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Precise estimate for large deviation of
Donsker-Varadhan type

By Shigeo KUSUOKA and Yozo TAMURA

- 0. Introduction.

Let M be a Polish space, C,(M) be a Banach space consisting of bounded
continuous real functions for which its norm is given by Ilch,,m):Sllglf(x)L
Tre

and P(M) be a metric space consisting of probability measures on M with
the Prohorov metric.

Let u be a probability measure on M whose support is the whole space
M and {P,:x=M} be a family of probability measures on D([0, co)— M)
which induces a p-symmetric Markov process on M. We denote by {Pi}..,
& and L the induced semigroup, the Dirichlet form and the infinitesimal
generator on L* M ; dp), respectively.

Moreover, we impose the following assumptions.

(A-1) For any t>0, there is a continuous function P(¢, -, :) : M X M—(0, o)
such that Plf(w):SwP(t,x,y)f(y)y(d'y),/,z-a. e.x= M, for all feC,(M).

(A-2) Let [II:LXdp)—LAdp) be given by ([lh)(oc):h(m)—s ,h(y),u(dy)
M
p-a.e.x for any helXdy). Then there is a 2>0 such that

1Pl pocapy = e IR zocaps t=0, heLXdp) .
(A-3) The operator (I—.L)': L¥dp)— L*¥dy) is a compact operator.

Let us take {¢,},2:CCo(M) and {a,},=,C(0, o) satisfying the following
and fix them throughout this paper.

(1) ¢.#0, n=1,2,--, and ll@.lcux—0 as n—o0.

(2) {l@allzéapmpntn=i is a complete orthonormal basis in LA(M; dp).

3) Elafn‘”(/’n”l_,g(dy)<°°-

Let M be the set of signed measures on M with finite total variation.
Then for me M, we let
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1/2

llm |l 4 = { il An* ”ﬁDnllzg(dlz)‘Guﬁondm)z}

n=

oo 1/2
<{ Bonlpalihn)  -sup|| gudm|

oo 1/2
= [ n?] [/ 2% ||§0n”25(d,;>} (Sup “(Pn”Cb(M)>' ”m“var< .,

So fl+ll4 is a norm on M. We denote by M, the normed space which is
M as a set and whose norm is |- |-

By the assumption (A-1), we can define Pinned Markov process
P[-|w(0)=2, w(T)=y] for any z,yM and T>0. For any w<D([0, ); M)

and 7>0, let lr(w)eP(M) be given by SMf(x)lT(w)(dx):(1/’1‘)8:f(w(t))dt,

We will assume one of the following assumptions of Donsker-Varadhan
type large deviation.

(L-1) lim 7+ 0g Pllr €61 w(0)=2, w(T)=]

= —inf {E(p, ¢); p€ Dom(E), ¢*dpsG)

for any open set G in (M), and x,yE M,
and

lTi_m—%;-logP[lTECI w(0)=x, w(T)=y]
< —inf{E(p, ¢); o€ Dom(&E), ¢*dpsC}
for any closed set C in P(M), and x,y= M.
(L-2) 1?1_11_1% -log Pll; =G| w(0)=x]

= —inf {E(p, @) ; o= Dom(E), ¢*dusG}

for any open set G in P (M), and x= M,
and

ﬁﬁl -log P[lz€C| w(0)=x]
Tow T

< —inf{E(p, ) ; o€ Dom(&), p*dueC}
for any closed set C in P(M), and x= M.
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(L-38) Irl_m % ‘log P llr=G]= —inf {E(p, @) ; o€ Dom(E), p*dps G}
for any open set G in P(M),
and

m% log P,[lr=C]< —int (E(p, ) ; p€ Dom(E), gdpeC)

Too

for any closed set C in P(M).
Now let U: ‘M,—R be a bounded smooth function. Then under the
assumption (L-1), we see that

lim-l— log E”[exp (1 U(lr))| w(0)=2, w(T)=yl=—/f,,

roe T

where fy=inf {€(¢, ¢)— Ulp'dp) ; pe @om(@),SMgozdyzl}.

Our aim in the present paper is to give more precise estimates to these
asymptotics. Main results will be presented in Section 3. But we give
one statement which follows from the results in Section 3.

THEOREM. Suppose that the assumptions (A-1)-(A-3) and (L-1) are
satisfied. Then for any x,y<E M, there are a finite dimensional submani-
fold N in Dom(&) and smooth bounded functions p: N—[0, ) and g: N—
(0, o) such that

(1) NcloeDom(@); SM¢2dg=1},

@ lpeN:plp)=01=V = (o Dom(@); | ¢'u=1,E(p, )~ Ui =1,
and

(3) EPlexp (T U(lr)| w(0)=2x, w(T)=y]
~exp (—fy- T))- T M2, SNg(z) -exp (— p(2) - T)na(d2)

as T—oo. Here nydz) is the Riemannian volume on N, and k,(T)~k,(T)
as T— o denotes that ;im (ki (T)ko(T))=1.

Our presentation and results are inspired and strongly infuluenced by
Bolthausen [1], [2], [3] and Luttinger [7], [8]. However, we cannot apply
our results to the problem raised by Bolthausen [3], since we need strong
assumptions to the regularity for the function U, at least C%regularity.
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Our methods come from Kusuoka-Tamura [6] and Kusuoka-Stroock [5].
We strongly use the advantage that our Markov process is symmetric.
We do not know how to handle real non-symmetric Markov process.
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1. Basic Lemma.

Let everything be as in Introduction. The main purpose in this Sec-
tion is to show the following Lemma.

(1.1) LEMMA. Let P,=IIP,, t=0, and GzZ'SNPtdt. Then
0

w(0)=1, w(T)=y]‘

‘P( T,,y) -Ep[exp <z T. SMgb(le(w) - d,u)>

sexp(ELL 9, G0 )-exp (21127 2R (1= 21 B))

X (14 |z]- Re*(1+ P(2, %, ®)'*) (1 + 2] - Re*(1+ P(2, y, y)))(1— 2| R)
+ 2l R(P(2, &, %) *P(2, y, y) "*e” + 1}(1— |2| R) !

+P(2, 3, %) *P(2,y,y) "% -exp (—2T)

and

lP(T’ %, y) .E”[exp <z T- SMgb(le(w) —dy))‘ w(0)=2x, w(T) =y}

—exp <<ZZ2T> (¢, Gfﬁ)mdm)

sexp (L (g, Gg) )-Lewp (al(121'T- 401~ (21 R) )

X (14 2| - Re*(1+ P(2, x, x)/9)(1+|z| - Re* (14 P(2, v, ¥)''%)

X (1—12|R)™*)}—1]
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+[2|°R?-exp (R4 |2|*T)
+|2|- R{P2, , ©)2P(2, y, y) %"+ 1}(1— |2| R) ™
+ P2, %, %) 2P(2,y,y) "% exp (—AT)
for any T>2, ¢=Cy(M) and z€C with |z|<R'. Here R=42""[¢llc >
(1.2) REMARK. In the proof of Lemma (1.1), we only use the assump-
tions (A-1) and (A-2).
Let J(x)zg/)(x)—sygbd,u and ¢ be a multiplication operator ¢- in
LXM; dy). Note that dlc,on=2l¢lc,u- Then we have

P( T,x,y)-EP[exp <zT-SM¢(dzT(w)—dy)> w(0) =z, w(T)zy}

=32 P(T, 2, y)

n=0

B\ () Gwlsads, - dsy| w(0) =a, w(T) =y |

=P(T,%,y)

"I"Zzn" <P(To;x;'):

n=1 Sr T -0
BRI s

n-1

‘/;P-'l‘/;"'anq‘/;P(T— 275, >> dro - dr,-;.
i=0 L2

Let [I,=1—1 and I/,=1I. Then for n=1, we have

<1’(z‘0, %, ), gP- P "’P-’n-ﬁEP(T_T;% Y >>

L2(dp)

=, 2 (Peoz,),

I ln+1=0.1

_ _ _ - n—1
11[1(/)})?1 o [Iln~1¢'Prn—1[1171(/)[[ln+11)<1 N .72=0 Tj’ Y- >>L2(dll)

:(HP&mxfxépn-“¢P%q¢”P<T'§§T”y“>>

[n/2]
+ 2 ) ,Z bio—l(x; Toy "t 5 Tyg-n)
k=0 10+m+1k+]=n+2 0
g gt Z1 i, 122

L2(dp)
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k
X jl=—[1 aij(Tio.;..“.Hj_l, cecy, Ti0+~~+ij-2)

n—1

.om
X bik+1—l<y ; IT'— 120 TisTa-19Tn-2,""" Tio+--~+i,,>-

Here

An(Ty, 0, To-1) =(9, Prlgl;Prz e &Prn_lﬁz)LZ(d,u), nz2,

and

~

bn(u’; To *°° :Tn—l):(”P(TO’ u, ')y ‘/;Pr "'(ﬁprn_1¢)L2(d,u); 'U/EM, n=1.

Then we have the following.

(1.3) PROPOSITION. (1) a4(r)=(¢, P.¢)12cay20, 7>0.
n-1

@) lan(es oo, a-) Soxp( — 20 S 1) @1 legn)”,

for any n=38 and ., ,7,.,>0.
(3) Ibn(u; Tl)'“,-Tn)lé(zl”Sb”Cb(M))n;

for any ueM, n=1 and v, ,7,>0.

@ bl 21, 2l S @ gloan)™ PR, w0 etexp =4 D)),

for any weM, n=1 and ,,++,7t,>0 with nE > 1.
k=1

L2(dp)

(5) ‘(HP(TO) Z, '): J’Prl "'(/_)Pz-n_lgl;][P(T”‘ jgorj’ Y, >>
é (4”¢”C°(M))n ‘ P(2; X, x)l/ZP(z, Y, y)1/2‘ 622 'exp (_'RT);

for any x,yEM, n=1, 74, ,7,-1 >0 and T>2.

PROOF. The assertions (1) and (2) are obvious. Let us prove the as-
sertions (3) and (4). Note that

[(II P(ry, u, +), </;Prz sljprmh)L2(du)1

=lim SM"‘(P(TI’ u, v) —P(T, u, 'Ul))SZ(’UI)(P(Tz, vy, v3) — P(T, vy, v5))

T—oof,

G (Vo) (P(Tmy Vmmty V) — P(T, Vynoy, Vi) 2 (V) pe(dwy) -+ pe(dvy)
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<2l eyr)™sup{| Plt,w, o) R (o) 12 B waf.
m 1/2
<20l oy (oA P(2- 3 20 ,)  Thl s

for any heCy(M). So we have the assertion (3). If ::i‘: 7,>1, there is an
=1

me{l,---,n} such that ?}1 <1 L% .. Let 0:1_:5 .. Then we see
v=1 =1 c=1
that
balu; 7y, s Tn):(”P(TU u, *), &prz o QZPrm_l(/;Pah)L?(d,u);

where h=P_ _,¢P. . -¢P.J. Since we have
IR 1,2(dp)§(2”95”0[,(»1))”—'"“'eXp<_1<k§l Tk—1>>:
we have the assertion (4).

Similarly we have the assertion (5).
This completes the proof.

Let
An:S lan(ty, o, ta-)lde, o drasy, n22,
0,00)7 =1

By(w)=1, weM,
and

Bn(u):S m)nlb,,(u; T, to)ldr edr,, =1, ueM.

(0,

Then by Proposition (1.3) we have
1 ~
Az: E‘((/); GS/})LZ(d/z):

A 270 2ldlleym)™, m=3,
and

Ba(u)S 27" (4l Pllcynn)™ € 14+P2,u, w)'"), ucM, n=1l.

Also for n=1, let

R.(T; z, y>=S dry-edr, .,

7o Tp=120
ot oty <T

><<HP(ro,x, ), 4P, ...¢-P,n_l¢np<T_"gorj, v, >>

L2 )
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Then for T>2, by Proposition (1.3) we have

(L4)  |R(T: 2, 9|= "y - @lgle,n)" exp (=2T)- P2, ,2)" P2, y, y)2e?

S Pl epar)" P2, z, 2) P2, y, y) ' %e*.

For n=1, let J,={(lo, ", %es1) : K20, %, %1 =1, 2y, 0, 0 22, Tt ot T
=n+2}. For I=(i, *, %) EJ 4, letb

Cu(TO’ Sty Ta-1s I; T)

k
:bio—l(x T TR Ti0—2)' I—.E a'ij(r1.'0+-~~+ij_]; Tty Tio+»~+i]—2)
j=

n—1
. M —_ .
Xbi“.l‘l(?/y 1 l§) Ty Ta-1Tn-2"" ’T"o""“‘”k)

and
e, 1=\, . Culenestani [ Ddeyedea
-‘(’.+ -(317_71]_]<'I‘
Then we have for any I=(t, ", 1) € O.In

n=1

= b e

>

s Tig=1) by U5 Tigyt Tigrigg,-2)
oyt <T

k
X 7_ILIIa/ij(rio+ik+1+i]+~<+ij-l—-j: Tty Ti0+L'k+,+i1+~»+1'.j—j*2)drl o dT,

k
<(\, Ly o don) By @ Buy ) 1A,
gy tota,<T
T* k
= e 'Bio—x(x)Bikﬂ—x(y)' jl;[l Aij-

Note that C((1,2,---,2,1), T)<(T"[n!)-A;. Also we see that
n-times

T gv—c(,2,---,2,1), T)

n! : n-times

(s de, - de, T
—.,0 s(n—l)!'\rl.m.f,,ﬂ\o Tye* Tn,jl;.l]: a/:l(Tj)

Tyhe e >T=s

T o0 T—g)*-1gn-!
<1918 | ds|"at S o exp (— a0
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= @igheyona | ds e PRSI L

< (" \Ca
= 'So 8), B )1

iree ((AT2)—s)""
— pen, —__
=R So (n 1) e

Let K= J,, and set |I|=n, if I€J,. Let K,={(1,2,++,2,1); k=1},
k—-times

n=1

Ko={(to, *, lar) EK; 1o+1,:1 23}, and K,=K\(K,VK,). Recall that

(1.5) P(T, 1) E”l:exp (o7-{ gtatrtay —dy)> w(0) ==, w(T) =y}
=14+ 2 21CUI, T)+(P(T,x,y) — D+ X 2" Ro(T; 2,9).
IERK n=1
Note that
IIIC(I T)N
IGK[
oo [(n-1)/2] T* &
< 3 Je|” S o A,
n=2 k=1 1 41k= . j=1
fyoenip22

lz°T
sexp 2 (¢, GSZ’ L2¢d )

\/w

(sl Frea)) 1)

and

IIIC([’ T)}
IEK,

" T k
=S INFI 2 Bi0~1(x)Bik+l 1;[

n=1 I=(ig.ipy DEKNT, j

(w514

Therefore we have

(1.6) = 2'C(L,T)

IEK UK,

|z|>T

(¢, G9))

x{( £ 121 Buto) ) §0|z|k3k(y>)-exp(lz|2T( 3 12l ) -1

éexp(
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sexp(EL 9, G9))-loxo (el(121*T- 2R~ 21 )

X (1+4]z|- Re*(1+ P(2, z, x)V?)) (14 |z| - Re*(1+ P(2, y, )'?))
X(1—|z|R)"%—1] if |z|<R™1.

Also, we have

111 °T a
1.7 114—162’]{02 nea, T)\éexp<|z|2 (¢, G¢')L2(d;l)>
and
Al ZT
(1.9 1+ 3 2re, D —exo (59, Gohisan)

P m __e\n-1
v, (AT2)=9"

< < 2n p2n
= ZI"R So n—1)!

slelRe- (" ds exp (2 RAG TR —5)— )

<|z|*R?*-exp (AR*-|2|?T).

By (1.4), we have
(1.9) S 2"R,(T, z, y)\é |z]-R-P(2,x,)"*P(2,y,y)"%*(1—|z|R)",
n=1

if |z|<R™'. Also, we have
(1.10) |P(T, z,y)— 1S P2, x, x)"2P(2,y, y)%* exp (—AT), T>2.

These imply our Lemma.
This completes the proof of Lemma (1.1).

2. Uniform estimates.

Let K be a compact metric space and U: M,X K—R be a continuous
function satisfying the following.
(U-1) sup{|U(m,&)|; meP(M), E€K}<oo.
(U-2) U(-,&): M~ R is smooth in Fréchet’'s sense for all §=K.
(U-8) U: My;xK—-R, DU: M, xK—-Hom(M,:R), D*U: M, xK-
Hom (M, X M,; R) are continuous.

Let f(¢)=inf {&(u,u)— Uu’dp,§); ueDom (&), Iulian=1} E€K.
Also, let U®(m, &)(w)=DU(m, E)d,), (m,&,2)e M, x KX M. Then by the
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assumption (U-3), U : M, X KX M—R is continuous.
The following is easy. :

(2.1) PROPOSITION. Suppose that us Dom (&), |ulr2apm=1, and f(&)=
Eu,u)— Uu’dy,&). Then us Dom(L) and there is an acR such that

Lu+UPwuldy, &) Ju=au .
Moreover,

E,v)— S {UP(u’dp, &) (x) —atv(x)*pu(da)

JM
—2-D*U(u’dy, &) (uvdy, uvdp) 20
Sfor any ve Dom(E) with (u, V)2 =0.

We also assume the following.
(U-4) For each é < K, there is a unique w(§) € Dom(€) satisfying u(é)l L2cap,
=1 and &(u(§), uw(§)) — Uu(é)’dpy, &) =f(£).

Since &, u)=E(|ul, |ul), ue Dom(€), we see that u(€)(x)=0, p-a.e.x
for all £ K. Also, we have the following.

(2.2) PROPOSITION. f: K—R and w: K— Dom(&) are continuwous. More-
over, there is a continuous map «: K— R such that

Lu(€)+ UL (u(é)’dpy, £)(-)u(é) =alé)u(é) .

PROOF. Assume that &,€K, n=1,2,---, and &,—&. as n—oo. It is
sufficient to prove f(§,)—f(f.) and & (u(f.)—ulén), u(bs)—u(£,)—0 as
n—oo.  Since Cy=sup{—Um,§&); mePM),tcK}<x, we see that
Em(E), u(€)<C,, £ K. So taking a subsequence if necessary, we may
assume that u(£,)—u. weakly in Dom(&) as n— oo for some u.< Dom(&).
Then we see that w(¢,)—u. in L3(M,dp) and so [|4wllr2w,n=1. Therefore
we have

Eul(é), w(é) — Uun(é)dy, &)
=1"if§° (E(u(é.), u(€.) — Uun(é)dy, §.))

ZHm (E(u(§ ), u(é,) — Ulu(é,)’dpy, §,))

n-—oo

2 E Moy Uoo) — UluZdp, €.) -

This implies that w.=u(f.) and Ew(E,), w(€,)—E(Ue, ) a8 n— 0. So we
have u(&,)—u(f.) in Dom(&E) as n— 0. Also, we have f(£,)— f(€.), n— .
The last assertion follows from Proposition (2.1) and the fact that
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(Lu, W r2cap=—E(w, u), uc Dom(E).
This completes the proof.

We impose the following assumption on the function U, furthermore.
(U-5) For any £ K and ve Dom(&) with (w(é), v)r2wamn=0 and v+#0,

Ew, v)—S(Um(u(e)ﬁdy, £)(x) — a(€))v(@)*u(dz)

—2-D*U(u(§)’dp, &) (v-ué)dy, v-ué)dp) >0.
Let V: MX K—R be a continuous function given by
Vi ; §)=UPu(é)’dpy, §)(x)-af), zeM,E€K.
Then we have Lu(&)+V(-;8&ué)=0 and sup{|V(z;$é)|;2eM, é€K}

oo 1/2
{5 an lpallt o Igalihan| P (1UD(E g €)a: § € K} < . Let

(&) be the second minimum eigenvalue of —.L—V(-: &), £ K. Then by
Kato [4, Chapter 5, §4] we see that A: K— R is continuous. Since P, is
ergodic, we see that A(¢§)>0 for any £ K. So we see that

Zoiinf{l(é); E€K}>0.
We have the following also.
(2.3) PROPOSITION. Let

F(T,2,y; =P (T,x,1)- B exp( || Viwlt); ¢)a)

w(0)=2x, w(T) :y],

for T>0, x,yeM, € K. Then for any T>0, F(T, ,-,:): MXMXK—
(0, ©) s continuous. Also, we have a good version of wu(§)(x) such that
w(-)(-): KXM—(0, ) 18 continuous.

PROOF. Let c=sup{|V(x,&)|;2€M, E€K} and let F.: (0, 0)XMxXM
X K—(0, ) be given by

F(T,,y,8)=(P(T,, -),exp((1—-2e) T(L+ V(- ; NP (T, y, *))rocap
e€(0,1/2).

By virtue of the assumption (A-3), we see that F.(T,-, -, ): MXM—K—
(0, o) is continuous. Also, we have

FAT,x,y,8) =P(T,,y) ~E”[exp<g T V) ; em). w(0) =, w(Y')=y].

a
eT
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So we see that |F(T,z,y; &)—FAT,x,y,8)|<P(T,x,y)eT(e*T—1). There-
fore F(T,x,y,&8)—F(T,x,y,&) as ¢ | 0 uniformly on compacts with respect
to (xv,y,§)eMXMxK. This proves the first assertion. Since u(€)(x)=

S F,x,y, &)ué)y) p(dy) p-a.e.x, we have the latter assertion.
M
This completes the proof.

Let v, £€K be a probability measure on M given by dv.=u(§)’dy,
and let {Q{},,, be the Markov semigroup in L*M; dv) given by

QiPh(x) = (w(§)(x)) " (exp (L + V(- ; EE) (@), heL*M; dve) .

Also let /I: be the projection operator in LX M ; dve) given by (I1:h)(x)=
h,—g hdyv:, he L*(M; dvs). Then we have
JM

(2.4) 1T eQ2 N rocaspr-rocap S €XD (— At), 120, E€K.
Let Q% =17,Q% and G5=2~§:Q55’dt. Let
Qt, 2, y; §)=uwé)@) ' F{E,x,y, Eul)y) ", t>0, z,yeM.
Then Q(t, -, - : -): MXMX K—(0, c0) is continuous, and
@)=\ Qi 2,y; Dgwvelay).

Moreover, if P,: L*(dp)—L*dp) belongs to the trace class, Q¥ : L¥(dve)—
L*(dve) also belongs to the trace class and trace Q¥ <exp(2-sup V(z; &))-
rEM

(trace P,). Let {Q®; x= M} be the v;-symmetric Markov process associated
with the semi-group {Q$}, 0.
Then we see that for any z,y=M and 7>0

(2.5) w(E) (@)@ WUT, 2,y §)-QP(dw| wO)=x, w(T)=y)|gr
—P(T,z,9)-exp (] Viw®): Bt Pldw| w(0)=z, w(T)=y)ls7

where Fi=c{w(t); te[S, T}, 0SS T.

(2.6) PROPOSITION. For any ¢&Cy(M), (¢, Gy/:)w(d.,e, 18 continuous in
(e K.

PROOF. Note that



546 Shigeo KUSUOKA and Yozo TAMURA

(¢, @F9) 1200 =SMX ,S@u@)@)FE, 2y, E)u() () (y) p(dex) (dy)

~{_swruerarpao.
So we see that (¢, @%¢)2., is continuous in &. Since
(¢, Geuscap—2\, (& BOP)sacarpllt| S2057 | 9lcar-eT,
we have our assertion.
(2.7) PROPOSITION. There 18 a ¢,>0 such that
D*Ulve ; €)(Geh)dve, (Geh)dve) < (1—co) (Geh, h) racares
for all £€K and he L¥dve).
PROOF. By the assumption (U-5) we have
Ew,0) | V(w; @) plda) >2- D Ulvs, E)u(Eyvd s, (o)

for any é€ K and ve Dom(&) with (v, w(€))r2wm,=0 and v+0. Let E(v,§)
=5(v,v)—SMV(x; E)v(@)2p(dx) + (v, u(é))iew, for ve Dom(€), and let Pow=
’v‘(u(f),v)ﬂ(dy)'u(f), ve LA(M,dy). Also, let

¢,=sup {2+ D*Ulvg, &)(w(&)(Pev)dp, w(§)(Pev)dp) ; €€ K, vE Dom(E), E(v, §) <1}

Then we see that ¢,<1. Since {(§,v)€ KX Dom(&); E(v,E)<1} is a com-
pact subset of I~( x LM ; dy), we see that ¢,<1. From the definition, we
see that E(u(&)Geh, &) =2-|G¥*hl}2q.,, and

DU (ve, £)(w(&)(Pe(u(&)G eh))d g2, w(€)(Pe(u(€)Geh))d p)
=D*Ulve, €)((Geh)dve, (Geh)dve),  hEL*M; dve) .
This implies our assertion.

By virtue of Lemma (1.1), we have the following.

(2.8) PROPOSITION. Let x,yEM and R>0. Then there are 6>0 and
C>0 such that
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r, 2,55 6)- B exp(s7-{ g(dtn(w) —dv)

w(0) =2, w(T):y]|

|z]*T

éCexp( (¢, Gegb)Lzuue)){lzIJrexp (C-|2*T)+exp (—2,1)}

and

’Q(T, 2,9; £)- EQ‘f’[exp<z T S»Igb(dlr(w)—due))

—exp(( ) (/), 6(/’)L2(dve)>

<Ce,xp<|zI T (¢, €¢)L2(due)>

X{|z|+exp(C-|z)*T)—1+1z|%exp (C-|2|?T)+exp (—A,T)}

w(0)=2, w(T)=y]

for any 1>2, 9CM), €K and 2€C with |lc,an=RE and |z|<d.

Note that S u(&)dp<1, and
M

[, 160002, 0,0; 7 pda)<| Q25,0 Ovelda) =trace @P.
So we have the following also from Lemma (1.1).

(2.9) PROPOSITION. Suppose that P,:L*dp)—L*dy) ts a mnuclear
operator, and let x=M and BR>0. Then there are 6>0 and C>0 satisfy-
ing the following.

(1)

SMﬂ(dy)<u(€)(y)Q(T, z,Y; &)

EQ‘G’[exp< S P(dlr(w)— dve)>'w(0)=x, w(T)‘—'?/})‘

<Coxp(ZET (9, Gegincep izl +exp (C: 2 T) +exp (— 1)),

and

§, san(w@war, ;o

x B exp(2 7| ptdizt) ~dve) )| w0) =2, w(T)=y])
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~({ mern)-exp((5E): 0, Geprss)

<Cexp<|zI2 I (¢, 5¢)L2(dve))

X{|z]+exp (C-|2’T)—1+4|z|%exp (C|z|2T) +exp (— A, 1)}
Jor any T>2, ¢€C(M), é€K and 2z€C with |dlcn<R and |z|<é.

@) 1, 00 et (W@ (@ WIQUT, 3 s &

xEQ“’[exp<zT- SM(/;(le(w)—due))

w(0)=yo, w(T) =y1]>'

sCexp(E (4, Geguscu )2l +exp (12 1) +exp (— )

and

’SMx M/“(dy")/‘(d%)(u(&)(.%)u(f)(yl)()( T, Yo, Y1 ; &)

xEQ@’[exp(zT. | #dirw)—dso)| wO) =, w(1‘>=y1])

- (S‘”u(e)dpy'exp((-z-zg—)- (¢, Ge@mw@)

éCexp(l 2T (¢, €¢)L2(dve)>

X{|z]+exp (C-|z*T)—1+|z|%2exp (C|z|*T)+exp (— A, T)}
Sfor any T>2, 9cC(M), €K and 2£C with |Pllc,un<R and |z|<4.
Also, we have the following.

(2.10) LEMMA. Let x,yeM. For any R>0 and ¢>0, there i1s a 6>0
such that

sup {Q(T, %,y ; 6)-EQ‘5’[exp<% -<SM¢(le—dve)>2>,

ISM‘b(le'd”e) <5‘ w(0) =1, w(T)=y];

T>2, ¢€K, $eC(M), 1$lonS R, @, Ceiscup=1—c]
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PROOF. Let X be a random variable. Then we have
E[exp(-12—|X|2>, 1X|< a}
o _ T .
:S ds 2/ T) 1/2exp<—?sZ)-JfJ[exp(q-s-X), |X| <]

oo 1‘
gz-s ds (27r/’1')“”2exp<— £l -s2>
25 4

5 m
+SZzads(zn/T)-wexp(—%sz)-E[exp(T-s-X)].
Also, we see that for 1'>2

QUT, x,y; 6)<Q2,x,a; ) Q2,y,y; )", E<€K.

Thus our assertion is an easy consequence of Proposition (2.8).

The following is also an easy consequence of Proposition (2.8).
(2.11) LEMMA. Let ¢y, -, ¢ =Cy(M). Then for any R>0and x,ye M,

sup{ \Q(T, %,y 5)-E‘?‘e’[exp<«/_—_1. TV, jé 8 SMgbj(le—dve))’

w(0) =1, w(T)=y]

1 = ~
—exp <— ? : j'kzzlsjsk(gbjy Gé¢k)L2(dpe)>

—>( as T—oo.

. £€K, s,€R, |s,|<R, j:1,...,n}

Moreover, we have the following.

(2.12) LEMMA. Let ¢y, ,¢.€C(M) and O : D([0,0); M)XK—R 15 a
bounded measurable function such that there is an To>0 for which
@+, &) : D(0, ) ; M)—>R is Flo-measurable. Then for any x,yEM and
R>0,

up{[@(T, 2,5 &) B0, &-exp (V=T 7 Ba; - § gutdle—dno)

w(0)=uw, 'w(T):y:|
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1 » 2
—E°O[(-, &) w(0)=x] .exp<—§j§lsjsk(¢j, Ges/h.)mmp)’ ;

(€K, s,eR, |s,|<R, j=1,---,n}

—>0 as T—oo,

PROOF. We may assume that 7,>1 and |f(w,&)|<1 for all (w,&)e
D([0, <) ; M)X K. Let t>0, T>Ty+t+1, and g: D([0, o) ; M) X K—C be a
measurable function such that |g(w, £)|<1 and ¢g(-, &) : D([0, o) ; M)—C is
FT,+. measurable for all é€K. Let

()@ =Q(Ty, @, 2; &) E*CLfl w(0) =, w(T)=z],
and

()R =QT—(To+1),2,y; ) -E*®lg| w(To+t)=2, w(T)=y], z€M.

Then we have

(@), @0 uscwo— (| 2@ ) v

Sehot lve()l L2(dvp) lvu(8) L2dv)

Se Q2 x,x; 6)V-QR2,y,y: §)VE.
Note that

(v6(8), @F () 12w =QT, %, ¥ ; £)-E*¥[fg] w(0)=2, w(T)=y],
and

(1, 2000 )| @de) = EOLA w(0) =] E<“Lgl w(T) =g].
Thus we have
T, 2, y; &) E*“Lfg] w(0) =2, w(T)=y]
—E*®Lf| w(0)=x]- E¢“[g] w(T)=y]|
<exp (—At) Q2,z,x; §)'*QQ2,y,y; &)V.
Also, we have that

2t
.SM¢(dlr(w) —dve)— SMsb (Alr(w(- +1))—dve)| = 7 (I PRI

These implies our assertion.
This completes the proof.
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Let P,: M,— M, n=1,2,:--, be given by
d(an)Zé‘i ||§0k||;,22<d,,><SM<pkdm)-go,,d;z, me M.
Then it is obvious that '
im—Pemli= 3 o lpl (| odm ), medt.
Now let U: M,x K—R be given by
Uim, &)= U(m, &) — Ulvg, E)—S V(- &)dm—dvs), (m,EeMxK.

M

Then we have the following.

(2.13) LEMMA. For any p<(l,) and xz,ysM, there are 6,>0 and
no=1 such that

_ 1
EQ‘f’[exp(pT- Uiz, &)~ D*Ulve, §)(Pall— v, Pallr —ve)

<5,

supl{| gudtr—va| < wO) =0, w(D)=y |<2
for all T>2, é€ K and n=n,.
PROOF. It is easy to see that there is a C,>0 such that
'U(m, 6)—%‘[)2(](1.!5, E)(m—ve, m—ve)| ZCillm—vell’

and
]DZU(Vg, 5)(’m—y5, m——ue)—DzU(ve,5)(P,,(m—v5), Pn(m—vg))l

SCill(m—ve) —Pa(m—ve)ll 4 Im—vel 4

for any (m,¢)e MxK.

oo 1/2
Let bnz{k Elak'llgo,,llzg(d,,,] , m=1,2,---. Then we see that
=+

~ 1
(Om, §)— 5 D*Ulvs, )(Pulm—ve), Palm—vo)

SCillm—veld +Ciballm —velld +Cibz' [ (m—ve) — Pu(m—ve) |l
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oo , 2
S Coa+02)C:+ B ar- el | @edim—ve))

oo 2
0t B arlpalzhan | pidm—))

for any £ K and me M with S‘}P)S ord(m —ve)|<d. Here
7 M

” 12
Co:<§1ak N ”Zg(d/.l)' @l tz:,,w))

Let d,=(Cyd+b,)C,- Elak-IIgohIIZ%m,,)-FClb,T‘- kgklak-llgokluéw,n- Then we
have

U(ls, &)

T,y §) B exp(p1

- %DZU(W, E)(P(lr—ve), Prlly—ve)

)

<a’ w(0) =z, w(T):y:l

Sukpl S Mﬁl?kd(lr - Ve)

<d:(Co+bC 2 faus Ipul s
xQUT, 2,93 &) B exp(pd (| gudltz—a)))

‘Suﬁokd(lr—w) <5'w(0)=w, w(T):y]}

+d7Chit 5 e lodan
XQT, 7 ; &) [exp(pd T <S gokd(lr—ve)>2>

lS 0rd(ly — ve) <5'w(0 =g, w(T :y]

<sup QT,x,y; &) E[exp<pdnT- <S Ped(lr —ve)> >

‘SM%d(lr—ue) <5'w(0):x, 'w(T)zy]_

Since d,—0C;b: as n—oo, we have our assertion from Lemma (2.10).
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By Proposition (2.7) and the fact that [(Geh)ve— P.(Geh)ve)li <

(Ii}}r1 i 10l e ol el ocsry) | G ehll F2caner, We see that there is an m,=1 such
that

(2.14)  DU(ve; &)(Pal(Gch)dve), Po((Geh)dve)) < (1—cof2) - (Gehy ) rocass

for all n=n,, éK and he L%dve).
Then we have the following.

(2.15) LEMMA. For each n=n, and x,y<=M, there is a 0,>0 such
that

sup{Q(T,w,'z/; &)

x EQ“’[exp(u —ef5) %DZU(ve &) Polly—ve), Palle— »e))),

<0,

sup Sugokd(lw —ve)

w(0) =2, w(T):y]; cek, T>2}
<o,

PROOF. Let aij(y) = ”(Pi.||Z%(dp)||¢j"z§(dy)‘ D? U(VE; 5)(¢idﬂ; SDjdll)’ 'i, j: 1,2,
Then a;;: K— R is continuous. Also, we see that

D*Ulve, £)(Pum, Pom) =i.j§"=]1 aij({‘)(SM(pideSMgo,-dnL), meM.

Let Mo={me=M; m(M)=0} and b, =sup {(Geps, p:)i%w.p; EEK, k=1,--,m}

Then it is obvious that b<oo. Let W= 2' Rop,. Then by (2.14), we see
that

2 -
D*Uve, &Py, Pam) < (1= ci2)-sup{({ gdm) s =W, Gep, 051
for all £€ K and me M,.
For any £€ K, it is easy to see (e.g. see the argument in [K—T]) that
there is a finite subset {F(O}7¥ of W such that
D?U(ve, §)(Prm, P,m) <(1—co/3)- max {(SMJEE’dm>Z ; k=1, 1\7(5)}
for any me M, and

((;5975«6’, Jﬁe))wcme)_ﬁ 1, k=1,---, N&).
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So noting that (G¢(bz'ey), (b7'¢x)rewp=<1, §€K, k=1,---,n, and that
|D*Ulve, E)(Ppym, P,m)— D*U(y,, 7)(Pom, P,m)|
< b,%(iél Iai,-(E)—a”(nH)-maX{<SM(b;‘gok)dm>2; k=1,2,-- ,n}, &, nEK,

me M, we see that for each £ K, there is a neighbourhood O; of & in
K and {¢{}¥PcC W such that

D*U(vy, p)(Ppm, P,m)<(1 —00/4)-max{<SM¢§f’dm>2 s k=1, N(&)}

and )
(ny ¢§,e), ¢§ce))L2(du5)§ 1 y k= 1; ttty N(é)

for any n=0¢ and me M,.
Therefore there is a 4,(6) >0 such that

sup {Q(T, %,Y;7)
X EQ"”[exp<(1—co/5)“ . -YZLD‘Z Ulvy; 9(Pulyr—vy), Pally— u,,))>,

<51(6).w(0)=x, w(T)=y]; 7€ 0, T>2}

Sl}epiSde(lT_”v)
<o,
Since K is compact, we have our assertion.

As an easy consequence of Lemmas (2.13) and (2.15), we have the
following.

(2.16) LEMMA. For any x,yEM, there are 6>0 and ¢>0 such that

sup {QUT, 2,4 ) EQ“’[exp (14T Ulr ; &),

sgplSMgo,,d(ly-—ve) <5|w(0)=x, w(T)zy]; te K, T>2}

< oo,

Similarly starting from Proposition (2.9), we have the following.

(2.17) LEMMA. Suppose that P,: L¥*(dg)—L*(dgp) is a@ nuclear operator.
Then for any x< M, there are >0 and ¢>0 such that
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sup {SM#(dy)<%(5)(’!/)Q(T, x,Y) -EQ(e)[exp (1+e)T-Ullr; &),

<9

sgp}SMgo,,d(zT—ve) wO) =2, w(l)=y|); ¢k, T>2

sun{{ wdu) ey (1O @IuO WIQT, 1., 1)

x B¢® exp (14T Utz ), sup|| pidilr—so

<5\
0(0) =¥,, w(T)zyJ); e K, T>2}
<o,

(2.18) PROPOSITION. For any x,yM, P(T,x,y)—1, T—co, and
QT,xz,y; &—1, T—oo, untformly in E€K.

PROOF. Note that

lQ(T+2y x,Y; E)'— 1| g l(Q(ly X, &): Q(T'G)Q(ly Y, -5 E))L2(dVG)

—<S‘"Q(l,x, '; E)dw)(SMQ(l’y’ s E)dW)

<exp(—AT)-Q2,z,x; " QR2,y,y; 8"

So we have the latter assertion. The proof of the first assertion is similar.

Then we have the following main theorems.

(2.19) THEOREM. Assume that the assumptions (A-1)-(A-3), (L-1),
and (U-1)-(U-5) are satisfied. Then for any x,y=M, S>0 and any Fs-
measurable bounded function @ : D([0, ) : M)—R,

eT/®. EP[@(w)-exp (T Ullr(w), &) w(0) =z, w(T)=y]
— u(8) (@) u(€)(y) - E°C[®] w(0) =x]
X (detracanp(I— D*Ulve, 6)(GY?-, GY2-)) 12

as T—oo uniformly in £ K.
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PROOF. Since the proof is similar to the proof of [K-T, Theorem
(3.14)], we only give a sketch of the proof. By the assumption (L-1), we
see that for any ¢:>0 and £ K, there is a d(c, &) >0 such that

1
Tim = - log EP[exp (T- Ully, €)), sup‘g el — ve)
T k1)

T —oo

>el w(0) =2, w(T) :y:,

<—f(€)—0(s, §) .

By the definition of M,, we see that there is a constant C<(0, ) such
that

|U(m, &) — Ulm, &) <C-|U(-,6) —U(-,&)lla, mEPM), §6€K.

Therefore we see thé.t for any ¢>0, and £ K, there is an open neighbor-
hood O; of & in K such that

Tfon sup {51— log E"[exp (T Ully, &), s%p1SM<pkd(lT—u5,). >e

w(0) =z, w(T)=yJ+ S, S'Eoe}
< —0d(e, 8)/2.

Since K is compact, we have

1
Tim sup {T log :P[exp (T Ully, §)), sup }Sde(zT—UE) >e

T —oo

w(0) =2, w(T)zy}rf(s) 154
<0 for any ¢>0.

By (2.5) we have

eTIOP(T, 5, y)EP[q’»exp (T-Ulg, &), sukp‘SM(p,,d(lT— ve)|<e

w(0)=2z, w(T)= y}
=w(&)@)u&)UT, x,y ; &)

x B2 0-exp (T Ollz—ve; ), sup | oudlle— 0| <o w0 =2, w(T)=y

By Lemma (2.12), we see that (®(w), T*?(ly(w)—yve)) under Q“(dw| w(0)==x,
w(T)=y] converges in law to (@ W), where @, and W, are independent
& has the same law as @(w) under @¥(dw| w(0)=x) and W, is a Gaussian
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random measure on M whose characteristic function is given by

E[exp(«/——l- | o@Widz) )}:exp(—%(éw, ¢>), & < C(M). Moreover,

Lemma (2.12) shows that this convergence is uniform in é€ K in a certain
sense. Lemma (2.16) guarantees the uniformly integrability of
@-exp (T Ul ; &) under Q¥ (dw| w(0) =2, w(T)=y) with respect to T=2 and
¢eK. Since T-U(lyr: &)=(1/2)-D*Ulve, ENTY¥p—ve), T*(1r—ve)) +o(1), we
see that

AT, z,y; &) E2C[D(w)-exp (T Ullr(w), §)| w(0)==, w(T)=y]
1
— EI:CD&'GXD (5 D*Ulve, E)(We, We)ﬂ

= E°O[0] (0)=a]- [debrecap(I— D Ulvg, £)(GY?-, G¥2-) 172

as T—oo uniformly in é€ K.
Therefore we have our theorem.

Similarly, we have the following.

(2.20) THEOREM. Assume that the assumptions (A-1)-(A-3) and
(U-1)=(U-5) are satisfied, and that P,: L*(dp)—L*dy) is a nuclear opera-
tor. Then we have the following.

(1) If the assumption (L-2) is also satisfied, then for any x=M, S>0
and any SF5-measurable bounded function @ : D([0, ) : M)— R,

e T IO EP[@(w)-exp (T Ulr(w), &) w(0)=1x]
——>1L(E)(x)'<SMu(5)dy>-EQ‘G)[(])| w(0)=2]

X (detaca.p(I— D*Ulve, E)GY?-, GY2-)) 12

as T—co uniformly in §€K.
(2) If the assumption (L-2) is also satisfied, then for any y=M, S>0
and any Fs-measurable bounded function @ : D([0, ); M)—R,

e 1O EP[@(w)-exp (T Ullr(w), &) w(T)=1y]
—> u(&)(y) ESE [u(&)(w(0)) - O(w)]
X (detyocap(I— D?Ulve, E)NGY2-, GY2.))- 12

as T—co uniformly in K.
(3) If the assumption (L-2) is also satisfied, then for any S>0 and



558 Shigeo KUSUOKA and Yozo TAMURA

any Fis-measurable bounded function @ : D([0, ) ; M)—R,
e TIO. BPe[d(w) - exp (T Ullp(w), £))]

— (|, w@1an) B9 @) wio)) - o))

X (detrocaup(I—D*Ulve, E)(GY?-, GY¥?-))) 12

as T—oo untformly in K.

3. Manifold reflecting singularities and Theorems.

Let us think of the situation given in Section 0. Let U: M,—R be
a bounded smooth function and let §: L*(dy)— R be given by g(p)= U(p*dp).
Then §: L¥dy)— R is a smooth bounded map. Let H be the Hilbert space
such that H=Dom(€) as a set and ¢l =2-(E(p, o)+ l¢lixan), ¢H.
Then H is a subspace of L*dp) and the inclusion map is a compact oper-
ator. Let g: HoR and F: H—R be given by g(h)=g(h)—1 and F(h)=
lhl%ecay—1, hReH. Then g: H>R and F: H— R are smooth and DF(h)(k)

=(Rh, k)y, h, ke H, where R:Swe“Pldt. Also, we see that
0

%-Hh“%+g(h)=8(h,h)+ Uh®dyp)  for heH with Suhgdyzl.
Let fo=inf{(1/2)-|hl} —g(h); hEH, F(h)=0}>—co, and let

1
v ={heH; 5 bl — g =Fi F)=0}.

Then we have the following.
(3.1) PROPOSITION. V 13 a non-void compact set in H.

PROOF. Assume that {h,)=,CH such that F(h,)=0, n=1, and
2\ hall—g(h)—fo, n—oo. Then we see that {h,};=, is a bounded set in
H. So taking a subsequence if necessary, we may assume that h,—h.
weakly in H as n—oc. Then we see that F(h,)=0 and (1/2)|h.ll%—g(h..)
<fo. So wesee that h.=V and |h.l’=2f,+2g(h.)=1im |h,l%. This implies

that h,—h. in H as n—oo. These imply our assertion.

Since Rh+#0 if h+0, we see that DF(h): H—R is non-degenerate for
all heV. Similarly to the argument in Section 2, we see the following.
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(3.2) PROPOSITION. (1) For each h&V, there is a unique a(h)eR
such that h—Dg(h)*—DF(h)*a(h)=0.
(2) Let heV and ke H with DF(h)k=0. Then we have

(k, k)u— D*g(h)(k, k) —a(h)- D*F(R)(k, k) =0 .

It is obvious that DF(h)(h— Dg(h)* —DF(h)*a(h))=0, he V. Note that
DF(h)DF(h)*=|Rh|4+0 if h+0. So we may assume that the map a is
defined in H\{0} by a(h)=(DF(h)DF(h)*)"*DF(h)(h— Dg(h)*), h+0.

Let V be a subset in Hx H given by

V={(v,k)€VXH; |kls=1, DF(v)k=0,
Ikil7 — D*g(v)(k, k) — a(v)- D*F(v)(k, k) =0} .
Then we have the following.
(3.3) PROPOSITION. Let G:(H\{0}))—=H be a smooth map given by

G(h)=Dg(h)*+DF(h)*a(h), he H\{0}. Let veV and keH such that |kl
=1 and DFwk=0. Then (v,k)eV iff k—DG(v)k=0.

PROOF. By Proposition (3.2) and Schwartz’s inequality, we see that
w,k)yeV iff (k, wuy— D)k, u)—a®)D*F@)(k,u)=0 for any weH with
DF(w)u=0. So we see (v,k)eV iff

k—D*g(v)(k, -)* = (D*F(v)(k, -)a(v))*—DF(v)*8=0 for some < R.
By the definition of «, we have
DF@)(h— D*g()(h, - )*—(D*F)(h, -)a(v))*— DF(®)*Da(v)(h))=0,
for all he H. Therefore we see that (v, k)eV iff
k—D*g(w)(k, - )*—=(D*F(v)(k, -)a(v))*— DF(v)* Da(v)(k)=0.

This implies our assertion.

(3.4) DEFINITION. (1) We say that N is a manifold weakly reflecting
singularities if

(i) N is a finite dimensional submanifold embedded in H,

(ii) VCN,
and

(iii) ke T, N) if (v,k)eV.

(2) We say that N is a manifold strongly reflecting singularities if
N is a submanifold weakly reflecting singularities and F(h)=0 for all
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heN.
(3.5) THEOREM. There 1s a manifold strongly reflecting singularities.
This theorem is a corollary to the following two lemmas.
(3.6) LEMMA. There 1s a manifold weakly reflecting singularities.

(8.7) LEMMA. Let N be a manifold weakly reflecting singularities.
Then there is a manifold N strongly reflecting singularities of the same
dimensions with the manifold N such that there is an embedding ¢ : N—»N
with e(v)=v, ve V.

PROOF OF LEMMA (3.6). Let {P,};-, be a sequence of orthogonal pro-
jections in H such that dim (Image P,)<c and P, 1 Iy strongly as n—oo.
First, we show the following.

(3.8) PROPOSITION. P,|,: V=P,(V) 1is injective if n 1s sufficiently
large.

PROOF. If not, there are u,,v,<V such that w,+#v, and P,u,=P,v,
for each n=1. Since V is compact, we may assume that u,—u and v,—v
as n—o. Then we see that u=v. Let G: H\{0}—H be as in Proposition
(3.8). Then we see that u,=G(u,) and v,=G(v,). It is obvious that

V= U =G(v,) —G(uy)

— DG(w) (v, — 1)+ S;(DG(unJr H(0,— 1)) — DG (W) (v, —u,))dL .

Let h,=lu,—v,la'(u,—v,). Then taking a subsequence if necessary, we
may assume that h,—h, weakly in H as n— . Since h,—DGu)h,—0 in
H as n—oco, and DG(u): H—H is a compact operator, we see that h,—h.
in H as n—. S0 |h.|=1. On the other hand, since P,h,=0, we have
P,h.=0, n=1. This is a contradiction.

This completes the proof of Proposition (8.8).

Let G: (H\{0})—H be as in Proposition (3.3). Let ®@,: (H\{0})—H be
given by @,(h)=h—Iyz— P,)G(h), he(H\{0}). Then we see that D®,(v):
H—H is invertible for all vV, if n is sufficiently large. So there is a
neighborhood U, of V such that @,|y,: U,—H is local diffeomorphism, if
n is sufficiently large. Also, we see the following.

(3.9) PROPOSITION. If n 1is sufficiently large, there is a neighborhood
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U, of V such that ®,lg,: U,—H is ingective.

PROOF. If not, there are z,,y,=H, m=1,2,---, such that z,#yn,
dis (2, V)+dis (Ym, V)—0, m— o, and @,(x,)=D,(y,). Since V is compact,
we may assume that z,—x. and y,—y. as m—c. Also, we may assume
by Proposition (3.8) that P,|v: V—P,(V) is injective. Then z.,¥.<V,
and 9,(x.)=?.(¥.). Since P,®,(h)=P,h, we have P,x.=P,y., and so
To=Yw. Since ?,|y, is local diffeomorphism, we see that @,(x.)=,(yn)
if m is sufficiently large. This is a contradiction.

This completes the proof of Proposition (3.9).

By Proposition (3.9), if we take a sufficiently large n, @,|y,nz, : UnN U.
—®,(U,NT,) is a diffeomorphism. Let W=P,(H)N®,(U,NU,)and ¢ : W—H
be given by ¢(x)=(P.lv no,) '(x), t€ W. Then ¢: W—H is an embedding
and VC¢(W), because @,(v)=P,v, v€V, by Proposition (3.2) (1).

Let (v, k)eV. Then by Proposition (3.3), we see that (d/dt)®,(v+tk)|,,
=k—(Iy—P,)DG(v)k=P,k. So we see that (d/dt)¢(P,v+tP,k)|.-o=Fk, which
implies that ke ¢«(v)(P.(H)). Therefore we see that N=¢(W) is a mani-
fold weakly reflecting singularities.

This completes the proof of Lemma (3.6).

PROOF OF LEMMA (3.7). Let N be a manifold weakly reflecting
singularities. Let {e,}i-, be a complete orthonormal basis of H. Let
A,: R—H be given by A,(§)=&e,, é=R. Let ¥,: Rx N->R be given by
V. x)=Fx+DF(x)*6+ A ,¢&), (§,x)e RX N. Since

DV (0, v)=DF(@)DF(v)*+A,) — DF(w)DF(v)*, n—x

b

we see that D ,(0,v): R—R is invertible for all ve V, if » is sufficiently
large. Also, ¥ ,(0,v)=0, veV. Therefore there is a neighborhood U, of
Vin Nand &,: U,—R such that £,(v)=0, v&V and F(x+DF(x)*¢,(x)+
A&, (x))=0. Let ¢,: U,—H be given by ¢.(x)=w+DF(x)*&,(x)+ A&, (x).
Then we see that ¢.«(x)(w)=u+DF(2)*¢,(x)(w)+ A Enx(x)(u) for xe=V and
we T (N)CH.

Note that A¥—0 strongly as n—. So we can take a sufficiently
large n such that the following are satisfied.

|AZu| < (4(IDF (%)l z-r+1)7" for all ue T,(N), x€V with ul,<1,
and
IDF(x)Asll e <1/2,  2€V.

Suppose that @,«(x)(u)=0, x€V, ueT,(N). Then we see that
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[Eax(@)ul < |AFul + | AXDF(2)*€ ny(2)u|

S |A¥ul+[Eas(z)(W)]/2 .
Therefore

lulp=2- IDF(2)*+ Anll gors lAt'Uf| §2~1”u||11:

and so u=0. Therefore ¢,«(x): T,(N)—H has full rank for all = V. This

and similar argument in the proof of Proposition (3.9) imply that there is

a neighborhood W, of V in N such that ¢.|w : W,—H is embedding.
Suppose that (x,k)eV. Then keT,(N). Note that ¥,.(0,2)0,k)=

DF(2)k=0. So &.4(x)k=0. This implies that ¢..(x)k=k. So if we let

N=¢.(W,) and ¢: N->N be given by ¢=(¢.|w,)"!, we have our assertion.
This completes the proof of Lemma (3.7).

Now let us think of the situation in Section 0 again, and let N, be a
manifold strongly reflecting singularities. Let N, be a compact set in N,
which contains V as interior points. Let N,={h’dy; he N}, i=0,1, and
V={h*dy; heV}. Then we may think that N, is a submanifold in the
Hilbert space M,. Then we see that there are an open neighborhood U
of V in M, and a smooth map ¥: U—N, such that ¥(m), meU, is a
unique element in N, with [m—¥(m)l|l,=inf {|m—dl,; meN}. Let
W,: Ux N,>[0, o) be given by Wy(m ; £)=(1/2)- |¥(m)—&l%. Let ¢: M,—R
be a smooth map such that 0<¢<1, disy,(suppe, MN\T)>0 and ¢(m)=1
in a neighborhood of V. Let W,: HM,XN—R be given by Wym,&) =
go(m)Wo(m, &)+ *(p(ﬂj«)), (m,&)e M4XN,.

Let us regard N, as a Riemannian manifold with the Riemannian
metric induced by |-li%, and let mno(dx) be the Riemannian volume. Then
we see that there is a neighborhood U, of ¥V in M, such that

(27) T4 exp (=1 Wilm, E)na(de)—>1, T—oo,
. 0
uniformly on me U,.

Let U: M, xN,—R be given by U(m,&)=U(m)— Wym, &), me ML,
¢eN,, and let f(&)=inf {E(p, p)— Ulp*dpy, §) ; goE@om(C?), lollreany=1}. Then
we see that f(&)=f, and f(&)=f, if and only if £&V. Also, we see that
if we let K=V, Ul «r: MsxV— R satisfies the assumptions (U-1)-(U-3).
Then by implicit function theorem we see that there is a compact neigh-
borhood K, of V in N, such that if we let K=K, Ul «z,: MsxKi—R
satisfies the assumptions (U-1)-(U-3). Let N be the interior open set of
K,NU, Then VCN and again by implicit function theorem, we see that
F()lg: NoR is smooth. Let u(-): Re—L*(M; dp), vee P(M), Ge: L¥dve)
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—L¥dve), £€K,, be as in Section 2.
Now let p: N—[0, ) be given by p(&)=r(§)— f0 and W: M,xX No—R
be given by W(m, &)= U(m)— Wym, &). Then we have the following.

(3.10) THEOREM. Suppose that the assumptions (A-1)-(A-3) are sat-
isfied, and let @ : D([0, ) ; M)—(0,0) be an <Fi°-measurable bounded
positive continuous function. - Then we have the following.

(1) If the assumption (L-1) is satisfied, then for any »,yeM

el /0. EP[@-exp (T- U(lr))| w(0)=x, w(T)=y]
~ATJRR) ™ g(6)-exp (— T-p(€) E¥VL0] w(0) =alna(d)
as T—oo. Here

9(&) =u(@)(@) - w(&)(Y) - [debrecanp(I— D* Wivg, §)(GY*-, GY*:)) 2.

(2) If P,: L3dp)—L*dp) s a nuclear operator and the assumption
(L-2) 1s satisfied, then for any zM

o0 EP[-exp (T- UIy))| w(0)=x]
~(TPR) ™ 72 g(6)-exp (— T p(@DECL0] w(0)=clna(de)
as T—oo. Here
9O =u(@®)@)- (| we)dve )-(@etisplI—D*Wive, NG, GY*- ).

8) If Py: LAdp)—L*dp) vs @ nuclear operator and the assumption
(L-2) 1s satisfied, then for any yeM

¢ 0. EPH[@-exp (T Ulle)| w(T) =]
~ (e g(6)-exp (— T p@) B [u€)w(0) - One(de)
as T— . Here

9(8) =u(§)(y) - (debrecap(I— D* Wive, EGY*, G‘“*-)))'”2 -

(4) If P,: Lz(d,u)—*L2(dp) 18 a nuclear operator and the assumption
(L-8) is satisfied, then for any xeM



564 Shigeo KUSUOKA and Yozo TAMURA
el /0. EPe[d.exp (T- Ullzr)]

~ (TR @m0 g(e)-exp (— T p(6) B [u(@)(w(0))- Olne(de)

as T—oo, Here
0(@)=( | w(ENdv,)- ety oI D*Wivg, )G, GY*-)) 2.

PROOF. Since the proofs are similar, we only prove the assertion (1).
Note that

— 1 .
11132710g E*[exp(T- U(lr)), lre MN\T,| w(0)=2, w(T)=y]< —fo.

Let W: M x N,—R be given by W(m, &)= U(m)— Wy(m, ). Then we see
that :

E*f[exp (T- U(lr))| w(0)=x, w(T)=y]
~E*[exp (T- U(lr)), lre U] w(0)=2z, w(T)=y]

~(2m)- 2. T‘“Z'gﬁ no(d€)E[exp (T Wz, &) w(0)=2z, w(T)=y]

as T—co. By Theorem (2.19), we see that
exp (T f(§))- E*[exp (T- W(lr, &) w(0)=x, w(T)=y]l—>g(§), as T—oo,

uniformly in &é=K, Therefore we have our theorem.
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