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§1. Introduction.

We consider a system of ordinary differential equations of first order
in the interval [0, 1]:

du,()

g TPu)n() + D1 () U () = A, ()
(1.1)
—‘:l—/b:'i(vﬁ)—"l" D (%) uq(x) -’rng(x)uz(x) = AUy (2) 0<z<1)

with boundary conditions

(1.2) Us(0) + hu, (0) =0
and
(1.3) u,(1) + Hu, (1) =0.

Here the p;(x) (1<14, j<2) are real-valued C'-functions defined on [0, 1]
and h, He RU {co}.

If h=co and H=oo in (1.2) and (1.3), respectively, then we regard (1.2)
and (1.3) as u,(0)=0 and u,(1)=0, respectively (cf. Remark 3 below).
Moreover the parameter A corresponds to the eigenvalue.

The eigenvalue problem (1.1)-(1.3) desecribes proper vibrations for
various phenomena such as an electric oscillation in a transmission line,
a vibration of a string with viscous drag, ete. In Yamamoto [42], we
consider such proper vibrations and discuss inverse spectral problems
for them.

Let us assume that p;; (1=1, j<2), h and H are given. Then a
problem of finding eigenvalues of (1.1)-(1.3) is one of what are called
forward problems, and such a problem is nothing but the determination
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of eigenfrequencies.
On the other hand, the following problem arises from both mathe-
matical and practical interest:

to study whether a physical system realizing the specified charac-
teristics of vibrations (e.g. eigemfrequencies) is unique.

This is an identification problem, and, in this problem, assuming that
the eigenvalues are given, we determine the coefficients p;;(x) (1<1, j<2)
and the real constants h, H. Thus in contrast with the forward problem,
the identification problem is an inverse problem, and more precisely, an
inverse spectral problem in our case.

The purpose of this paper and the forthcoming one [42] is to study
an inverse spectral problem for (1.1)-(1.8).

For the Sturm-Liouville equation

~ LU p@ule) =tule)  (0=e<1)
(14) L (0)— hu(0) =0

A% () 4+ Hu(1)=o0,

dx

inverse spectral problems have been studied in detail. We refer to
Borg [1], Gel’fand and Levitan [3], Hald [4],[5], [6], Hochstadt [7], [8], [9],
Hochstadt and Lieberman [10], Isaacson and Trubowitz [11], Iwasaki [12],
Levinson [14], Levitan and Gasymov [15], Mizutani [19], Suzuki [33]-[38],
and Willis [41]. Furthermore, for inverse spectral problems for equations

of higher order such as (—1)"‘dzu’zfnx) +p(x)u(x)=2Aulx) 021, m=
X

2,3, ---), we have McLaughlin [17], [18], Sahnovié [30], [31] and Uchiyama

[40].

On the other hand, there has been little work for inverse spectral
problems for systems of ordinary differential equations as (1.1).

Notice that by eliminating u, or u, in the equation (1.1) so as to
get a single equation of second order, we cannot reduce our problem
(1.1)-(1.8) to the Sturm-Liouville problem, except for particular cases
such as Py, (%) =Pau (®) =p(x) =0 (0<2<1) and h=H=0. Conversely Sturm-
Liouville problems of the following form are reduced to our problem
(1.1)-(1.3):



Inverse spectral problem 521

plx) dz \E(x) dz > Aufx)  (0=2=1)
(1.4)" u(0)=0  or %@:0
w)=0 or L.

In our forthcoming paper [42], we shall discuss also an inverse spectral
problem for (1.4)".

Inverse spectral problems are related to inverse problems for evolu-
tionary systems. For those problems, we refer to Kitamura and Nakagiri
[18], Nakagiri [21], Nakagiri and Yamamoto [22]-[25], Murayama [20],
Suzuki and Murayama [39], and Suzuki [32],[33],[38]. In [21],[23],[24]

and [25], abstract evolution equations of the form dZ—I(:t)—!—Au(t):O (t=0)
with %(0)=u, are considered in Banach spaces, and the unique deter-
mination of an operator A from observations of the solution wu(t) over

a time interval, is studied.

In the rest of this section, we give a formulation of our problem and
state our main result.

Let L%0,1) be the Hilbert space of square integrable complex-
valued functions in the interval (0,1) and let {L*(0,1)}* be the product
space, which is a Hilbert space with an inner product defined by

1

(1.5 (4,0) = (1, 0) = |, w0 @i d+ | alo)ulaide

Uy (5
(=() =) etwor)
Us Vs

where @ denotes the complex conjugate of « € C.
Take real-valued C'-functions p;; and ¢; (1=<1%, j<2) defined on
[0,1] and h,j, H, H*,J, J*€ RU{cc}. We set

and
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B:<O 1).
1 0

We define an operator A, » as the realization in {L*0, 1)}* of the dif-
ferential operator B;l—g'c+P(x)- with boundary conditions u,(0) 4+ hu,(0)=0

and w,(1)+ Hu,(1)=0. That is,

(1.6) (Ap,h,nu)(x):Big;iHP(x)u(x) for ue D(Appn),

where
U
@(AP,h,H) = {u:< u/l > e {Hl(O, 1)}2; uz(o) +hu1(0) :O, uz(l) +Hu1(1) ZO}.
Here H'(0,1) denotes the Sobolev space and {H'(0,1)}* is its product
space. Similarly we define the operators Ay, ., Aq.;.;, Ag;v €te.
Let o(Ap,.,u) denote the spectrum of the operator A;, . The fol-
lowing result is known (Russell [28], [29], for example).

PROPOSITION A. Let h, HE RU{co}]\{—1,1}. Then o(Ap, 1) consists
entirely of countable ergenvalues 2, (n€ Z) and the multiplicity of each
2, is one. That 1s, dim Ker(2,—Ap ;. z)=1.

REMARK 1. If |h|=1 or |H|=1, then the conclusion of this proposi-
tion does not necessarily hold. For example, we have ¢,(A,,,1)=0,(A4o,_1,_1)=C
and o0,(A4,,,_1)=0,(A_1,)=. Here o,(-) denotes the point spectrum of
an operator under consideration.

Henceforth, for simplicity, we assume that absolute values of real
constants in boundary conditions are not equal to 1.

Moreover, without loss of generality, we assume that

in the boundary condition at z=0.
In fact, if h=oco, that is, if the boundary condition at x=0 is u,(0)=0,

then by setting v=< v >E< e > we have a system
1)2 ul
dvz(x) _
v + Daa( @) V1(T) + Par () v2( ) = 201 ()
1.1)
(L) dwv,(x)

~W‘l‘pm(w)?h(x)‘*‘pu(-'”)'uz(x):'2'1)2(-?7) (0=2<1)
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with the boundary conditions

(1.2)/ 2,(0) +0-2,(0) =0
and
(1.3) v2(1)+—;f-v1(1)=0.

The system (1.1)’-(1.8)’ is nothing but the system (1.1)-(1.3) where h
and H are replaced by 0 and % respectively.

Thus, we suppose the following assumption on the real constants
in the boundary conditions.

ASSUMPTION.
{h,jeR\{—l, 1},
H H* J, J*€¢ RU{cc]\{—1,1}, and H+H*

In particular, H+H* implies that either H or H* is finite.

Now our inverse spectral problem or identification problem can be
stated as follows:

(1.8)

Problem A. Do the conditions

U(Aa.j,l)ZU(AP,h,H)

19
(19) {a(Ao,,-,,.)zcr(Ap,h,m)

imply the equalities Q(z)=P(x) (0<x<£1), j=h, J=H and J*=H*?

Actually we discuss

Problem B. Assume that P, h, H, H* are given. Then characterize
(Q, j, J, J*) satisfying O'(AQ‘J"J) :O'(Ap‘h’y) a«nd O'(AQ,J‘,J‘) :U(Ap,h,ys).

The reason why we have to consider one pair of boundary value
problems is because the spectrum of a single problem is not sufficient
for the characterization of coefficients. Furthermore, as is seen from
Theorem stated below (cf. Proposition 1 in [42]), nothing is added by
taking the spectra of more than two boundary value problems for (1.1).

Such a formulation was first introduced by Borg [1] for the Sturm-
Liouville equation.
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REMARK 2. For inverse spectral problems for the Sturm-Liouville
equation (1.4), we have two other types of uniqueness theorems. The
first is due to Hald [6], Hochstadt and Lieberman [10], Suzuki [33], [38],
and Willis [41], where one set of eigenvalues determines p(x) uniquely
on the whole interval [0, 1] provided that p(x) is known on the “half”
interval [0,1/2]. The second treats the case where p(x) in (1.4) is
spatially symmetric (namely, p(z)=p(1—2) for 0<x<1). That is, in
Borg [1], Hald [4], [5], Hochstadt [8], Levinson [14], and Suzuki [33], [35],
it is shown that one set of eigenvalues associated with symmetric
boundary conditions determines such a symmetric coefficient p. For the
latter, we further refer to Iwasaki [12], and Suzuki [36], [37].

The corresponding results can be proved also for our system (1.1)-(1.3).

In order to consider Problem B, we introduce

DEFINITION 1. Let P=(Pi;)ici.j<: € {C'[0,1]}* and h, H, H* be fixed
such that he R\{—1,1}, H,L H*€ RU{o}\{—1,1}, and H=H*. We set

(1.10) M(P,h, H, H*)={(@Q,J, J, J*); @=(g:;)15:,552 € {C'[0, 1]}*,
JERN{—1,1},J,J*€ RU{oo}\{—1, 1},
0(Ag;)=0(Ap,.u) and o(Ag,;. ) =0(Ap s u+)-}s

and

(1.11) M(P, h, H, H*)={(@Q, 7, J, J*); @=(q:;)15:,;<2 € {C'[0, 1]},
JERN{—1,1},J,J*€ RU{oo}\{—1,1},
0(Aq,j,)) D0(Apu,n) and o(Aq,;,7)D0(Ap s ).}

In other words, M(P, h, H, H*) denotes the totality of operators Ay ; ;

and Aq ; ;- whose spectra coincide with the spectra of the operators A;, »
and A;, s respectively.
It is obvious that (p, h, H, H*) € M(P, h, H, H*). 1If we had M(P, h, H, H*)
={(P, h, H, H*)}, then the two sets of eigenvalues would determine the
operators Ap, s and Ap, y uniquely. (That is, the answer to Problem
A would be affirmative.) Thus, for the discussion of uniqueness or non-
uniqueness in our inverse problem, it is sufficient to determine the set
M(P, h, H, H*).

Throughout this paper, we note

REMARK 3. Henceforth we set
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1-H _1+H _

(1.12) = =
1+H 1-H

-1, if H=oo.

Furthermore, we adopt the following notation:

(1.13) Let a, € R. If H=oco, then the equality
a+pBH=0 means 3=0.

Then, without distinguishing the cases H=o0, J=o0, etc. from the cases
H+#oo, J+oo, ete., we can formally write and mathematically follow all
our discussion in this paper. For example, H=co means u,(1)=0 in (1.3).

We can state our main result giving a characterization of M(P, h, H, H*):
THEOREM. (I) We have

(1.14) M(P, h, H, H¥)=M(P, h, H, H*).

(II) We have

(1.15) @, 7, J,J*) € M(P, h, H, H*)

if and only if (1.16)-(1.19) hold,;

(1.16) —t—i(qu(w) + @12(2) — qar (%) — Qo) — P12 (%) + Pia(®) — Pr () + De(2))
+ 1+J (qu(2) — @12(2) + Qo (%) — Qo2 (2) — P12 (@) — D12(2) + D () +Poe(2))

1+h

xexp || (@uls) +auls) —puls) — pals))ds) =0 (0=2=1)

(117 T (qule)+0ula) ~gu(s) — gale) +Pu(®) — Pu(#) + Pulz) — pul)
+%';;(—Q11(w)+(I12(x)—Qm(m)+(I22(w)_pu(x)—plz(x)+p21(x)+p22(x))
xexp( | (qu(s) +auls) ~puls) ~puls))ds) =0 (0<2<1)
(L+h)(1—H)1—5)(1+J) <
1—h)1+H)(1+5)(1-J)
(1.18)

(1+h)1—H)(1=g)(1+J) ZS‘

0

(411(8) +q22(8) — Pus(8) — Pas(8))ds,
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(1+h)(1—H*)(1—7)(1+J%)
(1—R)(1+H*)(1+7)(1—J*)
(1+h)(1—H*)(1—j)(1+J*)

8 L+ HO L (L) o @18 (8Pl =Pl

>0

(1.19)

From the fact that the equalities (1.16) and (1.17) can be regarded
as two nonlinear integral equations of four unknown funections g¢;;
(1=, j<2), we can show that there are infinitely many Q=(q;;)i<i i<
satisfying (1.16) and (1.17). That is, the answer to Problem A is nega-
tive. We note that for the Sturm-Liouville equation, two sets of eigen-
values determine p in (1.4) uniquely, because there is only one unknown
coefficient. Hence our concern turns to how many coefficients in (1.1)
can be uniquely determined by two sets of eigenvalues. In fact, since
we have only two equalities (1.16) and (1.17) on Q=(qi;)ii j<» We can
determine at most two of four components of Q. These will be discussed
in our forthcoming paper [42], and will be applied to some identification
problems for such systems as (1.4) with more practical interest.

This paper is composed of three sections and three appendixes. In
§2, we derive a formula (a “deformation formula” according to the
terminology in Suzuki [33]), which is a key in later discussion. In §3,
we prove Theorem.
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§2. Deformation formula.

We begin this section with the following proposition on a system
of hyperbolic equations. Let

(2.1) 2={(z, y); 0<y<z<1},
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0 1
and we recall that B=<1 O)'

PROPOSITION 1. Let P=(Dij)1<i,i<z aNd Q@ = (q:;)1<:,;2 be given in {C'[0, 11},
and let h be a given real mumber such that |h|#1. Then, for each
7y, 7, € C'Y[0, 1], there exists a unique K=K(z, y)=(K;(®, ¥))igi,;<2 € {C'(Q)}
satisfying (2.2)-(2.5):

2.2) B%j?”wmm,y)—K(ac,wP(y):—ﬂfg”;—y’B (2, ) € D).

Klz(x, 0) =hKu(x, O)

(28) { Kan(x, 0)=hKy(z, 0) (02,

(24) Ky(z, »
(2.5) Kz, x

Kz, x)=7:(x) (0<z<1).

)—
) — Ku(x, x) =7:() (0=<x=<1).

Proposition 1 is proved by reducing (2.2)-(2.5) to a system of Volterra’s
integral equations (cf. Petrovsky [26] and Picard [27]) and we carry out
its proof in Appendix I.

For (pij)igi,j<o (€is)isi i<z € {C'[0, 1]}* and k, 7€ R\{—1, 1}, let us set

(2.6) 0,(x)= %j (¢ua(8) +qua(8) — Dals) —Pm(s)ds  (0=w=1),
27) Oul) = %S (qu(8) + Tals) — Duls) — pm(s))ds  (0=m=1),
and
_1—y
M=
(2.8) .
_ 14
Ay = 1+h.

Moreover let us put

(29)  afx) =%{a1 exp(—0,(x) —0y()) +a. exp(—0i(2) +0,(x))}  (0=2<1),

(2.10)  b(x) =—f12—{a1 exp(—0,(x) —0y(z)) —a, exp(—0y(x) +05(2))}  (0<=z<1),

and
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a(x) b(x)

(2.11) R(x) =< biz) o)

) (0<x<1).

Now we state a “deformation formula” in our case;

LEMMA 1. (I) For given P,Q¢c{C[0,1]}' and h,jER such that
|h1,|5|#]1, there exists a wunique K=K(z, ¥) = (Ki;(2, ¥))1g:,522 € {C(2)}
satisfying (2.12)-(2.15):

2.12) BEK%W— +Q@)K(z, y)— Kz, y) Ply)=— aKg; UB (@y)e)

(2.13) { Ku(x, 0)=hEKy(, 0)
Kn(z, 0)=hKy(z,0) (0<x<1).

(2.14) Kz, z) — Ku(z, )
%al exp(—0:(x) —0s(x))
X

(qu(2) + Qua(®) — s (%) — Qo) — Pu(2) + D1a(®) — Daa () + D))
+%a2 exp(—0.(x) +0:(x))
X (qu(®) — qua(2) + G () — () — Pu(2) — Pra(2) +]021(95) + Pa(2))

02Ll).
(2.15) Ky(x, x)— Koy(x, x)

:%al exp(—0;(x) —0,(z))

X (qu(x) + quo(%) — G () - Qo2(2) + D1 () — Dra(®) + Dea (@) — Do)
+ 302 €xp(—6,(z) + )
X (—qu(®) + qie() _Q21(w) + @2s(2) — P (%) — Pr2(2) + Do (2) + Pe())
: (0L2L1).
(II) (¢ deformation formula) For 2€C, if ¢(-)=¢(-,2) € {C0, 11} satisfies

216) B | pajg)=19(w)  (0w=1)
and

2.17) $(0) =< L )
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then ¢(-)=¢(-, 2) € {C[0, 1]}* defined by

218) gz A=R@)4 )+ | K@ vidw.2dy  (0Sw<1),
satisfies
(2.19) BY) 4 Qu)pe)=1g(e)  (05as1),
and : ,
1
(2.20) ¢(0)=< iy )

REMARK 4. For the Sturm-Liouville problem, a formula of the type
of (2.18) is derived in Gel’fand and Levitan [3], Suzuki and Murayama
[39], ete., which is stated as follows; Let p,q€C'[0,1], and h, € R be
given. Then there exists a unique L=L(z, y) € C*2) such that

0*L(z,y) _ 0°L(z, y)

+p(y)L(x, y) =q(x)L(x, ) ((z, y) €9Q),

ox* 0
Lis.a)=i—h+2| (als)—plelds  (0=a=)
and
OL (4 0)=hL(z,0) (0<z<1).
0y

Furthermore, for 2€ R, if f(-)=f(-, 2) € C0, 1] satisfies
dx?

( (p@—-L )@ =2f)  (0=ws1)

dx
then g(-)=g(-, 2) € CY0, 1] defined by

lf(0)=1, A4S (g)=h,

(2:21) 0@)=f)+( L f)dy  (05e<1)
satisfies

()= Yow)=20(x)  (0=z<1)

_ ag oy _ =
9(0)=1, %—(O) =jJ.
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The formula (2.21) is a key for the inverse Sturm-Liouville problem.

On the other hand, in Gasymov and Levitan [2] (cf. Levitan and
Sargsjan [16]), a similar formula is shown for the one-dimensional Dirac’s
system.

REMARK 5. We need to introduce R(x) in our formula (2.18) as a
modification factor, because we treat systems of ordinary differential
equations. Moreover, with this kind of modification, for more general
systems involving N functions on the interval [0, 1], we have formulae
similar to (2.18).

Proor oF LEMMA 1. The part (I) of this lemma is seen by Proposi-
tion 1. We can prove the part (II) as follows. In (2.18), we get

do(x)
(2.22) BECEL

dR(x) do(x)
7¢($)+BR(90) d

+BK(z, 2)6(z) + g: Bi‘i{;i;”sb(y)dy

=B

—BAE®) 50y 4 R()BID) | BK(s, 2)g(x)
dx dx

+{,(— 28U By(y) + (K iz, ) Ply) - QeIK (e, 1)9(0) Yy
(by BR(z)=R(x)B and (2.12))
=BEE) 40+ R2) B YD 4 B[z, 0)g10)
dx dx
+[— Ko, 1) Bty + | Klo, ) B250ay

+[. Ko v)PwdIdy— Q)| Kiw, vigdy

0

(by integration by parts)

=B2BE) 4(0) + Bia) (1— Ple))gl0)

+(BK(x, z) — K(, x) B)¢(x) + K(x, 0) B¢(0)
+[. Ko, 9)(2— P)g)dy + |, Kiz. v)Pw)glw)dy

0
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~Q(a) || K vigtwdy (by (2.16)

(BB _ Rio)P() + BK(z, 2) - K@, )B (o) + AR(z)$ ()

+(-Q(a) | Kle. nigwdy.

In the last equality, we use K(z, 0)B¢(0)=0 by (2.3) and (2.17). Having

z

Q(z)¢(x) — 2¢(x) =Q(z) R(x) $(x) + (Q() —Z)SO K(x, y)p(y)dy — 2B (z)$(x)
by (2.18), we obtain

B 1 Q@)ga)—29(a)

X

:(B dga(cml +Q(z)R(z) — R(@)P(x) + BK(, x) — K(x, x)B)qS(x).

Since, by (2.9)-(2.11) and (2.14), (2.15), we see

BIELE) | (o) Biw)~ Ria) Ple) + BK (. 2)~ K (v, z) B=0.

we reach the equality (2.19).
Finally, as to the initial condition (2.20), we have only to note that

:%E%, b(0)= {L__’; , and therefore,

2o 3 )-Co a0 )(2a)=(5)

§3. Proof of Theorem.

a(0)

First, since |k|#1 and |H|#1, by Proposition A in §1, we can set
(3.1) G(AP,h.H):{Zn}nGZr

where 2, (n€ Z) is an eigenvalue with the multiplicity one. Then by
Russell [28], [29], we have

ProposITION B. (I) (the asymptotic behavior of the eigenvalues) We
put
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1y, (1+h)(1—H)

| .
a2 2% 1—mazm)> ¢ HF
) r=

1,  htl -

—log 21— =

2 W1 v H=e,
and
(33) 0 =%50 (P11(8) +Dpae(8))ds.

In (3.2) the principal values of the logarithms are taken. Then we have
(3.4) 2,,=r+0+mm/——1+0<%> s |n|—oco.

(IT) (the completeness of eigenvectors) Let us denote an eigenvector as-
sociated with the eigenvalue 2, by ¢.(-)=¢(-, ). Then the system {$,}, ¢z

1s @ Riesz basis in the Hilbert space {L*0, 1)}, that is, each <u> € {L¥0, 1)}
v

has a unique expansion

(3.5) (u)= i ¢hn (€. EC; MEZ)

(%)

Jor some positive constant M independent of < >
v

and furthermore

2
<M 3 e

L0,1)% -

n=—oo

(3.6) M5 |cn|2§‘

In order to prove Theorem, we have only to show
PROPOSITION 2. We have

(3.7) (@, 3, J,J*) € M(P, h, H, H*)

if and only if the equalities (1.16)-(1.19) hold.

In fact, let Proposition 2 be proved. Then we can derive Theorem as
follows; Let us prove the part (II) of Theorem. Firstly, assuming that
(@, 7,J,J*) € M(P, h, H, H*), we have to show (1.16)-(1.19). To this end,
we note that M(P, h, H, H*)C M(P, h, H, H*) by (1.10) and (1.11). Hence



Inverse spectral problem 533

we have (Q, 7, J, J*) € M(P, h, H, H*), which implies the equalities (1.16)-
(1.19) by Proposition 2. Conversely we assume that the equalities (1.16)-
(1.19) hold. Then we have to show that (Q,j,J, J*)€ M(P, h, H, H*).
Its proof is carried out in the following manner. By Proposition 2, we
get (Q, 7, J, J*) € M(P, h, H, H*¥). On the other hand, we can easily derive
the equalities (3.8)-(3.11) from the equalities (1.16)-(1.19), respectively:

88 1= ;‘ (D1 () + Pro() — P () — Puo(#) — 0ua() + Goa(®) — Iun(#) + Gn(w))
T ule) ~Pilo) + Pa(e) —Pale) ~0u(e) — (o) + Gule) + Gul)
xexp{ | (uls)+Pals) —0uls) —guls))ds) =0 (0=w=1)
(3.9) i:? (P1() + Pra(€) — P () — Paa(®) + qua(%) — Gra(@) + G (%) — e())
T ula) - ulz) ~ (o) + D) — () )+ ) ()

X exp(S: (D11(8) + Da2(8) — qui(s) —qzz(s))ds>:0 0<x<1),

(Pu(8) + D2a(8) — qui(8) — qu(8))ds,

(1+5)1=J)1-h)1+H) _[
3.10)  log < T T h (1= H) S

and

8:11) log g e = [, (pule) +Pals) —gule) — ).

Since (3.8)-(3.11) are nothing but the equalities obtained from (1.16)-
(1.19) by replacing p;; (1<14,j<2), h, H and H* by q; (1=4,5<2), 5, J
and J*, respectively, we get (P, h, H, H*) ¢ M(Q, j, J, J*), again by Proposi-
tion 2. Therefore we prove that (Q, 7, J, J*) € M(P, h, H, H*), which shows
the “if” part of (II) of Theorem.

Finally the part (I) of Theorem follows from the part (II) and
Proposition 2.

Now we proceed to

PROOF OF THE “IF” PART OF PROPOSITION 2. Let us assume that
the equalities (1.16)-(1.19) hold. Then we have to show that (Q, 7, J, J *) €
M(P, h, H, H*).
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We recall that ¢(-)=4¢(-, 2) € {C[0, 1]} satisfies

(3.12) Bﬂ%)w(m)wx):w(x) (0<z<1)
and
(3.13) $(0) =< _lh )
For ,€0(App.5), We set
[ oP@)\
(3.14) )= G | =R, 2,

where R(z) is the 2X2 matrix given by (2.11). From (1.16)-(1.19) we
can see by direct computations

d%( L Qg =) (0<z<1),

1.) and  gO(L)+Jg0(1)=

¢,.(0)=<
—J

Here we note also Remark 3 stated in §1. These imply A, €a(Aqg,;s).
That is, we see that o(A,, ) Co(Aq;,). We can similarly show that
0(Ap,n:)C0(Aq,;,s) and therefore, we see that (Q, j, J, J*) € M(P, h, H, H*).

PROOF OF THE “ONLY IF” PART OF PROPOSITION 2. Assume that

(3.15) 0(Ap,5)C0o(Ag,;s)
and
(3.16) 0(App.u) Co(Ag,;.10).

Then we have to prove the equalities (1.16)-(1.19). Let us set

(8.17) 0(Apuun) ={Au}nez
and
(3.18) 0(Aq,5,5) ={ttu}nez.

Firstly we see, by (8.15), that for each n¢c Z there exists some
m(n) € Z such that lim m(n)=co and
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(3.19) 22 = fminy (neZ).

Therefore it follows from (3.19) and the asymptotic behavior of the
eigenvalues ((I) of Proposition B) that we get

(320) log %JF—;ETJ:H—;Jr 15 () +Pals))ds+ 0y =T+0( = )
(e Z).
Since
%S:(pu(s) +p22(3))d8, %So(qu(s) +q22(s))ds ER
and
(1+h)(1—H) 1, (A+5)1-J) _ 1
Im —log *(1 WATH) Im log A=)+ 0, or zn,

we see that lim(m(n)—n)rv/—1=0, which implies (1.18). Similarly we

n—>00

can see (1.19).

Secondly, in order to show (1.16) and (1.17), we apply Lemma 1 in
§2. Let K=K(x, y) € {C'(2)}* be the solution to (2.12)-(2.15) and let R(x)
be defined by (2.9)-(2.11). We put

¢1(x’ 'z) >
o, 4)

=R@)g(o )+ | K, 0)g. 9dy  (0<z<1).

(3.21) o, z)=<

Then, by Lemma 1, we have

Bﬂ((i‘z;_z)-l-Q(x)gb(x, D=apl@, D)  (0=<z<1)

1
$(0, z)=( )
—J

On the other hand, by the assumption (3.15) and the fact that each
eigenvalue 2, is simple, we see that ¢(-,2,) is an eigenvector of Ag;, ;s
associated with 2,. Therefore, from the boundary condition at z=1, we

(3.22)
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get

(3.23) &a(1, 2,)+J (1, 2,)=0 (e Z).

Here we recall that (3.23) means ¢,(1, 4,)=0, if J=oco. Henceforth let
us assume that

(3.24) H, H*, J, J*#oco.

Otherwise we can similarly proceed. (In Appendix II, we derive (1.16)
and (1.17) in a case where (3.24) does not hold.) Substituting (3.21) into
(3.23), we obtain

(3.25) (J—H)a(l)+(1—JH)b(1)+ Ky(2,) +JK (2,) =0 (ne Zz).
Here and henceforth, we put for 2€C

K1<z>=j‘ (Ku(L, 9)éi(y, 1)+ Kl L, 9)a(y, 3))dy
(3.26) ’

1
Kol = (Ku(L 0)$(v, 2+ KalL, 0)guly, D)y,
and we recall that a(x) and b(x) are given by (2.9) and (2.10), respectively.
By the assumption (3.16), we similarly get

(8.27)  (J*—H*)a(l)+ (1—J*H*)b(1)+ K,(3%) + J*K,(2¥)=0  (n€ Z).
Here we set o(Ap p)={A*}rcz.

As is easily seen, the equalities (1.18) and (1.19) imply

(3.28) { (J— H)a(1)+(1—JH)b(1)=0

(J*—H*)a(l)+ (1 —J*H*)b(1)=0.
Hence by (3.25), (3.27) and (3.28), we reach

(3.29) Ky(2,)+JK\(2,)=0  (n€Z),
and
(3.30) K,(A¥)+J*K,(2¥)=0 (me Z).

Since each of the systems {¢(-, 4,)}.cz and {@(:, 2¥)}.cz is complete
in {L*0, 1)} ((II) of Proposition B), the equalities (3.29) and (3.30) imply
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(3.31) {Km(L y)+J-Ku(l, y)=0
Kn(l,y)+J*Ku(1,9)=0  (0=y=1)
and
(3.32) { Ky(1,y)+J-Ku(l,y)=0
Kx(1, y)+J*Ky(1, y) =0 0=y=1).

. 1 (I—H)(1+J) _ (1—H*)(1+J%)
Now, by (1.18) and (1.19), we have -3 3= 7 =" 17 ) 1— %)
which implies
(3.33) J#JT*,

by H+H* (see (1.8)).
Therefore by (3.31)-(3.33), we obtain

(3.34) Kil,9)=0 (0=y=<l 1=, j=<2).

As is proved in Appendix III, we have a result on uniqueness of solu-
tions to a hyperbolic system:

LEMMA 2. Let K=K(x,y) satisfy

(3.35) B%ﬁ’y)wmﬂaw,y)—K(x,y)P(m:—a—’ig”;—y)B ((z, y) € D),

Klg(x, 0) :hKu(x, 0)
(3.36)

Kn(@, 0)=hKnu(z,0) (0<z<1),
and _
(3.37) Ki;(1,9)=0 (0=<y<1, 1<¢, j<2).

Then the identity

(3.38) K(z,y)=0 ((x,y)€Q)
holds.

We return to the proof of the “only if” part. By Lemma 2 and
(3.34), noting (2.12) and (2.13), we reach K(z, y)=0 ((x, y) € 2). Therefore
by (2.14) and (2.15) we see (1.16) and (1.17). Thus the proof of Proposi-
tion 2 is completed.
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Appendix 1.

PrOOF OF PROPOSITION 1. Setting

Ly(z, y) =Ku(x, y) —Kn(®, ¥), Lz, y)=Ku(®, y) — Ku(x, y)

1.1
L4 { Ly(%, y) =Ku(®, )+ Kun(®, ¥), Lz, y) =Ky, y)+ Ku(z, ¥),

we can rewrite (2.2)-(2.5), so that we get

(1.2) aL,.;i,m_aLia(z, Y) —fiw,y, Ly Lo, Ly, L) (& y) €D, i=1,2),

(L3) aL‘;”;' Y4 aLf;Z’ Y =iy, Ln Lo Lo L) (@ y) €2, i=3,4),
14 Ly(x, 0)=Fk- Ly(x, 0)+1- Ly(z, 0)

(L {L4<x, 0)=—1-Ly(z, 0)—k-Lo(z,0)  (0<z=1),

and

(1.5) Li(x, x)=7(x) 021, 1=1,2).

Here and henceforth we put

fil@, Y, Ly, Ly, Ly, L) = — —(P1a(y) + D (¥) + G2(2) + @ (@) Ln(w, )
(Pu(¥) +Pu(Y) — u(®) — ¢ (%)) Le(2, ¥)
(01(Y) — Po2(y) — qui () + ga(x)) Lo 2, )

(— D12(¥) + Da(¥) — Qr2(@) + @ (20)) Lis(2, )

Se(®, ¥, Ly, Ly, Ly, L) = (Pu(Y) + a2 (¥) — qu(®) — qua()) L (2, ¥)
(DY) + P (Y) + Qi) + @ () Lo(, )

(—D1(y) +Pu(Y) + qu2() — @ () Ly (2, )

+
N]H NlH Nlr—l [\’JIH Nlr—ﬂ N‘H [\le—‘ Nll—‘

(—2u¥) + DY) — qu(®) + qa () La(, ¥)
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Ss(x, Y, Ly, Ly, L, Ly) = (—Pu(y) +p2(y) — qu(®) + () Ln (@, ¥)

+
RO O[O DofH

(Dr2(¥) — P2 (¥) + Gre(®) — @ (x)) Leo(z, ¥)

+

(DY) + Pu(¥) — Q12(®) — @ (%)) Ls(@, ¥)

-+

(Pu(¥) + Pa(y) — qu(®) — @eo(2)) Lu(, )

fix, Yy, Ly, Ly, Ly, L) = (—D22(y) +P2(Y) +qu(®) —qu(®)) La(z, ¥)

-+

N RIS

(Pu(y) — P2 (¥) — qu() + Ge (%)) Ly (2, )

+

(Pu(Y) + D22(¥) — gu(w) — Q2 (2)) Lis(, )

+

(P2(Y) + D (¥) — G1a(®) — @ (@) Lu(2, )

(x,y) €9),

and l= 1+h’2.
1—h?

—2h
. k=—2"
(1.6) T

First we integrate (1.2) with (I.5) along the characteristic curve
y+x=const., so that we get integral equations (L.7):
(z+9)/2
" f(—s+2+v, 8 Ly, Ly, Ly L4)ds+r.-(x‘2ky)

((x, y) € R, i=1,2).

L7) Lz, ) =§

v

Second we integrate (I.3) along the characteristic curve y—x=const.,
so that we obtain

Li(x, y) =S:f1(8+x_—yv S, Llr LZ’ LSy L4)dS+L‘(x_‘y, 0) (7::3, 4).

Therefore by (I.4) and (1.7), we get
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v
Ly(x, Y) =Lf3(3 +x—y,s, L, L,, L, L4)d3

(z—w)/2
+] " Wh(=s+o—v,8 Ly L L L)
+lf2(—3+x_y, S, Ll’ L2v LB! L4))ds

(250 )+ 22Y)

LA(x! y) :S:fd(s-i_x_yv S, Lly LZv L37 L4)ds

(L8)

(z=v)/2
—SO (lfl(—s-l_w_ya S, Lly LZ; LS! L()
+kf2(_s+x“‘?l, S, le L2v L8v L4))ds

_lﬂ<x;y)_krz<x—;y_> (@, y) €9).

Thus, provided that r, r,€ C'[0, 1] and P, @ € {C'[0, 1]}, the problem (1.2)-
(L5) is equivalent to the Volterra’s integral equations (I.7) and (L8), if
Le{C'2)}* is proved.

A unique solution L=L(z, y) € {C'(2)}* to (I.7) and (1.8) is given by
the following iteration method; Let us define approximation sequences

{Li"(@, Y)hzo (1=9=<4) by (L9)-(1.11):

(L9) LP@ y)=0 ((z,y)€2, 1<i<4),

z+y)/
(L10) L@ v) =5( " F—s oty s, LY, Ly, L, Li-v)ds

v

+re<w;y>’ (,9) €2, n=1, i=1,2),

and
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v
L (e, y) = Aoy, 5, Li, L™, L™, Li~)ds
0

0

+lfo(—s+z—y,s, LD, LY, LY, L{Y))ds

sl l252)

+ S T fi(—s+o—y, 8, LY, LY, LY, L)

(L11) ,
L(o, y) = fls-+a—y, 5 L, L=, L=, L~)ds
_S(:c—fl)/2 (lfl(—s-}-x—y, s, L;"_‘), Lén—l)’ Lén_l), Li"—l))
0
+hfi(—s+o—y, 5, LI, L™, L, L)) ds
—lﬁ(x;y)—krz(m;y) ((z, 4) € @, n=1).
Setting

M=8(|kl+lll+1)maX{maX [Disllcop.1n,  max ”qij”CO[o,l]},
1<i,552 1<4,5<2
by induction, we can see the estimates

(L12) |L{™ (@, y) — Li* ™ (x, 9) |

Mn—l n—1
< T b1+ 141 b + 7l
(2, ) €2, 1<9<4),
for each n=1.
Thus L;(x, )= lim L (x, y) (1<1<4) exist uniformly for (x,y)eQ
and we see that L;(x,y) (1=<1<4) satisfy (L7) and (I.8). Furthermore

oL (z,y) _ 0L V(x,y)
ox ox

we can get similar estimates on and

OL{"(x,y) _ 0L "(z,¥)
0y 0y
Le{C'2)}*. The uniqueness of solutions to (2.2)-(2.5) is shown by (I1.12).

Thus the proof of Proposition 1 is completed.

, by induction, and therefore we see also that
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Appendix II.

DERIVATION OF (1.16) AND (1.17) IN THE CASE OF H#oo, H*=co,
J=0co AND J*soco IN THE PROOF OF THE “ONLY IF’ PART OF PROPOSI-
TION 2.

In this appendix, assuming that
(IL.1) H+oco, H¥*=c0, J=co and J*+oo,

we derive (1.16) and (1.17) in the proof of the “only if” part of Proposi-
tion 2.

Here we recall that ¢(x, 2) and K,(4), K,(4) are given by (3.21) and
(3.26), respectively and we put

{ U(APJI;H) :{Zn}nez
0(Aphe) ={AT ez

Furthermore, by the boundary conditions for ¢, and H+#oco, H¥*=c0, we
note that

(IL.2)

(I1.3) #2(1, 2,) +Hey(1, 2,)=0  (n€ Z)

and

(I11.4) é:(1, %) =0 (ne Z).

Now we have already derived (1.18) and (1.19), and we have obtained
(IL5) 4(1,2)=0 (neZ),

and

(11.6) (1, 25)+T*i(1, 2%)=0 (ne Z).

Then, for the derivation of (1.16) and (1.17), we have only to prove
(IL.7) K;(1,y)=0 (0=y<l, 1<3, j=<2),

in view of Lemma 2.
Substituting (3.21) into (IL.5) and using (I1.3), we get

(IL8) (a(l)—Hb(1))$i(1, 2,) + Ki(4,) =0  (n€ Z).

On the other hand, as is easily checked, the equality (1.18) implies
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a(l)—Hb(1)=0. Therefore by (11.8), we obtain
(IL.9) K,(2,)=0 (neZ).

Next, substituting (3.21) into (I1.6) and using (I1.4), we get
(IL10)  (a(l)+J*b(1))@s(1, 2%) + (Ko(2¥) +J*Ki(2})) =0  (n€ Z).

Since we see by direct computations that the equality (1.19) implies
a(1l)+J*b(1) =0, we obtain

(I1.11) K,(2%) +J*K,(2%) =0 (neZ)

by (I1.10).

Since each of the systems {¢(-, 2,)}.cz and {&(-, 2¥)}.cz is complete
in {L*0, 1)}, the equalities (I1.9) and (II.11) imply K,(1, y)=Ku(1, y)=0
(0=y<1), and Ku(1, y)+J*Ku(1,9)=0, Kn(l, y)+J*Ks(l,y)=0 (0<y<1).
Thus we prove (I1.7).

Appendix III.

ProoF oF LEMMA 2. By an argument similar to the one in Appen-
dix I, we have only to show the following: If L, (1<1<4) satisfy
(I.2)-(I.4) and

(ITL1) L(1,y)=0 (0<y<l1, 1<i<4)
holds, then L;(z, %) =0 ((x,¥) €2, 1<i<4).
Let us set
Ql={(w, Y); 1—2<y<z, l<av<1}
(I11.2) 2

2, =\2\{(x, y); 1—2z=y}.

Then, by a result on uniqueness of solutions to the Cauchy problem
for a hyperbolic system (e.g. Petrovsky [26, p.68]), we see

(I11.3) Lz, y)=0 ((z,9) €2, 1<i<4)

from (1.2), (I.8) and (III.1).
By (II1.3), we have

(IT1.4) Li(w, 1—2)=0 (—é—_ﬁ_mgl, 1g¢§4>.
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Since L; (1<i<4) satisfy (1.2)-(I.4) and (III.4), we obtain the integral
equations (II.5) and (IIL.6) for L; by integrations of (I.2) and (1.3) along
the characteristic curves;

Ll(xr y) = _Sﬂfl(—s_}"x_*_yv S, Llr L21 L37 L4)dS

(1—z—y)/
+S " (kfs(s+2+vy,s, Ly, Ly, Ly, L,)
1Ls) +Ufu(s+@+Y, s, Ly, Lo, Ly, L))ds
S ful—s+@+Y, 8, L, Lo, Lo, L)ds
(1—z—y)/2
S lf3 3+w+y,3 Ll: LZ) LSYL)
+kf4(3+x+y, S, Ll! L2! L3v LA))dS ((xr y) 6!2_2),
and
(ITL6) Li(z, y)= —gu_”"”z fis+@—1, 8, L, Ly, Ly, Ly)ds

((, y) €2, i=3,4).

Setting m(x, y)= max | Lz, y)| and

1<i,58
M=8([k]+ |1+ Ymax{ max. |pylewors max g levos).
14,552 1<4,j<2

we inductively obtain the estimates

Mn—l(l ___m)n—l

(II1.7) m(x, y) < n—1)1

[m|lcoap (=, y) € 2),

for each n>=1. Since n is arbitrary, the estimates (II1.7) prove m(x, y) =
0 ((x,y)€R,). Thus the proof of Lemma 2 is completed.
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