlling parameters.

We, however, define η as sum of a linear term η0 and a nonlinear term η(P ),

because our interest is the bifurcation from linear state to nonliner state. P ,

determined later, is the power to drive the flow. Therefore the relation between

F and T is written as,

22



T = T0 + (η0 + η(P ))F (2.1)

We define TD as the temperature in diffusive process as P is absent (TD =

T0 + η0F keeping Fourier’s law). In this ambient state, flux is represented by

Fick’s law F = D∆T/∆x (constant through x direction), ∆x is the thickness

of the layer and D is the heat diffusion coefficient. This equals the steady con-

dition ∇ · f = 0, whereas f = −D∇T is heat flow vector. Though coefficient

D, however, cannot be constant in a state with flow, we will exhibit steady

state condition derives F = D∆T/∆x = const in chapter 4.

Our interest is not in this trivial flowless state but in extra power state.

Figure 2.2 is the equivalent circuit of equation (2.1). The characteristic differ-

ence between this circuit and ordinary electric circuit is that flux (equivalent

to current) is controlled.

To evaluate P as the available power to generate a flow, we subtract the

work wasted in diffusive process, F (1 − T0/TD), from the ideal Carnot-cycle

work, F (1 − T0/T ).

P = F

(
1 − T0

T

)
− F

(
1 − T0

TD

)
= F

(
T0

TD

− T0

T

)
(2.2)

We introduce efficiency factor a that measure the influence of the flow, then
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multiply a to P as η(P ) ≡ aP . The coefficient a is assume to be constant here,

non-constant a will be discussed later.

Therefore equation (2.1) is rewritten as,

∆T ∗ =
aF 2T0∆T ∗

(TD + ∆T ∗)TD

≡ g(∆T ∗) (2.3)

where ∆T ∗ ≡ T −TD is the temperature increase by the occurrence of flow

from linear state. This equation has two solutions,

T =


TD ≡ T1

aF 2T0

TD

≡ T2

(2.4)

Under the bifurcation condition, to be shown soon, T2 overtakes T1 in

F > Fc whereas Fc is,

Fc ≡
T0√

T0a − η0

(2.5)

This means the solution bifurcates when the heat flux F exceeds the critical

value Fc. The first is a trivial solution when flow is absent. It is the second

solution we seeking out; Higher temperature inhomogeneity is obtained. Figure

2.3 gives us graphical understanding. Two curves y = ∆T ∗ and y = g(∆T ∗)
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have the trivial intersection around the origin for any F . The second solution

appears when F exceeds the critical value that is given by,

g′(0) =
aF 2T0

T 2
D

> 1 (2.6)

Therefore the bifurcation condition is,

T0 >
η2

0

a
(2.7)

We note if the edge temperature is too much low, bifurcation does not

happen. The relation between F and T is plotted on Fig. 2.4. Under the

bifurcation condition, two curves have intersection. As we discuss in Sec.

3.1, blue line is realized before the bifurcation and red line is realized after the

bifurcation. The auxiliary lines indicate the mini-max of two solutions reverses

which parameter, F or T , is chosen.

The important result is that impedance η increases when F > Fc. Increase

of impedance causes rise of temperature gradient because the heat flux is given

as an independent variable. Therefore, the entropy production rate is higher

after bifurcation. This process can be easily understood by replacing (F, T, η)

for the circuit variables (I, V, Z) as mentioned in Chapter 1.
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Figure 2.2: Equivalent circuit of the heat engine model [13]. Positive ∆T ∗

cause the mechanical energy of flow Ẇ , equals Q̇. This flow

sustains temperature contrast (positive feed-back).

Figure 2.3: Graphical understanding of equation (2.3) [13]. Two curves inter-

sect around origin for any F (trivial solution). Another solution

appears when F exceeds critical value satisfying g′(0) > 0. Other

parameters are (T0, a, η0) = (1, 2, 1).
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linear
nonlinear

Figure 2.4: Plot of the relation between F and T (2.4). Dual mini-max of

linear solution and nonlinear solution is exhibited; If F is constant, nonlinear

solution is larger. Oppositely, if T is constant, nonlinear solution is smaller.
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Since the nonlinear solution of equation (2.4) explicitly contains the variable

a, assumption of non-constant a is believed to cause weird behavior after the

bifurcation while the bifurcation itself is irrelevant to the shape of a. In section

3.3, we extend a as non-constant a(T ), and prove a(T ) with a certain shape

causes hysteresis that has been actually observed in fusion experiments.

2.2 Thermodynamic function

A thermodynamic function (potential function) is introduced to overlook this

model. In nature, various phenomena appear on critical points of some func-

tional; In mechanics, a motion of a particle is along minimum of potential

energy; Or in constant temperature equilibrium, minimum free energy state

appears. Analogously we set the potential function of this model that gives

the operation point as its variation. We write equation (2.1), even if a = a(T )

is a function of T , explicitly as F = g(T ) and integrate it by 1/T . Following

thermodynamic function is obtained.

−Φ(β, F ) =

∫ β1

β0

−g(T )dβ + F

∫ β1

β0

dβ, (β ≡ 1/T ) (2.8)

Φ(β, F ) is defined positive because the domain of integration is β0 to β

28



(higher temperature to lower temperature).

As we will mention in Sec. 3.2, the first term of the right hand side of

the equation (2.8) equals the variation of entropy production rate when the

boundary temperature changes from T0 to T . Therefore, the operation point of

this model is not a critical point of the entropy production rate but of Φ(β, F ).

In other words, the second term plays important roll when flux F exists. The

duality (minimum or maximum) is revealed by this function. The mechanism

and condition of hysteresis is also explained qualitatively and quantitatively.
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Chapter 3

Analysis of entropy production

rate – stability, bifurcation and

hysteresis

3.1 Stability of the model

Thermodynamic stability of this model must be investigated. Because more

stable solution of equation (2.1) is realized. In this chapter, the each solutions

of equation (2.1) with constant a is examined with F and T as independent

variable respectively. The case a is not constant is discussed in Chapter 3.3.
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3.1.1 Flux-driven system

Firstly, we consider the following chain of values when F is given. Fixing F as

some value and having temperature perturbation δT ,

δT → δP =
∂P

∂T
δT = F

T0

T 2
δT

→ δη =
∂η

∂T
δT = aF

T0

T 2
δT

→ δT ′ = F
∂η

∂T
δT = aF 2 T0

T 2
δT ≡ αF δT

When α > 1, system is unstable because the temperature difference in-

creases exponentially. The evolution of perturbation is δT (t) = eγtδT (0) with

γ = (ln α)/τ where τ is time constant.

Under the bifurcation condition (2.7), the stability of the linear solution in

pre-bifurcation F < Fc (T1 > T2) state is,

αF
1 =

aT0F
2

T 2
1

=
TD

T 2
1

aT0F
2

TD

=
T2

T1

< 1 (3.1)

The stability of the nonlinear solution in pre-bifurcation state is,

αF
2 =

aT0F
2

T 2
2

=
TD

T 2
2

aT0F
2

TD

=
T1

T2

> 1 (3.2)
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Therefore the linear solution appears before bifurcation. The stability of

the linear solution in post-bifurcation F > Fc (T1 < T2) is,

αF
1 =

aT0F
2

T 2
1

=
TD

T 2
1

aT0F
2

TD

=
T2

T1

> 1 (3.3)

The stability of the nonlinear solution in post-bifurcation is,

αF
2 =

aT0F
2

T 2
2

=
TD

T 2
2

aT0F
2

TD

=
T1

T2

< 1 (3.4)

Therefore, after the bifurcation point, the linear solution is unstable and

the nonlinear one is stable, then nonlinear state is realized. Evolution of α

is plotted on Fig. 3.1. This can be interpreted that constant flux and larger

impedance give more available power to drive the flow (ZI2).

3.1.2 Temperature-driven system

Next we contrarily discuss the system which the temperature is controlled.

When T is given, the equation of this model is rewritten as,

F = C(T − T0) (3.5)
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Figure 3.1: Evolution of growth rate of the linear and the nonlinear solution

as a function of flux

Here we define heat diffusion coefficient C (conductance) as

C ≡ 1

η
=

1

(η0 + aP )
(3.6)

This is solved explicitly as a function of T ,

F =
η0T +

√
(η0T )2 + 4aT 2

0 T

2aT0

≡ −g(T ) (3.7)

Bifurcation occurs at the critical temperature,

Tc =
T0

√
aT0√

aT0 − η0

(3.8)

33



We can imagine the chain event in the same way as Sec. 3.1.1. The perturba-

tion of flux δF becomes,

δF → δC =
∂C

∂F
δT

→ δF ′ = (T − T0)
∂C

∂F
δF ≡ αT δF

αT = − (T − T0)

(η0 + aP )2

∂

∂F
(aP )

= − (T − T0)[
η0 + aT0F

(
1

TD
− 1

T

)2
]2

[
aT0

(
1

TD

− 1

T

)
− aT0F

η0

T 2
D

] (3.9)

The stability of the linear solution is calculated by substituting F = F1,

αT
1 =

aT0

η2
0

(
1 − T0

T

)2

(3.10)

This is monotonically increasing in T > T0 and equals to 1 at the bifurca-

tion point T = Tc. And limF→∞ αT
1 = η2

0/aT0. The linear solution becomes

therefore stable in pre-bifurcation and unstable in post-bifurcation.

We now discuss the nonlinear solution case. Substituting F = F2,
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αT
2 =

2T

a(T − T0)T0(η0 +
√

(η2
0T + 4aT 2

0 )T )
×

[η4
0T

2 + 4aη2
0T

2
0 T + 2a2T 3

0 (T0 − T )+

(η3
0T + 2aη0T

2
0 )
√

(η2
0T + 4aT 2

0 )T
]

(3.11)

This is monotonically decreasing function in T > T0 and becomes 1 at the

bifurcation point. And limF→∞ αT
2 = aT0/η

2
0.

4

3

2

1

0

108642

 linear

 nonlinear

αT

η
2

0
/aT0

aT0/η
2

0

Tc T

Figure 3.2: Evolution of growth rate of the linear and the nonlinear solution

as a function of temperature

Figure.3.2 is obtained and this means the system bifurcates to a nonlinear
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solution same as for the flux-given system. This is contrary to the interpre-

tation in the end of last subsection; The available power to drive the flow

seems to be smaller this time (V 2/Z). In summary, the system bifurcates to

nonlinear solution regardless of our selection of independent variable.

3.2 Legendre transformation about entropy pro-

duction rate

As we mentioned in Sec. 1.2 entropy production rate is written as a volume

integral of the inner product of irreversible flow and thermodynamic power

(equation 1.1). We emphasize again that minimization of entropy production

rate does not derive Fourier’s law and that even formulating entropy produc-

tion rate is difficult in a state far from equilibrium. We therefore define f from

the phenomenological model as consistent in thermodynamics.[13]

Firstly we review the discussion of thermodynamic relation of general heat

engine [13]. First law of thermodynamics is,

dU = δQ − δW (3.12)
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where U is the internal energy, Q is heat the system obtains and W is

work the system does outwards. The sign d denotes exact differentiation and δ

denotes non-exact differentiation. In non-equilibrium state, we can distinguish

reversible processes and irreversible processes with second law of thermody-

namics as,

δQ = T (dS − δSi) (3.13)

where Si is internal entropy production by irreversible process. Equation

(3.12) is rewritten as,

δW = δQ − T0dS − (dU − T0dS)

=

(
1 − T0

T

)
δQ − T0δSi − (dU − T0dS)

(3.14)

Time derivative of this equation is obtained.

Ẇ =

(
1 − T0

T

)
Q̇ − T0Ṡi −

d

dt
(U − T0dS) (3.15)

To obtain global thermodynamic relation of a steady system, equation

(3.15) is integrated over total domain, noting integral of the third term of

right hand side (consisted only of state variable U and S) equals zero.
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∫
ẆdM =

∫ (
1 − T0

T

)
Q̇dM − T0

∫
ṠidM (3.16)

where dM ≡ ρd3x. Now we apply this general steady heat engine relation to

the model (2.1).

A heat flow vector f (Q̇ρ = −∇ · f) is introduced. The first term of right

hand side of equation (3.16) is manipulated, divided by T0,

−
∫ (

1

T0

− 1

T

)
∇ · fd3x = −

∫
∇ ·
[(

1

T0

− 1

T

)
f

]
d3x

−
∫

f · ∇
(

1

T

)
d3x

=

(
1

T0

− 1

T

)
F −

∫
f · ∇

(
1

T

)
d3x

(3.17)

Substituting this into equation (3.16),

∫
ẆdM =

(
1 − T0

T

)
F − T0

∫
f · ∇

(
1

T

)
d3x − T0

∫
ṠidM (3.18)

This approves in a general long-term averaged heat engine. The left hand

side (
∫

ẆdM) equals zero in a steady state, because global mechanical energy
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is saturated. Finally we obtain entropy production rate from thermodynamic

law.

∫
ṠdM ≡

∫
f · ∇

(
1

T

)
d3x − T0

∫
ṠidM =

(
1

T0

− 1

T

)
F (3.19)

Now we can deduct the meaning of Si as the entropy production with

structure formation; In diffusive process ∇ · f = 0 holds, then Si equals zero.

Si denotes the increase from the diffusive entropy production. The entropy

production rate is determined only by boundary values (T, T0, F ) fortunately.

This is a strong affirmation because entropy production rate in general steady

state (even with flow) is represented as a simple boundary term, while de-

scribing entropy production from fluid mechanical side (equation (A.10)) is

quite complicated. Now we know, from the discussion of chapter 3.1, that

the solution bifurcates to nonlinearity regardless of the independent variable

we select. Figure 2.4 obviously tells us constant F yields nonlinear solution

as larger temperature gradient. On the other hand, nonlinear solution given

by constant T is smaller flux. So we can conclude, from equation(3.19), that

the former means larger entropy production rate and the latter means smaller

entropy production rate (Fig.3.3).
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Figure 3.3: Evolution of EP.

Top: Controlling variable is flux. EP of nonlinear solution is

larger.

Bottom: Controlling variable is temperature. EP of nonlinear

solution is smaller.
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What does it mean that the exchange of independent variables causes the

reversal of “maximum” and “minimum”? Entropy production rate (1.1) in one

dimension is written as,

Ṡ =

∫ x1

x0

−g(T )
d

dx

(
1

T

)
dx (3.20)

An attention is required that this Ṡ differs from equation (3.19). This equals

to the first term of the right hand side of the equation (2.8). Therefore, the

operation point of this model is not a critical point of the entropy production

rate but of Q(β, F ). This is why the minimization of equation (1.2) cannot

derive phenomenological relation (2.1).

On the operation point, the following equation holds,

∂Φ(β, F )

∂β
=

∂Ṡ(β)

∂β
+ F = 0 (3.21)

Φ(β, F ) becomes Legendre transformation about Ṡ(β) under the above

condition. Φ(β, F ) is written as Φ(F ) because

dΦ =
∂Φ

∂β
dβ +

∂Φ

∂F
dF = (β − β0)dF. (3.22)

That is to say, the “entropy production rate as a function of temperature”

(Ṡ(β)) is transformed into the “entropy production rate as a function of flux”
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(Φ(F )). The following dual relation is also obtained.

∂Ṡ

∂F
= −F,

∂Φ

∂F
= β − β0 (3.23)

Ṡ(β) is plotted in Fig.3.4. When we choose T as independent variable and

change it as T0 → ∞, a change on Fig.3.4 is β0 → 0. It can be seen that the

entropy production rate of the nonlinear solution is smaller. The F -controlled

case is discussed next. Choosing F as an independent variable equals the

problem to drawing a tangent line which has an inclination −F in Fig.3.4

because Legendre transformation is a transformation that gives a tangent line

(Appendix B). After the bifurcation F > Fc, the entropy production rate of

the nonlinear solution is higher than that of the linear solution which has the

same slope of the nonlinear solution.

This Legendre transformation is the mechanism of duality of the maximum

and minimum caused by the exchange of independent variables on Fig.3.3. It

is to be noted that the word “maximum” or “minimum” means not a global

maximum or minimum but the alternative of large or small. A global minimum

or maximum does not suitable for our heat engine as we mentioned before.
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Figure 3.4: Plot of S(β). (a) : β is controlled. After the bifurcation point

βc, entropy production of nonlinear solution is smaller.

(b) : F is controlled. A point having inclination of −Fc is the

bifurcation point. In this case, entropy production is larger.
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3.3 Condition of hysteresis

It is widely known that H-mode shows hysteresis against the input of heat.

Figure 2.4, however, does not bring out hysteresis, then the model used above

is extended to be able to realize hysteresis. This extension also tells us a

condition of hysteresis. To be concrete, though we have assumed the coefficient

of impedance a as constant, some damping seems to take place at the high

temperature state and the impedance may rise. Then we let the coefficient

of impedance have a dependence of temperature as a(T ). Ψ is introduced to

derive the condition of hysteresis as Ψ(F, T ) ≡ T − T0 − ηF . Considering the

T derivative of Ψ,

∂Ψ

∂T
= 1 − a(T )T0F

2

T 2
− FP (T )

∂a(T )

∂T
(3.24)

Therefore, when the following condition,

∂a(T )

∂T
>

1

FP (T )

(
1 − T1

T2

)
(> 0) (3.25)

holds, the implicit function theorem is violated and Ψ(F, T ) does not have

a unique solution about F (it has multiple solutions). From the experimental

point of view, measurable quantity is not a(T ) but η. Therefore the condition
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of hysteresis expressed by η is more useful. Equation (3.25) is rewritten as,

∂η

∂T
>

1

F
(3.26)

If a(T ) increases sharply about T as in Fig. 3.5, or η(T ) increases sharply

like in Fig. 3.6, there appears multiple solutions which is represented by a

folding structure in Fig. 3.7. Graphical understanding of the bifurcation is

shown in Fig. 3.8 that is the solution of equation (2.3).

Stability around multiple solutions is going to be discussed because the

middle solution must be unstable for hysteresis to occur. Same as Sec. 3.1.1,

we set F as an independent variable and calculate the growth rate α.

αF = F
∂η

∂T
= F

(
a(T )

∂P

∂T
+ P

∂a(T )

∂T

)
(3.27)

The term about ∂a(T )/∂T , that is vanished in the case a(T ) is constant, is

added to α in Sec. 3.1.1. We can prove, by substituting (3.25) into (3.27), the

solution satisfying the condition of folding (3.25) is always unstable (α > 1).

Figure 3.9 is the plot of Ṡ(β) satisfying (3.25). When the nonlinear solution

has a folding structure as in Fig. 3.7, Ṡ(β) has an inflection point. We can

draw multiple tangent lines if F is selected as independent variable. This is the
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Figure 3.5: Shape of a(T ). Red: hysteresis occurs. Green: hysteresis does
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Figure 3.6: Shape of η with hysteresis.

reason why β jumps to a far value; If you go along β axis, there never occurs

jump of solution as long as a is only the function only of T . Therefore the jump

of solution is an unique feature of the tangent line problem. The conclusion

is that when entropy production rate is warped to have an inflection point,

selection of F as controlling parameter causes a jump in the solution and

hysteresis.

Noteworthy feature is that this Legendre transformation is against non-

convex function whereas ordinary Legendre transformation in both thermo-

dynamics and analytical mechanics is assumed to be against convex function.
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Figure 3.7: Relation between F and T . Blue: linear solution of (2.4). Red

& Green: nonlinear solution; the colors correspond to Fig. 3.5
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Figure 3.8: Graphical understanding of the bifurcation as in Fig. 2.3.The

solution bifurcates to multiple solutions.
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Here we find Legendre transformation against non-convex function derives hys-

teresis.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.250.200.150.100.050.00

S(β)

Figure 3.9: Profile of Ṡ(β) with hysteresis. Since the selection of F as inde-

pendent variable means a tangent line problem, large nonlinear-

ity, so as to Ṡ(β) having an inflection point, causes a jump to

further β.

Finally we discuss about the term Φ(β, F ) introduced in (2.8). As we

mentioned in the last subsection, Φ(F ) is Legendre “transformed” term. In
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equilibrium thermodynamics, definition of Helmholtz free energy (B.2) is in-

terpreted that internal energy U is put a restriction of TS. Analogously Φ(β)

is obtained as a consequence of putting a restriction F (β − β0) on Ṡ. The

working point of this model is critical point of Φ(β, F ).

Φ(β, F ) with three representative F is plotted on Fig 3.10. Φ(β) has two

stable maximum points and one unstable minimum point between these two

around F = 5. Upon increasing F (forward process), the right maximum

point is realized until it becomes an inflection point (around F = 6). When

the right critical point becomes an inflection point, bifurcation towards the

left maximum point occurs. Upon decreasing F (backward process), however,

bifurcation does not occur until F = 4 because the unstable middle solution

prevents the transition. Conceptual diagram is shown in Fig. 3.11; A stroke

of F exhibits hysteresis.

Parameter dependence of a(T ) or η shall be speculated. The area of hys-

teresis loop plays an important roll because larger area means the system

bifurcates to a further point. Here we simply set a(T ) as B arctan(T −A)+C

that satisfies the condition of hysteresis (3.25). We independently changed

parameters A, B and C in Fig. 3.12 (a), (b) and (c) respectively. In Fig.

3.12 (a), the temperature at the bifurcation point of impedance is varied while
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Figure 3.10: Φ(β, F ) satisfying (3.25)．Blue: linear solution of (2.4) –convex

curve–. Red: nonlinear solution –non-convex curve–. From the

top F = 4, 5, 6 respectively.
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(a)

(b)

(c)

(d)

(e)

Figure 3.11: Conceptual diagram of Fig. 3.10. The global maximum of

Φ(β, F ) is the operation point. Transition occurs on (c) in for-

ward process and on (e) in backward process.
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the amplitude of impedance transition is kept constant. The area increases as

the temperature of bifurcation points getting larger. In Fig. 3.12 (b), by con-

traries, the amplitude is varied with the critical temperature kept constant.

In Fig. 3.12 (c), the gradient of impedance at the point of linear-nonlinear

transition is changed. We can conclude , in any case, as the temperature of

the first critical point in F − T diagram (that is experimentally observed as

the bifurcation point) becomes larger, the area of hysteresis loop also becomes

larger. More precise quantitative discussion of parameter dependence will be

discussed in Chapter 4.
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Figure 3.12: Qualitative dependence of impedance. Top: the temperature

of bifurcation point. Middle: the amplitude of impedance bi-

furcation. Bottom: the gradient of impedance at the point of

linear-nonlinear bifurcation.
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Chapter 4

Discussions on the mechanics

We have constructed the phenomenological model and have analyzed it so far.

This model is written only by an exchange of energy. There is, therefore, no

doubt that this model is universally applied to various open systems. The story,

that large flux creates order in a system and the order derives further temper-

ature contrast, is independent to the mechanisms between flux and order. For

example, the neoclassical theory of poloidal rotation induced by radial electric

field is thought to be one possible mechanism of H-mode. A zonal flow induced

by β effect in planet’s atmosphere is also this kind of mechanism. Of course

mechanism independent theory is the deepest and the most abstract theory,

but there exists some distance from realistic phenomena. In this chapter, we
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take an example of neoclassical model explaining H-mode [23] and prove it is

one of the concretization of our model.

4.1 Neoclassical model of L-H transition

Hinton et al. proposed the scenario that can explain bifurcation and hysteresis

of L-H transition by neoclassical plasma poloidal rotation[23, 24]. Here we

review the equations of essential part to obtain the relation between heat flux

and temperature gradient though our intention is not in its derivation. On a

toroidal coordinate, poloidal ion velocity is thought to play an important roll to

an improvement of confinement. Bigrali et al. proposed that turbulence can be

greatly reduced by stable sheared poloidal flow[25]. Experiments also showed

sudden and significant increase of poloidal rotation between L-H transition

[26]. The suppression of turbulent flow around the plasma edge is therefore

expected to be the cause of reduction of radial heat transport.

The poloidal rotation flow is shown to be determined only by the tem-

perature gradient and to be proportional to the temperature gradient from

standard neoclassical theory [27].
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uθ = − c

eB
µ(ν∗i)

∂T

∂r
(4.1)

the coefficient is evaluated as,

µ(ν∗i) ' 1.7 +
µ1

(ν∗i)2

where µ1 is less than unity. This translation velocity uθ to temperature

gradient ∂T/∂r is the “mechanism” we mentioned above.

Using this estimation, radial gradient of uθ is written as,

∂uθ

∂r
= − 4cµ1

eB(ν∗i)2T

(
∂T

∂r

)
(4.2)

Next, thermal relation must be modeled. The local heat flux is modeled as

the sum of neoclassical contributions and flowless diffusive heat flux divided

by the effect of shear suppression of turbulence. Heat diffusion coefficient is

represented as,

κ ≡ κn +
κa

1 + γa(∂uθ/∂r)2
(4.3)

Substituting equation (4.2),
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κ = κn +
κa

1 + λa(∂T/∂r)4
(4.4)

with λa defined as,

λa ≡ γa

(ν∗i)4

(
4cµ1

eBT

)2

Since the coefficients κn, κa and λa are numerical constant, we cannot

specify these as measurable value. The local heat flux is written multiplying

diffusion coefficient by negative temperature gradient.

Q(
∂T

∂r
) = −κ

∂T

∂r
(4.5)

If we select the coefficients κn, κa and λa appropriately, the function Q has

multiple critical points against ∂T/∂r (Fig. 4.1).

This figure obviously resembles Fig. 3.7. In the same manner of our model,

heat flux is chosen to be independent variable and the solution bifurcate to

larger temperature contrast state when flux Q exceeds critical Qc.

The most characteristic difference to our model is the existence of infor-

mation about radial profile. The radial temperature gradient is assumed to
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Figure 4.1: Relation between heat flux and temperature gradient at edge[23],

with similar profile of Fig. 3.7.
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be constant in our model as ∂T/∂r ' ∆T/∆r because the region we are con-

sidering is very thin. We can obtain the equilibrium temperature profile by

integrating following equation,

−κ
dT

dr
= Q(r) (4.6)

where Q(r) is the heat flux at radius and varies linearly via r direction. Then

Q(r) is estimated as, After all, temperature profile is obtained by solving the

next ordinary differential equation.

−
(

κn +
κa

1 + λa(dT/dr)4

)
dT

dr
= Q(a)

r

a
(4.7)

Now we show this neoclassical model converges to our model in the same

thin layer where an approximation such as temperature gradient becomes con-

stant.
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Figure 4.2: Radial profile of temperature. The steep temperature gradient is

exuded.
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4.2 Thin layer approximation of the neoclas-

sical model

We focus on the domain in which heat flux shall be constant. The left hand side

of equation (4.7) becomes Q(a). Solving this ordinary differential equation,

Fig. 4.3 is obtained.

Figure 4.3: Radial temperature profile under the thin layer approximation.

The temperature gradient is assumed to be constant.

The constant radial gradient of temperature is easily figured out. Figure

4.4 is magnified view of Fig. 4.2 around 0.8 < r < 1.0 (edge). The similarity
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of these two figures indicates that we can deem the temperature gradient to

be constant (∂T/∂r ' ∆T/∆T ) and heat flux to be constant (∂Q(r)/∂r ' 0)

in the thin layer.

Figure 4.4: Radial temperature profile around 0.8 < r < 1.0. Linear profile is

obtained again in this edge thin layer.

Therefore equation (4.7) is written as,

−
(

κn +
κa

1 + λa(T − T0)4/(∆r)4

)(
−T − T0

∆r

)
= F (4.8)

This is compatible to equation (2.1) of our model. The discussions of

chapter 3 can be applied to this form of equation. The condition of hysteresis

(3.26) becomes,
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∂F

∂T
=

T − T0

∆r

dκ

dT
+

κ

∆r
< 0 (4.9)

Therefore the condition is that there exists positive α such that

κnα2 + (2κn − 3κa)α + κn + κa

(1 + α)2
< 0

is satisfied. The inequality is solved as κa/κn > 16/9.

Though this final inequality seems very simple, the modeling of heat dif-

fusion coefficient κ (4.3) must be certificated. In other words, when we adopt

different origin of turbulent suppression, the hysteresis condition may be rep-

resented differently. The hysteresis condition derived from our model (3.25)

or (3.26) is universally approved. Looking at Fig. 4.5, top figure is the plot

of η (= 1/κ), bottom figure is for the relation between flux and temperature

gradient. The sharp increase of η is exhibited as the cause of hysteresis.

The power lamp experiment has been done to clarify the properties of

hysteresis[28]. Figure 4.6 is the fitting of the equation (4.7) and arbitrary

function satisfying equation(3.25). Here we assumed, for the latter, a(T ) of

the equation (2.1) as arc tangent such as including rapidly increasing region.

Since even this arbitrary function without any detailed mechanism can be
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Figure 4.5: Top : Plot of η. Bottom : Plot of Q(a) as a function of temper-

ature. The colors of lines are homologized.

66



fitted well, the thermodynamic condition of hysteresis (3.25) is thought to be

critical condition. There are other models of the mechanism of hysteresis; for

example, the power of the denominator in equation (4.7) is two[28]. In any

case, the condition (3.25) is a mutual condition of hysteresis.

Hinton Model
Thermodynamic model

10 20 30 40 50

2

4

6

8

10

Figure 4.6: Experimental data in Alcator C-Mod. Blue: Fitted by equation

(4.7). Red: Fitted by the arbitrary function satisfying equation(3.25) (here we

use arc tangent).

Now we remember the discussion of parameter dependence of impedance

in Sec. 3.3. Equation (4.8) is applied as the tangible parameterization. How

the F − T diagram depends on the parameters (κn, κa and λa) is speculated.
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Embedding ∆r into the parameters, we define Kn ≡ κn/∆r, Ka ≡ κn/∆a and

Λa ≡ λa/(∆r)4. Then equation (4.8) is rewritten as,

(
Kn +

Ka

1 + Λa(T − T0)4

)
(T − T0) = F (4.10)

With two critical point (T c
1 , F (T c

1 )) and (T c
2 , F (T c

2 )), we approximately

evaluate the area of hysteresis as,

(T c
2 − T c

1 )(F (T c
1 ) − F (T c

2 )) (4.11)

as shown in Fig. 4.7. Thought this is rough approximation, the rigorous area,

at least, tends to be large as the approximated area becomes large.
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Figure 4.7: The approximated area of hysteresis loop
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The critical points are calculated as,

T c
1 =

(
− 1

Λa
+ 3Ka

2KnΛa
+

√
Ka(9Ka−16Kn)

2KnΛa

)1/4

T c
2 =

(
− 1

Λa
+ 3Ka

2KnΛa
−

√
Ka(9Ka−16Kn)

2KnΛa

)1/4

F (T c
1 ) =

(
− 1

Λa
+ 3Ka

2KnΛa
−

√
Ka(9Ka−16Kn)

2KnΛa

)1/4
(

Kn + Ka

1+

„

− 1
Λa

+ 3Ka
2KnΛa

−
√

Ka(9Ka−16Kn)

2KnΛa

«

Λa

)

F (T c
2 ) =

(
− 1

Λa
+ 3Ka

2KnΛa
+

√
Ka(9Ka−16Kn)

2KnΛa

)1/4
(

Kn + Ka

1+

„

− 1
Λa

+ 3Ka
2KnΛa

+

√
Ka(9Ka−16Kn)

2KnΛa

«

Λa

)

Then we define M ≡ Ka/Kn (> 16/9). T c
1 is plotted on Fig. 4.8; The

bifurcation temperature increases when Λa is small or M is large.

The area of the loop is plotted on Fig. 4.9. It is obvious that the area is

large where T c
1 is large. In other word, such a system that resist a bifurcation

finally bifurcates to a further state (amassed the input energy).
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Figure 4.8: Plot of T c
1 as a function of Λ and M .
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Figure 4.9: Plot of the area of hysteresis loop as a function of Λa and M .
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Chapter 5

Conclusion

The bifurcation and hysteresis phenomena in a turbulent system (we con-

sider H-mode as a typical example) is analyzed by using the phenomenological

model at turbulent boundary layer. The stability of multiple solutions (linear

solution and nonlinear solution) proves that solution bifurcate to nonlinear

solution whichever the independent variable F or T we select. The thermo-

dynamic function Φ(β, F ) is introduced and used as beneficial tool to analyze

the heat engine model. We encounter entropy production rate as a part of the

thermodynamic function. While an entropy production rate determined from

fluid dynamics comes to complicated form in the nonlinear state with flow, we

obtain the entropy production rate from thermodynamic laws that suitable for
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analyzing even in nonlinear state.

The operation point of the model appears not on a critical point of entropy

production rate but of the thermodynamic function Φ(β, F ). Dual relation of

entropy production rate, that controlling flux derives “maximum” and con-

trolling temperature derives “minimum” by contraries, is also explained by

the thermodynamic function. Φ(β, F ) is obtained from manipulating Legen-

dre transformation to entropy production Ṡ(β). Φ(β, F ) can be interpreted

as a mapping between the graph of Ṡ(β) and the family of tangents from the

geometric interpretation of the Legendre transformation. The tangent line

problem of the entropy production rate is the cause of reversal of mini-max.

The process is shown in Fig. 3.4.

Next we exhibit a condition of hysteresis. A sharp increase of impedance

η gives a folding structure to the relation between F and T (multiple solu-

tions). It is also shown that the forward process and the backward process

differ when the folding structure exists from thermodynamic stability. The

threshold of hysteresis is (3.25) or (3.26). More general discussion is made by

the thermodynamic function. The folding structure of the relation between F

and T is rephrased as the inflection point of S(β). The jump of the solution

is characteristically appears in the tangent line problem (Fig. 3.9).
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All above discussions is based only on thermodynamic laws. We take

neoclassical theory as a example and verified the theory and our model join

smoothly. In a thin layer, such that heat flux is assumed to be constant, tem-

perature gradient is also assumed to be constant. The relation of temperature

and flux, then, becomes concretization of our model. The condition of hys-

teresis is also substantiated and gives realistic threshold. The function that

satisfies the bifurcation condition is fitted well to the experimental data of

Alcator C-Mod. Since even a rough function is fitted well, the thermodynamic

condition of hysteresis is mutual to various models of L-H transisiton. The di-

agram of temperature versus flux depends on the shape of the impedance; The

algebraic relation is derived with the model of Hinton. An area of hysteresis

loop is large when a critical temperature of bifurcation is large.
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Appendix A

Derivation of entropy

production rate

Extensive variable S, entropy, satisfies S(λU, λV ) = λS(U, T ). Differentiating

this with respect to λ,

U
∂S

∂U
+ V

∂S

∂V
= S. (A.1)

Substituting Maxwell’s relations,

Ts = u + Pv (A.2)

is obtained. Lower case characters represent being normalized by total mass
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M . Energy density is written as e = u + |v|2/2 where v is flow velocity.

Multiplying mass density ρ ≡ 1/v to equation (A.2),

Tρs = ρe − ρ
|v|2

2
+ P (A.3)

Differentiation of this equation is,

Td(ρs) + ρsdT = d(ρe) − |v|2

2
− ρv · dv + dP (A.4)

Using Gibbs―Duhem equation sdT = vdP without chemical potential,

d(ρs) =
1

T
d(ρe) − 1

T

|v|2

2
dρ − 1

T
ρv · dv (A.5)

Finally we obtain the equation of differentiation of entropy density.

∂

∂t
(ρs) =

1

T

∂

∂t
(ρe) − v

T
· ∂

∂t
(ρv) +

1

T

|v|2

2

∂ρ

∂t
(A.6)

Energy conservation law is written with pressure tensor P , stress tensor Π

and heat flow f .

∂

∂t
(ρe) + ∇ · [ρev + (P + Π) : v + f ] = 0 (A.7)

Mass conservation law is written as,
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∂ρ

∂t
+ ∇ · (ρv) = 0 (A.8)

Substituting equation (A.7) and (A.8) into equation (A.6), we can obtain

following equation.

∂

∂t
(ρs) + ∇ · js = σ[s] (A.9)

Where js denotes entropy flux and σ[s] denotes entropy production.

js ≡ ρsv +
f

T

σ[s] ≡ (f + Π : v) · ∇
(

1

T

)
+ Π : ∇

(
−v

T

)
(A.10)

The first and second term of js equals advection of entropy by heat flow

and mass flow respectively. When mass flow f equals zero, the local entropy

production rate is simply represented as f · ∇(1/T ).
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Appendix B

Legendre transformation as

tangent line problem

Legendre transformation is a popular technique some times seen in equilibrium

thermodynamics. From the mathematical point of view, this transformation

means exchange of independent variable and dependent variable. Graphically

tangent line problem is also equivalent to Legendre transformation.

From the first law of thermodynamics,

dU =
∂U

∂S
dS +

∂U

∂V
dV = TdS − pdV (B.1)

Internal energy U = U(S, T ) is then the function of S and T . Helmholtz
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free energy is defined as,

F = U − TS (B.2)

dF =

(
∂U

∂S
− T

)
dS − SdT +

∂U

∂V
dV (B.3)

From equation (B.1),

∂F

∂S
=

∂U

∂S
− T = 0 (B.4)

Under this condition, equation (B.3) is rewritten as dF = −SdT−pdV . There-

fore U(S, T ) is transformed to F (V, T ). Equation (B.4) means that F is defined

on the ridge line of S.

F = inf(U − TS) (B.5)

Graphical understanding is show by Fig. B.1. When U is convex down-

ward, infimum is uniquely determined. (If U is convex upward by contraries,

supremum is uniquely determined.) In either case, determined point is tangent

point where the inclination is F . Other important thermodynamic variables,

enthalpy or Gibbs free energy, are derived from Legendre transformation.
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Figure B.1: If U is convex downward, translation is given on the point that

gives infimum of the distance of two curves (tangent point),

uniquely determined.
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