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Abstract

We give two applications of the Fourier transform to the boundary element
method. One of the problems which we consider is the Dirichlet problems for
the Laplace operator A=a2/0x.2+ --- +0%/0x,2 and the other is the initial
boundary value problem for the heat operator 8/at—A. We derive an inequality
which implies a coercivity for the boundary element algorithm for A. The
proof gives another view-point to the coercivity which is known. The second
application is made to the heat operator. We prove that a certain quantity
which is expressed by a certain integral of the Fourier transform of the solu-
tion is nonincreasing. This fact shows an unconditional stability of the boundary
element approximation for the heat operator with respect to the L2-norm. We
also prove a conditional convergence.

§1. Introduction.

The objective of this paper is to show the effectiveness of the Fourier
transform in the theory of the boundary element method (BEM). This
paper is divided into two parts. In the first part (§§2-4), we consider
a Dirichlet problem for the Laplace equation in a two or three dimen-
sional bounded domain. As is shown in Le Roux [10] or Nedelec and
Planchard [12], the solvability of the linear equation given by the BEM
discretization is reduced to the coercivity of a certain bilinear form,
which we describe in §2. We give in §3 a proof of the coercivity which
is slightly different from those in [10, 12]. Our proof is essentially the
same as those in Costabel and Wendland [6] or Hsiao and Wendland [7].
We, however, believe that our presentation is more compact, although a
proof which is more compact than ours are shown to the author by
Prof. D. N. Arnold.

Subject Classifications: AMS(MOS): 65N30, 65R20
*) Partially supported by the Fajukai. This work was completed while the author was in
the Institute for Mathematics and Its Applications, University of Minnesota.
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To show the effectiveness of the Fourier transform, we prove in the
second part (§§ 5-8) an unconditional stability of a certain BEM algorithm
for the initial boundary value problem of the heat equation. We consider
a heat equation under the Dirichlet boundary condition in a two or three
dimensional bounded domain. Using the spline elements which are piece-
wise constant both in the time variable and the space variable, we dis-
cretize in the step-by-step manner (see § 5 for the details). We prove that
this scheme is unconditionally stable in the L®*norm. Our result can be
regarded as a high dimensional version of Kesavan and Vasudevamurthy
[9] where the BEM in the case of one space variable is considered. On
the other hand, Iso, Takahashi and Onishi [8] and Costabel, Onishi and
Wendland [5] consider the discretization of the time dependent problems
under the Neumann or the third kind boundary condition. They prove
a conditional stability assuming that the mesh sizes are sufficiently small.
Their proof, however, does not seem to work in the case of the Dirichlet
boundary condition.

The present paper consists of 8 sections. In §2 we write down
concretely the BEM algorithm for A. In § 3 we state and prove a theorem
which ensures the solvability of the BEM scheme. §4 contains an ex-
ample which supplements the theorem in §3. In §5 we state the for-
mulation of the BEM approximation of the heat operator 9/0f—A under
the Dirichlet boundary condition. In §6 we prove that the algorithm
given in §5 is unconditionally stable in the L*norm. In §7 we derive
an error estimate which shows a conditional convergence. We give
concluding remarks in §8.

§2. The Laplace equation.

Let us consider a Dirichlet problem for the Laplace operator:
2.) Au=0 in 0,
(2.2) u=¢ on I.

Here 2 ia a bounded domain in R* or R* with a boundary I" of C*class.
The function ¢ is given on I". To compute w numerically, the boundary
element method (BEM) is widely used and is found very effective (see,
e.g., Brebbia [3], Brebbia and Walker [4] or Nakayama [11]). We give
a simplest form of the BEM to (2.1-2) as follows. First we choose a
fundamental solution E(z) for A:
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E(x)= -1 log |z | in R,
27

or
1

in R:.
A7) x|

E(x)=

Then, by Green’s formula, we have

-

23  uw)=| 2wEe—ydr,~| w2 w—yr, wea,

r oy v,
24 Zul)=| 2 Be—yar,—PV.| vy 2 w—ydr, wer)

v

where ai is the outward normal derivative, dI", is the line element on
v

I', and PV. means the principal value. As is known, the equality (2.8)

implies that we can compute u if we are given the values of (;_u on [
v

The spirit of the BEM lies in computing g_u by (2.4) which we regard
v

as an integral equation for i;_u In this way, the solvability of schemes

v
by the BEM is reduced to the solvability of the problem below:

P) Given ¢ on I', find q on I such that
| dwEe—yir,=ow e

As usual, let L*(I") denote the function space of all real valued square
summable functions on /. Then this problem is further reduced as
follows: Let us define a quadratic form A(,): L") X L*(I")—R by

25) Ala.n=| | Be—vewp@ar.ar,

(Actually the defining domain of A(,) can be wider than L*I"), see
Remark 2 in §3 below). We denote the inner product in L*I") by (,).
Then we reformulate (P) as

Py Given ¢ € LXI'), find q€ LAI") such that
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(2.6) Alg,p)=(p.p)  (peLXI)).

Therefore we can obtain the unique solvability of the BEM scheme by
the coercivity of A(,).

§3. Theorem and proof.

To state the result rigorously, we define a function space X:

X={p€L2([’); Spp(x)dl’,,ZO} if OCR
X=ILAT) if QCR.

We use usual Sobolev spaces H*(I") (s€ R). The norm in H*(I") is denoted
by || |.. For the definition of H*(I'), see, e.g., Adams [1]. Now our goal
is to show the following

THEOREM 1. There exists a positive constant ¢ depending only on I"
such that

(3.1) Alg. g =cllgll%y (@€ X).

REMARK 1. In the applications the solution ¢ corresponds to the
0

Neumann data a—u Hence coercivity in X is sufficient for our purpose.
v

Note that three dimensional version is stronger in conclusion than the
two dimensional one by the definition of X.

REMARK 2. Actually (3.1) holds for any ¢ in a function space which
is the completion of X by the norm | |_,,. However, it is not trivial
that the definition (2.5) is meaningful for arbitrary p,q€ H'*(I"). Hence
we first consider in L*(I") and make a completion, if necessary.

Before giving the proof of Theorem 1, we explain the meaning of
(3.1) briefly. A discretization of (2.6) is formulated as follows: Let
X, be a finite dimensional subspace of X, and consider the problem
below:

Find g, € X, such that

(2.6)s Algn o) =(dm) (€ X)),

Then our theorem ensures the solution ¢, exists uniquely and satisfies a
priori estimate c(|gul|_1.= (¢l



Boundary element method 349

The proof of (8.1) is based on a certain identity ((3.3) below).
Before introducing the identity, we need some symbols. Denoting the
dimension of £ by n, we first define a distribution in R™:

0p 6 — | a@g@dr.  (GeCs(RY).

r

For g€ L*[I"), this is a distribution with compact support (supp(d,)cr’).
Let 6, denote the Fourier transform of 4, Then it is a smooth function
in R* given by

2) 3,6)=x) [ eiq@ar.  Eer

(see, e.g., Schwartz [18] or Yosida [14]).
We derive Theorem 1 from the following

PROPOSITION 3.1. For all p,q€ X, it holds that

33 Al p= |, 738,051

REMARK 3. The integral in (3.8) is convergent for any ¢,p in X.
For, the integrability near infinity will be seen in the proof of (3.3)
below. The integrability near the origin is easy to see: if »=3, this is
clear. If n=2, we assume that ¢, p€ X, which implies 4,(0)=6,(0)=0.
Therefore the integral is convergent.

Proor or THEOREM 1. By (3.3) we have

(3.4) Alg.q)={ 186 Pt

e
w [P
2| a+enis e ras

= ” &,”Z-l(m) .

On the other hand, it is known that the norm in H'(R") is equivalent
to

sup{{d,, w); w€ H'(R"), [|lw| s1zm =1}.

As is eagily seen, this norm is equivalent to

SUD{LQ(x)’U(x)dI’I; ve H'™TI), Hvlll,zgl},
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which is equivalent to |g||_,.. Hence |d,]z-1zn=c|ql -1z With a constant
¢ depending only on I'. This inequality and (8.4) prove Theorem 1.

Now it remains to prove Proposition 3.1. First we prove it formally.
We note that

| Be—vawar,=Exo,(@),

where * means the convolution. Hence, by the Plancherel theorem, it
holds that

Alg, p)=(E*3, 8,y=CEx5,, 6,y=27)"E, §,5,>.

The Fourier transform E of E is given by

(3.5) Be=-Lpt_L1 yse it n=g
2r [§]°

fo 11 o

E(&)————(zn_):,”2 T if n=3,

where Pf. implies the finite part, é is an absolute constant and ¢ is
Dirac’s delta function (see Schwartz [138]). Therefore we have (3.3),
since §,(0)=4,(0)=0 if n=2.

Although this is very formal, we can justify it:

Proor oF PROPOSITION 3.1. The function E(x) can be regarded as a
tempered distribution in R". 4J, is a distribution of compact support.
Hence E=x0, is a tempered distribution in R*. If n=2, its Fourier
transform is

2r(§)5,(6) =2n {1 PE. (1€ +e0(6)}3.)
=(PL.1/18P3, (&) =d,(E)14F.

since the smooth function §,(¢) vanishes at the origin. By the definition
(3.2), all the derivatives of 8, are bounded. Therefore, for any real-
valued rapidly decreasing function ¢ in R? it holds that

[ o] Bo—vawdr.g@ids =(Bxo, gy =CBxa,
=@nl, §y={ b @56,

where ¢ is the inverse Fourier transform. Similarly we can obtain an
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equality for n=8. We now have

1 A
(6P Ede.
IEFRACTILE

(3.6) SmSFE(x—y)q(y)dr,gb(x)dx:S

(Note that §=4¢, since ¢ is real-valued.)
We, then, approximate &, by smooth functions. Let p€Cf(R") be a
function with the following properties:

0<p<1 in R", p(x)=0 if |z|>1, p(x)=1 near x=0,

Smp(w)dle.

As usual, we put p,=j"e(jx) (=1,2, ---) and define ¢; by ¢;=0d,*p;.
Then it is known that ¢,€CP(R") and that ¢,—d, as a distribution.
Furthermore we can easily verify that

sm%(x)F(x)dw — Srp(x)F(x)dI’, for all FeC(R"), as j—oo,
and that
(3.7) 1:(8)1=16,(8) .

The former is easy to see and the latter holds by virtue of ¢;(&)=
(22)"5,(€)6,(8) and [0,(6) 1< @x) " | _p,(o)dz = (2m)

We now replace ¢ in (3.6) by ¢; and let 7 tend to the infinity.
Then the left hand side tends to A(q, p). On the other hand, the sequence
{¢;(€)} converges to 6,(&) for every £€R". Since (3.7) holds and since
1

T&?l 0,(6)0,(8)| is summable, the right hand side converges

the function

to

[ XCIAGEE

w gt
by virtue of Lebesgue’s dominated convergence theorem. This completes
the proof of Proposition 3.1. Q.E.D.

As we can see from the proof, we have the following corollary:

COROLLARY 1. If we define Y={q€ H'*(I"); {q,1>=0} for n=2 and
Y=H"TI) if n=3, then (3.1) holds for any g€ Y and A(,) is a bounded
bilinear form on Y.
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Proor. By the positivity of A(,), we have A(q, p)<(A(g, q))"*X
(A(p, p))**. Therefore we have to show A(qg, ¢)<c|q||%s, with a constant
¢ depending only on I. Put

_ |6,(6) I EAGI
A(q,q)—Smg |&F d$+glélgl |& Tlep B=LAL

Clearly IIZI§2§ lla‘i'(éllz dé=<c|lq||.. On the other hand, we have

5,(6) —8,(0)= (2n>-"'2j e —1)q(z)dI".,

r
which implies

164(6) —3,(0) I (27) | €” ¢ —1 |1zl _y-

Since it is clear that |e'*¢—1],.<Zc|&|, we have |I,|<c|q|%y. if n=2. If
n=3, we note that

16,(0) 1< (27) (| 1]| yell g -1
and that g 1 ——dé& is finite. By these facts we have |I;|<Zc|lq]%p.

st [EF
We now obtain
Alg, p)=Zcllgl-12llpll _112

for any ¢,p in X. By the completion we have the conclusion. Q.E.D.

REMARK 4. The inequality (3.1) appears in Le Roux [10] for n=2
and in Nedelec and Planchard [12] for n=38. Although our proof is, in
its essential part, the same as theirs and those in [6, 7, 15], it seems to
the author that the presentation given here is more intuitive and
compact.

§4. Supplement to Theorem.

In Theorem 1 we considered X=L*I")/R if n=2. Here we give an
example which shows that (8.1) does not, in general, hold on L*") when
n=2. Let £ be a disk of radius R with the origin as its center. For
an arbitrary fe L*I") we expand it by the Fourier series:

= a,e" (0£6<2xn).

Then we have
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2r (2r ___ 1 ) . . )
A(f,f)=R*% 5 5 - log | Re” —Re'* |a,.a’,;e'""e"“"¢d0d¢
n,mJ0 0 T

—2R*'S L |, f—22R% af log R.
%0 ||

Therefore the coercivity of A(,) holds if and only if 0<RE<1.

§ 5. Nonstationary problem.

From now on we discuss the stability and convergence of the
boundary element approximation for the heat equation. We solve it
under the Dirichlet boundary condition and the initial condition:

(5.1) ‘;_’;zAu e, 0<t),
(5.2) u(t, ) =0 (e, 0<t),
(5.3) u(0, 2) =a(x) (x e Q).

Here 2 is a bounded region in R? or R*. [ is the boundary of 2. To
discretize (5.1-3) we use the fundamental solution to the heat equation:

E(t, z) = (4nt) " exp<-— E25 )

where n is the dimension of the domain. Let u(¢, x) satisfy (5.1). Then
Green’s formula yields for x €2 and ¢>0

(5.4) ult, @) :g E(t. 5 —y)ul0, y)dy+g Sr Elt—s, v—y) gf (s, y)dT",ds

Q 0 »
9 E(t—s, x—y)u(s, y)dIlds

v

where dI', is the line (or surface) element on I'. For xz€[" it holds
that

(5.5) %u(t, z) :So B(t, o —1)u(0, y)dy—}—S SFE’(t—s, z—y) g” (s, y)dT,ds

t
0
v

—PV.H 0 Bt—s x—y)uls, y)dl,ds
r oy,

0

since I" is of C’class by the assumption. Now we use the boundary
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condition to obtain

(5.6) O:LE(t,x—y)u(O, y)dy+§ Sr Eli—s, o—y) g“ (s, y)dT",ds.
0 )Jv
We discretize this equation and obtain a discrete version of Z—u
v

Then we substitute it for g_u in (5.4). In this way we compute approxi-
v

mate value of u(¢,x). The precise algorithm is stated as follows: Let
= and h be positive numbers. ¢ is a mesh size for the time discretiza-
tion and % is a mesh size for space discretization. We divide the bound-
ary I" into curved segments (or triangles if n=3) in a usual way. Here
we remark that we use curved elements directly, hence we do not take
into account of the effects caused by the approximation of I by a
polygon or polyhedron. The maximum size of the segments (or triangles)
is h by assumption. We introduce a function space X, which is the set
of all piecewise constant functions on I'. We also introduce a bilinear
form A(,): For functions ¢ and p defined on I, we set

T

(5.7) Alq.)=| j [, Be—s o —y)a@p@dr,ar.ds

0

Now we determine ¢, € X, by requiring that g, satisfies

rJe

(5.8) Algwp)=={ [ Be.o-y)awme)dyar.

for all p,€ X,. Then we define the approximate function u,(r,z) by

69 wle)=| Beo—vewdy+( | Be—sa—vawards
This function is, by definition, the approximation of w at t=r. Regarding
uy(t, ) as an initial value, we repeat the same procedure to obtain
uy(27, ), and so on. In this way, we can compute u,(nr,xz) (n=1,2, ---).
In what follows we prove that we can perform the procedure above,
ie., q, exists uniquely. Furthermore we prove that the L*norm of
uy(nt, ) is bounded from above by a constant which is independent of
n,r and h. This means that the scheme given above is unconditionally
L’-stable. We then prove that the approximate solution converges to
the true solution under a certain condition.
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§ 6. Unconditional stability.

In this section we prove the unconditional stability of the scheme
given in the preceding section. Since we must solve g, in each time
step, the equation (5.8) should be generalized in the following way. Let
"%, be an arbitrary element in H'(R"). The function a is extended to R"
by setting it to zero outside 2. Then a can be regarded as an element
of H'(R") under the assumption that a€ H{(2). Now we consider a
problem to find a ¢, in X, satisfying

6:1) Algnp)=—| [ Blc.o~y)uf)p@)dydr.

PROPOSITION 6.1. The quadratic form A is positive definite. Hence
(6.1) determines q, uniquely. More precisely, we have

(6.2) Alg. g)zcrlqllye (g€ LX),

for any € (0,1), where ¢ is a constant depending only on I.

Proor. As in §3 we have gE(T—s,w—y)q(y)dfv#E(r-s,~)*q.
r

(In this section we write simply ¢ instead of d,.) In a similar way, we
obtain

Alg.p)=(ea| | Be—s e0@pE s

0

where E(r—s, E):(Zx)‘"’ZSRne“f"EE(r—s, x)dx. This Fourier transform is

known to be equal to (27) "?exp(—(c—s)|é). Hence we have
Alg, p) :s:Lne_(r_”'é'zé(aﬁd&ds

=Lf—‘%@(&)ﬁ>dsds.

On the other hand, it holds that

" for £>0. There-
fore we obtain for 0<r <1

T A 2 2
Al )2, ol gz erla

This inequality shows that A(g, q)=0 is equivalent to §(&)=0, which is
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equivalent to ¢=0 in the sense of distribution in R". Hence A(g,q)
vanishes if and only if ¢=0 almost everywhere in /. Q.E.D.

We now prove the following theorem which is the core of the
stability criterion. To state it compactly we define the following symbol:

awre=({ L g pag) "

el

THEOREM 2. Let u, be an element given in H'(R"). Let ¢, be a
Sunction in X, determined by (6.1) and wu, be defined by

63 wn=| Bea—yubdr+ || Be—se—vawdrds
Then we have

(6.4) Cun(t, +) D= %o

PrOOF. As is seen easily, the right hand side of (6.3) is a continuous
function of x € R". Hence its Fourier transform with respect to z is
computed as follows:

1 —gwlel?

|&F

On the other hand, the function g, is characterized by (6.1), which is
written equivalently

(6.5) A (r, &) =€~ ¢ () + (&)

l_e—rlélZ

66 [ ATt enOdE= | e uEnEE (Bt

Here we have introduced a function space X,,E{ﬁ,,; . € X,}.  Equality
(6.6) naturally leads us to a function space of all functions which are
square summable with respect to the following weighted measure:

. ) " 1_e—rIEI2
H={f; | 170 PR de <o),
Of course the inner product (f, g),=SRnf (5)@%‘% is equipped

to this space.
Now we introduce an orthogonal projection I7,, from H onto X,.
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Then (6.6) shows that q":—ﬂf"‘<1l—€lz—e—”e'zﬁo(5)>~ If we put »(§)=

_e—rlel2
1 lélzmz e‘“f'zﬁo(s), we have
_e"f
) _ 1l |Epee”
67 e §) =24 (111 (L5 )
_p—tl 12
=%(1—H,.h)<v(e)).

From this equality we easily obtain (6.4) in the following way:

Cunle, -)>f=rjm%l (I—IT,,)vPdé

1—eele?®

<ef,, 27 ot rae

= e et ey pag
R™ 1—6 zlgl
Thus the proof is completed. Q.E.D.

For a given u, we define w,(z, -) as above. Replacing u, by w,(z, -),
we obtain wu,(27, -). By repeating this procedure, we obtain a sequence

{up(ne, -); n=1,2,8,---}. As a corollary of Theorem 2 we have the
following

COROLLARY 2. For any positive integer n, it holds that
(6.3) l[us(nz, <) o= |l 2olls,
where | |, is the norm in L*R") and || |, is the norm in H'(R"™.

Proor. Using Theorem 2 repeatedly, we obtain {u,(nt, -)>.<{up..
On the other hand, it holds that

1<~ ””e_x <l4z  (0<z<+o0).

This inequality, together with Plancherel’s theorem, yields that

IFh={fPe  <o>=llgl.
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Hence we have (6.8). Q.E.D.

The inequality (6.8) holds, whatever r and & may be. This is our main
result which shows unconditional stability with respect to the L*norm.

§7. Convergence.

In this section we prove that the approximate solution constructed
in §§5 and 6 converges to the true solution if hr™'*—0.

THEOREM 3. Let a satisfy a € HyQ)NHR) and da € Hy(2) and u be
the solution to (5.1-8). Let wu, be a function in H'(R") which approxi-
mate a and let u,(nc, ) be functions given by the algorithm (6.3). We
fix an arbitrary T>0 and a natural number N and set t=T/N. Then
we have

(7.1)  lu(n, ) —wi(nz, <)oo= uo—allirn+c(*+ht#)(||alleo + [ 4a]1.0)
for n=1,2,---, N,

where ¢ is a constant depending only on 2 and T. | |l.o and | .z
are the morms in H*'(Q) and H'(R"), respectively.

Proor. We prove that
(7.2) Cule, ) =ua(r, )P = Uo—ad.+c(c®+ht ™) ([alls0+ | dafls,0)-
Then the same proof yields
(u(mz, <) —wup(mz, -)>.Zu((m—1)z, ) —w((m—1)z, -)).
+e(eP+hr7 )z (|u((m—1)z, -)|ls0+ | du((m—1)z, -)|l10)
<Lu((m—1)z, ) —us((m—1)z, -)>.+c (e +ht ™)z (|| alls,0 + | dalls,o)-

Summing up these inequalities from m=1 to m=n, we have (7.1). To
show (7.2), we note that the true solution u satisfies

ale, &) =4 (&) +§ o184 (s, £)ds,

0

where qzz_u. We define a function r,€ H Y*I") by
Y
At p)==| | Eeo—vewpedydl.  meX)

2,—clel?
or equivalently ”?,,z—H,,,,(il—G‘L:Td(S)). Then it holds that
—e "
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(e, §) —da(c, §) =e ¢ (a(8) —o(£)) +Ste_“_”"'2(@(8, §) —74(&))ds

1—ece® _AO
+T("'h(5) AQ)

_ et o gpenet

+ [ emetiate, & —hule)ds
=1+1,.

Therefore we have

Cu(r, -) —un(e, §))c = <Tude +< 1.
g <u0 —a>r +<IZ>:"

Therefore it is enough to show that
(7.3) Iy Zct(c*+ht ) (||als0+] da]1,q)-
This is verified as follows: Let B(,) be a bilinear form defined by

B(f.0)=| [, e fls. 01305 Sdeds.

Its defining domain is a set of functions on (0, 7) X I" satisfying B(f, f) <co.
If we regard an element of X, as a function on (0,7)x " which does
not depend on s, the space X, is a closed subspace of the defining
domain of B(,). Note that B(q—r, p,)=0 for any p,€ X,. This fact
means that

Blg—ry, g—7)<B(@—Dmi,q—p)  for any p,€X,.
On the other hand, we have
|LP< Ste_““”f'zds Sr e“f‘“"flzlé(s, &) — (s, £) [fds
0 0
B 1—ec€? (* e 4 \
——|—§|2— oe |d(s, &) —Fu(s, &) ['ds.

Therefore

04 | tElinrdese] [ o o e rasae

= inf <|_{"emeoreige, &) —pe) rasds.

PRLEXY
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To estimate the integrant, we use the identity
N . (79g N
Q(sy E) —_— a?t—(t' E)dt+Q(T» E)'

Then, by (7.4), we have
. —egcle® R .
(7.5) (s int 2ef A= a6 —pule) P

PREXy |§|Z

+2t5 S o--lgl?
R™ Jo

S aaq t&dt‘dsd&

e’ 1
g T 1+[P

inf z[g(z, ) =Dalla1mm=c inf lq(z, -) =pal|Zspe
PRLEX) PREX}

Since for 0<r<1, the first term is majorized by

Zcich¥q(z, ) [Te=Zcich®l|a| o
Here the second and the third inequalities follow from
(7.6) lw—pull sp=chllwlly,  (weH"™1I))

and ||q(z, ) |liz=cllu(r, -)|o=cillallse, respectively. For the proof of (7.6),
see page 122 of [12]. On the other hand, the second term of (7.5) is
majorized by

21'5 se == ""5'2 S Iaq t, &) ‘ dtdsdé

<2 S | dtj e~ e’ dsde
*1— e‘“f' 04

=2 2S t, &)| dtd

c “er e )| dtds
gcrzs . dt.

0 —1,R"
Since it holds that

LISt

t ll-1,Rr" ot ll-12 ot

=c(|lallz,o+Ida].0) (0<t),
we finally obtain

Ly:<c(w+7h’)(l|allso+ [ dalls,0)*.
Thus we get to (7.3). Q.E.D.
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§8. Concluding remarks.

Concerning BEM approximation, we proved two inequalities (3.1)
and (6.4). These are shown by the intuitive use of the Fourier trans-
form. The inequality (3.1) appears in [6,7,10,12] but the inequality
(6.4) seems to be new for us. Unconditional stability is a direct con-
sequence of (6.4). We showed convergence under the condition that
h*ltr—0. The proof of convergence in the case of Dirichlet problem in
a domain of dimension =2 seems also to be new. We do not know how
close this is to the optimal rate. We, however, can not improve this
in our elementary framework.

We do not know our approach is effective in the collocation method,
since, in this case, the resulting equation is no longer self-adjoint. We
know Arnold and Wendland [2] where the solvability and convergence
of a collocation method for two dimensional stationary problem is
rigorously proved.
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